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The ability to navigate and act within new environments…



Depends on prior, structured experience



Solving tasks requires mapping to the right representations
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“Meta-learning” is one method of learning useful representations

A process of learning priors or useful 
representations from previous experience to 

enable faster learning or better decisions



The “Harlow task”

Training 
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Harlow, 1949, Psychological Review
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Wang, Kurth-Nelson, et al. Nature Neuroscience (2018)
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What is structured training data?



Let’s assume that all training tasks are sampled from a generative process with latent parameters 𝒘 
that generates a sequence of observations, conditioned on past states and actions

In meta-learning, we only consider a subset of tasks of interest

All possible tasks 
in our universe

e.g. rules of physics, initial 
conditions, causal relationships, 

variables of interest, etc
(note that N(𝒘) << N(tasks))



Let’s assume that all training tasks are sampled from a generative process with latent parameters 𝒘 
that generates a sequence of observations, conditioned on past states and actions

Tasks determine the states we can reach, with different utilities

Every episode i, sample a task

This task determines how an agent can 
interact with the environment to get to states 
with different utility or reward

All possible tasks 
in our universe

e.g. rules of physics, initial 
conditions, causal relationships, 

variables of interest, etc
(note that N(𝒘) << N(tasks))



Generative process with latent 
parameters 𝒘 that generates task

We train a policy (agent) with learned parameters 𝛳 that 
interacts with sampled task Ti  to maximize expected total 
utility U (or minimize loss) for all the states s visited in task T



Every episode i (gradient update), sample a task. Repeat for many

If trained to optimal 𝛳*, meta-learning parameters will 
represent sufficient statistics for this generative process

𝒘 𝛳*

For more formal description: see Ortega et al, 2019. Meta-learning of sequential strategies, arXiv:1905.03030



Meta-learning of sequential strategies
Ortega, Wang, et al, 2019, arXiv:1905.03030

A memory-based meta-learner will converge to represent task structure

𝒘



A memory-based meta-learner will converge to represent task structure

Meta-learning of sequential strategies
Ortega, Wang, et al, 2019, arXiv:1905.03030
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pL pR

pi = probability of payout, 
drawn uniformly from [0,1],

2-armed bandits 
independently drawn from 
uniform Bernoulli distribution

Held constant for 100 trials 
=1 episode



pL pR

pi = probability of payout, 
drawn uniformly from [0,1],

2-armed bandits 
independently drawn from 
uniform Bernoulli distribution

Held constant for 100 trials 
=1 episode

Botvinick, Wang, et al, 2020. Deep reinforcement learning and its neuroscientific implications. Neuron



𝒘 f(x,𝛳)

A good (useful) representation provides a mapping between raw 
sensory data and the underlying task-relevant variables of the set 
of tasks 

The end result of meta-learning is the acquisition of this 
representation



A good (useful) representation provides a mapping between raw 
sensory data and the underlying task-relevant variables of the set 
of tasks

The end result of meta-learning is the acquisition of this 
representation

BUT there is no guarantee that this representation can be learned 
in any reasonable amount of time!
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Alchemy: A meta-reinforcement learning benchmark

Wang, King, et al, 2021, NeurIPS Datasets and Benchmarks
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Wang, King, et al, 2021, NeurIPS Datasets and Benchmarks

(Song et al, 2019 ICLR
Parisotto et al, 2019 ICML)

Chance 
performance

Bayes optimal



Alchemy: A meta-reinforcement learning benchmark

Wang, King, et al, 2021, NeurIPS Datasets and Benchmarks

Improvement when 
training with auxiliary 
task specifically 
designed to give the 
right task-related 
representations 

Bayes optimal



➔ Looked at the role that planning plays in generalization for agents like MuZero

➔ Found it was more important to have the right abstractions and 
representations in the value and policy than learning a correct model of the 
environment or doing extensive planning

➔ How do we get our models to learn these right representations?

Hamrick et al, 2021, ICLR



Answer(?): first pre-train on real-world data at scale

All possible tasks in 
our universe



Answer(?): first pre-train on real-world data at scale

All possible tasks in 
our universe

Human-generated 
data from the 

internet

First train on this 

And then fine tune, few-shot, or 
even zero-shot prompt on this



Language model training is not active; they passively 
predict the next token in someone else’s language 

easy

A lot of text on 
the internet, 
written by some 
humans

Train          ing            large       models         is              not           

<BOS>       Train          ing            large       models           is              not            



In practice, it does surprisingly well (not human-level)

● LMs provide useful priors for causal reasoning 
mechanisms, e.g. for identifying causal structures 
from data

● LMs can be prompted to interactively use tools 
(e.g. APIs) to achieve a task



Can we apply the same cognitive neuroscience tools to LLMs to 
better understand how they work?



The importance of the training dataset for in-context learning

➔ Investigated the emergence of 
in-context (meta) learning in 
transformer architectures

➔ Tested different characteristics of 
data distributions, including features 
that are prominent in natural language

➔ Burstiness, many classes, 
many-to-one label mappings all 
contributed to a tradeoff between 
in-context vs in-weights learning

Chan et al, 2022, NeurIPS



LLMs can learn causal reasoning even from passive data

Lampinen et al. NeurIPS 2023

Generalizable causal strategies and knowledge can 
be learned from passive data

Passive does not imply observational, can still learn 
from observing others perform experiments



Meta-in-context learning in large language models

Large language models can not only perform in-context learning by learning from examples sampled from a 
single task, but can also exhibit meta-in-context learning by learning from examples taken from a series of 
tasks which are themselves sampled from a distribution, entirely within the prompt.

Coda-Forno et al, NeurIPS 2023



CogBench: a large language model walks into a psychology lab

Coda-Forno, Binz, Wang, & Schulz. ICML 2024
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CogBench: a large language model walks into a psychology lab

Coda-Forno, Binz, Wang, & Schulz. ICML 2024

LLMs with RLHF are more human-like

Larger models perform better and exhibit model-based 
behavior

Open-source models are less risk-prone

Different prompting techniques affect model behavior 
in different ways



Are foundation models “embodied”?

Embodiment: An agent’s ability to perceive, interact with, and influence an 
environment (physical, simulated, or digital) through a defined singular 
presence and rich or multimodal sensory mechanisms.
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Are foundation models “embodied”?...  Not quite yet

Human

VLM

LLM

Majumdar et al, CVPR 2024



Jim Fan “Generally capable agents in open-ended worlds” 
(March 18, 2024)

“If it is able to master 10,000 diverse simulated realities, it may well generalize to our 
physical world, which is simply the 10,001st reality.”



SIMA: Scaleable, Instructable, Multiworld Agent

SIMA

Language 
Instruction

Action
Visual 
Input

Environment

User

"Enter the spaceship"

Sima team, 2024. arxiv.org/abs/2404.10179

A single agent with a universal interface that can be instructed via language to perform any task in any 3D visual environment…



SIMA: Scaleable, Instructable, Multiworld Agent

https://deepmind.google/discover/blog/sima-generalist-ai-agent-for-3d-virtual-environments/

https://deepmind.google/discover/blog/sima-generalist-ai-agent-for-3d-virtual-environments/


Qualitative Results - Commonalities Across Domains

47
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We have positive transfer!

And generalization!

Our evals require 
language!

High level result: positive benefit to training on many environments



We have positive transfer!

And generalization!

Our evals require 
language!

High level result: positive benefit to training on many environments

More results in our tech report:

https://arxiv.org/pdf/2404.10179.pdf

https://arxiv.org/pdf/2404.10179.pdf


The next generation of foundation models: foundation agents

Action



The next generation of foundation models: foundation agents

➔ Embodied
➔ Agentic
➔ Causal
➔ Persistent over some duration of time
➔ Contains feedback signals which can be used to learn

From static data to experiential data

Action



Conclusions

➔ Meta-learning, or learning to learn, hinges on acquiring useful representations 
that enable generalization.

➔ Large language models demonstrate implicit meta-learning through their 
ability to generalize from massive text data.

➔ Cognitive science provides a framework for analyzing the representations and 
cognitive abilities of these models.

➔ Embodied AI, with its emphasis on interaction and experience, offers a path 
towards more general and adaptable intelligence.
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