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Al MODEL = DATA + KNOWLEDGE

Natural Language Explanations

If an agent pushes an object then it is a pedestrian

A pedestrian can only push objects, move away, etc.

Only pedestrains, cars, cyclists, etc. can cross from left

Only pedestrians and cyclists can wait to cross

Only pedestrians, cars, cyclists, etc can stop

Only pedestrians, cars, cyclists, etc can move

Only pedestrians, cars, cyclists, etc can move towards

Only pedestrians, cars, cyclists, etc can move away

An emergency vehicle can only overtake, move away etc.
Only emergency vehicles, cars etc. can have hazards lights on
A bus can only overtake, move away move towards etc.

A medium vehicle can only overtake, move away, move towards etc.

Giunchiglia, Eleonora, Mihaela Catalina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas

Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine

Learning (2023): 1-31.



The NeuroSymbolic
alphabet-soup

DiffLog

aILP

OILP
Y BE
NeurASP
DeepSeal.og

DeepProblLog
Neural ILP SBR LRNNs

DeepStochLog

check our survey on Ald — Marra, Dumancic, Manhaeve & De Raedt, 23
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Neurosymbolic =
Neuro + Logic

LOGIC

NEURAL



Neurosymbolic =
Neuro_: Logic + Probability

PROBABILITY

NEURAL

see Manhaeve et al. NeSy Book

interpret PROBABILITY broadly (including fuzzy)



|BABI
Y

StarAl and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20; Marra et al, AlJ 24]



Provide recipe for

Kautz




Provide recipe for

Kautz

“an interface layer (<> pipeline) between neural &
symbolic components”



Part 1: NeSy Al - a little Survey

Part 2: The Recipe

Part 3: DeepStochLog and
DeepProblLog




Part 1: NeSy Al - a little survey

check our survey on AlJ — Marra, Dumancic, Manhaeve & De Raedt, 23



Statistical Relational

Artificial Intelligence
Logir, I)rolmliilily,

Two types of probabilistic graphic_
models and StarAl systems
TV

0.1 ::burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.
0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

undirected
directed Markov Net
Bayesian Net model theoretic i
=#eFC

key representatives

Markov Logic

. ® .,
ooooo




Two types of Neural
Symbolic Systems

Statistical Relational
Artificial Intelligence
Logic, Probability,
and Computation

Just like in StarAl

Logic as a kind of neural Logic as the regularizer
(reminiscent of Markov Logic
program Networks)

directed StarAl approach and
logic programs undirected StarAl approach and

(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl




Logic as a neural program

directed StarAl approach and logic programs

e KBANN (Towell and Shavlik Al] 94)

* Turn a (propositional) Prolog program into a
neural network and learn

Key A

A :- B, Z. O~

A - B ’ Z ° REWRITE B _ B ’ . A
_ ﬁ , ﬁ B

B C, D? B - B’ conjunction
B - E / F ’ G' . B ! - C 7 D . /\
Z — Y, not X. B’ - E, F, G. unnegated B’ B**
Y - s, T. A - Y, not X. dependency b\ Z|

b4 -5, T. ‘negated | C D E F G

dependency c — Step 1




Logic as a neural program

directed StarAl approach and logic programs

ADD LINKS — ALSO SPURIOUS ONES

e — Step 3

HIDDEN UNIT

and then learn

iIs of activation & loss functions not mentioned)
|3




directed StarAl approach and logic programs

Neural T heorem Prover

Towards Neural Theorem Proving at Scale

Example Knowledge Base: Q ' 1.0
@ fatherOf(ABE, HOMER). s
parentOf(HOMER, BART). grandpaOf ABE BART

E' grandfatherOf(X,Y) :- -

fatherOI(X,Z),

parentO£(Z,Y). I8 2. 3
%) . On %) . On Xnse 4 Oh 3.1 fathero£(X,Z)
. ' 40 Vieawr 40 3.2 parentO£(Z,Y)
o’
“
o’
- s ) “‘u'
fatherOf ABE .‘_,-
SeeRARAZAAAS2Lassesassenane, Launt
Z .‘llllllll-“-
. .
. L]
~ ) X/ABE : O, 20 X/ABE : 0 ~ )
32 parentO£f(Z,Y)]| vmarr Y/BART 4 3.2 parent0f(Z,Y)
Ky ZMOMER : Oa FAIL ZIBART : .
. ' 40 B ' 40 2
=. :
“ .'
g {.L;—‘t‘:’c‘fl'_':if HOMER BART parent Of BART BART ‘00
v g e Y v . JEaRg === e "
008 QO .
1. 2. 1. 2.
v 3. . . 3.
: N N ' o
: 40 - 40 : 40 : 40
X/ABE X/ABE X/ABE X/ABE
Y/BART : FAIL Y/BART : O Y/BART : Ca, FAIL Y/BART : Oa
ZIMOMER 4 40 ZIHOMER 40 ZIBART 40 Z/BART 40
: “© : Oﬁ : Oﬁ : 40

denote proof states (left: substitutions, right: proof score -generating neural network). All the non-FAIL proof states are
to obtain the final proof success (depicted in Figure 2). Colours and indices on arrows correspond to the respective KB rule

[Rocktdschel Riedel, NeurIPS 17; Minervini et al.]



Two types of Neural
Symbolic Systems

Just like in StarAl

. . Logi ]
Logic as a kind of neural OogIc as the regular 1zer
(reminiscent of Markov Logic

program Networks)

directed StarAl approach and

logic programs undirected StarAl approach and

(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template




Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

figures and example from Xu et al., ICML 2018




Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

This constraint should be satisfied

(_15131 N\ x99 N xg)\/
(_15131 N\ L9 N\ _15133)\/

(5131 N\ —XZo N _ng)

figures and example from Xu et al., ICML 2018




Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

Probability that constraint is satisfied

(1 — .2131)(1 — 5132)333—-
(1 — 2131)5172(1 — 563)——
331(1 — 2132)(1 — 5133)

basis for SEMANTIC LOSS

(weighted model counting)




Logic as a regularizer

undirected StarAl approach and (soft) constraints
Semantic Loss:

® Use logic as constraints (very much like
“propositional MLNs)

® Semantic loss
SLoss(T) o< —log Z H Di H (1 —pi)

® Used as regulariser

Loss = T'raditional Loss + w.SLoss

® Use weighted model counting, close to

egw StarAl IS



Logic lensor Networks

undirected StarAl approach and (soft) constraints
P(x,y) — A(y), with G(x) = vand G(y) = u

G(P(v,u) - A(u)

Serafini & Garcez



Semantic Based Regularization

undirected StarAl approach and (soft) constraints

F = Vd Pa(d) = A(d) Evidence Predicate
Fr = VdVd R(d,d') = ((A(d) N A(d")) V (mA(d) A =A(d))) Groundings
C = {di,da} Pa(dy) =1

R(dy,dy) = 1

A Output
Output Layer

Propositional Layer

tre (Pa(dy), fa(dy)) J

Input Layer

LI T T I]]

d, representation d, representation

Diligenti et al. AlJ




Two types of Neural o=

Statistical Relational
Artificial Intelligence
Logic, Probability,

Luc de Raedt

Kristian Kersting

Sriraam Natarajan

David Poole

SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Ronshd . Brachman, William W. Cohen, and PeerStome

Just like in StarAl

Loq . Logic as the regularizer
ogic as a kind of neural .. :
(reminiscent of Markov Logic

program Networks)

directed StarAl approach and

logic programs undirected StarAl approach and

(soft) constraints

Conseqguence :
the logic Is encoded in the network

the ability to logically reason is lost
logic is not a special case




A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

PROBABI

(S

Part 3 of the talk — illustration with DeepProbLog [NeurlPS 2018]
and DeepStochLog [AAAI 2022]



A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

Our approach: “an interface layer (<> pipeline)
between neural & symbolic components”

will be illustrated with DeepProblLog
See also [Manhaeve et al., NeurlPS 18; arXiv: 1907.08194]

PROBABI

(S

Part 3 of the talk — illustration with DeepProbLog [NeurlPS 2018]'.:3." C
and DeepStochLog [AAAI 2022]




Part 2: The Recipe

Turning any logic into a neurosymbolic one

check our survey on Al — Marra, Dumancic, Manhaeve & De Raedt, 24



Neurosymbolic functions

& primitives defining semantics and computational graph

Neural nets

signal- g\ image-
analysis . analysis

earthquake burglary

RN
AKX
sign43 iImgb55

24

© Luc De Raedt



Neurosymbolic functions

& primitives defining semantics and computational graph

calls(img55,sign43,john)

signal- g N image- AND
QS analysis

analysis

o)

Logic

alarm(B,E) IF earthquake(E) OR burglary(B) ‘ AND '
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)

hears_alarm(mary) NOT

earthquake burglary  hears_alarm(john)

RN
AKX
sign43 iImgb55

25 © Luc De Raedt



Can we learn

Neurosymbolic functions calls END TO END ?

& primitives defining semantics and computational graph

calls(img55,sign43,john)

signal- gg N image- AND
QS

analysis analysis
1 OR '

alarm(B,E) IF earthquake(E) OR burglary(B) ( AND ,
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)
hears_alarm(mary) NOT

earthquake burglary  hears_alarm(john)

RN
\ K

.,WMM oo <4— From
sign43 iImgb55

20 © Luc De Raedt



Neurosymbolic functions

& primitives defining semantics and computational graph
0.2406 calls(img55,sign43,john)

Neural nets

signal- g\ image- AND

analysis . analysis

' OR '

Logic
alarm(B,E) IF earthquake(E) OR burglary(B) ( AND ,
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)
hears_alarm(john)
hears_alarm(mary) NOT

Probability (or fuzzy)

earthquake burglary  hears_alarm(john)
0.8::earthquake
0.01::burglary 0.8 0.01 0.3
0.3::hears_alarm(john) PN

X7

sign43 imgb5

27 © Luc De Raedt



Neurosymbolic functions

& primitives defining semantics and computational graph

0.2406 calls(img55,sign43,john)

AND

o)

signal- g\ image-
analysis . 7

analysis

Logic

alarm(B,E) IF earthquake(E) OR burglary(B) ' AND '
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)

hears_alarm(mary) NOT

Probability (or fuzzy)

earthquake burglary  hears_alarm(john)
0.01 0.3

an
4

0.8::earthquake
0.01::burglary

9.3::hears_alarm(john) Deep bidirectional interface

Neurosymbolic primitive = the neural predicate

neural(image—analysis(B)) “ O

burglary(B)
earthquake(E)

neural(signal-analysis(E))) sign43 img55

28 © Luc De Raedt




N cu rosym bOI |C fu n CtIO ns Semantics = Computational Graph

& primitives defining semantics and computational graph

0.2406 calls(img55,sign43,john)

signal- g\ image- © *
analysis . 7 analysis =

alarm(B,E) IF earthquake(E) OR burglary(B)
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)
hears_alarm(john)
hears_alarm(mary)

Probability (or fuzzy)

earthquake burglary  hears_alarm(john)
0.01 0.3

SN
/'/

0.8::earthquake
0.01::burglary

9.3::hears_alarm(john) Deep bidirectional interface

N

O

Neurosymbolic primitive = the neural predicate

neural(image-analysis(B)) « ___;;_4

burglary(B)
earthquake(E)

neural(signal-analysis(E))) sign43 img55

29 © Luc De Raedt




Semantics = Computational Graph

Inference and learning (end-to-end)
Many variations, many challenges calls(img55,sign43,john)
Standard gradient descent applies 0.2406

Explanations

due to the use of a probabilistic logic, quite natural alarm *

probabilistic abduction (cf David Poole)

if john calls then it is because

&5
=

earthquake (and no burglary)
hears_alarm(john)

you can event edit these programs (knowledge) r ﬁ

alarm
earthquake burglary hears_alarm(john)
Semantics 0.8 0.01 0.3
How to define semantics ? 2N
Role of components ? X{ ;
(logic, fuzzy / probability, neural nets )? ~

Many variations

sign43 img55

© Luc De Raedt 30



A reciﬁe for NeSx

From logic formulae to circuits

C(AAB) — C) £(0)

The query Q determines
__ B




A recipe for NeSy
‘Where do the numbers come from 2

From logic formulae to circuits

CF(AANB) = C)  £(0)

What is the algebraic structure ? = Parametric circuit

9
What operators * - The query Q determines

the structure (potentially

| after knowledge
f(C) compilation)
What labeling |

| i
functions ? £(A) Z(B) e




A recipe for NeS

Boolean
/(A AB) = O) R
ﬁ
(A A T TF | F T [ F| F
F | T F F | T T
F | F| F F | F| T
9
What operators * - The query Q determines

the structure (potentially

after knowledge
compilation)
What labeling
functions ?




A recipe for NeSy
‘Where do the numbers come from ?-

Fuzzy

* t-norm extends conjunction to [0,1] interval  oiher operators derived from the t-norm
 Three fundamental t-norms:

o Product tukasiewicz Godel
* Lukasiewicz t-norm: XAy Xy max(0,x + y— 1) | min(x, y)
t(x,y) =max(0Ox+y—1) XVy x+y-x-y | min(l,x+y) | max(x,y)
. X 1 —x 1 —x 1 —x
- Goedel t-norm: f(x, y) = min(x, y) 57 65 T T~ .

- Product t-norm: fp(x,y) = x - y

continuous and

- differentiable
What operators ?
but a measure of
What labeling vagueness
functions ? not of uncertalnty

See [Van Krieken et aI AIJ]




A recipe for NeSy
‘Where do the numbers come from 2

Probability

* N
I

I
o
I

3 BT
T | 1 T | 1
o BT
T | 1 T | 1
B C p(B) p(C)

Knowledge Compilation (computationally expensive)

Probabilistic structure is explicit in compiled formula.

°
.I



A recipe for NeSy
‘Where do the numbers come from 2

P(A Vv B) = P(A) + P(B) - P(A A B)

)
I

1-p(A) p(B)

Knowledge Compilation (computationally expensive)

Probabilistic structure is explicit in compiled formula.



From StarAl to NeSy

i -
- o T
[ | ' StarAI KP(A) - ROBABI
rA)  Zp(B) oo [ LY

l—|—|
Zp(B)  £p(C)

& REPARAMETERIZATION &

| P ’—I—|
L
74 2x8) B NeSy i - [l
m E e ?mx) £4(C)
- o

N




Part 3: DeepStochlLog and
DeepProblLog

FROM TO



Two types of
probabilistic models / programs

* Based on a random graph model
 Bayesian Nets and ProblLog -> DeepProblLog [AlJ 21]
* Based on a random walk model

* Probabilistic grammars and Stochastic Logic Programs
[Muggleton] -> DeepStochlLog [AAAI 22]

Our method/recipe:
Take an existing probabilistic logic and
inject neural predicates that act ako interface erc



Deeplog

DeepStochLog = SLPs + Neural Network
DeepProblLog = ProbLog + Neural Network

Related work in NeSy DeepProbLog and DeepStochLog
Logic is made less expressive Full expressivity is retained

Logic is pushed into the neural network Maintain both logic and neural networl
Fuzzy logic Probabillistic logic programming
Language semantics unclear Clear semantics

40



DeepStochlLog

Little sibling of DeepProblLog [Winters, Marra, et al AAAI 22]
Based on a different semantics

e probabilistic graphical models vs grammars

* random graphs vs random walks

Underlying StarAl representation is Stochastic Logic Programs (Muggleton,
Cussens)

e close to Probabilistic Definite Clause Grammars, ako probabilistic unification
based grammar formalism

e again the idea of neural predicates

Scales better, is faster than DeepProblLog

erc



CFG: Context-Free Grammar

4 === N —_—
E --> E, P, N E
7 I
E P
P —=> [u_|_"] I
N
N —==> [uon] I
N _> [ “ 1 4 ] 2 +
N __> [ 1 9 {4 ]
Useful for:
- Is sequence an the specified language”?
- What is the “part of speech™tag of a terminal

- all elements of language




Always sums to 1 per non-
terminal

PCFG: Probabilistic Context-Free Grammar

o

0.1 ::

Useful for:

- What is the
- What is the

N

—-_

E, P,

[ll_l_ll]

IIOII]

|
[lllll]

[llgll]

E
/G\
N £ P N
7 ols N
E P N
0.5] 1 0.1
N 1 0.1
0.1]
2 + 3 + 8
Probability of this parse = 0.570.5*0.5"0.17170.1*170.1
= 0.000125

fOr th'S Sequence Of term|na|S? (useful for ambiguous grammars)
this string”?



DCG: Definite Clause Grammar

e(N) -—> e(N:!')I pl n(NZ)I e(5) p n(8)
{N 1s N1 + N2}. 7 1N
D —_—> [”'l‘"]. 6(2) P n(3)
I
n(0) --> [“0"]. n(2)
n(l) --> [“1"]. |
. 2 + 3 + 8
n(9) --> [“9"].
Useful for:
- Modelling languages (e.g. context-sensitive)
- Adding constraints between non-terminals thanks to POWET (e.g. through unification)

aside from terminal Sequence (through unification of input variables)



SDCG: Stochastic Definite Clause Grammar

0.5 :: e(N) —-=-> e(N%), p, n(N2), e(5) 5 n(8)
{N 1s N1 + N2}. 7 b.5N
1.0 <o D —_—> [”'l‘"]. 6(2) P n(3)
0.} 1 0.1
0.1 22 n(0) =-=> [“0"]. n(2) O-f
0.1 22 n(l) -—> [“1"] 0.]
2 + 3 + 8
0.1 ¢: n(9) -=-> [“9"]. Probability of this parse = 0.50.5*0.5*0.11*0.1*170.1
= 0.000125
Useful for:

- as PCFGs give to CFG (e.g. most likely parse)
- But: possible due to failing derivations



Neural predicate

Output distribution

Neural

>

99999999999

® Neural networks have uncertainty in

their predictions
Key Idea DeepProblLog

® A normalized output can be

interpreted as a probability distribution unify the basic concepts in logic

and neural networks:

® Neural predicate models the output as

probabilistic facts neural predicate ~ neural net

® No changes needed in the probabilistic ~ an interface between logic and

host language neural nets

0.04::digit (|, 0) XOR 0.35::digit(jj],1) XOR ... XOR
0.53::digit (g, 7) XOR ... XOR 0.014::digit(fgf},9)-

46



Neural predicate

Output distribution

Neural

>

® Neural networks have uncertainty in

their predictions
Key Idea DeepProblLog

® A normalized output can be

interpreted as a probability distribution unify the basic concepts in logic

and neural networks:

® Neural predicate models the output as
probabilistic facts

neural predicate ~ neural net

® No changes needed in the probabilistic | an interface between logic and

host language neural nets
PROBABI

0.04::digit (|, 0) XOR 0.35::digit(jj],1) XOR ... XOR
0.53::digit (g, 7) XOR ... XOR 0.014::digit(fgf},9)-

46



NDCG: Neural Definite Clause Grammar

0.5 :: e(N) ==> n(N).
0.5 :: e(N) --> e(N1), p, n(N2),
{N is N1 + N2}. e(13)
1.0 <o p —_> [u+n]. /U\
nn ( L [%1,[71, [digit]):: e(>) P n(ag)
7 ol N
n(y) —> [X]. 2) n(3)
e
digit(Vv) :- ( B
member (v,[0,1,2,3,4,5,6,7,8,9]). O.IS =31) Prumber oh B =8)
n(2) 1 pnumber_nl‘
P |8 -2)
' . &
Probability of this parse =
0.5*0.5"0.5"p (B =2)"1p (B=3)"1"p (B=8)
Useful for:

- processing: e.g. tensors as terminals
- Learning rule probabilities using



Mathematical expression outcome

T1: Summing MNIST numbers
with pre-specified # digits

+ =137

T2: Expressions with images
representing operator or single
digit number.

v +— ) <3 =19

Table 1: The test accuracy (%) on the MNIST addition (T1).

Number of digits per number (N)

Methods 1 2 3 4
NeurASP 97.3 0.3 93.9=x0.7 timeout timeout
DeepProbLog  97.24+0.5 952+ 1.7 timeout timeout
DeepStochLog 97.94+0.1 9644+0.1 945+1.1 92.7+0.6

Table 2: The accuracy (%) on the HWF dataset (T2).

Expression length

Method 1 3 5! 7
NGS 90.24+1.6 85.7+1.0 91.7+1.3 20.44+37.2
DeepProbLog  90.8+ 1.3 85.6+1.1 timeout timeout

DeepStochLog 90.8+1.0 86.3+1.9 921+14 94.84+0.9

Rules of Addition Known — Impose Strong Constraints on Neural Nets

addition(, 8) IF and only IF digitNl), digit(,N2), 8 = N1 + N2.



Citation networks

T5: Given scientific paper set with only few labels & citation
network, find all labels

Table 5: Q3 Accuracy (%) of the classifica-

tion on the test nodes on task T5

Method Citeseer Cora
ManiReg 60.1 59.5
SemilEmb 59.6 59.0
LP 45.3 68.0
DeepWalk 43.2 67.2
ICA 69.1 75.1
GCN 70.3 81.5
DeepProbLog timeout timeout

DeepStochLog 65.0 69.4




Applied to NL to SQL

Training:

Natural Language Sentence

Find the ids of professionals

..... . .ve l:“‘.tﬁ
] ) : database('dog_kennels', ['Dogs', 'Professionals', 'Treatments']).
: Database Schema of dog_kennels : table('dog_kennels', 'Dogs', ['dog_id', 'abandoned_yn']).
- d ) : table('dog_kennels', 'Professionals', ['prof_id', 'name']).
e A i table('dog_kennels', 'Treatments', ['treat_id', 'dog_id', 'prof_id']).

table_domain(DB, T) :- database(DB, Tables), member(T, Tables).
column_domain(DB, T, C)

Input

.- table(DB, T, Columns), member(C, Columns).
Professionals (professionals)

Outpul

Rules
- ¢ ) ' token(X) --> [X].
reatments (treatments ; > :

E nny,(table_1m, [NL], T, table_domain(DB, T), Prompt) :: table(NL, DB, T) =--> [].
nnyp(coTumn_Tm, [NL], C, column_domain(DB, T, C), Prompt) :: column(NL, DB, T) --> token(C).
query(NL, DB) --> table(NL, DB, T), ['SELECT'], column(NL, DB, T), ['FROM'], token(T).

R Query
SQL Query : 7- query('Find the ids of professionals who have ever treated dogs.', 'dog_kennels',
) _ ['SELECT', 'prof_id', 'FROM', 'Treatments']).
SELECT prof_id FROM Treatments :

l

p(SQLg4¢|NL, DB) = p([*'SELECT’, ‘prof_id’, ‘FROM’, ‘Treatments’] | ‘Find ... dogs., ‘dog_kennels”)

Ying Jiao et al, NeSy 24




ROQER0

SOft'U n ifi Cati O n i n },:.T.‘NEURAL INFORMATION

Deep Probabilistic Logic “ |

How can we reason symbolically
over distributed representations?

isin(A. , france) A isin([IFll , EV)
-> isIn(eiffel_tower, Il )

DeepSoftLog: Reasoning over embeddings in
Problog with sound probabilistic semantics.

Jaron Maene & LDR



DeepSoftLog (NeurlPS 23)

Theorem: If we interpret the soft-unification as a probability, we and take a
soft-unification function of the form (-d=» with ¢« a distance, we get:

(1) Well-defined proof scores

(2) No redundancy in proofs

(3) Connected embedding space
(4) Non-sparse gradients

+ a source transformation of this to DeepProblLog




DeepSeaProbLog

dim is neural net returning parameters of normal distribution.

length (Obj) ~ normal (dim(Ob7j,Image)) .

large (Obj) :- length(Obj) > 100.

determining order digits
to determine year

PROBABI

&

eIc




DeepSeaProbLog

So far from input E to output 11 so that SUM( ,11) holds

In DeepSeaProblog, you can query SUM( , X, 5)

recon_loss

E%iﬂ ioe @fﬁ%ﬁ
BEN] -

Figure 4: Given example pairs of images and the value of their subtraction, e.g., (|, B) and 3, the CVAE encoder
vae_latent first encodes each image into a multivariate normal NDF ( ) and a latent vector. The latter is
the input of a categorical NDF digit, completing the CVAE latent space. Supervision is dual; generated images are
compared to the original ones in a probabilistic reconstruction loss, while both digits need to subtract to the given value.
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Probabilistic Logic Shield for Reinforcement Learning

Wen-chi Yang et al, IJCAI 23 Distinguished paper award

Shield
Assuming noisy e
sensors f \ H
0.8 :: obstc(front). Will stay undamaged?
02 ObStC(léft). . P(safe la,s) = [accelerate — 0.28
0.5 :: obstc(right). {left 509 |
right — 0.8 E
0.5 :: act(accel);
0.3 : act(left); - :
0.2 1 act(right) Probability of staying

rfc(a,ccelerate |s) =0.5
n(left|s)=0.3
n(right|s) =0.2

: safe if following JT7?
0.9 :: crash:— obstc(front),act(accel). Y P (safe|s) = 0.576

0.4 :: crash:— obstc(left),act(left). e
0.4 :: crash:— obstc(right),act(right).

A

safe:— - crash.

What is a safer policy 777

r7r+(ac:celeraute |s) = 0.24
rt(left|s) = 0.48
kﬂJr(right |s) = 0.28

DeepProbLog Theory
(Manhaeve et al. AlJ)

AN




merging applications

automated engineering assistant (IAAl 21)
interpret and correct designs and maps

Goal: move the yellow disk in rod 2

[middle rod).

Initial State: brown disk on top of
yellow disk. yellow disk on top of red
disk. red disk in rod 1. The disks can
be moved in rod 1 [light brown], rod 2
[middle rod], rod 3 [dark brown].

Say

Step 1: put brown disk in rod 1
Step 2: put yellow disk in rod 2
Step 3: put red disk in rod 2
Step 4: done putting disks in rods

planning, reinforcement learning and
shielding (AAAI 24, [UCAI 23)

cognitive robotics (IJCAI 20, IEEE Trans)

56

Intelligent OCR for chemical
and forms

po7
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structures (ICLR

Standard Prompting

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. 3§ )

AN

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
gach is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

\aswer is 9. - o j

reasoning and mathematical problem
solving (JAIR 23, IUCAI 2017, EMNLP 21)

Input

X
_In, [N], T, table_domain(08, T), Prompt) :: table(NL, 08, T) -=> [

M, €, col in(08, T, ), Prompt) :: colum(NL, D8, T) --> token(C)
query(NL, D8) --> table(NL, DB, T), ['SELECT'], column(NL, D8, T), ['FRoM'], token(T)

NLP to SQL. . =

2- query('Find the ids of professionals who have ever treated dogs.’, 'dog_kennels', )

SELECT prof_id FRoM Treatments J

Outp!

23)



Challenges

e For NeSy,
e scaling up (but serious progress !!)
e which models and which knowledge to use
e |arge scale life applications
e peculiarities of neural nets & fuzzy logic
e dynamics / continuous
* theory is largely missing !!!

* This is an excellent area for starting researchers / PhDs s
erc



Neurosymbolic =
Neuro_: Logic + Probability

PROBABILITY

NEURAL

see Manhaeve et al. NeSy Book

interpret PROBABILITY broadly (including fuzzy)



|BABI
Y

StarAl and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20; Marra et al, arxiv]



Provide recipe for

Kautz

“an interface layer (<> pipeline) between neural &
symbolic components”






