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Abstract

Most methods for neural network verification focus on bounding the image, i.e., set of
outputs for a given input set. This can be used to, for example, check the robustness
of neural network predictions to bounded perturbations of an input. However, verifying
properties concerning the preimage, i.e., the set of inputs satisfying an output property,
requires abstractions in the input space. We present a general framework for preimage
abstraction that produces under- and over-approximations of any polyhedral output set.
Our framework employs cheap parameterised linear relaxations of the neural network, to-
gether with an anytime refinement procedure that iteratively partitions the input region
by splitting on input features and neurons. The effectiveness of our approach relies on
carefully designed heuristics and optimization objectives to achieve rapid improvements
in the approximation volume. We evaluate our method on a range of tasks, demonstrat-
ing significant improvement in efficiency and scalability to high-input-dimensional image
classification tasks compared to state-of-the-art techniques. Further, we showcase the appli-
cation to quantitative verification and robustness analysis, presenting a sound and complete
algorithm for the former and providing sound quantitative results for the latter.
Keywords: preimage approximation, abstraction and refinement, linear relaxation, for-
mal verification, neural network

1 Introduction

Despite the remarkable empirical success of neural networks, ensuring their safety against
potentially adversarial behaviour, especially when using them as decision-making compo-
nents in autonomous systems (Bojarski et al., 2016; Codevilla et al., 2018; Yun et al., 2017),
is an important and challenging task. Towards this aim, various approaches have been de-
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veloped for the verification of neural networks, with extensive effort devoted, in particular,
to the problem of local robustness verification, which focuses on deciding the presence or
absence of adversarial examples (Szegedy et al., 2013; Biggio et al., 2013) within an e-
perturbation neighbourhood (Huang et al., 2017; Katz et al., 2017; Zhang et al., 2018;
Bunel et al., 2018; Tjeng et al., 2019; Singh et al., 2019; Xu et al., 2020, 2021; Wang et al.,
2021Db).

While local robustness verification is useful for certifying that a neural network has the
same prediction in a neighbourhood of an input, it does not provide finer-grained infor-
mation on the behaviour of the network in the input domain. An alternative and more
general approach for neural network analysis is to construct the preimage abstraction of its
predictions (Matoba and Fleuret, 2020; Dathathri et al., 2019). Given a set of outputs, the
preimage is defined as the set of all inputs mapped by the neural network to that output
set. For example, given a particular action for a neural network controller (e.g., drive left),
the preimage captures the set of percepts (e.g., car positions) that cause the neural network
to take this action. By characterising the preimage symbolically in an abstract representa-
tion, e.g., polyhedra, one can perform more complex analysis for a wider class of properties
beyond local robustness, such as computing the proportion of inputs satisfying a property
(Webb et al., 2019b; Mangal et al., 2019), or performing downstream reasoning tasks.

Unfortunately, exact preimage generation (Matoba and Fleuret, 2020) is intractable at
scale, as it requires splitting into input subregions where the neural network is linear. Each
such subregion corresponds to a set of determined activation patterns of the nonlinear neu-
rons, the number of which grows exponentially with the number of neurons. Therefore, we
focus on the problem of preimage approximation, that is, constructing symbolic abstractions
for the preimage. In this work, we propose PREMAP, a general framework for preimage
approximation that computes under-approximations and over-approximations represented
as disjoint unions of polytopes (DUP).

Our method leverages recent progress in local robustness verification, which uses param-
eterised linear relaxations of neural networks together with divide-and-conquer refinement
strategies to analyse the input space in an efficient and GPU-friendly manner (Zhang et al.,
2018; Wang et al., 2021b). We observe that, unlike robustness verification, where the goal is
to determine the behaviour of the neural network at the worst-case point in the input space
(and thus verify or falsify the property), in preimage approximation we instead aim to mini-
mize the overall difference in volume between the approximation and the (intractable) exact
preimage. Thus, we design a methodology that focuses on effectively optimising this new
volume-based objective, while maintaining the GPU parallelism, efficiency, and flexibility
drawn from the state-of-the-art robustness verifiers.

In more detail, this paper makes the following novel contributions:

1. the first unifying framework capable of efficiently generating symbolic under- and
over-approximations of the preimage abstraction of any polyhedron output set;

2. an efficient and anytime preimage refinement algorithm, which iteratively partitions
the input region into subregions using input and/or intermediate (ReLU) splitting
(hyper)planes;
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3. carefully-designed heuristics for selecting input features and neurons to split on, which
(i) take advantage of GPU parallelism for efficient evaluation; and (ii) significantly
improve approximation quality compared to naive baselines;

4. a novel differentiable optimisation objective for improving preimage approximation
precision, with respect to (i) convex bounding parameters of nonlinear neurons and
(ii) Lagrange multipliers for neuron splitting constraints;

5. empirical evaluation of preimage approximation on a range of datasets, and an appli-
cation to the problem of quantitative verification;

6. a publicly-available software implementation of our preimage approximation frame-
work (Zhang et al., 2025).

This work significantly extends the preliminary version in Zhang et al. (2024b) in the
following ways: (i) introducing an over-approximation algorithm within the framework,
with accompanying empirical results; (ii) improving the refinement procedure through new
heuristics for selecting input features to split on, using only 49.7% (avg.) computation time
of the prior method to achieve the same precision (Sections 5.3, 6.2.2); (iii) introducing
Lagrangian relaxation to enforce neuron splitting constraints, enabling further optimisation
of the approximations with precision gains of up to 58.6% (avg.) for a MNIST preimage
approximation task (Sections 5.5, 6.2.3); and (iv) an extended empirical evaluation of the
framework.

The paper is organized as follows. We present related works in Section 2. Section 3
introduces the notation and preliminary definitions of neural networks, linear relaxation
and polyhedra representations. In Section 4, we present the formulation of the problems
studied, namely preimage approximation and quantitative analysis of neural networks. Our
preimage approximation method is provided in Section 5, together with the application
to quantitative verification of neural networks and proofs of soundness and completeness.
In Section 6, we present the experimental evaluation of our approach and demonstrate its
effectiveness and scalability compared to the state-of-the-art techniques, and applications
in quantitative verification and robustness analysis. We conclude the paper in Section 7.

2 Related Work

Our paper is related to a series of works on robustness verification of neural networks.
To address the scalability issues with complete verifiers (Huang et al., 2017; Katz et al.,
2017; Tjeng et al., 2019) based on constraint solving, convex relaxation (Salman et al.,
2019) has been used for developing highly efficient incomplete verification methods (Zhang
et al., 2018; Wong and Kolter, 2018; Singh et al., 2019; Xu et al., 2020). Later works
employed the branch-and-bound (BaB) framework (Bunel et al., 2018, 2020) to achieve
completeness, using incomplete methods for the bounding procedure (Xu et al., 2021; Wang
et al., 2021b; Ferrari et al., 2022). In this work, we adapt convex relaxation for efficient
preimage approximation. Further, our divide-and-conquer procedure is analogous to BaB,
but focuses on maximising covered volume for under-approximation (resp. minimising for
over-approximation) rather than maximising or minimising a function value.
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There are also works that have sought to define a weaker notion of local robustness
known as statistical robustness (Webb et al., 2019b; Mangal et al., 2019; Wang et al.,
2021a), which requires that a proportion of points under some perturbation distribution
around an input point are classified in the same way. Verification of statistical robustness
is typically achieved by sampling and statistical guarantees (Webb et al., 2019b; Baluta
et al., 2021; Tit et al., 2021; Yang et al., 2021). In this paper, we apply our symbolic
approximation approach to quantitative analysis of neural networks, while providing ezact
quantitative rather than statistical evaluation (Webb et al., 2019a). In particular, similarly
to Xiang et al. (2020); Rober et al. (2023), while we employ sampling in order to guide our
divide-and-conquer procedure, the guarantees obtained are exact.

Another line of related works considers deriving exact or approximate abstractions of
neural networks, which are applied for explanation (Sotoudeh and Thakur, 2021), veri-
fication (Elboher et al., 2020; Pulina and Tacchella, 2010), reachability analysis (Prab-
hakar and Afzal, 2019), and preimage approximation (Dathathri et al., 2019; Kotha et al.,
2023). Dathathri et al. (2019) leverages symbolic interpolants (Albarghouthi and McMil-
lan, 2013) for preimage approximations, facing exponential complexity in the number of
hidden neurons. Kotha et al. (2023) considers the preimage over-approximation problem
via inverse bound propagation, but their approach cannot be directly extended to the under-
approximation setting. They also do not consider any strategic branching and refinement
methodologies like those in our unified framework. Our anytime algorithm, which combines
convex relaxation with principled splitting strategies for refinement, is applicable for both
under- and over-approximations.

In the context of analysis of systems with neural network controllers, the backward
reachability problem is to compute the set of states for which a system’s trajectories can
reach a particular target region within a finite time horizon. Prior works have explored
both exact computation of this set (Vincent and Schwager, 2021) as well as guaranteed
over-approximation (Rober et al., 2022, 2023; Zhang et al., 2023, 2024a; Kotha et al., 2023).
Empirically, when applied to neural network controllers, we find that our approach performs
competitively with the state-of-the-art method of Kotha et al. (2023).

3 Preliminaries

We use f: R* — R™ to denote a feed-forward neural network. For layer i, we use WO to
denote the weight matrix, b the bias, z(?) the pre-activation neurons, and 2 the post-
activation neurons, such that we have z(?) = W20 4 b(® | We use h) () to denote the
function from input to pre-activation neurons, and a(¥ () the function from input to the
post-activation neurons, i.e., z() = h()(z) and 20 = ¢ (). In this paper, we focus on
ReLU neural networks with a(¥) (2) = ReLU(h(¥) (x)), where ReLU(h) := max(h, 0) is applied
element-wise. However, our method can be generalized to other activation functions that
can be bounded by linear functions, similarly to Zhang et al. (2018).

Linear Relaxation of Neural Networks. Nonlinear activation functions lead to
the NP-completeness of the neural network verification problem as proved in Katz et al.
(2017). To address such intractability, linear relaxation is often used to transform the
nonconvex constraints into linear programs. As shown in Figure 1, given concrete lower
and upper bounds 10 < p@ (z) < u® on the pre-activation values of layer ¢, there are
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Figure 1: Linear bounding functions for inactive, active, unstable ReLU neurons.
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where ay) is a configurable parameter that produces a valid lower bound for any value in
[0,1]. Linear bounds can also be obtained for other non-piecewise linear activation functions
by considering the characteristics of the activation function, such as the S-shape activation

functions (Zhang et al., 2018; Konig et al., 2024).

Linear relaxation can be used to compute linear lower and upper bounds of the form
Az+b < f(z) < Az+b on the output of a neural network, for a given bounded input region
C. These methods are known as linear relaxation based perturbation analysis (LiRPA)
algorithms (Xu et al., 2020, 2021; Singh et al., 2019). In particular, backward-mode LiRPA
computes linear bounds on f by propagating linear bounding functions backward from the
output, layer by layer, to the input layer.

Polytope Representations. Given an Euclidean space R, a polyhedron T is defined
to be the intersection of a finite number of half spaces. More formally, suppose we have a set
of linear constraints defined by ;(z) := ¢l z +d; > 0 for i = 1,...K, where ¢; € R%,d; € R
are constants, and z = (x1,...,x24) is a tuple of variables. Then a polyhedron is defined
as T = {z € RY| /\fi L ¥i(x)}, where T consists of all values of z satisfying the first-order
logic (FOL) formula a(z) := AL, 1i(z). We use the term polytope to refer to a bounded
polyhedron, that is, a polyhedron T such that 3R € R”? : Vay,29 € T, ||z — 22, < R
holds. The abstract domain of polyhedra has been widely used for the verification of neural
networks and computer programs as in Singh et al. (2019); Benoy (2002); Boutonnet and
Halbwachs (2019). An important type of polytope is the hyperrectangle (box), which is
a polytope defined by a closed and bounded interval [z;,7;] for each dimension, where
2, %; € Q. More formally, using the linear constraints ¢; := (z; > ;) A (x; < 7;) for each
dimension, the hyperrectangle takes the form C = {x € R?|z = /\f:1 ¢i}, where z = /\?:1 i
denotes that the input x satisfies the constraints specified by the conjunction of inequalities.
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(b) NN Preimage Approximation:
characterize f~'(0) = {x € C |
(a) Standard NN Verification: decide whether f(z) € O,Vx € C. f(z) € O}.

Figure 2: Illustration of the preimage approximation problem. In contrast to NN robustness ver-
ification, where the goal is to answer Yes or No for the statement f(x) € O,Vz € C, in preimage
approximation the goal is to find a bounding under-approximation — and over-approximation — to
the preimage f~1(O). @ indicates the region where f(z) € O.

4 Problem Formulation

4.1 Preimage Approximation

In this work, we are interested in the problem of computing preimages for neural networks.
Given a subset O C R™ of the codomain, the preimage of a function f : RY — R™ is
defined to be the set of all inputs z € R? that are mapped to an element of O by f. For
neural networks in particular, the input is typically restricted to some bounded input region
C c R?. In this work, we restrict the output set O to be a polyhedron, and the input set C
to be an axis-aligned hyperrectangle region C C R?, as these are commonly used in neural
network verification.

As illustrated in Figure 2, we contrast the preimage approximation problem with the
setting of neural network robustness verification, where the goal is to answer a binary
question, i.e., whether f(xz) € O holds for all z € C. In preimage approximation, the
objective is to compute the explicit characterisation of the preimage f~1(O) for the targeted
output set O. In particular, we aim to compute bounding under- and over-approximations
(depicted by — and —, respectively) of the true preimage (illustrated by @) within the input
domain. We now define the notion of a restricted preimage.

Definition 1 (Restricted Preimage) Given a neural network f : R® — R™, and an
input set C C RY, the restricted preimage of an output set O C R™ is defined to be the set
f7H0) == {z e RYf(z) e ONnz €C}.

Example 1 To illustrate our problem formulation and approach, we introduce a vehicle
parking task from Ayala et al. (2011) as a running example. In this task, there are four
parking lots, located in each quadrant of a 2 x 2 grid [0, 2]2, and a neural network with two
hidden layers of 10 ReLU neurons f : R> — R* is trained to classify which parking lot an
input point belongs to. To analyze the behaviour of the neural network in the input region
[0,2] x [0,2], we set C = {x € R}(0 < 21 < 2)A (0 < z2 < 2)}. Then the restricted
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preimage fc_l(O) of the set O = {y € R?| /\i€{273,4} y1 —y; > 0} is the subspace of the region
[0,2] x [0,2] that is labelled as parking lot 1 by the neural network.

We focus on provable approximations of the preimage. Given a first-order formula A, « is
an under-approzimation (resp. over-approximation) of A if it holds that Vz.a(x) = A(x)
(resp. Vx.A(x) = «(z)). In our context, the restricted preimage is defined by the
formula A(x) = (f(z) € O) A (x € C), and we restrict to approximations « that take the
form of a disjoint union of polytopes (DUP). The goal of our method is to generate a DUP
approximation 7 that is as tight as possible; that is, we aim to maximize the volume vol(7T")
of an under-approximation, or minimize the volume vol(7) of an over-approximation.

Definition 2 (Disjoint Union of Polytopes) A disjoint union of polytopes (DUP) is
a FOL formula o of the form a(x) := \/fil a;(x), where each «; is a polytope formula
(conjunction of a finite set of linear half-space constraints), with the property that o; A o
is unsatisfiable for any i # j.

4.2 Quantitative Properties

One of the most important verification problems for neural networks is that of proving
guarantees on the output of a network for a given input set (Gehr et al., 2018; Gopinath
et al., 2020; Ruan et al., 2018). This is often expressed as a property of the form (I,0)
such that Ve € I = f(x) € O. We can generalize this to quantitative properties:

Definition 3 (Quantitative Property) Given a neural network f : R? — R™, a mea-
surable input set with non-zero measure (volume) I C R?, a measurable output set O C R™,
and a rational proportion p € [0,1], we say that the neural network satisfies the property

- vol(f7 1(0))
(Ia07p) ZfVOVW > b.
Note that the restricted preimage of a polyhedron under a neural network is Lebesgue mea-
surable since polyhedra (intersection of a finite number of half-spaces) are Borel measurable
and NNs are continuous functions.

Example 2 Consider the vehicle parking task, where the goal is to predict where to park
among four parking lots. Consider the input region I = {x € R? | z € [0,1]?}, representing
the first parking lot region, and the output set O = {y € RY| /\;1:2 y1 — yi > 0}, which
specifies the neural network predicting that the vehicle should park in the first lot, i.e., 11
1s the largest score among all decisions. Let the quantitative proportion be p = 0.9. This
defines a quantitative property (I,0,p) asserting that the volume of the generated preimage
under-approzrimation fl_l(O), from which the neural network maps to O, is at least 90% of
the total volume of I.

Neural network verification algorithms can be characterized by two main properties:
soundness, which states that the algorithm always returns correct results, and completeness,
which states that the algorithm always reaches a conclusion on any verification query (Liu
et al., 2021). We now define the soundness and completeness of verification algorithms for
quantitative properties.
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Compute preimage under-approximation C = {x | f(x) € 0} € C for output spec O

Refinement Optimization

split plane

—

Cy C, - \
Cy Gy

Initial approximation Split € into C; and C, . — ‘
C, G,

Figure 3: Tllustration of the workflow for preimage under-approximation (shown in 2D for clarity).
Given a neural network f : R¢ — R™ and output specification O C R™, our algorithm generates an
under-approximation C to the preimage in the input region C. Starting from the input region C, the
procedure repeatedly splits the selected region into smaller subregions C; and Cs with tighter input
bounds, and then optimises the bounding and Lagrangian parameters to increase the volume and
thus improve the quality of the under-approximation. The refined under-approximation is combined
into a union of polytopes.

/ Refined approximation
Combine

Definition 4 (Soundness) A verification algorithm QV is sound if, whenever QV outputs
True, the property (I,0,p) holds.

Definition 5 (Completeness) A verification algorithm QV is complete if (i) QV never
returns Unknown, and (ii) whenever QV outputs False, the property (I,0,p) does not hold.

If the property (I, O) holds, then the quantitative property (I, O, 1) holds, while quan-
titative properties for 0 < p < 1 provide more information when (I,0) does not hold.
Most neural network verification methods produce approximations of the image of I in
the output space, which cannot be used to verify quantitative properties. Preimage over-
approximations include points outside of the true preimage; thus, they cannot be applied
for sound quantitative verification. In contrast, preimage under-approrimations provide
a lower bound on the volume of the preimage, allowing us to soundly verify quantitative
properties.

5 Methodology

5.1 Overview

In this section, we present the main components of our methodology. Figure 3 shows
the workflow of our preimage approximation method (using under-approximation as an
illustration).

In Section 5.2, we introduce how to cheaply and soundly under-approximate (or over-
approximate) the (restricted) preimage with a single polytope by means of the linear relax-
ation methods (Algorithm 1), which offer greater scalability than the exact method (Matoba
and Fleuret, 2020). To handle the approximation loss caused by linear relaxation, in Sec-
tion 5.3 we propose an anytime refinement algorithm that improves the approximation by
partitioning a (sub)region into subregions with splitting (hyper)planes, with each subregion
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Algorithm 1: GenApprox

Input: List of subregions C, Output set O, Number of samples N, Boolean Under
Output: List of polytopes T

T =}

for subregion Cgyp € C // Parallel over subregions

do

Z1, ..., xN < Sample(Csyp, N);
if Under then
91(2, a1, B1), ..., gk (¢, ax, Bk )] < LinearLowerBound(Cyup, O)
Loss(au, ...,ax, B1, ..., BK)

—Ged ) o (FLSE(=gi(wy, 1, Br), oy —gi (w5, e, Bic)));
aji, ..., o, By, ..., B) < argmin(Loss(au, ..., i, Bi, ..., BK));
T = Append(T, [g1(z, o], B]) > 0,..., 9k (2, &}, B%) = 0,2 € Cyup))

10 else

4 0 A W N

11 [g1(x, 1, B1), ..., Gk (x, ok, B )] < LinearUpperBound(Csyp, O) ;
12 Loss(au, ...,ax, B1, ..., BK)
1(Cou _ _
w Zj:17..,7N U(_LSE(_gl (SL'], a, 61)) ceey _gK(xja oK, BK)))a
13 al, .., o, By, ..., B < argmin(Loss(au, ..., i, B, ..., BK));
14 T = Append(T, [g1(z, aF,8]) >0, ..., 9k (z, ), BF) > 0,2 € Csup])

15 return T

then being approximated more accurately in parallel. In Section 5.4, we propose a novel
differentiable objective to optimise the bounding parameters of linear relaxation to tighten
the polytope approximation. Next, in Section 5.5, we propose a refinement scheme based
on intermediate ReLLU splitting planes and derive a preimage optimisation method using
Lagrangian relaxation of the splitting constraints. The main contribution of this paper
(Algorithm 2) integrates these four components and is described in Section 5.6. Finally, in
Section 5.7, we apply our method to quantitative verification (Algorithm 3) and prove its
soundness and completeness.

To simplify the presentation, we focus on computing under-approximations and explain
the necessary changes to compute over-approximations in highlight boxes throughout.

5.2 Polytope Approximation via Linear Relaxation

We first show how to adapt linear relaxation techniques to efficiently generate valid under-
approximations and over-approximations to the restricted preimage for a given input region
C as a single polytope. Recall that LiRPA methods enable us to obtain linear lower and
upper bounds on the output of a neural network f, that is, Az +b < f(z) < Az +b, where
the linear coefficients depend on the input region C.

Suppose that we are given the input hyperrectangle C = {z € Rz |= /\El:1 ¢i}, and
the output polytope specified using the half-space constraints ¥;(y) = (cl'y + d; > 0) for
i = 1,..., K over the output space. Let us first consider generating a guaranteed under-
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approximation. Given a constraint ;, we append an additional linear layer at the end of
the network f, which maps y — ciTy + d;, such that the function g; : R — R represented
by the new network is g;(x) = ¢! f(z) + d;. Then, applying LiIRPA lower bounding to each
gi, we obtain a lower bound g;(z) = a] z + b; for each i, such that g;(z) >0 = gi(z) >0
for x € C. Notice that, for each i =1, ..., K, QZTl' + b, > 0 is a half-space constraint in the
input space. We conjoin these constraints, along with the restriction to the input region C,
to obtain a polytope:

Te(0) = {z| /\(@(:ﬂ) > 0) A /\ ¢i(2)} (2)

Over-Approximation Alternatively, to generate a guaranteed over-
approximation, we can instead apply LiRPA upper bounding to each g;, obtaining
upper bounds g;(z) = @’ x + b; for each i, such that g;(z) > 0 = gi(z) > 0 for
x € C, and defining the polytope:

Te(0) := {=| /\@(x) > 0) A /\ ¢i(z)} (3)

Proposition 6 1¢(0),T¢(O) are respectively under- and over-approzimations to the re-
stricted preimage fc_l(O)

Proof For the under-approximation, the LIRPA bound g;(x) < g;(x) holds for any 2 € C
and i = 1,..., K, and so we have /\fil(gl(:c) >0)ANz el = /\fil(gl(az) >0)ANz e,
i.e., T¢(O) is an under-approximation to fe 1(O). Similarly, for the over-approximation,
gi(z) < gi(z) holds for any # € C and i = 1,..., K, and so A, (gi(z) > 0) Az € C —
/\fil(ﬁ(:c) >0) Az €C,ie. Tg(O) is an over-approximation to fc_l(O).

|

Example 3 Returning to Example 1, the output constraints (for i = 2,3,4) are given by
v = (1 —yi > 0) = (C;‘Fy +d; > 0), where ¢; := e1 — ¢; (we use e; to denote the
it standard basis vector) and d; = 0. Applying LiRPA bounding, we obtain the linear
lower bounds go(x) = —4.12x1 + x9 + 2.98 > 0;¢93(z) = 0.33217 — 22 + 0.63 > 0; and
ga(z) (not shown). The intersection of these constraints, shown in Figure 4 (region in
E"ey), represents an under-approzimation to the preimage. Similarly, we can obtain linear
upper bounds gz(z) = —12.23x; — x2 + 15.18 > 0;g3(x) = —0.01zy — z2 + 1.18 > 0; and
ga(x) = —1.06x1 — x9 + 2.24 > 0; the intersection of those constraints represents an over-
approximation to the preimage, as shown in Figure 4 (region in blue).

We generate the linear bounds in parallel over the output polyhedron constraints ¢ =
1,..., K using the backward mode LiRPA (Zhang et al., 2018), and store the resulting ap-
proximating polytope as a list of constraints. This highly efficient procedure is used as a
sub-routine LinearBounds when generating either preimage under-approximations or over-
approximations in Algorithm 1 (Lines 6, 11).

10
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Figure 4: Illustration of initial preimage under- and over-approximation for output specification
Nieg2,3.4y(y1 — yi > 0) in the vehicle parking task (for more details see Example 3). The under-
approximation is the polytope in grey, bounded by dotted half-planes, and the over-approximation
is the polytope in blue, bounded by solid half-planes. The ground-truth preimage for the output

specification is the rectangular region [0, 1] x [0, 1].

Algorithm 2: Preimage Approximation

Input: Neural network f, Input region C, Output region O, Volume threshold v, Maximum

Output: Disjoint union of polytopes Thom
1 T <+ GenApprox(C, O, N, Under) ;

2 Dom « {(C,T, CalcPriority(T, Under))} ;
// Tbom is the union of the under/over-approximating polytopes in Dom

iterations R, Number of samples N, Boolean Under, Boolean SplitOnInput

// Initial preimage polytope
// Priority queue

3 while ((Under and EstimateVolume(7Tpem) < v) or

10

11

12

(=Under and EstimateVolume(7pom) > v)) and Iterations < R do

Csub, T, Priority < Pop(Dom) ; // Subregion with highest priority
if SplitOnInput then

L id + SelectInputFeature(Featurer,Under) ; // Feature; is the set of input

features/dimensions

else
L id < SelectReLUNode(Nodez, Under); // Nodey is the set of unstable ReLU

nodes

[Ciuwcgub] < SplitOnNode(Csup, id); // Split on the selected node
T T GenApprox([Ciub, vil, O, N,Under) ; // Generate preimage

Dom < Dom U {(C.,, T',CalcPriority(T", Under)),
(Ct ., T CalcPriority(T", Under))};

sub?

// Disjoint polytope

return 7pom

5.3 Global Branching and Refinement

11
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As LiRPA performs crude linear relaxation, the resulting bounds can be quite loose, even
with optimisation over bounding parameters (as we will see in Section 5.4), meaning that
the (single) polytope under-approximation or over-approximation is unlikely to be a good
approximation to the preimage by itself. To address this challenge, we employ a divide-
and-conquer approach that iteratively refines our approximation of the preimage. Starting
from the initial region C at the root, our method generates a tree by iteratively partitioning
a subregion Cg,;, represented at a leaf node into two smaller subregions Céub, C¢,p» which are

then attached as children to that leaf node. In this way, the subregions represented by all
leaves of the tree are disjoint, such that their union is the initial region C.

In order to under-approximate (resp. over-approximate) the preimage, for each leaf
subregion C,,, we compute, using LiRPA bounds, an associated polytope that under-
approximates (resp. over-approximates) the preimage in Cgyp. Thus, irrespective of the num-
ber of refinements performed, the union of the under-approximating polytopes (resp. over-
approximating) corresponding to all leaves forms an anytime DUP under-approximation
(resp. over-approximation) 7 to the preimage in the original region C. The process of
refining the subregions continues until an appropriate termination criterion is met.

Unfortunately, even with a moderate number of input dimensions or unstable ReLLU
nodes, naively splitting along all input- or ReLU-planes quickly becomes computationally
intractable. For example, splitting a d-dimensional hyperrectangle using bisections along
each dimension results in 2¢ subdomains to approximate. It thus becomes crucial to pri-
oritise the subregions to split, as well as improve the efficiency of the splitting procedure
itself. We describe these in turn.

Subregion Selection. We propose a subregion selection strategy that prioritises splitting
subregions with the largest difference in volume between the exact preimage fC: ib(O) and
the (already computed) polytope approximation T¢,,, (O) on that subdomain: this indicates
“how much improvement” can be achieved on this subdomain and is implemented as the
CalcPriority function in Algorithm 2. Unfortunately, computing the volume of a polytope
exactly is a computationally expensive task, requiring specialised tools (Chevallier et al.,
2022). To overcome this, we employ Monte Carlo estimation of volume computation by
sampling N points z1,...,xny uniformly from the input subdomain Cy,. For an under-
approximation, we have:

vol(Coup) al al
Priority (Csup) 1= Tsu X Z ]lxiefglb(o) — Z Lyere, , (0) (4)
i=1 o i=1 -
~ vol(fe,., (0)) = vol(Te,,, (0)) ()

This measures the gap between the polytope under-approximation and the optimal
approximation, namely, the preimage itself.

12
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Over-Approximation Similarly, in the case of an over-approximation, we define:

vol(Cyup) al al
Priority(Csup) = 4Nsu X Z ]IIiGTcsub(O) - Z ]lxiefgl ,(©) (6)
i=1 i=1 o
~vol(Te,,, (0)) = vol(fg.\, (0)) (7)

We then choose the leaf subdomain with the maximum priority. This leaf subdomain
is then partitioned into two subregions Csub, C¢ s each of which we then approximate with
polytopes Tcéub(O),Tcgub(O). Tighter intermediate concrete bounds, and thus tighter lin-
ear bounding functions, can often be computed on the partitioned subregions. While such
locally improved bounds do not guarantee a global improvement in preimage volume, the
polytope approximation on each subregion is typically refined compared to that on the orig-
inal subregion. In our framework, we design a greedy input splitting strategy (see below)
that selects the partition leading to the greatest improvement in preimage volume. Addi-
tionally, we perform optimisation (Section 5.4 and 5.5) over bounding parameters within
each subregion to further enhance the tightness of the polytope approximation.

Notice that, although we approximate the volumes by sampling, this does not affect
the deterministic volume guarantees provided by our method, as the Priority is simply a
heuristic used to guide the algorithm. In the rest of this subsection, we consider how to split
a leaf subregion into two subregions to optimise the volume of the preimage approximation.
In particular, we propose two approaches: input splitting and ReLU splitting.

Input Splitting. Given a subregion (hyperrectangle) defined by lower and upper bounds
x; € [z;,%;] for all dimensions i = 1, ..., d, input splitting partitions it into two subregions by
cutting along some feature i. This splitting procedure will produce two subregions that are
similar to the original subregion, but have updated bounds [z;, L;ml], [%;ml , ;] for feature i
instead. A commonly-adopted splitting heuristic is to select the dimension with the longest
edge (Bunel et al., 2020), that is, to select feature ¢ with the largest range: arg max;(Z; —x;).
However, this method does not perform well in terms of per-iteration volume improvement
of the preimage approximation.

Thus, we propose to greedily select a dimension instead according to a volume-aware
heuristic. Specifically, for each feature, we generate approximating polytopes T', T" for the
two subregions resulting from the split, and choose the feature that maximises the following
priority metric. In the case of under-approximation, when T" consists of linear lower bounds

ﬂl, - ,gll and T" consists of linear lower bounds ¢g1",...,gk", we define:
vol(Csup) [ <
InputPriority(T?, T") := T‘Wb Zla <anr11n gZ xj ) + Z < min 9 (a:j)) (8)
]:
where o is the sigmoid function o(y) = H% Intuitively, this is an approximation to

the (total) volume of the under-approximating polytopes (e.g., x; is in the polytope T;
iff min;—y g gf(:cj) > 0); we should prefer to split on input features that maximise the
total volume. However, we found empirically that, in early iterations of the refinement, the

13



ZHANG, WANG, KWIATKOWSKA AND ZHANG

1.0 1.0 — 10
0.8 08 / 0.8
— x=05 | — x,=-0.99x;+0.97
0.6 0.6 —— Xx;=2.37x1-1.92 / 0.6 —— X=5.61x,-4.43
B X;=0.89x;+1.19 ——————— X2=0.24x,+0.72
0.4 0.4 X2=-6.33x,+16.77 f 0.4 X2=-1.07x;+1.97
—— x,=3.79x,-2.65 X2=8.37x1-7.31 i X2=3.12x-2.39
0.2 X2=0.34x,+0.60 0.2 X2=0.14x,+0.83 0.2 X2=0.43x;+0.68
X2=-1.11x1+1.99 X2=-0.80x1+1.75 X2=-1.10x,+2.44 /
0.0 0.0 0.0 4

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Initial under-approximation (b) Input split (c) ReLU split

Figure 5: Refinement of the initial preimage under-approximation with input and ReLU splitting.
Figure 5b and 5c¢ display the refined preimage, i.e., larger volume, after adding input and ReLU
splitting planes, where the dotted and solid bounding planes are used to form the polytope on each
subregion, respectively.
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Figure 6: Refinement of the initial preimage over-approximation with input and ReLU splitting.
Figure 6b and 6¢ display the refined preimage, i.e., smaller volume, after adding input and ReLLU
splitting planes, where the dotted and solid bounding planes are used to form the polytope on each
subregion, respectively.

under-approximation could often be empty (as the set {min;—; g gf(:cj) > 0} for all i lies
outside the subregion Cy,), leading to zero priority for all features. For this reason, we
propose to instead use the smooth sigmoid function to measure “how close” the constraints
are to being satisfied for the sampled points, in order to provide signal for the best feature
to split on.

Over-Approximation Similarly, if we are generating an over-approximation, then
we prioritise according to the following (i.e., minimising volume):

N
1(C
InputPriority(T?, T") := — el SUb Zo< min gZ o > +Z < min g:(x]))
j=1
(9)

Example 4 We revisit Example 1. Figure 5a shows the initial polytope under-approximation
computed on the input region C before refinement, where each solid line represents the bound-
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ing plane for each output specification (y1 —y; > 0). Figure 5b depicts the refined approx-
imation by splitting the input region along the vertical axis, where the solid and dashed
lines represent the bounding planes for the two resulting subregions. It can be seen that the
total volume of the under-approximation has improved significantly. Similarly, in Figure
6a, we show the initial polytope over-approximation before refinement, and in Figure 6b the
improved over-approzimation after greedy input splitting.

Intermediate ReLU Splitting. Refinement through splitting on input features is
adequate for low-dimensional input problems such as reinforcement learning agents. How-
ever, it may be infeasible to generate sufficiently fine subregions for high-dimensional do-
mains. We thus propose an algorithm for ReLU neural networks that uses intermediate
ReL U splitting for preimage refinement. After determining a subregion for refinement, we
partition the subregion based upon the pre-activation value of an intermediate unstable
neuron zj(z) = 0. As a result, the original subregion Cg,; is split into two new subregions
C;Ei) ={z € Coup | zj@ = hy)(m) > 0} and C%i) ={z € Csup | zj(»l) = hgl) (x) < 0}. Note that
to obtain the polytope approximation, we can utilise linear lower /upper bounds on h;z) (x)
as an approximation to the subregion boundary.

In this procedure, the order of splitting unstable ReL U neurons can greatly influence the
quality and efficiency of the refinement. Existing heuristic methods for ReLU prioritisation
select ReLU nodes that lead to greatest improvement in the final bound (maximum or
minimum value) of the neural network f over the input domain (Bunel et al., 2020), e.g.,
improving mingec f(x). These methods focus on optimising the worst-case output bounds
at specific input points such as z* = arg mingecc f(z). However, these methods are not well-
suited for preimage analysis, where our aim is instead to refine the preimage approximation
to the exact preimage. Specifically, the objective is to minimise the volume of under-
approximations and maximise volumes of over-approximations. Prioritising ReLLU nodes
based on local worst-case bound improvements may therefore fail to improve the overall
precision of the preimage approximation. To this end, we compute (an estimate of) the
volume difference between the split subregions |VO](C:(1-)) - VOl(C;i) )|, using a single forward

pass for a set of sampled data points from the inpujt domain; Jnote that this is bounded
above by the total subregion volume vol(Cg,;). We then propose to select the ReLU node
that minimises this difference. Intuitively, this choice results in balanced subdomains after
splitting.

A key advantage of ReLLU splitting is that it allows us to replace unstable neuron bounds
with precise bounds. For an unstable ReLU neuron ay) () = max(0, hy) (x)), we use linear
relaxation to bound the post-activation value (as in Equation 1), which yields linear lower

and upper bounds of the form ghgz) (x)+d < agl)(ac) < Ehéz) (x) 4 d, where ¢, ¢ denote the
slopes and d, d denote the intercepts of the lower and upper bounding functions, respectively.
When a split is introduced, the neuron becomes stable in each subdomain, and the exact
linear function ag-z) (x) = hy) (x) and ag-z) (x) = 0 can be used in place of its linear relaxation,
as shown in Figure 1 (unstable to stable). This can typically tighten the approximation on
each subdomain as the linear relaxation errors for this unstable neuron are removed for each

subdomain and substituted with the exact symbolic function for backward propagation.
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Example 5 We now apply our algorithm with ReLU splitting to the problem in Example 1.
Figure 5¢ shows the refined preimage polytope by adding the splitting plane (black solid line)
along the direction of a selected unstable ReL U node. Compared with Figure 5a, we can see
that the volume of the approximation increased. Similarly, in Figure 6¢, we show the im-
proved over-approzimation after ReLU splitting, compared to the initial over-approzimation
6a.

Combining Preimage Polytopes. As the final step, we combine the refined symbolic
approximations on each subregion to compute the disjoint polytope union for the desired
preimage of the output property. Note that the input splitting (hyper)planes naturally yield
disjoint subregions. We can directly compute the final disjoint polytope union by combining
the preimage polytopes of each subregion, where the splitting planes serve as part of the
constraints that form the preimage polytope, e.g., two disjoint polytopes with the splitting
constraints xo — 0.5 > 0 and —x2 4 0.5 > 0, respectively, partitioned by zo = 0.5 in Figure
5b. In the case of ReLU splitting, as each ReLLU neuron represents a complex non-linear
function with respect to the input, we cannot directly add the constraints introduced by
ReLU splitting to the polytope representation. Instead, we compute the linear upper or
lower bounding functions of the non-linear constraint represented by the ReLLU neuron, i.e.,

hg-i) (x) < hgi) (x) < hg-i) (z). The constraints introduced by the linear bounding functions,

ie., hg.l)(m) > 0 and —hy)(x) > 0, can then be added to form disjoint polytopes. For
instance, as shown in Figure 5c, two disjoint polytopes are formed with the additional
splitting constraints —0.99x7 — x2 + 0.97 > 0 and 0.99z1 4+ x2 — 0.97 > 0, respectively,
partitioned by the linear splitting plane xo = —0.9921 + 0.97 (exact linear function of the
selected ReLU neuron in this case). In fact, any linear function between the linear upper
and lower bounding functions of the ReLU neuron serves as a valid splitting (hyper)plane
to form disjoint polytopes.

Input vs ReLU Splitting. Input and ReLU splitting are alternative strategies for
splitting into smaller subregious that users can employ for different application scenarios,
but not both simultaneously (Lines 4-8 in Algorithm 2). The choice of which to use should
primarily be guided by the dimensionality of the problem; we found in our experiments
that input splitting is quite effective for low-dimensional problems (see Section 6.2.5), while
ReLU splitting is necessary to scale to high dimensions. This is consistent with findings
from LiRPA-based verification tools such as a-B-CROWN (Wang et al., 2021b) and our

comparison experiments in Section 6.2.5.

5.4 Local Optimization

One of the key components behind the effectiveness of LiRPA-based bounds is the ability
to efficiently improve the tightness of the bounding function by optimising the relaxation
parameters o via projected gradient descent. In the context of local robustness verification,
the goal is to optimise the concrete (scalar) lower or upper bounds over the (sub)region
Csup (Xu et al., 2020), i.e., mingec,,, A(a)r + b(a) in the case of lower bounds, where
we explicitly note the dependence of the linear coefficients on «. In our case, we are
instead interested in optimising a to refine the polytope approximation, that is, increase
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the volume of under-approximations and decrease the volume of over-approximations (to
the exact preimage).

As before, we employ statistical estimation; we sample N points z1, ...,y uniformly
from the input domain Cg,, then employ Monte Carlo estimation for the volume of the
approximating polytope. In the case of under-approximation, we have:

VOI sub

vol(Te,,p.a(0)) = Z Lot ,)a(0) (10)

where we highlight the dependence of T¢_ , (O) = {z| /\fil gi(x,05) > 0N /\gl:1 ¢i(x)} on
a = (aq, ..., ar), and a; are the a-parameters for the linear relaxation of the neural network
gi corresponding to the i half-space constraint in O. However, this is still non-differentiable
w.r.t. a due to the indicator function. We now show how to derive a differentiable relaxation,
which is amenable to gradient-based optimization:

vl(Cou) vol(Coug) &
vol(TCSuzn (0)) = —N Z]lieTcsub «(0) = ~ Z]lmmz o gil,0) >0 (11)
Jj=1 j=1
N
~ VOl(Csub)
~ N ZO‘ (lmln gi(zj, o ) (12)
7=1
Vol (Coup) =
sub
~ Nz:la (—LSE(—ﬂ(xj,al),...,—giK(:pj,aK))) (13)
]:

As before, we use a sigmoid relaxation to approximate the volume. However, the min-
imum function is still non-differentiable. Thus, we approximate the minimum over spec-
ifications using the log-sum-exp (LSE) function. The log-sum-exp function is defined by
LSE(y1,...,yk) = log(3>_,_ Keyb), and is a differentiable approximation to the maxi-
mum function; we employ 1t to approximate the minimisation by adding the appropriate
sign changes. The final expression is now a differentiable function of c.

Then the goal is to maximise the volume of the under-approximation with respect to a:

Loss(a) = —vol(T¢,., «(O)) (14)

We employ this as the loss function in Algorithm 1 (Line 7) for generating a polytope
approximation, and optimise volume using projected gradient descent.

Over-Approximation In the case of an over-approximation (Line 12 of Algorithm
1), we instead aim to minimise the volume of the approximation:

Loss(a )_VOI(TCW,, (0)) (15)

Example 6 We revisit Fxample 1. Figure 7Ta shows the computed under-approximations
before and after local optimisation. We can see that the bounding planes for all three speci-
fications are optimised, such that the volume of the approximation has increased. Similarly,
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Figure 7: Local optimisation for preimage under- and over-approximations. In Figure 7a, the blue
polytope represents the preimage under-approximation before optimisation and the yellow region
illustrates the expanded polytope volume after optimisation. In Figure 7b, the blue polytope rep-
resents the over-approximation before optimisation. The yellow region shows the reduced polytope
volume after optimisation.

in Figure 7b we show the over-approrimations before and after optimisation; it can be seen
that the volume of the over-approximation has decreased.

5.5 Optimisation of Lagrangian Relaxation

Previously, in Section 5.3, we proposed a preimage refinement method that adds intermedi-
ate ReLLU splitting planes to tighten the bounds of a selected individual neuron. However,
intermediate bounds for other neurons are not updated based on the newly added splitting
constraint. In the following, we first discuss the impact of stabilising an intermediate ReLU
neuron from two different perspectives. We then present an optimisation approach leverag-
ing Lagrangian relaxation to enforce the splitting constraint on refining the preimage.
Effect of Stabilisation of Intermediate Neurons. Our previous approach of Zhang
et al. (2024b) exploits one level of bound tightening after ReLU splitting: the substitution
of relaxation functions with exact linear functions for the individual neuron. Specifically,
assume an intermediate (unstable) neuron zj(.z) (= hy) (x)) is selected to split the input

(sub)region C into two subregions C:@ ={zx eC| zj(-i) > 0} and Cz_(.“ ={z eC| z;i) <
J J

0}. For each subregion, the linear bojunding functions of the nonlinear activation function
ag-l) (z](-z)), as shown in Figure 1 (unstable mode), are then substituted with the exact ones,
eliminating relaxation errors on the particular neuron. Another effect, potentially more
impactful, is the bound tightening of every other intermediate neuron. Intuitively, one can
tighten the intermediate bounds of (and thus stabilise) the other unstable neurons, since we
are restricted to a smaller input region with the added splitting plane. A straightforward
solution to enforce the effect of the splitting constraint is to call a regular LP solver to
compute the new lower and upper bounds for every intermediate ReLLU neuron under the
splitting constraints. Naturally, this is computationally expensive (2N LP calls where N is
the number of ReLU neurons).
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Refinement with Optimisation of Lagrangian Relaxation. In order to derive
tighter preimage approximations without explicitly introducing LP solver calls, we propose
to adapt Lagrangian optimisation techniques (Wang et al., 2021b) to preimage generation.

Consider first the case of generating under-approximations. Without loss of generality,
we focus on preimage generation for the k-th output specification constraint, gx(z) = Q;‘ga:+
by.. We will drop the subscript k for simplicity. o

Consider the subregion where we have z( 9 < 0. To tighten the bounding plane g(x) of
( )

the preimage under the splitting constraint z;0 <0, we introduce the Lagrange multiplier,

parameterized as BJ@(Z 0), to enforce its effect throughout the neural network. Specifically,

let us write g(z(i)) to denote the neural network function mapping from the pre-activation
neurons 2 of layer i to the output. In the typical backward LiRPA propagation through
layer 4, we have:

g(z®) > AW 20 4 B0 (16)

Now, we add the splitting constraint using a Lagrange multiplier and obtain a Lagrangian
relaxation of the original problem as follows:

g(z(i)) > Ig)aX A0 4 p) 4 ﬁ;i)zj(i) (17)
8920

Note that max 5050 ﬁ§i)z§i) = 0, and thus Equation 17 holds in the universally quantified
j -
()

region. For the other case where z;° 20, we can obtain a sound lower bound similarly by
changing the sign for the additional splitting constraint:

g(z9) > max AD20) L pl) ﬁj(i)zj(i) (18)
59 >0

We then propagate this backwards through the network to obtain a valid lower bound
with respect to the input layer x:

g(x) > g(z) = max A(a,B)r +b(a,B) (19)

Here, we explicitly note the dependence of the linear coeflicients on 3, which denotes the
vector of ,6’](-1) introduced for all split neurons. These coefficients can be computed using a
single (modified) LiRPA backward pass, where we add the Lagrange multipliers in each step
as in Equations 17, 18. Once we obtain the bounding plane for each half-space constraint
in O, the preimage polytope can be formulated as T¢(O) = {z| /\fil gi(z, a,B;) > 0 A
ALy ¢i()}.

Similarly to the optimisation over relaxation parameters «, we can then optimise 8 to
maximise the preimage volume. Our differentiable preimage volume estimate is given by:

vol

N
Za( LSE( ﬂ(fﬂj,al,ﬁl),--~7_97K(wj;aKa/8K))> (20)

J=1

VOl (Tcsub: 73 (

where we have added the dependence on the Lagrange multipliers 3 to Equation 13. Intu-
itively, the additional splitting constraint enforced by the Lagrangian relaxation reduces the
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Figure 8: Optimisation of Lagrangian relaxation for preimage refinement. The preimage polytope
in blue represents the under-approximation before Lagrangian optimisation and the yellow region
displays the expanded polytope after optimisation. Details in Example 7.

input space for maximising the preimage volume, which allows a tighter preimage bounding
plane for the subregion. In the case where all 3 coefficients are zero, this corresponds pre-
cisely to the previous standard LiRPA bound with a parameters from Section 5.4. We then
maximise the volume estimate of the under-approximation with the following loss function
in Algorithm 1 (Line 7):

Loss(ax, 8) = —vol(T¢.., a.8(0)) (21)

Over-Approximation In the case of an over-approximation (Line 12 of Algorithm
1), we instead aim to minimise the volume of the approximation:

Loss(at, B) = vol(Tt,,, 8(0)) (22)

Example 7 We now apply our optimisation method over Lagrangian relaxation to Fxam-
ple 1. Figure 8§ shows the preimage polytope before and after Lagrangian optimisation,
respectively, where the splitting plane of the selected unstable ReLU node is marked with
a black solid line. Note that the blue polytope before Lagrangian optimisation in Figure 8
1s computed by removing the relaxation errors of the selected unstable ReLU node, where
the symbolic upper/lower bounding functions are substituted with the exact linear functions.
The preimage is further refined by enforcing the added splitting constraint z]@ < 0 for one
subdomain throughout the neuron network, which allows tighter preimage approximation (vs
the blue polytope tightened via stabilizing a single neuron).

5.6 Overall Algorithm

Our overall preimage approximation method is summarised in Algorithm 2. It takes as input
a neural network f, input region C, output region O, target polytope volume threshold v (a
proxy for approximation precision), maximum number of iterations R, number of samples NV
for statistical estimation, and Boolean variables indicating (i) whether to return an under-
approximation or over-approximation and (ii) whether to use input or ReLU splitting, and
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Algorithm 3: Quantitative Verification

Input: Neural network f, Property (1,0, p), Maximum iterations R
Output: Verification result € {True, False, Unknown}
1 vol(I) < EstimateVolume(]);
2 C « OuterBox(I) ; // For general polytopes [
3 T < InitialRun(f,C, O);
4 while Iterations < R do
5 T < Refine(f, T,C, O);
6 if EstimateVolume(7) > p x vol(I) then
7 L return True

if AlIReLUSplit then
L return False

10 return Unknown

returns a disjoint polytope union Tpeny representing a guaranteed under-approximation (or
over-approximation) to the preimage.

The algorithm initiates and maintains a priority queue of (sub)regions according to
Equation 8. The initialisation step (Lines 1-2) generates an initial polytope approximation
of the whole region using Algorithm 1 (Sections 5.2, 5.4, 5.5), with priority calculated
(CalcPriority) according to Equations 5, 7. Then, the preimage refinement loop (Lines
3-11) partitions a subregion in each iteration, with the preimage restricted to the child
subregions then being re-approximated (Line 9-10). In each iteration, we choose the region
to split (Line 4) and the splitting plane to cut on (Line 6 for input split and Line 8 for
ReLU split), as detailed in Section 5.3. The preimage subregion queue is then updated by
computing the priorities for each subregion by approximating their volume (Line 11). The
loop terminates and the approximation is returned when the target volume threshold v or
maximum iteration limit R is reached.

5.7 Quantitative Verification

We now show how to use our efficient preimage under-approximation method (Algorithm
2) to verify a given quantitative property (I, O, p), where O is a polyhedron, I a polytope
and p the desired proportion threshold, summarised in Algorithm 3. Note that preimage
over-approximation cannot be applied for sound quantitative verification as the approxi-
mation may contain false regions outside the true preimage. To simplify, assume that [
is a hyperrectangle, so that we can take C = I. We discuss the case of general polytopes
at the end of this section. We utilise Algorithm 2 by setting the volume threshold v to

p x vol([), such that we have 1‘2}1((71—)) > p if the algorithm terminates before reaching the

maximum number of iterations. If the final preimage polytope volume vol(7) > p x vol(I),
then the property is verified. Otherwise, we continue running the preimage refinement. If
the refinement loop has stabilised all ReLU neurons and the volume threshold is still not
achieved, the property is falsified.
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In Algorithm 3, InitialRun generates an initial under-approximation to the preimage as
in Lines 1-2 of Algorithm 1, and Refine performs one iteration of approximation refinement
(Lines 4-11). Termination occurs when we have verified or falsified the quantitative property,
or when the maximum number of iterations has been exceeded.

Proposition 7 Algorithm 3 is sound for quantitative verification with input splitting.

Proposition 8 Algorithm 5 is sound and complete for quantitative verification on piecewise
linear neural networks with ReLU splitting.

Proofs of the propositions are presented in Appendix B.

General Input Polytopes. Previously we detailed how to use our preimage under-
approximation method to verify quantitative properties (I,0,p), where I is a hyperrect-
angle. We now discuss how to extend our method for a general polytope I = {z €
RY| /\lK:’i‘ c; x +d; > 0}, (where v; are half-space constraints). Intuitively, we can han-
dle these general input polytopes (i) by finding a bounding hyperrectangle C; and (ii) by
encoding the polytope half-planes as additional constraints defining the preimage. Assum-
ing that the output polytope O is given as g;(x) > 0 for i = 1,..., Ky, then we have:

Kout Kin
FFHO)NT = xeRd’/\gi(x)ZO/\xEC/\/\ciTx—i—diZO (23)

i=1 =1

Firstly, in Line 2 of Algorithm 3, we derive a hyperrectangle C such that I C C, by
converting the polytope I into its V-representation (Griinbaum et al., 2003), that is, a
list of the vertices (extreme points) of the polytope, which can be computed as in Avis
and Fukuda (1991); Barber et al. (1996). Once we have a V-representation, obtaining a
bounding box (hyperrectangle) can be achieved simply by computing the minimum and
maximum value z;, T; of each dimension among all vertices.

Once we have this input hyperrectangle C, we can then run the preimage refinement as
usual, but with the modification that, when defining the polytopes and restricted preimages,
we must additionally include the polytope constraints from I. Practically, this means that,
during every call to EstimateVolume in Algorithm 3, we add these polytope constraints,
and in Line 9 of Algorithm 1 we add the polytope constraints from I, in addition to those
derived from the output O and the box constraints from Cs,,. The output will be a DUP
under /over-approximation of the preimage intersected with the polytope I.

6 Experiments

We have implemented our approach as a tool (Zhang et al., 2025) for preimage approxima-
tion for polyhedral output sets/specifications. In this section, we report on experimental
evaluation of the proposed approach, and demonstrate its effectiveness in approximation
generation and the application to quantitative analysis of neural networks.
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Table 1: Performance comparison on preimage generation, for four different specifications on the ve-
hicle parking task. Over-approximation results are highlighted with grey background in subcolumns
labelled by ox, whereas under-approximation is shown with white background in subcolumns labelled
by ux.

Vehicle ‘ Exact ‘ Invprop ‘ PREMAP
Parking | #Poly Time(s) | Time(s) Cov | #Poly Time(s) Cov
| exact exact | ux ox | ux ox | ux ox | ux ox | ux ox
Nig{2,3,4}Y1 = Vi 10 3110.979 2.642 0.907 | 0.921 1.043 4 4 1.116 1.121 | 0.957 1.092
Nig{1,3,4}Y2 = Vi 20 3196.561 | 2.242 0.793 | 0.895 1.051 4 4 1.235 1.336 | 0.948 1.074
Nig{1,2,4}Y3 = Vi 7 3184.298 | 2.325 0.865 | 0.906 1.083 3 4 1.074 1.129 | 0.952 1.098
Nie(12.8)04 > Vi 15 3206.998 | 2.402 0.793 | 0.915 1.058 | 3 3 | 1.055 1.004 | 0.922 1.061

6.1 Benchmark and Evaluation Metric

We evaluate PREMAP on a benchmark of reinforcement learning and image classification
tasks. Besides the vehicle parking task of Ayala et al. (2011) shown in the running exam-
ple, we consider the following tasks: (1) aircraft collision avoidance system (VCAS) from
Julian and Kochenderfer (2019) with 9 feed-forward neural networks (FNNs); (2) neural
network controllers from Miiller et al. (2022) for three reinforcement learning tasks (Cart-
pole, Lunarlander, and Dubinsrejoin) as in Brockman et al. (2016); and (3) the neural
network for MNIST classification from VNN-COMP 2022 (Brix and Shi, 2022). Details of
the benchmark tasks and neural networks are summarised in Appendix A.

Evaluation Metric. To evaluate the quality of the preimage approximation, we define
the coverage ratio to be the ratio of volume covered by the approximation to the volume of

the exact preimage, i.e., cov(T, fc—l(o)) = %' Note that this is a normalised mea-
C

sure for assessing the quality of the approximation, as used in Algorithm 3 when comparing
with target coverage proportion p for termination of the refinement loop. In practice, we use
Monte Carlo estimation to compute VOl(fc_l (0)) as vol(f;1(0)) = vol(C) x & Zf\;l Ltz))e0s
where x1, ...z are samples from C. In Algorithm 2, the target volume (stopping criterion)
isset asv =r x \7(;1(]00_1(0), where r is the target coverage ratio. Thus, in our experimental
results, the coverage ratio reported will be greater than (resp. less than) the target coverage
ratio for an under-approximation (resp. over-approximation), unless the maximum number
of iterations is reached.

6.2 Evaluation
6.2.1 EFFECTIVENESS ON PREIMAGE APPROXIMATION WITH INPUT SPLIT

We apply Algorithm 2 with input splitting to the preimage approximation problem for low-
dimensional reinforcement learning tasks. For comparison, we also run the exact preim-
age generation method (Exact) from Matoba and Fleuret (2020) and the preimage over-
approximation method (Invprop) from Kotha et al. (2023, accessed October, 2023).
Vehicle Parking € VCAS. Table 1 and 2 present the comparison results with state-of-
the-art exact and approximate preimage generation methods. In the table, we show the
number of polytopes (#Poly) in the preimage, computation time (Time(s)), and the ap-
proximate coverage ratio (Cov) when the preimage approximation algorithm terminates
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Table 2: Performance comparison on preimage generation (average performance) on vehicle parking
and VCAS, with over-approximation shown in grey background (subcolumns labelled by ox) and
under-approximation in white background (subcolumns labelled by ux).

| Exact | Invprop | PREMAP
Tasks | #Poly Time(s) | Time(s) Cov | #Poly Time(s) Cov

‘ exact exact ‘ ux oxX ux ox ‘ ux ox ux oxX ux oxX
Vehicle | 13 3174.709 | 2.403 0.840 0.909 1.059 | 4 4 1.120 1148 0.945 1.081
VCAS | 131 6363.272 | - - - - |15 1 10.775 1.045 0.908 1.041

with target coverage of 0.90 (the larger, the better) for under-approximation and 1.10
(the lower, the better) for over-approximation. Note that the Fzact method computes the
exact preimage (i.e., coverage ratio 1.0), while PREMAP computes the under- and over-
approximation of the exact preimage. The results for over-approximation are highlighted
with grey background, whereas under-approximation is shown with white background. In-
vprop only supports computing over-approximations natively; thus, we adapt it to produce
an under-approximation by computing over-approximations for the complement of each
output constraint; note that the resulting approximation is then the complement of a union
of polytopes, rather than a DUP.

Compared with the exact method, our approach yields orders-of-magnitude improve-
ment in efficiency (see Table 1 and Table 2). It can also characterise the preimage with
much fewer (and also disjoint) polytopes, achieving an average reduction of 69.2% for ve-
hicle parking (both under- and over-approximation) and 88.5% (under-approximation) and
99.2% (over-approximation) for VCAS. Compared with Invprop, our method produces com-
parable results in terms of time and approximation coverage on the 2D vehicle parking task.
In Table 2, Invprop provides a tighter over-approximation and lower runtime for the ve-
hicle parking task. This advantage can be attributed to Invprop’s exploitation of output
constraints for iterative refinement of intermediate bounds, which improves precision and
reduces the number of splitting rounds needed. However, the iterative refinement procedure
utilising output constraints in Invprop is quite expensive. It essentially has a quadratic de-
pendence on network depth when all intermediate bounds are refined because refining the
bounds of each intermediate layer requires bound propagation to the input layer. In con-
trast, our framework utilises output constraints with a linear dependence with respect to
the number of layers. As a result, Invprop’s scalability to deeper neural networks remains
a limitation, especially in more complex tasks or architectures with greater depth.

While Table 2 shows average performance on VCAS, Figure 9 plots more detailed results
of our method for the nine neural networks in the VCAS task in terms of the number of
polytopes (y-axis on the left), time cost (y-axis on the left) and approximation coverage
(y-axis on the right) for both under- (indicated with metric_.U) and over-approximation
(indicated with metric_O). As shown in the figure, our method is able to reach the targeted
approximation coverage (0.90 for under-approximation and 1.10 for over-approximation)
for all networks. The median number of polytopes for the preimage under-approximation
for property O = {y € RY | Niel1,9) Y1 = i} is 15 and the median time cost is 10.492s.
The over-approximation shows higher variability in the number of generated polytopes and
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Figure 9: Preimage approximation results over the 9 VCAS neural networks. Results for under-
approximation are indicated with metric_.U and over-approximation with metric_O. The scale for
both the number of polytopes and time is indicated on the vertical axis on the left.

Table 3: Performance of preimage approximation for reinforcement learning tasks, with over-
approximation shown in grey background (marked in subcolumns ox) and under-approximation
in white background (marked in subcolumns ux).

Task Property ‘ Config ‘ #Poly ‘ Cov ‘ Time(s)
‘ ‘ ux ox ‘ ux ox ‘ ux ox

Cartoole b el-2,—1] 25 1 | 0766 1.213 | 13.337  2.149
(FNN sz 64) {y € R?| y1 > y2} 0e[-2,-05] | 42 8 | 0750 1.242 | 19.732  5.778
0 € [-2,0] 66 22 | 0755 1.246 | 30.563 11.476
Lunarlander b€ [—1,0] 18 1 | 0754 1.068 | 14.453  2.381
(FNN 2% 64) W€ RY| Aieq1,3,4) Y2 > i} b€ [—2,0] 67 23 | 0751 1.246 | 48.455 19.210
b € [—4,0] 97 90 | 0.751 1.249 | 76.234  72.285
o 8| x. o, | 2w €[-01,01] | 211 20 | 0.751 1.242 | 182.821 18.666
(FD;‘IEI;“;}J;’;;) lyek /\‘ /A\’_E[?"*] = y_z} 2y €[-0.2,0.2] | 409 23 | 0750 1.241 | 323.839 24.788
icl6.,8] Y5 = Ui @, €[-0.3,0.3] | 677 43 | 0.750 1.244 | 589.939  41.502

computation time for property O = {y € R? | Nie[1,091\3 Y3 = ¥i}, with the maximum reaching
191 polytopes and computation time of 107.758s for VCAS model 3.

Neural Network Controllers. In this experiment, we consider preimage approximation for
neural network controllers in reinforcement learning tasks. Note that the EFzact method in
Matoba and Fleuret (2020) is unable to deal with neural networks of these sizes and Invprop
in Kotha et al. (2023) is not capable of characterising the preimage under-approximation
in the form of disjoint polytopes. Table 3 summarises the experimental results obtained by
our method, where the columns for over-approximations are marked with grey background
and under-approximations marked with a white background.

We evaluate Algorithm 2 (with input splitting) with respect to a range of different con-
figurations of the input region (e.g., angular velocity g for Cartpole). For comparison, we set
the same target coverage ratio for different input region sizes (0.75 for under-approximation
and 1.25 for over-approximation) and an iteration limit of 1000. In Table 3, we see that
our method successfully generates preimage approximations for all configurations, reaching
the targeted approximation coverage. Empirically, for the same coverage ratio, our method
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Figure 10: Number of polytopes in preimage approximation for a range of target coverage values.
Left: under-approximation. Right: over-approximation.

requires a number of polytopes and time roughly linear in the input region size for the
preimage under-approximation. For over-approximations, the bounding constraints of the
input region are added as additional constraints to form the polytope approximation on each
subregion, which affects the linear trend in the number of polytopes and computation time
as the input region size increases. For example, the constraint brought by the input configu-
ration of —2 < < —1 for Cartpole, together with the single polytope over-approximation,
already reaches the target coverage, while for a larger input region of —2 < 6<0,22 preim-
age polytopes are needed together with input bounding constraints for each input subregion.
Table 3 also shows that the number of polytopes, and consequently the runtime cost, re-
quired for computing over-approximations is lower than for under-approximations. This
difference can be attributed to how half-plane constraints are used to form the polytope.
For over-approximation, the input bounds of each subregion act as additional half-plane
constraints that further tighten the feasible set, resulting in fewer polytopes that reach the
over-approximation precision. In contrast, the under-approximation imposes more strict
constraints than the subregion bounds, as it is guaranteed to be included in the subre-
gion. This often requires a finer splitting of the input space to achieve the target precision,
resulting in a greater number of polytopes and increased computational effort.

In Figure 10, we show the number of polytopes needed to reach different target coverage
ratios for both under-approximation (left) and over-approximation (right). Our evaluation
results indicate that the number of refinement iterations taken is influenced by the number
of output constraints and the size of the neural network. For instance, the neural network
controller for Cartpole, which has a single output constraint, shows a roughly linear increase
in the number of polytopes as the target coverage increases for under-approximation (resp.
decreases for over-approximation). In contrast, accommodating multiple output constraints
for larger neural networks, e.g., Dubinsrejoin, requires a significant increase in refinement
iterations as the target coverage approaches 1.

6.2.2 EFFECTIVENESS OF SMOOTHED INPUT SPLITTING

We now analyse the effectiveness of the smoothed splitting method described in Section
5.3 (Equation 8 and 9), in comparison to a volume-guided splitting method in Zhang et al.
(2024b) that chooses the input feature leading to the greatest improvement in approximation
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Figure 11: Effectiveness of smooth splitting for preimage under-approximation. Comparison results
with Volume-based method from Zhang et al. (2024b).
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Figure 12: Effectiveness of smooth splitting for preimage over-approximation. Comparison results
with Volume-based method from Zhang et al. (2024b).

volume. From Figures 11 and 12, we observe that the smoothed splitting method requires
significantly fewer refinement iterations for all reinforcement learning controllers to achieve
the target coverage, thus reducing the number of polytopes and computation time, than the
volume-guided splitting method. More specifically, the smoothed splitting method achieves
an average reduction of 43.6% in the number of polytopes and 51.0% in computation time for
under-approximation across the neural network controllers, up to 80.8%/81.2% reduction for
the Lunarlander task. Similar improvements in computation efficiency and size of polytope
union are also achieved for over-approximations, with an average reduction of 50.8% /49.6%
across all reinforcement learning tasks.

Recall that the smoothed input splitting heuristic relaxes the volume-based heuristic,
such that, for each sampled input point in the input region, we take into account not only
whether the point lies in the polytope approximation, but also how far away the point is from
the approximation. This is particularly crucial in early iterations, where the approximation
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Table 4: Preimage under-approximation refinement with ReLU split (L., attack). Results with
Lagrangian optimisation are marked in grey background in columns w/ LagOpt.

Lo attack | #Poly | Cov | Time(s)
(FNN 1
6 > 100) | w/o | w/ LagOpt | w/o | w/ LagOpt | w/o | w/ LagOpt
0.06 2 1.0 1.0 3.183 3.237
0.07 247 40 0.752 0.756 130.746 29.019
0.08 522 290 0.751 0.751 305.867 218.455
0.09 733 563 0.165 0.751 507.116 365.552

Table 5: Preimage under-approximation refinement with ReLU split (patch attack). Results with
Lagrangian optimisation are marked in grey background in columns w/ LagOpt.

Patch attack | #Poly | Cov | Time(s)
(FNN 6 x 100)

| w/o | w/ LagOpt | w/o | w/ LagOpt | w/o | w/ LagOpt

3 x 3(center) 1 1 1.0 1.0 2.611 2.637
4 x 4(center) | 678 678 0.382 0.427 455.988 514.272
7 x 7(corner) 7 7 0.842 0.861 6.065 6.217
8 x 7(corner) | 956 954 0.033 0.214 488.849 676.666

may be too loose; for example, an under-approximation may have no overlap with the input
region (thus zero volume). Therefore, computing the approximation volume (after splitting
on each input feature) provides very little signal. In such cases, the smoothed splitting
heuristic is able to capture promising input features that, while not immediately improving
the approximation volume, can bring the preimage bounding planes closer to the exact
preimage, which is beneficial for future iterations.

6.2.3 EFFECTIVENESS OF PREIMAGE APPROXIMATION WITH RELU SPLIT

In this subsection, we evaluate the scalability of Algorithm 2 with ReLU splitting by ap-
plying it to MNIST image classifiers. In particular, we consider input regions defined by
bounded perturbations to a given MNIST image. Table 4 and 5 summarise the evaluation
results for two types of image perturbations commonly considered in the adversarial robust-
ness literature (Lo, and patch attack, respectively). For Ly, attacks, bounded perturbation
noise is applied to all image pixels. The patch attack applies only to a smaller patch area of
n X m pixels but allows arbitrary perturbations covering the whole valid range [0, 1]. The
task is then to produce a DUP approximation of the subset of the perturbation region that
is guaranteed to be classified correctly.

For L., attack, we evaluate our method over perturbations of increasing size, from 0.06
to 0.09. It is worth noting that for this size of preimage, e.g., from 0.06 to 0.07, the volume
of the input region increases by tens of orders of magnitude due to the high dimensionality,
making effective preimage approximation significantly more challenging. Table 4 shows that
our approach (Algorithm 2) without Lagrangian optimisation (marked in columns w/0) is
able to generate a preimage under-approximation that achieves the targeted coverage of
0.75 for Lo, noise up to 0.08. The fact that the number of polytopes and computation time
remain manageable is due to the effectiveness of ReLLU splitting. In Table 5, for the patch
attack, we observe that the number of polytopes and time required increase sharply when
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Table 6: Preimage over-approximation refinement with ReLU split (patch attack). Results with
Lagrangian optimisation are marked in grey background in columns w/ LagOpt.

Patch attack | #Poly | Cov | Time(s)

FNN 1

( 6> 100) | w/o | w/ LagOpt | w/o | w/ LagOpt | w/o | w/ LagOpt
10 x 10(center) 387 387 1.099 1.099 261.826 281.916
11 x 11(center) 317 317 1.249 1.249 192.954 212.735
16 x 15(corner) 616 616 1.050 1.050 328.589 350.092
16 x 16(corner) 285 285 1.249 1.249 165.250 175.605

increasing the patch size for both the centre and corner area of the image, suggesting that
the model is more sensitive to larger local perturbations. It is also interesting that our
method can generate preimage approximations for larger patches in the corner as opposed
to the centre of the image; we hypothesize this is due to the greater influence of central
pixels on the neural network output, and correspondingly a greater number of unstable
neurons over the input perturbation space.

Table 6 shows the preimage refinement results for over-approximations in the context
of patch attack. The results of our approach (Algorithm 2) without Lagrangian optimi-
sation are summarised in columns w/o. As shown in the table, our refinement method
can effectively tighten the over-approximation to the targeted coverage of 1.25 for differ-
ent attack configurations. For patch size 10 x 10 (centre) and 16 x 15 (corner), we found
that the perturbation region is a trivial over-approximation itself for the target coverage of
1.25; thus, we demonstrate the results with a target coverage of 1.1 and 1.05. Similarly to
under-approximations, a patch attack in the centre with a smaller patch size requires more
refinement iterations than the patch attack in the corner, demonstrating a greater influence
of central pixels.

Effectiveness of Lagrangian Optimisation. The results of evaluation of our approach
(Algorithm 2) for under-approximation with Lagrangian optimisation are shown in Table 4
and 5 (marked in columns w/ LagOpt with grey background). For L., attack, the refinement
method with Lagrangian optimisation generates preimage approximations that achieve the
target coverage of 0.75 for all perturbation settings, including perturbation noise 0.09 where
the refinement without Lagrangian optimisation fails (0.751 vs 0.165 in Table 4). The new
refinement method also leads to a significant reduction in the number of polytopes and
computation cost. For the patch attack, the refinement method with Lagrangian optimisa-
tion effectively improves the preimage approximation precision for all configuration settings.
Since the patch attack allows arbitrary perturbations covering the whole valid range [0, 1], it
leads to a rapid increase in the number of unstable neurons and exhausts the iteration limit
when increasing the patch size. Nonetheless, the resulting preimage approximation coverage
obtained with Lagrangian optimisation shows better per-iteration precision improvement,
while introducing marginal computation overhead compared to the previous method.

Columns w/ LagOpt in Table 6 summarises the over-approximation results with La-
grangian optimisation. In this case, we introduce the Lagrange multipliers with the op-
posite signs to the under-approximation to guarantee the validity of the symbolic over-
approximation. Intriguingly, in contrast to under-approximation, we find that the opti-
mised B parameters are almost always close to 0, meaning that the results are similar to
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Table 7: Comparison with a robustness verifier.

Task |  «B-CROWN | PREMAP
| Result Time | Cov(%) #Poly Time
Cartpole (f € [~1.642,—1.546]) |  yes 3.349 | 100.0 1 1.137
Cartpole ( € [-1.642,0)) |  no 6.927 | 94.9 2 3.632
MNIST (Lo 0.026) | yes 3415 | 100.0 1 2.649
MNIST (Lo 0.04) | unknown 267.139 | 100.0 2 3.019

not using Lagrangian optimisation. We hypothesize that, for over-approximations, the ob-
jective function is relatively flat in the vicinity of 0, which makes the parameters difficult
to optimise.

Comparison with Robustness Verifiers. We now illustrate empirically the utility of
preimage computation in robustness analysis compared to robustness verifiers. Table 7
shows comparison results with a, B-CROWN, winner of the VNN competition (Miiller et al.,
2022). We set the tasks according to the problem instances from VNN-COMP 2022 for lo-
cal robustness verification (localised perturbation regions). For Cartpole, «, 5~-CROWN
can provide a verification guarantee (yes/no or safe/unsafe) for both problem instances.
However, in the case where the robustness property does not hold, our method explic-
itly generates a preimage under-approximation in the form of a disjoint polytope union
(which guarantees the satisfaction of the output properties), and covers 94.9% of the ex-
act preimage. For MNIST, while the smaller perturbation region is successfully verified,
a, B~-CROWN with tightened intermediate bounds by MIP solvers returns unknown with
a timeout of 300s for the larger region. In comparison, our algorithm provides a concrete
union of polytopes where the input is guaranteed to be correctly classified, which we find
covers 100% of the input region (up to sampling error). Note also, as shown in Table 4, our
algorithm can produce non-trivial under-approximations for input regions far larger than

a, B-CROWN can verify.

Table 8: Performance comparison on preimage generation for reinforcement learning tasks. Under-
approximation results are in the column labelled by Under-Approx, whereas over-approximation is
in the column labelled by Over-Approx.

Task Method ‘ Under-Approx ‘ Over-Approx
| #Poly Cov  Time(s) | #Poly Cov  Time(s)
Cartpol Invprop 81 0.760 19.835 196 1.119 224.718
aripoie  pREMAP 25  0.766  13.337 8 1.242  5.778
Lunarlander Invprop 256 0.756 325.206 221 1.378 358.386
PREMAP 12 0.759 8.091 90 1.247 50.154

Invprop ‘ 295 0.441 360.69 ‘ 205 1.876 361.16

Dubinsrejoin  pppnap 20 0.765  12.683 13 1.232  8.822
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6.2.4 COMPARISON WITH OUTPUT CONSTRAINT-ENHANCED APPROACH

The original Invprop method focused on preimage over-approximation in low-dimensional
tasks. In our experiments, we compare our method, PREMAP, with the updated version
of Invprop, which is now integrated into the auto-LiRPA framework, enabling both under-
and over-approximation, which we still refer to as Invprop. Table 8 presents a compara-
tive evaluation of preimage approximation quality on neural network controllers between
Invprop and our proposed method, PREMAP. Note that, for Invprop, output constraints
are leveraged to compute tighter intermediate bounds, thereby improving the preimage
approximation quality.

The evaluation results show that PREMAP demonstrates superior preimage approx-
imation precision and runtime efficiency across all evaluated neural network controllers.
The results highlight the importance of effective preimage refinement strategies. Specif-
icallyy, PREMAP’s effectiveness relies on the smart subregion selection and greedy split-
ting, which leads to better preimage quality improvement than solely applying intermediate
bound tightening on subregions. A promising direction for future work is to explore a
hybrid approach that integrates PREMAP’s domain selection and splitting method with
the bound-tightening capabilities of Invprop. Investigating whether this synergy can con-
sistently outperform each method individually could offer valuable insights to advance the
effectiveness of preimage analysis techniques.

6.2.5 EvALUATION OF INPUT vs RELU SPLIT

Table 9 presents performance comparison between input and ReLU splitting across low-
dimensional control tasks. Both approaches are able to reach the target coverage; however,
input splitting generally achieves higher per-iteration precision refinement. It requires fewer
iterations, and as a result, fewer preimage polytopes compared to ReLU splitting. This
advantage is mainly because one input split of the original region into smaller ones can si-
multaneously stabilise multiple (unstable) ReLU neurons, whereas ReLU splitting addresses
one unstable neuron per iteration.

Notably, the proposed greedy input splitting method further selects the input feature
that yields the greatest improvement in approximation precision per split, though at the
cost of increased computational overhead in certain cases (e.g., Lunarlander). For the
same reason, for high-dimensional tasks such as the MNIST classification task with 784
input features, the same greedy method requires parallel computation across hundreds of
processes. Each instance involves large intermediate tensors, which can easily exceed the
GPU memory capacity, and the greedy selection for the optimal split further increases
computation time.

6.2.6 QUANTITATIVE VERIFICATION

We now demonstrate the application of our preimage under-approximation to quantitative
verification of the property (1,0, p); that is, we aim to check whether f(x) € O for at least
proportion p of input values z € I. Table 10 summarises the quantitative verification results,
which leverage the disjointness of our under-approximation, such that we can compute the
total volume covered by computing the volume of each individual polytope.
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Table 9: Preimage under-approximation refinement with Input vs ReLU split.

Task Config | #Poly | Cov (%) | Time(s)
‘ Input ReLU ‘ Input ReLU ‘ Input ReLU
Cartpole 6e0,01 | 3 106 | 78.0 753 | 4.233  12.613
Lunarlander ¢ € [-0.1,0] | 36 134 | 75.1  75.1 | 35.055 14.239
Dubinsrejoin ~ z, € [-0.1,0] | 2 226 | 94.5 750 | 3.638  34.895

Table 10: Quantitative verification results with preimage under-approximation.

Task | Property | #Poly | Time(s) | QuantProp(%)
VCAS | O={yeRAN ;1 —v:>0} | 6 | 5620 | 90.8
Cartpole | O ={yly1 —y2 >0} | 11 | 121 | 90.0
Lunarlander | O = {y € R*| Ajeri 34y 2 > wi} | 120 | 429.480 | 90.0

Vertical Collision Avoidance System. In this example, we consider the VCAS system and
a scenario where the two aircraft have negative relative altitude from intruder to ownship
(h € [—-8000,0]), the ownship aircraft has a positive climbing rate h € [0,100] and the
intruder has a stable negative climbing rate hp = —30, and time to the loss of horizontal
separation is ¢ € [0,40], which defines the input region I. For this scenario, the correct
advisory is “Clear Of Conflict” (COC). We apply Algorithm 3 to verify the quantitative
property where O = {y € R?| /\,?:2 y1—y; > 0} and the proportion p = 0.9, with an iteration
limit of 1000. The quantitative proportion reached by the generated under-approximation
is 90.8%, which verifies the quantitative property in 5.620s.

Cartpole. In the Cartpole problem, the objective is to balance the pole attached to a
cart by pushing the cart either left or right. We consider a scenario where the cart position
is to the right of the centre (z € [0,1]), the cart is moving right (¢ € [0,0.5]), the pole
is slightly tilted to the right (§ € [0,0.1]) and pole is moving to the left (§ € [—0.2,0]).
To balance the pole, the neural network controller needs to determine “pushing left”. We
apply Algorithm 3 to verify the quantitative property, where O = {y|y1 — y2 > 0} and the
proportion p = 0.9, with an iteration limit of 1000. The under-approximation algorithm
takes 12.1s to reach the target proportion 90.0%.

Lunarlander. In the Lunarlander task, the objective of the neural networks controller is
to achieve a safe landing of the lander. Consider a scenario where the lander is slightly to
the left of the centre of the landing pad (z € [—1,0]), the lander is above the landing pad
sufficient for descent correction (h € [0,1]), and it is moving to the right (& € [1,2]) but
descending rapidly (h € [-2,—1]). To avoid a hard landing, the neural network controller
needs to reduce the descent speed by taking the action “fire main engine”. We formulate
the quantitative property for this task, where O = {y € R?| Nie{1,3,4y Y2 > yi} and the
proportion p = 0.9. To compute preimage under-approximation for this more complex task
takes 429.480s to reach the target proportion 90.0%.

7 Conclusion
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We present PREMAP, an efficient and unifying algorithm for preimage approximation of
neural networks. Our anytime method stems from the observation that linear relaxation
can be used to efficiently produce approximations, in conjunction with custom-designed
strategies for iteratively decomposing the problem to rapidly improve the approximation
quality. We formulate the preimage approximation in each refinement iteration as an op-
timisation problem and propose a differentiable objective to derive tighter preimages via
optimising over convex bounding parameters and Lagrange multipliers. Unlike previous
approaches, our method is designed for, and scales to, both low and high-dimensional prob-
lems. Experimental evaluation on a range of benchmark tasks shows significant advantages
in runtime efficiency and scalability, and the utility of our method for important applications
in quantitative verification and robustness analysis.
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Appendix A. Experiment Setup

In this section, we present the detailed configuration of neural networks in the benchmark
tasks.

A.1 Vehicle Parking.

For the vehicle parking task, we train a neural network with one hidden layer of 20 neurons,
which is computationally feasible for exact preimage computation for comparison. We
consider computing the preimage approximation with input region corresponding to the
entire input space C = {x € R?|z € [0,2]?}, and output sets Oy, which correspond to
the neural network outputting label k: Op = {y € R* | Nieizap e —vi =2 0}, k€
{1,2,3,4}.

A.2 Aircraft Collision Avoidance

The aircraft collision avoidance (VCAS) system (Julian and Kochenderfer, 2019) is used
to provide advisory for collision avoidance between the ownship aircraft and the intruder.
VCAS uses four input features (h, ha, hé,t) representing the relative altitude of the air-
crafts, vertical climbing rates of the ownship and intruder aircrafts, respectively, and time
to the loss of horizontal separation. VCAS is implemented by nine feed-forward neural
networks built with a hidden layer of 21 neurons. In our experiment, we use the follow-
ing input region for the ownship and intruder aircraft as in Matoba and Fleuret (2020):
h € [-8000,8000], hs € [—100,100], hp = 30, and t € [0,40]. In the training, the input
configurations are normalized into a range of [—1,1]. We consider the output property
O=1{ycR?| Nigl2,0) Y1 > i} and generate the preimage approximation for the VCAS
neural networks.

A.3 Neural Network Controllers
A.3.1 CARTPOLE

The cartpole control problem considers balancing a pole atop a cart by controlling the
movement of the cart. The neural network controller has two hidden layers with 64 neurons,
and uses four input variables representing the position and velocity of the cart, the angle
and angular velocity of the pole. The controller outputs are pushing the cart left or right.
In the experiments, we set the following input region for the Cartpole task: (1) cart position
[—1,1], (2) cart velocity [0,2], (3) angle of the pole [-0.2,0], and (4) angular velocity of the
pole [—2,0] (with varied feature length in the evaluation). We consider the output property
for the action pushing left.

A.3.2 LUNARLANDER

The Lunarlander problem considers the task of correct landing of a moon lander on a landing
pad. The neural network for Lunarlander has two hidden layers with 64 neurons, and eight
input features addressing the lander’s coordinate, orientation, velocities, and ground contact
indicators. The outputs represent four actions. For the Lunarlander task, we set the input
region as: (1) horizontal and vertical position [—1,0] x [0,1], (2) horizontal and vertical
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velocity [0,2] x [—2,0] (with varied feature length for evaluation), (3) angle and angular
velocity [—1,0] x [-0.1,0.1], (4) left and right leg contact [0.9, 1]%. We consider the output
specification for the action “fire main engine”, i.e., {y € R* | Nief1,34} Y2 = Vi}-

A.3.3 DUBINSREJOIN.

The Dubinsrejoin problem considers guiding a wingman craft to a certain radius around a
lead aircraft. The neural network controller has two hidden layers with 256 neurons. The
input space of the neural network controller is eight-dimensional, with the input variables
capturing the position, heading, velocity of the lead and wingman crafts, respectively. The
outputs are also eight dimensional representing controlling actions of the wingman. Note
that the eight neural network outputs are processed further as tuples of actuators (rudder,
throttle) for controlling the wingman where each actuator has 4 options. The control action
tuple is decided by taking the action with the maximum output value among the first four
network outputs (the first actuator options) and the action with the maximum value among
the second four network outputs (the second actuator options). In the experiments, we
set the following input region: (1) horizontal and vertical position [—0.2,0] x [0,0.5], (2)
heading and velocity [—1,0] x [0,0.2] for the lead aircraft, and (3) horizontal and vertical
position [0.4,0.6] x [—0.3,0.3] (with varied feature length for evaluation), (4) heading and
velocity [0.2,0.5] x [—0.5,0.5] for the wingman aircraft. We consider the output property
that both actuators (rudder, throttle) take the first option, i.e., {y € R® | Nie{2,34} Y1 =

Yi \ Nieg,7,8) Ys > Yi}-

A.4 MNIST Classification

We use the trained neural network from VNN-COMP 2022 (Miiller et al., 2022) for digit
image classification. The neural network has six layers with a hidden neuron size of 100 for
each hidden layer. We consider two types of image attacks: o, and patch attack. For Lq
attack, a perturbation is applied to all pixels of the image. For the patch attack, it applies
arbitrary perturbations to the patch area, i.e., the perturbation noise covers the whole valid
range [0, 1], for which we set the patch area at the centre and (upper-left) corner of the
image with different sizes.

Appendix B. Proofs

We present the propositions and proofs on guaranteed polytope volume improvement with
each refinement iteration, noting that these propositions are valid without stochastic opti-
misation. Subsequently, we provide proofs for Propositions 7 and 8.

Proposition 9 Given any subregion Cgyp, with polytope under-approzimation Te_,, (O), and
its children CL ,,C% , with polytope under-approzimations Tciub (0), Tew , (O) respectively, it
holds that:

Tcl

sub

(O)uTee,(0) 2 Te,,,(0) (24)

Proof We define T¢_,, (O)|, Tc,,,(O), to be the restrictions of T¢_,, (O) to C., and CT,
respectively, that is:
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Te,.,(O)li = {z € RY| /\ gi(x A (z € Coy)} (25)
K
Tt,.,(O)lr = {z € R| /\(&(x) > 0) A (2 € Cop)} (26)

where we have replaced the constraint @ € Cyyp with z € C. ;) (vesp. = € CT,), and g;(z) is
the LiRPA lower bound for the i*® specification on the input region Cgyp.
On the other hand, we also have:

K
Tciub (O) = {33 € IRd| /\(&(aj) > 0) N (:C S Csub)} <27)

K
Ter,, (0) = {z € R N\ (gri(2) = 0) A (z € CLy)} (28)
where g;;(z) (vesp. gri(z)) is the LIRPA lower bound for the ih specification on the input
region Céub (resp. C.L,). Now, it is sufficient to show that Tcéub(O) D Te,,,(O)|; and
Ier ,(0) 2 Tg,,,(O)|- to prove Equation 24. We will now show that Te | (0) 2 Te,,, (O
(the proof for Ter  (O) 2 Tg,,,(O)|, is entirely similar).

Before proving this result in full, we outline the approach and a sketch proof. It suffices
to prove (for all i) that g;;(z) is a tighter bound than g;(z) on C! .. That is, to show that
g1i(z) > gi(z) for inputs x in C. ;, as then gi(z) >0 = gi,i(z) = 0 for inputs x in Cl s
and so Tciub(O) 2 Te,,,(O));. The bound g;(x) is tighter than gi(z) because the input
region for LiRPA is smaller for g; ;(x), leading to tighter concrete neuron bounds, and thus
tighter bound propagation through each layer of the neural network g;. We present the
formal proof of greater bound tightness for input and ReLU splitting in the following.

Input split: We show g;;(z) > gi(z) for all z € C., by induction (dropping the index

1 in the following as it is not important). Recall that LiRPA generates symbolic upper and
lower bounds on the pre-activation values of each layer in terms of the input (i.e. treating
that layer as output), which can then be converted into concrete bounds.

AUz + b9 < h0)(2) < AV g + BV (29)

ALy 4 bl < pO(g) < A5 4 50 (30)
@) g

)

where h9) () are the pre-activation values for the 7 layer of the network g;, and AU pO) A

(resp. ALD) phd) A( ) b(l J)) are the linear bound coefficients, for input regions Cgyp (resp.

Céub )

Inductive Hypothesis For all layers j = 1,..., L in the network, and for all z € C!
holds that:

sub 1

AWz 450 < Atz 4 p) < B 4 5 <AV 1 5V (31)
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PREIMAGE APPROXIMATION FOR NEURAL NETWORKS

Base Case For the input layer, we have the trivial bounds Ix < x < Iz for both regions.
Inductive Step Suppose that the inductive hypothesis is true for layer j —1 < L. Using
the symbolic bounds in Equations 29, 30, we can derive concrete bounds 101 < pG-1) (z) <
ul= and 17— < R (z) < uli=1) on the values of the pre-activation layer. By the
inductive hypothesis, the bounds for region Ciub will be tighter, i.e. 10-D < - <
uli—1) < uli=Y. Now, consider the backward bounding procedure for layer j as output.
We begin by encoding the linear layer from post-activation layer j — 1 to pre-activation
layer j as:
W=D (z) + bW < B9 (2) < WU~ (z) + bV (32)
Then, we bound a1 (x) in terms of Y *1)(1') using linear relaxation. Consider the three

cases in Figure 1 (reproduced from main paper), where we have a bound gh,(ej 71)(3:) +d<

ag_l)(x) < Ehg_l)(a:) +d, for some scalars ¢, d, ¢, d. If the concrete bounds (horizontal axis)
are tightened, then an unstable neuron may become inactive or active, but not vice versa.
It can thus be seen that the new linear upper and lower bounds on h,(j 71)(:5) will also be
tighter.

Substituting the linear relaxation bounds in Equation 32 as in Xu et al. (2021), we
obtain bounds of the form

(7)1 (i1 ) ; A (i-1 p
Aj] Bl )(:E) _|_ij < h(])(&") <A, hli )(x) +b; (33)

(lv ) j—1 (lv ) j 7 (L7) —1 7(17.]‘)
AR (@) + b7 < b () < AFVRIT(2) + b (34)

such that ARGV (2) 4B < ADRG-D(2) 1B < R0 ()45 < RVRG-D @)+
Eg-j) for all 17-1) < UV (z) < 1471 by the fact that the concrete bounds are tighter
for Céub'

Finally, substituting the bounds in Equations 29 and 30 (for hU~1), and using the
tightness result in the inductive hypothesis for j — 1, we obtain linear bounds for h(9)(z) in
terms of of the input z, such that the inductive hypothesis for j holds.

ReLU split: We use Céub and C.,, to denote the input subregions when fixing unstable
ReLU neuron z,(cjfl) = h,(gjfl)(x), ie,Cl = {7 h,(g*l)(x) >0} and Cl, = {z | h,(jfl)(ac) <
0}.

In the following, we prove that g;;(z) > g;(x) for all z € CL,. Assume we fix one
unstable ReLLU neuron of layer j — 1, then for all layers 1 <m < j — 1, for all x € Céub, it
holds that:

Az 4 pm) < Albm)y 4 pm) SK(l,rrL)IJrg(lm) SX(m)x+B(m) (35)

where A™ = A (M) = (™) and same for the upper bounding parameters.
Now consider the bounding procedure for layer j. The linear layer from post-activation
layer j — 1 to pre-activation layer j can be encoded as:

W=D (z) + bW < B9 (2) < WU~ (z) + b1 (36)
Consider the post activation function a1 (z) of the unstable neuron z,(gj 71), before splitting

we have gh,(cjfl)(x)—i-d < a,(cjfl)(:c) < Eh,(gjfl)(a:) +d, for some scalars ¢, d, ¢, d. After splitting,

37



ZHANG, WANG, KWIATKOWSKA AND ZHANG

we now have ag_l)(x) = h,(cj_l)(x) for C!,, where c=¢=1, d =d = 0, since the unstable

neuron is fixed to be active. By substituting the linear relaxation bounds before and after
splitting in Equation 32, we obtain the bounding functions with regard to hl/ *1)(x) in the
following form:

AVRID (@) + b9 < 10 (2) < AVROD () 4 BY (37)

Al D=1 () +b) < p(z) < A, R () +b; (38)

By the fact the relaxation is fixed to be exact for a,(cjfl)(x), it holds that A;j)h(j_l)(x) +
() (3) 7 (— (L5) - xd) (- (7)) ~x0), (— () !
b < ARUD(z) + by < AFTRUD (z) + b <A RUTD (2) 4+ b for €

sub*

Finally, for the bound propagation procedure of layer L, substituting the tightened
bounding for hU=1 (x), we obtain that g1,i(x) = AbD g 4 pbl) > AL 4 pF) = gi(z). |

Corollary 10 In each refinement iteration, the volume of the polytope under-approximation
Thom does not decrease.

Proof In each iteration of Algorithm 2, we replace the polytope T¢,,, (O) in a leaf subregion
with two polytopes Tcéub(O), Ter. (O) in the DUP under-approximation. By Proposition 9,
the total volume of the two new polytopes is at least that of the removed polytope. Thus
the volume of the DUP approximation does not decrease.

Similarly, for ReLU splitting, we replace the polytope T¢, ,(O) in a leaf subregion with
two polytopes TCiub(O)’TCQUb(O) where the relaxed bounding functions for one unstable

neuron are replaced with exact linear functions, i.e., ghg-i)(x) +d< ag-i) (x) < Ehy) (r) +d
is replaced with the exact linear function ag-i) (x) = h;i) (z) and aéi) (x) = 0, respectively,
as shown in Figure 1 (from unstable to stable). By Proposition 9, the total volume of the
two new polytopes is at least that of the removed polytope. Thus the volume of the DUP

approximation does not decrease. |

Proposition 7 Algorithm 3 is sound for quantitative verification with input splitting.

Proof Algorithm 3 outputs True only if, at some iteration, we have that the exact volume
vol(T") > p x vol(I). Since T is an under-approximation to the restricted preimage f; *(O),

21
we have that VOI(VJ;II( I()O)) > ‘;le((%) > p, i.e. the quantitative property (I, O, p) holds. [ |

Proposition 8 Algorithm 3 is sound and complete for quantitative verification on piecewise
linear neural networks with ReLU splitting.

Proof The proof for the soundness of Algorithm 3 with ReLU splitting is similar to
input splitting. Regarding the completeness, when all unstable neurons are fixed with one
activation status, for each subregion Cyys, we have g;(x) = g;(x). It then holds that for any
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Csup C C where JCsup = C, (gi(7) > 0) Nx € Cop <= (gi(x) > 0) Az € Cyp, i.e., the
polytope is the exact preimage. Hence, when all unstable neurons are fixed to an activation

status, we have T = f; 1(0). Algorithm 3 returns False only if the volume of the exact

vol(f71(0)) _ vol(T
volll) = Vol((I)) <P

preimage
|
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