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Reasoning with a world model

“If the organism carries a ‘small-scale model’ of external reality and of its
own possible actions within its head, it is able to try out various alternatives,
conclude which is the best of them, react to future situations before they arise,
utilise the knowledge of past events in dealing with the present and future, and
In every way to react in a much fuller, safer, and more competent manner to the
emergencies which face it.”

—Kenneth Craik, The Nature of Explanation (1943)



Silver et al. (2016) OpenAl et al. (2019) Segler et al. (2018) Finn et al. (2018)

Schrittwieser et al. (2020) Luo et al. (2019) Weber et al. (2017) Hafner et al. (2019)



The promise of model-based RL

“Model-free algorithms are in turn far from the state “Model-based planning is an essential ingredient
of the art in domains that require of human intelligence, enabling
, such as chess and Go” to new tasks and goals™

-Schrittwieser et al. (2019) -Lake et al. (2016)
“By employing search, we can find strong move “...a flexible and general strategy such as mental
seqguences potentially far away from the simulation allows us to reason about a wide range
apprentice policy, accelerating learning in complex of scenarios, even ones...”
scenarios”

-Anthony et al. (2017) -Hamrick (2017)

o “...[models] enable better across
“....predictive models can enable a real robot to states, remain valid across tasks in the same
manipulatf objects and solve environment, and exploit additional unsupervised
new tasks learning signals...”

-Ebert et al. (2018) -Weber et al. (2017)
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Plan for the talk

1. What is model-based RL?
2. Lessons from studying generalization & transfer in MBRL

3. The missing ingredient for neurosymbolic Al
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ENnvironments

Y
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(Swingup Sparse) (Run) (Stand) (Procedural)

Ms. Pacman Sokoban O9x9 Go

Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.
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Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.
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Procedural generalization

Procgen (Cobbe et al., 2020)
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Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.
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Improving MuZero with self-supervision
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— Self-supervision has a huge impact on generalization!

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.
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Improved representations
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Generalizing to novel scenes

Observation (t) 4 Graph-based Argmax over ) Action (t)
Q-function edge Q-values

AL ‘

on block B,

A: / “Place block D
l
;I on its top left”

Bapst, Sanchez-Gonzalez et al. (2019). Structured agents for physical construction. ICML.
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EXperimental setup

Unsupervised Transfer phase:
exploration phase:
RL training with Transfer policy and/or model and
intrinsic rewards continue training with real rewards

M et® N R\ : - '
. ; ~ S gL o
L .._ﬂ ! o

Robodesk (Kannan et al., 2021)

Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.
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Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.

’f't"""

Tt
Obs. Prior _—" e,
Encoder —> Heads _’Vt
(OE) (PH) ———.
:
SPR Loss
! _ T4l
Vs Dynamics —* =
(M) —> Heads —>Vt__1
DH T~
(OH) rYi
l ;
SPR Loss
l Tt+k

Dynamics —"

M(c;/cli)el Heads —* Vt+k
(DH) T~ sl
: T't+k
v
SPR Loss



EXperimental setup

Unsupervised exploration
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Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.
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Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.
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Transfer in Crafter
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—— MB-MF
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Crafter (Hafner, 2021)

500k 1M
Environment frames

— MB leads to improved transfer performance,
and matters a lot for finetuning

Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.
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— The model is important for transfer,
but so is the exploration policy!
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Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.
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Transfer in Meta\World
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Walker, Vertes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.
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INngredients for generalization & transtfer

Model-based learning High-quality world model High-quality exploration prior

V' @ B
x ‘ |

Missing ingredient: (Pre-)training
on lots of high-quality, diverse data

=




Foundation models as the missing ingredient?

SayCan (Ahn et al., 2022)



... and yet ...

Struggle with

Hallucinate / Get distracted by svmbolic/abstract Make simple Get stuck in
make stuff up irrelevant context y reasoning calculation errors loops
Model-based learning Foundation models
_|_




Model-based learning + foundation models

Train
Informal X . Formal @
problems Oy Formalize or oblems Search
Formalizer Solver
~1M ~100M
network network
® AlphaZero °

AlphaProof & AlphaGeometry 2 (2024)
Together achieved silver medal standard at the IMO!



Model-based learning + foundation models
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