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Two types of abstraction / generalization

The two poles of abstraction: type 1 vs type 2

Prototype-centric (value-centric) abstraction

e Set of prototypes + distance function
o Example: classify face vs. non-face using
abstract features

e Abstract wrt details not present in the

prototypes
e Obtained by clustering concrete samples into

prototypes

o Thisis a value analogy!
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Program-centric abstraction

Graph of (usually discrete) operators where
input nodes can take different values within a
type

o Example: function that sorts a list
Abstract wrt input nodes values
Obtained by merging specialized functions

under a new abstract signature
o Thisis a program analogy!

[4, 5, 2, 6]

result =

for

result += i * e

b=

i, e in enumerate(a):
def process item(x):

\ result =
for i, e in enumerate(x):
/ result += i * e

[6, 3, 4, 7]
n result

result = 0

for

i, e in enumerate(b):

result += i * e

Francois Chollet,
keynote talk at AGI-24



Two types of abstraction / generalization

Prototype-cep
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e Obtained by clustering concrete samples into
prototypes

o Thisis a value analogy!

The two poles of abstraction: type 1 vs type 2

Program-ce
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type

Abstract wrt input nodes values
Obtained by merging specialized functions

under a new abstract signature
o  Thisis a program analogy!

a= (4,5, 2, 6]

result =

for i, e in enumerate(a):

et e def process item(x):
result =

. result += i * e
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result = 0
for i, e in enumerate(b):
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The ability to navigate and act within new environments...
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Depends on prior, structured experience
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Solving tasks requires mapping to the right representations

Inside subway Central
station square
Payment
card Front of
Location Platform station

on map



“Meta-learning” is one method of learning useful representations

A process of learning priors or useful
representations from previous experience to
enable faster learning or better decisions



The “Harlow task”
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Harlow, 1949, Psychological Review



PER CENT CORRECT RESPONSES
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Wang, Kurth-Nelson, et al. Nature Neuroscience (2018)



Meta-reinforcement learning

Observation,
reward
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Meta-reinforcement learning
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What is structured training data?
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In meta-learning, we only consider a subset of tasks of interest

Let's assume that all training tasks are sampled from a generative process with latent parameters w
that generates a sequence of observations, conditioned on past states and actions {

e.g. rules of physics, initial
conditions, causal relationships,
variables of interest, etc
(note that N(w) << N(tasks))

SOLAR SYSTEM




Tasks determine the states we can reach, with different utilities

Let's assume that all training tasks are sampled from a generative process with latent parameters w
that generates a sequence of observations, conditioned on past states and actions {

e.g. rules of physics, initial
conditions, causal relationships,
variables of interest, etc
(note that N(w) << N(tasks))

Every episode i, sample a task T; ~ T (w)

This task determines how an agent can
interact with the environment to get to states
with different utility or reward




Generative process with latent
parameters w that generates task

T, ~ T(w)

We train a policy (agent) with learned parameters 6 that
interacts with sampled task T. to maximize expected total
utility U (or minimize loss) for all the states s visited in task T

U(Ti;m9) = Y u(st,i; o)

t

max U(T;; o)




Every episode i (gradient update), sample a task. Repeat for many T; ~ T (w)

If trained to optimal 6*, meta-learning parameters will
represent sufficient statistics for this generative process

For more formal description: see Ortega et al, 2019. Meta-learning of sequential strategies, arXiv:1905.03030



A memory-based meta-learner will converge to represent task structure

Meta-learning of sequential strategies
Ortega, Wang, et al, 2019, arXiv:1905.03030



A memory-based meta-learner will converge to represent task structure

PC2

Meta-learning of sequential strategies
Ortega, Wang, et al, 2019, arXiv:1905.03030



2-armed bandits
independently drawn from
uniform Bernoulli distribution

Held constant for 100 trials
=1 episode

p; = probability of payout,
drawn uniformly from [0,1],



PCA 2

2-armed bandits
independently drawn from
uniform Bernoulli distribution

Held constant for 100 trials
=1 episode p; = probability of payout,
drawn uniformly from [0,1],

Training episode: 1 Training episode: 900  Training episode: 3600  Training episode: 89000 .. al #
100 100

o« o«

o o

A v

) i

o o
1 1

PCA 1

Botvinick, Wang, et al, 2020. Deep reinforcement learning and its neuroscientific implications. Neuron



A good (useful) representation provides a mapping between raw
sensory data and the underlying task-relevant variables of the set
of tasks

The end result of meta-learning is the acquisition of this
representation
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A good (useful) representation provides a mapping between raw
sensory data and the underlying task-relevant variables of the set
of tasks

The end result of meta-learning is the acquisition of this
representation

BUT there is no guarantee that this representation can be learned
in any reasonable amount of time!



PER CENT CORRECT RESPONSES
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Alchemy: A meta-reinforcement learning benchmark

Resample stones, potions, etc.
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Wang, King, et al, 2021, NeurlPS Datasets and Benchmarks



Alchemy: A meta-reinforcement learning benchmark

Episode Reward
(Song et al, 2019 ICLR .
Parisotto et al, 2019 ICML) Bayes optimal
VMPO agents 250
s 3D
Symbolic 200
150 |- P .
Chance 100
performance
50
0

Wang, King, et al, 2021, NeurlPS Datasets and Benchmarks



Alchemy: A meta-reinforcement learning benchmark

Episode Reward

Bayes optimal

250
Improvement when 200
training with auxiliary
task specifically 150 .. .. 00000
designed to give the
right task-related 100
representations

50

0

Wang, King, et al, 2021, NeurlPS Datasets and Benchmarks



ON THE ROLE OF PLANNING IN
MODEL-BASED DEEP REINFORCEMENT LEARNING

Jessica B. Hamrick; Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola,

Sims Witherspoon, Thomas Anthony, Lars Buesing, Petar Velickovié¢, Théophane Weber*
DeepMind, London, UK

Looked at the role that planning plays in generalization for agents like MuZero

Found it was more important to have the right abstractions and

representations in the value and policy than learning a correct model of the
environment or doing extensive planning

How do we get our models to learn these right representations?

Hamrick et al, 2021, ICLR




Answer(?): first pre-train on real-world data at scale
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Answer(?): first pre-train on real-world data at scale

SILICON DIOXIDE MOLECULES

% 150 000 000 000 000 m ,

SOLAR SYSTEM

First train on this

And then fine tune, few-shot, or
even zero-shot prompt on this



Language model training is not active; they passively
predict the next token in someone else’s language

large

N

Train

A lot of text on
the internet,
written by some
humans

ing

models is not easy
large models is not



In practice, it does surprisingly well (not human-level)

Causal Reasoning and Large Language Models:
e | Ms provide useful priors for causal reasoning Opening a New Frontier for Causality
mechanisms, e.g. for identifying causal structures
Emre Kiciman*® Robert Ness
from data Microsoft Research Microsoft Research
emrek@microsoft.com robertness@microsoft.com
Amit Sharma Chenhao Tan
. . Microsoft Research University of Chicago
e LMs can be prompted to interactively use tools amshar@microsoft.com  chenhao@uchicago.edu

(e.g. APIs) to achieve a task

Toolformer: Language Models Can Teach Themselves to Use Tools

Timo Schick  Jane Dwivedi-Yu Roberto Dessi' Roberta Raileanu
Maria Lomeli Luke Zettlemoyer Nicola Cancedda Thomas Scialom

Meta Al Research fUniversitat Pompeu Fabra

Chat Plugins ==

Learn how to build a plugin that allows ChatGPT to intelligently call your API.




Can we apply the same cognitive neuroscience tools to LLMs to
better understand how they work?
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The importance of the training dataset for in-context learning

=
Data Distributional Properties Drive
Emergent In-Context Learning in Transformers >
Stephanie C.Y. Chan Adam Santoro Andrew K. Lampinen Jane X. Wang
DeepMind DeepMind DeepMind DeepMind
Aaditya K. Singh Pierre H. Richemond James L. McClelland  Felix Hill e
University College London DeepMind DeepMind, Stanford DeepMind
(a) Model, inputs, and outputs.
(b) Sequences for training.
T bursty ?
transformer (causal) ’ bBZl 0216 Q26 b821 h4s Qe g 579 bsm O\
resiet enjbed T T T T T non-bursty ?
@ 'Fuae h45 CJ1003 bam 0216 e 8579 C 907 O
image label

context

context

query

Investigated the emergence of
in-context (meta) learning in
transformer architectures

Tested different characteristics of
data distributions, including features
that are prominent in natural language

Burstiness, many classes,
many-to-one label mappings all
contributed to a tradeoff between
in-context vs in-weights learning

Chan et al, 2022, NeurlPS



LLMs can learn causal reasoning even from passive data

Passive learning of active causal strategies in agents
and language models

Andrew K. Lampinen Stephanie C. Y. Chan Ishita Dasgupta
Google DeepMind Google DeepMind Google DeepMind
London, UK London, UK London, UK
lampinen@deepmind.com scychan@deepmind.com idg@deepmind.com
Andrew J. Nam Jane X. Wang
Stanford University Google DeepMind
Stanford, CA London, UK

ajhnam@stanford.edu wangjane@deepmind.com

Generalizable causal strategies and knowledge can
be learned from passive data

Passive does not imply observational, can still learn
from observing others perform experiments

Lampinen et al. NeurlPS 2023
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Meta-in-context learning in large language models

Large language models can not only perform in-context learning by learning from examples sampled from a

single task, but can also exhibit meta-in-context learning by learning from examples taken from a series of
tasks which are themselves sampled from a distribution, entirely within the prompt.

Meta-in-context learning in large language models

Julian Coda-Forno!:>* Marcel Binz! Zeynep Akata®
Matthew Botvinick® Jane X. Wang®  Eric Schulz!
!Max Planck Institute for Biological Cybernetics, 2University of Tiibingen - Tiibingen, Germany;
3Google DeepMind - London, United-Kingdom
*{julian.coda-forno@tuebingen.mpg.de }

Try to predict y accurately: Try to predict y accurately: Try to predict y accurately:
Task 1: Task 1: Task 1: Task 1: Task 1: Task 1: Task 1: Task 1: Task 1
x=1, y= x=1,y=2 || x=1, y=2 x=1,y=2 || x=1,y=2 || x=1, y=2 x=1,y=2 || x=1,y=2 [ x=1, y=2

x=3, y= x=3, y=6 x=3, y=6 || x=3, y=6 || x=3, y=6 =3, y=6 || x=3, y=6 || x=3, y=6
x=4, y= x=4, y=8 || x=4, y=8 || x=4, y=8 =4, y=8 || x=4, y=8 || x=4, y=8
\ J

Y . Task 2: || Task2: || Task 2: Task 2: ([ Task2: || Task2
In-context learning x=1,y= [[x=1,y=1 |[x=1,y=1 |« =« |x=1,y=1 [[x=1,y=1 || x=1, y=1
X=2, y= x=2,y=3 x=2,y=3 || x=2, y=3 || x=2, y=3
x=5, y= x=5,y=9 || x=5, y=9 || x=5, y=9

[=25] [...] [y

Task N Task N: || Task N
x=0, y= x=0, y=1 || x=0, y=1
X=2, y= x=2, y=5

x=5, y=

Coda-Forno et al, NeurlPS 2023
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Meta-in-context learning




CogBench: a large language model walks into a psychology lab

7 psychology experiments

drawn: @
Left Right

Left Left

Right Right

Left Ll
Left Right

A P(Left|red)
is:

ce s
or ®

°®
-

: Currently earned: 0

Number of pumps: 0

Inflate Cash in
L |

Coda-Forno, Binz, Wang, & Schulz. ICML 2024




CogBench: a large language model walks into a psychology lab

H@ - x |

7 psychology experiments Translate them for LLMs . 35+ LLMs: LLaMA-2 GPT-4 Claude-2 PaLM-2 Humans
. Prior
- drawn: @ {Probabilistic reasoning instructions} weighting | 0.94 | 0.58 | 036 | 0.50 0.88
Left £
¢ = ) | Q2 The wheel of fortune contains 6 sections labelled F and 4 sections Likelihood
" Right Right labelled J. The urn F contains (8, 2) and the urn J contains (2, 8) weishting | 155 | 035 [ 0.73 | 0.40 0.91
{ red/blue balls. A red ball was drawn. What is the probability that it S
was drawn from Urn F? (Give your probability estimate on the scale 033
from 0 to 1 rounded to two decimal places) 0.10 | -0.31 | -0.13 | -0.08 =
.01 I i B 0.02
A: T estimate the probability of the red ball to be drawn from the urn F - R
tobe 0. Meta-
cognition 0.61 0.74 0.54 | 0.55 0.77
: - Learning e
. rate 033 | 025 | 034 | 0.18 0.19
. ’ Optimism
{BART instructions} bise 0.50 0.69 0.45 0.15 0.19
You observed the following previously where the type of balloon is Model-
Currently earned: 0 given in parenthesis: basedness | 000 | 0.16 | 0.05 | 0.04 0.03
-Balloon 1 (A): You inflated the balloon 0 times for a total of 0 ) _
Number of pumps: 0 points. It did not explode. en 1 10.30
-Balloon 2 (C): You inflated the balloon 4 times for a total of 4 ( 1tin 13 10 2 15 .
points. It did not explode. Risk
g g A isk-
—) Q: You are currently with Balloon 3 which is a balloon of type A. i 1722
“‘ m What do you do? (Option 1 for 'skip' or 2 for 'inflate') taking 2By gar| €39 1
A: Option %
10 behavioral metrics comparable to humans

/

Coda-Forno, Binz, Wang, & Schulz. ICML 2024



CogBench: a large language model walks into a psychology lab

GPT-4 text-davinci-003 Claude-2 Claude-1 text-bison LLaMA-2-70  LLaMA-2-70-chat
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Coda-Forno, Binz, Wang, & Schulz. ICML 2024



CogBench: a large language model walks into a psychology lab

[ Use of RLHF [ RLAIF

UMAP dimension 2

[ No use of RLHF """ Random/Human
[ ] = °
0 - [ ]
[ J o P
random
[ ]
- [ ]
_1 - ® [ J 'Y ®
™ b »
@
. * o 4Pfama2-70
=2 1 .human °
° ° ®
Llaude-2
. " GPT-4
-3 JLaMA-2-70-chat

6

7 8 9
UMAP dimension 1

0 1 2 3 4 5

Average L2 norm to humans

LLMs with RLHF are more human-like

Larger models perform better and exhibit model-based
behavior

Open-source models are less risk-prone

Different prompting techniques affect model behavior
in different ways

Coda-Forno, Binz, Wang, & Schulz. ICML 2024



Are foundation models “embodied”?

Embodiment: An agent’s ability to perceive, interact with, and influence an
environment (physical, simulated, or digital) through a defined singular
presence and rich or multimodal sensory mechanismes.



Are foundation models “embodied”?

Embodiment: An agent’s ability to perceive, interact with, and influence an
environment (physical, simulated, or digital) through a defined singular
presence and rich or multimodal sensory mechanismes.

OpenEQA: Embodied Question Answering in the Era of Foundation Models
https://open-eqa.github.io

Arjun Majumdar’*  Anurag Ajay>* Xiaohan Zhang®*

Pranav Putta!  Sriram Yenamandra' Mikael Henaff* Sneha Silwal*  Paul Mcvay*
Oleksandr Maksymets*  Sergio Arnaud® Karmesh Yadav? Qiyang Li® Ben Newman®
Mohit Sharma®  Vincent Berges?  Shigi Zhang® Pulkit Agrawal?  Yonatan Bisk*®  Dhruv Batra'*
Mrinal Kalakrishnan?* ~ Franziska Meier! ~ Chris Paxton? ~ Alexander Sax*  Aravind Rajeswaran*

* Equal contribution. 1. Georgia Tech 2. MIT 3. Binghamton University 4. Meta AT 5. UC Berkeley 6. CMU
‘Work done at Fundamental Al Research (FAIR), Meta.




Are foundation models “embodied”?... Not quite yet

Q: What is left of the

Dataset Examples
Episode History H

Question-Answer (Q, A*) Categories

( Attribute Recognition \
T
|

Q: What colors is the

Q: Is the microwave
door propped open?

’ Object State Recognition \

Q: Where is the checkers

board?

\ A’: Entryway table ‘

A% N(j

kitchen backsplash?
A”: Black ‘

kitchen pass through?
A" A bicyclj

( Functional Reasoning \

fi

\

( Spatial Reasoning \

Q: Can another cookie jar
it on the cookie jar shelf?

Q: Where can I store the

’ World Knowledge ‘

-

Q: Does this house have
forced air heating?

house key?
A”": The lockbox on the door J

\ )

A": Yes
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Majumdar et al, CVPR 2024



Jim Fan “Generally capable agents in open-ended worlds”
(March 18, 2024)

Foundation Agent

Realities
I'ﬂ

Embodiment Instructions III _— Actions III

“If it is able to master 10,000 diverse simulated realities, it may well generalize to our
physical world, which is simply the 10,001st reality.”



SIMA: Scaleable, Instructable, Multiworld Agent

A single agent with a universal interface that can be instructed via language to perform any task in any 3D visual environment...

User

&)

—

Language
Instruction

Visual
Input

©

Environment

Action

= O

[ "Enter the spaceship” }

Sima team, 2024. arxiv.org/abs/2404.10179

O



SIMA: Scaleable, Instructable, Multiworld Agent

RESEARCH

A generalist Al agent for 3D virtual
environments

13 MARCH 2024

By the SIMA Team

< Share
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https://deepmind.google/discover/blog/sima-generalist-ai-agent-for-3d-virtual-environments/



https://deepmind.google/discover/blog/sima-generalist-ai-agent-for-3d-virtual-environments/

Qualitative Results - Commonalities Across Domains

Go to / get in a vehicle
Go to the Spaceship

NO MAN'S SKY |
4 X L

Drive the Tractor

Get in the Truck

HYSHONEER,

) |

47



Common Instructions

No Man’s Sky Valheim Satisfactory Goat Sim. 3 Teardown Construction Playhouse WorldLab
Lab

Open Menu N/A N/A N/A

Close Menu

Go Forward

Turn Left

Turn Right

Turn Around

Object Manip.



High level result: positive benefit to training on many environments

And generalization!

We have positive transfer!
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High level result: positive benefit to training on many environments

And generalization!

We have positive transfer!
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https://arxiv.org/pdf/2404.10179.pdf

The next generation of foundation models: foundation agents

]
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The next generation of foundation models: foundation agents

"))

From static data to experiential data

Embodied

Agentic

Causal

Persistent over some duration of time

Contains feedback signals which can be used to learn

Vi b d



Conclusions

-> Meta-learning, or learning to learn, hinges on acquiring useful representations
that enable generalization.

-> Large language models demonstrate implicit meta-learning through their
ability to generalize from massive text data.

-> Cognitive science provides a framework for analyzing the representations and
cognitive abilities of these models.

-> Embodied Al, with its emphasis on interaction and experience, offers a path
towards more general and adaptable intelligence.



Questions?
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