
Provable Preimage Under-Approximation for
Neural Networks

Xiyue Zhang(�), Benjie Wang, and Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, UK
{xiyue.zhang, benjie.wang, marta.kwiatkowska}@cs.ox.ac.uk

Abstract. Neural network verification mainly focuses on local robust-
ness properties, which can be checked by bounding the image (set of
outputs) of a given input set. However, often it is important to know
whether a given property holds globally for the input domain, and if not
then for what proportion of the input the property is true. To analyze
such properties requires computing preimage abstractions of neural net-
works. In this work, we propose an efficient anytime algorithm for gener-
ating symbolic under-approximations of the preimage of any polyhedron
output set for neural networks. Our algorithm combines a novel tech-
nique for cheaply computing polytope preimage under-approximations
using linear relaxation, with a carefully-designed refinement procedure
that iteratively partitions the input region into subregions using input
and ReLU splitting in order to improve the approximation. Empirically,
we validate the efficacy of our method across a range of domains, includ-
ing a high-dimensional MNIST classification task beyond the reach of
existing preimage computation methods. Finally, as use cases, we show-
case the application to quantitative verification and robustness analysis.
We present a sound and complete algorithm for the former, which ex-
ploits our disjoint union of polytopes representation to provide formal
guarantees. For the latter, we find that our method can provide useful
quantitative information even when standard verifiers cannot verify a
robustness property.

1 Introduction

Despite the remarkable empirical success of neural networks, guaranteeing their
correctness, especially when using them as decision-making components in safety-
critical autonomous systems [7, 13, 43], is an important and challenging task.
Towards this aim, various approaches have been developed for the verification
of neural networks, with extensive effort devoted to local robustness verifica-
tion [20, 22, 44, 11, 35, 32, 40, 41, 36]. While local robustness verification focuses
on deciding the absence of adversarial examples within an ϵ-perturbation neigh-
bourhood, an alternative approach for neural network analysis is to construct
the preimage of its predictions [27, 15]. Given a set of outputs, the preimage is
defined as the set of all inputs mapped by the neural network to that output set.
By characterizing the preimage symbolically in an abstract representation, e.g.,

2 X. Zhang et al.

polyhedra, one can perform more complex analysis for a wider class of properties
beyond local robustness, such as computing the proportion of inputs satisfying a
property (quantitative verification) even if standard robustness verification fails.

Exact preimage generation [27] is intractable, taking time exponential in the
number of neurons in a network; thus approximations are necessary. Unfortu-
nately, existing methods are limited in their applicability. The inverse abstrac-
tion method in [15] bypasses the intractability of exact preimage generation by
leveraging symbolic interpolants [14, 2] for abstraction of neural network layers.
However, due to the complexity of interpolation, the time to compute the ab-
straction also scales exponentially with the number of neurons in hidden layers.
A concurrent work [23] proposed an input bounding algorithm targeting back-
ward reachability analysis for control policies and out-of-distribution (OOD)
detection in low-dimensional domains. Their method produces a preimage over-
approximation, which cannot be used for quantitative verification. Therefore,
more efficient and flexible computation methods for (symbolic abstraction of)
preimages of neural networks are needed.

The main contribution of this paper is a scalable method for preimage ap-
proximation, which can be used for a variety of robustness analysis tasks. More
specifically, we propose an efficient anytime algorithm for generating symbolic
under-approximations of the preimage of piecewise linear neural networks as a
union of disjoint polytopes. The algorithm computes a sound preimage under-
approximation leveraging linear relaxation based perturbation analysis (LiRPA)
[40, 41, 32], applied backwards from a polyhedron output set. It iteratively re-
fines the preimage approximation by adding input and/or intermediate (ReLU)
splitting (hyper)planes to partition the input region into disjoint subregions,
which can be approximated independently in parallel in a divide-and-conquer
approach. The refinement scheme uses a novel differential objective to optimize
the quality (volume) of the polytope subregions. We also show that our method
can be generalized to generate preimage over-approximations. We illustrate the
application of our method to quantitative verification, input bounding for control
tasks, and robustness analysis against adversarial and patch attacks. Finally, we
conduct an empirical analysis on a range of control and computer vision tasks,
showing significant gains in efficiency compared to exact preimage generation
methods and scalability to high-input-dimensional tasks compared to existing
preimage approximation methods.

For space reasons, proofs and additional technical details have been moved
to Appendix of the full version of the paper [45].

2 Preliminaries

We use f : Rd → Rm to denote a feedforward neural network. For layer i, we use
W(i) to denote the weight matrix, b(i) the bias, h(i) the pre-activation neurons,
and a(i) the post-activation neurons, such that we have h(i) = W(i)a(i−1)+b(i).
In this paper, we focus on ReLU neural networks with a(i)(x) = ReLU(h(i)(x)),

Provable Preimage Under-Approximation for Neural Networks 3

𝑙!
(#) 𝑢!

(#)

𝑎!
(#)

ℎ!
(#)

𝑙!
(#) 𝑢!

(#)

𝑎!
(#)

ℎ!
(#)

𝑙!
(#) 𝑢!

(#)

𝑎!
(#)

ℎ!
(#)

Fig. 1: Linear bounding functions for inactive, active, unstable ReLU neurons.

where ReLU(h) := max(h, 0) is applied element-wise. However, our method can
be generalized to other activation functions bounded by linear relaxation [44].

Linear Relaxation of Neural Networks. Nonlinear activation functions
lead to the NP-completeness of the neural network verification problem [22].
To address such intractability, linear relaxation is often used to transform the
nonconvex constraints into linear programs. As shown in Figure 1, given concrete
lower and upper bounds l(i) ≤ h(i)(x) ≤ u(i) on the pre-activation values of layer
i, there are three cases to consider. In the inactive (u(i)j ≤ 0) and active (l(i)j ≥ 0)

cases, the post-activation neurons a(i)j (x) are linear functions a(i)j (x) = 0 and
a
(i)
j (x) = h

(i)
j (x) respectively. In the unstable case, a(i)j (x) can be bounded by

α
(i)
j h

(i)
j (x) ≤ a

(i)
j (x) ≤ − u

(i)
j l

(i)
j

u
(i)
j −l

(i)
j

+
u
(i)
j

u
(i)
j −l

(i)
j

h
(i)
j (x), where α(i)

j is a configurable

parameter that produces a valid lower bound for any value in [0, 1]. Linear bounds
can also be obtained for other non-piecewise linear activation functions [44].

Linear relaxation can be used to compute linear upper and lower bounds of
the form Ax+b ≤ f(x) ≤ Ax+b on the output of a neural network, for a given
bounded input region C. These methods are known as linear relaxation based per-
turbation analysis (LiRPA) algorithms [40, 41, 32]. In particular, backward-mode
LiRPA computes linear bounds on f by propagating linear bounding functions
backward from the output, layer-by-layer, to the input layer.

Polytope Representations. Given an Euclidean space Rd, a polyhedron T
is defined to be the intersection of a set of half spaces. More formally, suppose we
have a set of linear constraints defined by ψi(x) := cTi x+ di ≥ 0 for i = 1, ...K,
where ci ∈ Rd, di ∈ R are constants, and x = x1, ..., xd is a set of variables. Then
a polyhedron is defined as T = {x ∈ Rd|

∧K
i=1 ψi(x)}, where T consists of all

values of x satisfying the first-order logic (FOL) formula α(x) :=
∧K

i=1 ψi(x). We
use the term polytope to refer to a bounded polyhedron, that is, a polyhedron T
such that ∃R ∈ R>0 : ∀x1, x2 ∈ T , ∥x1 − x2∥2 ≤ R holds. The abstract domain
of polyhedra [32, 6, 8] has been widely used for the verification of neural networks
and computer programs. An important type of polytope is the hyperrectangle
(box), which is a polytope defined by a closed and bounded interval [xi, xi] for
each dimension, where xi, xi ∈ Q. More formally, using the linear constraints
ϕi := (xi ≥ xi) ∧ (xi ≤ xi) for each dimension, the hyperrectangle takes the
form C = {x ∈ Rd|x |=

∧d
i=1 ϕi}.

4 X. Zhang et al.

3 Problem Formulation

3.1 Preimage Approximation

In this work, we are interested in the problem of computing preimages for neural
networks. Given a subset O ⊂ Rm of the codomain, the preimage of a function
f : Rd → Rm is defined to be the set of all inputs x ∈ Rd that are mapped to
an element of O by f . For neural networks in particular, the input is typically
restricted to some bounded input region C ⊂ Rd. In this work, we restrict the
output set O to be a polyhedron, and the input set C to be an axis-aligned
hyperrectangle region C ⊂ Rd, as these are commonly used in neural network
verification. We now define the notion of a restricted preimage:

Definition 1 (Restricted Preimage). Given a neural network f : Rd → Rm,
and an input set C ⊂ Rd, the restricted preimage of an output set O ⊂ Rm is
defined to be the set f−1

C (O) := {x ∈ Rd|f(x) ∈ O ∧ x ∈ C}.

Example 1. To illustrate our problem formulation and approach, we introduce a
vehicle parking task [3] as a running example. In this task, there are four parking
lots, located in each quadrant of a 2× 2 grid [0, 2]2, and a neural network with
two hidden layers of 10 ReLU neurons f : R2 → R4 is trained to classify which
parking lot an input point belongs to. To analyze the behaviour of the neural
network in the input region [0, 1]× [0, 1] corresponding to parking lot 1, we set
C = {x ∈ R2|(0 ≤ x1 ≤ 1)∧ (0 ≤ x2 ≤ 1)}. Then the restricted preimage f−1

C (O)
of the set O = {y ∈ R4|

∧
i∈{2,3,4} y1 − yi ≥ 0} is the subspace of the region

[0, 1]× [0, 1] that is labelled as parking lot 1 by the network.

We focus on provable approximations of the preimage. Given a first-order
formula A, α is an under-approximation (resp. over-approximation) of A if it
holds that ∀x.α(x) =⇒ A(x) (resp. ∀x.A(x) =⇒ α(x)). In our context, the
restricted preimage is defined by the formula A(x) = (f(x) ∈ O) ∧ (x ∈ C),
and we restrict to approximations α that take the form of a disjoint union of
polytopes (DUP). The goal of our method is to generate a DUP approximation
T that is as tight as possible; that is, to maximize the volume vol(T) of an
under-approximation, or minimize the volume vol(T) of an over-approximation.

Definition 2 (Disjoint Union of Polytopes). A disjoint union of polytopes
(DUP) is a FOL formula α of the form α(x) :=

∨D
i=1 αi(x), where each αi is

a polytope formula (conjunction of a finite set of linear half-space constraints),
with the property that αi ∧ αj is unsatisfiable for any i ̸= j.

3.2 Quantitative Properties

One of the most important verification problems for neural networks is that of
proving guarantees on the output of a network for a given input set [18, 19, 30].
This is often expressed as a property of the form (I,O) such that ∀x ∈ I =⇒
f(x) ∈ O. We can generalize this to quantitative properties:

Provable Preimage Under-Approximation for Neural Networks 5

Definition 3 (Quantitative Property). Given a neural network f : Rd →
Rm, a measurable input set with non-zero measure (volume) I ⊆ Rd, a measur-
able output set O ⊆ Rm, and a rational proportion p ∈ [0, 1] we say that the
neural network satisfies the property (I,O, p) if vol(f−1

I (O))

vol(I) ≥ p. 1

Neural network verification algorithms [25] can be divided into two categories:
sound, which always return correct results, and complete, guaranteed to reach a
conclusion on any verification query. We now define soundness and completness
of verification algorithms for quantitative properties.

Definition 4 (Soundness). A verification algorithm QV is sound if, whenever
QV outputs True, the property (I,O, p) holds.

Definition 5 (Completeness). A verification algorithm QV is complete if (i)
QV never returns Unknown, and (ii) whenever QV outputs False, the property
(I,O, p) does not hold.

If the property (I,O) holds, then the quantitative property (I,O, 1) holds,
while quantitative properties for 0 ≤ p < 1 provide more information when
(I,O) does not hold. Most neural network verification methods produce ap-
proximations of the image of I in the output space, which cannot be used to
verify quantitative properties. Preimage over-approximations include false re-
gions, thereby not applicable for quantitative verification. In contrast, preimage
under-approximations provide a lower bound on the volume of the preimage,
allowing us to soundly verify quantitative properties.

4 Methodology

Overview. In this section we present the main components of our methodology.
Firstly, in Section 4.1, we show how to cheaply and soundly under-approximate
the (restricted) preimage with a single polytope, using linear relaxation meth-
ods (Algorithm 2). Secondly, in Section 4.2, we propose a novel differentiable
objective to optimize the quality (volume) of the polytope under-approximation.
Thirdly, in Section 4.3, we propose a refinement scheme that improves the ap-
proximation by partitioning a (sub)region into subregions with splitting planes,
with each subregion then being under-approximated more accurately. The main
contribution of this paper (Algorithm 1) integrates these three components and
is described in Section 4.4. Finally, in Section 4.5, we apply our method to quan-
titative verification (Algorithm 3) and prove its soundness and completeness.

4.1 Polytope Under-Approximation via Linear Relaxation

We first show how to adapt linear relaxation techniques to efficiently generate
valid under-approximations to the restricted preimage for a given input region C.
1 In particular, the restricted preimage of a polyhedron under a neural network is

Lebesgue measurable since polyhedra (intersection of a finite set of half-spaces) are
Borel measurable and NNs are continuous functions.

6 X. Zhang et al.

Algorithm 1: Preimage Approximation
Input: Neural network f , Input region C, Output region O, Volume threshold

v, Maximum iterations R, Boolean SplitOnInput
Output: Disjoint union of polytopes T

1 T ← GenUnderApprox(C, O) ; // Initial preimage polytope
2 v̂olT , v̂ol

f−1
C (O)

← EstimateVol(T), EstimateVol(f−1
C (O)) ;

3 Dom ← {(C, T, v̂ol
f−1
C (O)

− v̂olT)} ; // Priority queue

// TDom is the union of polytopes in Dom
4 while EstimateVol(TDom) < v and Iterations ≤ R do
5 Csub, T,Priority ← Pop(Dom) ; // Subregion with highest priority
6 if SplitOnInput then
7 id ← SelectInputFeature(FeatureI) ; // FeatureI is the set of

input features/dimensions

8 else
9 id← SelectReLUNode(NodeZ); // NodeZ is the set of unstable

ReLU nodes

10 [Clsub,Cusub] ← SplitOnNode(Csub, id); // Split on the selected node
11 [T l, Tu] ← GenUnderApprox([Clsub,Cusub], O) ; // Generate preimage
12 [v̂olT l , v̂olTu] ← EstimateVol([T l, Tu]);
13 v̂ol

f−1

Cl
sub

(O)
, v̂ol

f−1
Cu
sub

(O)
← EstimateVol(f−1

Cl
sub

(O)),EstimateVol(f−1
Cu
sub

(O)) ;

14 Dom ← Dom ∪ {(Clsub, T l,v̂ol
f−1

Cl
sub

(O)
− v̂olT l)} ∪

{(Cusub, Tu,v̂ol
f−1
Cu
sub

(O)
− v̂olTu)}; // Disjoint polytope

15 return TDom

Recall that LiRPA methods enable us to obtain linear lower and upper bounds
on the output of a neural network f , that is, Ax + b ≤ f(x) ≤ Ax + b, where
the linear coefficients depend on the input region C.

Now, suppose that we are interested in computing an under-approximation
to the restricted preimage, given the input hyperrectangle C = {x ∈ Rd|x |=∧d

i=1 ϕi}, and the output polytope specified using the half-space constraints
ψi(y) = (cTi y+ di ≥ 0) for i = 1, ...,K over the output space. Given a constraint
ψi, we append an additional linear layer at the end of the network f , which maps
y 7→ cTi y+di, such that the function gi : Rd → R represented by the new network
is gi(x) = cTi f(x) + di. Then, applying LiRPA bounding to each gi, we obtain
lower bounds gi(x) = aTi x+ bi for each i, such that gi(x) ≥ 0 =⇒ gi(x) ≥ 0 for
x ∈ C. Notice that, for each i = 1, ...,K, aTi x+bi ≥ 0 is a half-space constraint in
the input space. We conjoin these constraints, along with the restriction to the
input region C, to obtain a polytope TC(O) := {x|

∧K
i=1(gi(x) ≥ 0)∧

∧d
i=1 ϕi(x)}.

Proposition 1. TC(O) is an under-approximation to the restricted preimage
f−1
C (O).

Provable Preimage Under-Approximation for Neural Networks 7

Algorithm 2: GenUnderApprox
Input: List of subregions C, Output set O, number of samples N
Output: List of polytopes T

1 T = [];
2 for subregion Csub ∈ C // Parallel over subregions
3 do
4 [g1(x,α1), ..., gK(x,αK)]← LinearLowerBound(Csub, O);
5 x1, ..., xN ← Sample(Csub, N);
6 Loss(α1, ...,αK)← −

∑
j=1,...,N σ(−LSE(−g1(xj ,α1), ...,−gK(xj ,αK));

7 α∗
1, ...,α

∗
K ← Optimize(Loss(α1, ...,αK));

8 T = Append(T, [g1(x,α
∗
1) ≥ 0, ..., gK(x,α∗

K) ≥ 0, x ∈ Csub])
9 return T

Example 2. Returning to Example 1, the output constraints (for i = 2, 3, 4) are
given by ψi = (y1 − yi ≥ 0) = (cTi y + di ≥ 0), where ci := e1 − ei (where
ei is the ith standard basis vector) and di := 0. Applying LiRPA bounding,
we obtain the linear lower bounds g2(x) = −3.79x1 + x2 + 2.65 ≥ 0; g3(x) =
0.34x1 − x2 − 0.60 ≥ 0; g4(x) = −1.11x1 − x2 + 1.99 ≥ 0 for each constraint.
The intersection of these constraints, shown in Figure 2a, represents the region
where any input is guaranteed to satisfy the output constraints.

We generate the linear bounds in parallel over the output polyhedron con-
straints i = 1, ...,K using the backward mode LiRPA [44], and store the resulting
input polytope TC(O) as a list of constraints. This highly efficient procedure is
used as a sub-routine LinearLowerBound when generating a preimage under-
approximation as a polytope union using Algorithm 2 (Line 4).

4.2 Local Optimization

One of the key components behind the effectiveness of LiRPA-based bounds
is the ability to efficiently improve the tightness of the bounding function by
optimizing the relaxation parameters α, via projected gradient descent. In the
context of local robustness verification, the goal is to optimize the concrete lower
or upper bounds over the (sub)region C [40], i.e., minx∈C A(α)x+b(α), where we
explicitly note the dependence of the linear coefficients on α. In our case, we are
instead interested in optimizing α to refine the polytope under-approximation,
that is, increase its volume. Unfortunately, computing the volume of a polytope
exactly is a computationally expensive task, and requires specialized tools [12]
that do not permit easy optimization with respect to the α parameters.

To address this challenge, we propose to use statistical estimation. In par-
ticular, we sample N points x1, ..., xN uniformly from the input domain C then
employ Monte Carlo estimation for the volume of the polytope approximation:

v̂ol(TC,α(O)) =

∑N
i=1 1xi∈TC,α(O)

N
× vol(C) (1)

8 X. Zhang et al.

where we highlight the dependence of TC(O) = {x|
∧K

i=1 gi(x,αi) ≥ 0∧
∧d

i=1 ϕi(x)}
on α = (α1, ...,αK), and αi are the α-parameters for the linear relaxation of the
neural network gi corresponding to the ith half-space constraint in O. However,
this is still non-differentiable w.r.t. α due to the identity function. We now show
how to derive a differentiable relaxation which is amenable to gradient-based
optimization:

v̂ol(TC,α(O)) =
vol(C)
N

N∑
j=1

1xj∈TC,α(O) =
vol(C)
N

N∑
j=1

1mini=1,...K gi(xj ,αi)≥0

≈ vol(C)
N

N∑
j=1

σ

(
min

i=1,...K
gi(xj ,αi)

)

≈ vol(C)
N

N∑
j=1

σ
(
−LSE(−g1(xj ,α1), ...,−gK(xj ,αK))

)
The second equality follows from the definition of the polytope TC,α(O); namely
that a point is in the polytope if it satisfies gi(xj ,αi) ≥ 0 for all i = 1, ...,K,
or equivalently, mini=1,...K gi(xj ,αi) ≥ 0. After this, we approximate the iden-
tity function using a sigmoid relaxation, where σ(y) := 1

1+e−y , as is commonly
done in machine learning to define classification losses. Finally, we approximate
the minimum over specifications using the log-sum-exp (LSE) function. The log-
sum-exp function is defined by LSE(y1, ..., yK) := log(

∑
i=1,...,K eyi), and is

a differentiable approximation to the maximum function; we employ it to ap-
proximate the minimization by adding the appropriate sign changes. The final
expression is now a differentiable function of α. We employ this as the loss
function in Algorithm 2 (Line 6) for generating a polytope approximation, and
optimize volume using projected gradient descent.

Example 3. We revisit the vehicle parking problem in Example 1. Figure 2a and
2b show the computed under-approximations before and after local optimization.
We can see that the bounding planes for all three specifications are optimized,
which effectively improves the approximation quality.

4.3 Global Branching and Refinement

As LiRPA performs crude linear relaxation, the resulting bounds can be quite
loose even with α-optimization, meaning that the polytope approximation TC(O)
is unlikely to constitute a tight under-approximation to the preimage. To address
this challenge, we employ a divide-and-conquer approach that iteratively refines
our under-approximation of the preimage. Starting from the initial region C
represented at the root, our method generates a tree by iteratively partitioning
a subregion Csub represented at a leaf node into two smaller subregions Cl

sub, Cu
sub,

which are then attached as children to that leaf node. In this way, the subregions
represented by all leaves of the tree are disjoint, such that their union is the initial
region C.

Provable Preimage Under-Approximation for Neural Networks 9

For each leaf subregion Csub we compute, using LiRPA bounds (Line 4, Algo-
rithm 2), an associated polytope that under-approximates the preimage in Csub.
Thus, irrespective of the number of refinements performed, the union of the poly-
topes corresponding to all leaves forms an anytime DUP under-approximation
T to the preimage in the original region C. The process of refining the subregions
continues until an appropriate termination criterion is met.

Unfortunately, even with a moderate number of input dimensions or un-
stable ReLU nodes, naïvely splitting along all input- or ReLU-planes quickly
becomes computationally infeasible. For example, splitting a d-dimensional hy-
perrectangle using bisections along each dimension results in 2d subdomains to
approximate. It thus becomes crucial to identify the subregion splits that have
the most impact on the quality of the under-approximation. Another important
aspect is how to prioritize which leaf subregion to split. We describe these in
turn.

Subregion Selection. Searching through all leaf subregions at each itera-
tion is computationally too expensive. Thus, we propose a subregion selection
strategy that prioritizes splitting subregions according to (an estimate of) the
difference in volume between the exact preimage f−1

Csub
(O) and the (already com-

puted) polytope approximation TCsub
(O) on that subdomain, that is:

Priority(Csub) = vol(f−1
Csub

(O))− vol(TCsub
(O)) (2)

which measures the gap between the polytope under-approximation and the
optimal approximation, namely, the preimage itself.

Suppose that a particular leaf subdomain attains the maximum of this metric
among all leaves, and we partition it into two subregions Cl

sub, Cu
sub, which we ap-

proximate with polytopes TCl
sub

(O), TCu
sub

(O). As tighter intermediate concrete
bounds, and thus linear bounding functions, can be computed on the partitioned
subregions, the polytope approximation on each subregion will be refined com-
pared with the single polytope restricted to that subregion.

Proposition 2. Given any subregion Csub with polytope approximation TCsub
(O),

and its children Cl
sub, Cu

sub with polytope approximations TCl
sub

(O), TCu
sub

(O) re-
spectively, it holds that:

TCl
sub

(O) ∪ TCu
sub

(O) ⊇ TCsub
(O) (3)

Corollary 1. In each refinement iteration, the volume of the polytope approxi-
mation TDom does not decrease.

Since computing the volumes in Equation 2 is intractable, we sample N
points x1, ..., xN uniformly from the subdomain Csub and employ Monte Carlo
estimation to estimate the volume for both the preimage and the polytope ap-
proximation using the same set of samples, i.e., v̂ol(f−1

Csub
(O)) = vol(Csub) ×

1
N

∑N
i=1 1xi∈f−1

Csub
(O), and v̂ol(TCsub

(O)) = vol(Csub) × 1
N

∑N
i=1 1xi∈TCsub

(O). We

10 X. Zhang et al.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=3.79x-2.65
y=0.34x+0.60
y=-1.11x+1.99

(a) No optimization

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=4.13x-2.99
y=0.32x+0.64
y=-1.08x+1.97
y=3.79x-2.65
y=0.34x+0.60
y=-1.11x+1.99

(b) After optimization

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=2.37x-1.92
y=0.89x+1.19
y=-6.33x+16.77
y=8.37x-7.31
y=0.14x+0.83
y=-0.80x+1.75
y=0.5

(c) Input split

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

y=-0.99x+0.97
y=5.61x-4.43
y=0.24x+0.72
y=-1.07x+1.97
y=3.12x-2.39
y=0.43x+0.68
y=-1.10x+2.44

(d) ReLU split

Fig. 2: Refinement and optimization for preimage approximation.

stress that volume estimation is only used to prioritize subregion selection, and
does not affect the soundness of our method.

Input Splitting. Given a subregion (hyperrectangle) defined by lower and
upper bounds xi ∈ [xi, xi] for all dimensions i = 1, ..., d, input splitting partitions
it into two subregions by cutting along some feature i. This splitting procedure
will produce two subregions which are similar to the original subregion, but have
updated bounds [xi,

xi+xi

2], [
xi+xi

2 , xi] for feature i instead. In order to determine
which feature/dimension to split on, we propose a greedy strategy. Specifically,
for each feature, we generate a pair of polytopes for the two subregions resulting
from the split, and choose the feature that results in the greatest total volume
of the polytope pair. In practice, another commonly-adopted splitting heuristic
is to select the dimension with the longest edge [10], that is, to select feature i
with the largest range: argmaxi(xi−xi). However, this method falls short in per-
iteration approximation volume improvement compared to our greedy strategy.

Example 4. We revisit the vehicle parking problem in Example 1. Figure 2b
shows the polytope under-approximation computed on the input region C before
refinement, where each solid line represents the bounding plane for each output
specification (y1 − yi ≥ 0). Figure 2c depicts the refined approximation by split-
ting the input region along the vertical axis, where the solid and dashed lines
represent the bounding planes for the two resulting subregions. It can be seen
that the total volume of the under-approximation has improved significantly.

Intermediate ReLU Splitting. Refinement through splitting on input fea-
tures is adequate for low-dimensional input problems such as reinforcement learn-
ing agents. However, it may be infeasible to generate sufficiently fine subregions
for high-dimensional domains. We thus propose an algorithm for ReLU neural
networks that uses intermediate ReLU splitting for preimage refinement. After
determining a subregion for refinement, we partition the subregion based upon
the pre-activation value of an intermediate unstable neuron z

(i)
j = 0. As a re-

sult, the original subregion Csub is split into two new subregions C+

z
(i)
j

= {x ∈

Csub | z(i)j = h
(i)
j (x) ≥ 0} and C−

z
(i)
j

= {x ∈ Csub | z(i)j = h
(i)
j (x) < 0}.2

2 To obtain a polytope under-approximation, we can utilize linear lower/upper bounds
on h

(i)
j (x) as an approximation to the subregion boundary.

Provable Preimage Under-Approximation for Neural Networks 11

In this procedure, the order of splitting unstable ReLU neurons can greatly
influence the refinement quality and efficiency. Existing heuristic methods of
ReLU prioritization select ReLU nodes that lead to greater improvement in the
final bound (maximum or minimum value) of the neuron network on the input
domain [10], i.e. minx∈C f(x). However, these ReLU prioritization methods are
not effective for preimage analysis, because our objective is instead to refine
the overall preimage approximation. We thus propose a heuristic method to pri-
oritize unstable ReLU nodes for preimage refinement. Specifically, we compute
(an estimate of) the volume difference between the split subregions |vol(C+

z
(i)
j

)−

vol(C−
z
(i)
j

)|, using a single forward pass for a set of sampled datapoints from the

input domain; note that this is bounded above by the total subregion volume
vol(Csub). We then propose to select the ReLU node that minimizes this differ-
ence. Intuitively, this choice results in balanced subdomains after splitting.

Another advantage of ReLU splitting is that we can replace the unstable
neuron bound ch(i)j (x)+d ≤ a

(i)
j (x) ≤ ch

(i)
j (x)+d with the exact linear function

a
(i)
j (x) = h

(i)
j (x) and a

(i)
j (x) = 0, respectively, as shown in Figure 1 (unstable

to stable). This can then tighten the linear bounds for the other neurons, thus
tightening the under-approximation on each subdomain.

Example 5. We now apply our algorithm with ReLU splitting to the vehicle
parking problem in Example 1. Figure 2d shows the refined preimage polytope
by adding the splitting plane (black solid line) along the direction of a selected
unstable ReLU node. Compared with Figure 2b, we can see that the volume of
the approximation is improved.

Remark 1 (Preimage Over-approximation). While Algorithms 1 and 2 focus on
preimage under-approximations, they can be easily configured to generate over-
approximations with two key modifications. Firstly, we generate polytope over-
approximations by using LiRPA to propagate a linear upper bound gi(x) =
aTi x + bi for each output constraint, such that gi(x) ≥ 0 =⇒ gi(x) ≥ 0 for
x ∈ C. Secondly, the refinement and optimization objective is to minimize the
volume of the over-approximation instead of maximizing the volume as in the
case of under-approximation.

4.4 Overall Algorithm

Our overall preimage approximation method is summarized in Algorithm 1. It
takes as input a neural network f , input region C, output region O, target poly-
tope volume threshold v (a proxy for approximation precision), termination itera-
tion number R, and a Boolean indicating whether to use input or ReLU splitting,
and returns a disjoint polytope union T representing an underapproximation to
the preimage.

The algorithm initiates and maintains a priority queue of (sub)regions ac-
cording to Equation 2. The initialization step (Lines 1-3) generates an initial
polytope approximation on the whole region using Algorithm 2 (Sections 4.1,

12 X. Zhang et al.

Algorithm 3: Quantitative Verification
Input: Neural network f , Property (I,O, p), Maximum iterations R
Output: Verification Result ∈ {True, False, Unknown}

1 vol(I)← ExactVolume(I);
2 C ← OuterBox(I) ; // For general polytopes I
3 T ← InitialRun(f, C, O);
4 while Iterations ≤ R do
5 T ← Refine(f, T , C, O);
6 if EstimateVolume(T) ≥ p× vol(I) then
7 if ExactVolume(T) ≥ p× vol(I) then
8 return True

9 if AllReLUSplit then
10 return False

11 return Unknown

4.2). Then, the preimage refinement loop (Lines 4-14) partitions a subregion in
each iteration, with the preimage restricted to the child subregions then being
re-approximated (Line 10-11). In each iteration, we choose the region to split
(Line 5) and the splitting plane to cut on (Line 7 for input split and Line 9 for
ReLU split), as detailed in Section 4.3. The preimage under-approximation is
then updated by computing the priorities for each subregion (by approximating
volumes) (Lines 12-14). The loop terminates and the approximation returned
when the target volume threshold v or maximum iteration limit R is reached.

4.5 Quantitative Verification

We now show how to use our efficient preimage under-approximation method
(Algorithm 1) to verify a given quantitative property (I,O, p), where O is a
polyhedron, I a polytope and p the desired proportion value, summarized in
Algorithm 3. To simplify assume that I is a hyperrectangle, so that we can take
C = I (in view of space constraints the case of general polytopes is discussed in
Appendix of [45]). We utilize Algorithm 1 by setting the volume threshold to
p×vol(I), such that we have v̂ol(T)

vol(I) ≥ p if the algorithm terminates before reach-
ing the maximum number of iterations. However, the Monte Carlo estimates of
volume cannot provide a sound guarantee that vol(T)

vol(I) ≥ p. To resolve this prob-
lem, we propose to run exact volume computation [5] only when the Monte Carlo
estimate reaches the threshold. If the exact volume vol(T) ≥ p×vol(I), then the
property is verified. Otherwise, we continue running the preimage refinement.

In Algorithm 3, InitialRun generates an initial approximation to the preim-
age as in Lines 1-3 of Algorithm 1, and Refine performs one iteration of approx-
imation refinement (Lines 5-14). Termination occurs when we have verified or
falsified the quantitative property, or when the maximum number of iterations
has been exceeded.

Provable Preimage Under-Approximation for Neural Networks 13

Proposition 3. Algorithm 3 is sound for quantitative verification with input
splitting.

Proposition 4. Algorithm 3 is sound and complete for quantitative verification
on piecewise linear neural networks with ReLU splitting.

5 Experiments

We have implemented our approach as a prototype tool 3 for preimage approx-
imation for polyhedron-type output sets/specifications. In this section, we per-
form experimental evaluation of the proposed approach on a set of benchmark
tasks and demonstrate its effectiveness in approximation generation and its ap-
plication to quantitative analysis of neural networks.

5.1 Benchmark and Evaluation Metric

We evaluate our preimage analysis approach on a benchmark of reinforcement
learning and image classification tasks. Besides the vehicle parking task [3] shown
in the running example, we use the following (trained) benchmarks: (1) aircraft
collision avoidance system (VCAS) [21] with 9 feed-forward neural networks
(FNNs); (2) neural network controllers from VNN-COMP 2022 [1] for three
reinforcement learning tasks (Cartpole, Lunarlander, and Dubinsrejoin) [9]; and
(3) the neural network from VNN-COMP 2022 for MNIST classification. Details
of the models and additional experiments can be found in Appendix of [45].

Evaluation Metric To evaluate the quality of the preimage approximation,
we define the coverage ratio to be the ratio of volume covered to the volume
of the exact preimage, i.e., cov(T , f−1

C (O)) := vol(T)

vol(f−1
C (O))

. Note that this is a
normalized measure for assessing the quality of the approximation, as shown in
Algorithm 3 when comparing with target coverage proportion p for termination
of the refinement loop, and not as a measure for formal verification guarantees. In
practice, we estimate vol(f−1

C (O)) as v̂ol(f−1
C (O)) = vol(C) × 1

N

∑N
i=1 1f(xi)∈O,

where x1, ...xN are samples from C. In Algorithm 1, the target volume (stopping
criterion) is set as v = r × v̂ol(f−1

C (O), where r is the target coverage ratio.

5.2 Evaluation

Effectiveness in Preimage Approximation with Input Split We apply Al-
gorithm 1 with input splitting to the input bounding problem for low-dimensional
reinforcement learning tasks to evaluate its effectiveness. For comparison, we also
run the exact preimage (Exact) [27] and preimage over-approximation (Invprop)
[23, 24] methods.

Vehicle Parking & VCAS. Table 1 presents experimental results on the vehicle
parking and VCAS tasks. In the table, we show the number of polytopes (#Poly)
3 The source code is at https://github.com/Zhang-Xiyue/PreimageApproxForNNs.

14 X. Zhang et al.

Table 1: Performance comparison in preimage generation.

Models Exact Invprop Our

#Poly Time Time Cov(%) #Poly Time Cov(%)

Vehicle (FNN 1× 20) 10 3110.979 2.642 92.1 4 1.175 95.7
VCAS (FNN 1× 21) 131 6363.272 - - 12 11.281 91.0

Table 2: Performance of preimage approximation for reinforcement learning tasks.

Task Property Config #Poly Cov(%) Time

Cartpole
(FNN 2× 64) {y ∈ R2| y1 ≥ y2}

θ̇ ∈ [−2,−1] 8 82.0 8.933
θ̇ ∈ [−2,−0.5] 17 75.5 14.527
θ̇ ∈ [−2, 0] 32 76.5 27.344

Lunarlander
(FNN 2× 64) {y ∈ R4| ∧i∈{1,3,4} y2 ≥ yi}

v̇ ∈ [−0.5, 0] 38 75.5 34.311
v̇ ∈ [−1, 0] 71 75.1 63.333
v̇ ∈ [−2, 0] 159 75.0 134.929

Dubinsrejoin
(FNN 2× 256)

{y ∈ R8| ∧i∈[2,4] y1 ≥ yi∧
∧i∈[6,8] y5 ≥ yi}

xv ∈ [−0.1, 0.1] 26 75.8 34.558
xv ∈ [−0.2, 0.2] 61 75.4 78.437
xv ∈ [−0.3, 0.3] 1002 57.6 1267.272

in the preimage, computation time (Time(s)), and the approximate coverage ra-
tio (Cov(%)) when the preimage approximation algorithm terminates with target
coverage 90%. Compared with the exact method, our approach yields orders-of-
magnitude improvement in efficiency. It can also characterize the preimage with
much fewer (and also disjoint) polytopes (average reduction of 91.1% for VCAS).

The Invprop method [23] cannot be directly applied as it computes preim-
age over-approximations. We adapt it to produce an under-approximation by
computing over-approximations for the complement of each output constraint;
the resulting approximation is then the complement of a union of polytopes,
rather than a DUP. On the 2D vehicle parking task, we find that the results
(see Table 1) are comparable with ours in time and approximation coverage.
Their implementation currently only supports two-dimensional input tasks [24].
While their algorithm, which employs input splitting, can in theory be extended
to higher-dimensional tasks, a significant unaddressed technical challenge is in
how to choose the input splits effectively in high dimensions. This is confounded
by the fact that, to generate an under-approximation, we need separate runs of
their algorithm for each output constraint. In contrast, our method naturally in-
corporates a principled splitting and refinement strategy, and can also effectively
employ ReLU splitting for further scalability, as we will show below. Our method
can also be configured to generate over-approximations (Section 4.3, Remark 1).

Neural Network Controllers. In this experiment, we consider preimage under-
approximation for neural network controllers in reinforcement learning tasks.
Note that [27] (Exact) is unable to deal with neural networks of these sizes and

Provable Preimage Under-Approximation for Neural Networks 15

Table 3: Refinement with ReLU split for MNIST (FNN 6× 100)

.

L∞ attack #Poly Cov(%) Time Patch attack #Poly Cov(%) Time

0.05 2 100.0 3.107 3× 3(center) 1 100.0 2.611
0.07 247 75.2 121.661 4× 4(center) 678 38.2 455.988
0.08 522 75.1 305.867 6× 6(corner) 2 100.0 9.065
0.09 733 16.5 507.116 7× 7(corner) 7 84.2 10.128

[23, 24] (Invprop) does not support these higher-dimensional input domains. Ta-
ble 2 summarizes the experimental results. We evaluate Algorithm 1 with input
split on a range of tasks/properties and configurations of the input region (e.g.,
angular velocity θ̇ for Cartpole). Empirically, for the same coverage ratio, our
method requires a number of polytopes and time roughly linear in the input re-
gion size, with the exception of Dubinsrejoin, where the larger number of output
constraints and larger network size contribute to greater relaxation error.
MNIST Preimage Approximation with ReLU Split Next, we evaluate the
scalability of Algorithm 1 with ReLU splitting by applying it to MNIST image
classifiers. To our knowledge, this is the first time preimage computation has
been attempted for this challenging, high-dimensional task.

Table 3 summarizes the evaluation results for two types of image attacks:
l∞ and patch attack. For L∞ attacks, bounded perturbation noise is applied
to all image pixels. The patch attack applies only to a smaller patch area but
allows arbitrary perturbations covering the whole valid range [0, 1]. The task is
then to produce a DUP under-approximation of the perturbation region that
is guaranteed to be classified correctly. For L∞ attack, our approach generates
a preimage approximation that achieves the targeted coverage of 75% for noise
up to 0.08. Notice that, from e.g. 0.05 to 0.07, the volume of the input region
increases by tens of orders of magnitude due to the high dimensionality. The
fact that the number of polytopes and computation time remains manageable is
due to the effectiveness of ReLU splitting. Interestingly, for the patch attack, we
observe that the number of polytopes required increases sharply when increasing
the patch size at the center of the image, while this is not the case for patches
in the corners of the image. We hypothesize this is due to the greater influence
of central pixels on the neural network output, and correspondingly a greater
number of unstable neurons over the input perturbation space.
Comparison with Robustness Verifiers We now illustrate empirically the
utility of preimage computation in robustness analysis compared to robustness
verifiers. Table 4 shows comparison results with α, β-CROWN, winner of the
VNN competition [1]. We set the tasks according to the problem instances from
VNN-COMP 2022 for local robustness verification (localized perturbation re-
gions). For Cartpole, α, β-CROWN can provide a verification guarantee (yes/no
or safe/unsafe) for both of the problem instances. However, in the case where the
robustness property does not hold, our method explicitly generates a preimage
approximation in the form of a disjoint polytope union (where correct classi-

16 X. Zhang et al.

Table 4: Comparison with a robustness verifier.

Task α, β-CROWN Our

Result Time Cov(%) #Poly Time

Cartpole (θ̇ ∈ [−1.642,−1.546]) yes 3.349 100.0 1 1.137

Cartpole (θ̇ ∈ [−1.642, 0]) no 6.927 94.9 2 3.632

MNIST (L∞ 0.026) yes 3.415 100.0 1 2.649

MNIST (L∞ 0.04) unknown 267.139 100.0 2 3.019

fication is guaranteed), and covers 94.9% of the exact preimage. For MNIST,
while the smaller perturbation region is successfully verified, α, β-CROWN with
tightened intermediate bounds by MIP solvers returns unknown with a timeout
of 300s for the larger region. In comparison, our algorithm provides a concrete
union of polytopes where the input is guaranteed to be correctly classified, which
we find covers 100% of the input region (up to sampling error). Note also (Table
3) that our algorithm can produce non-trivial under-approximations for input
regions far larger than α, β-CROWN can verify.
Quantitative Verification We now demonstrate the application of our preim-
age generation framework to quantitative verification of the property (I,O, p);
that is, to check whether f(x) ∈ O for at least proportion p of input values x ∈ I.
This leverages the disjointness of our approximation, such that we can exactly
compute the volume covered by exactly computing the volume of each polytope.

Vehicle Parking. We consider the quantitative property with input set I =
{x ∈ R2 | x ∈ [0, 1]2}, output set O = {y ∈ R4|

∧4
i=2 y1 − yi ≥ 0}, and

quantitative proportion p = 0.95. We use Algorithm 3 to verify this property,
with iteration limit 1000. The computed under-approximation is a union of two
polytopes, which takes 0.942s to reach the target coverage. We then compute
the exact volume ratio of the under-approximation against the input region.
The final quantitative proportion reached by our under-approximation is 95.2%,
verifying the quantitative property.

Aircraft Collision Avoidance. In this example, we consider the VCAS sys-
tem and a scenario where the two aircraft have negative relative altitude from
intruder to ownship (h ∈ [−8000, 0]), the ownship aircraft has a positive climb-
ing rate ḣA ∈ [0, 100] and the intruder has a stable negative climbing rate
˙hB = −30, and time to the loss of horizontal separation is t ∈ [0, 40], which

defines the input region I. For this scenario, the correct advisory is “Clear Of
Conflict” (COC). We apply Algorithm 3 to verify the quantitative property where
O = {y ∈ R9|

∧9
i=2 y1 − yi ≥ 0} and the proportion p = 0.9, with an iteration

limit of 1000. The under-approximation computed is a union of 6 polytopes,
which takes 5.620s to reach the target coverage. The exact quantitative propor-
tion reached by the generated under-approximation is 90.8%, which verifies the
quantitative property.

Provable Preimage Under-Approximation for Neural Networks 17

6 Related Work

Our paper is related to a series of works on robustness verification of neural
networks. To address the scalability issues with complete verifiers [20, 22, 35]
based on constraint solving, convex relaxation [31] has been used for develop-
ing highly efficient incomplete verification methods [44, 39, 32, 40]. Later works
employed the branch-and-bound (BaB) framework [11, 10] to achieve complete-
ness, using incomplete methods for the bounding procedure [41, 36, 17]. In this
work, we adapt convex relaxation for efficient preimage approximation. Further,
our divide-and-conquer procedure is analogous to BaB, but focuses on maxi-
mizing covered volume rather than maximizing a function value. There are also
works that have sought to define a weaker notion of local robustness known as
statistical robustness [37, 26], which requires that a proportion of points under
some perturbation distribution around an input point are classified in the same
way. Verification of statistical robustness is typically achieved by sampling and
statistical guarantees [37, 4, 34, 42]. In this paper, we apply our symbolic approx-
imation approach to quantitative analysis of neural networks, while providing
exact quantitative rather than statistical guarantees [38].

Another line of related works considers deriving exact or approximate ab-
stractions of neural networks, which are applied for explanation [33], verifica-
tion [16, 29], reachability analysis [28], and preimage approximation [15, 23]. [15]
leverages symbolic interpolants [2] for preimage approximations, facing expo-
nential complexity in the number of hidden neurons. Concurrently, [23] employs
Lagrangian dual optimization for preimage over-approximations. Our anytime
algorithm, which combines convex relaxation with principled splitting strategies
for refinement, is applicable for both under- and over-approximations. Their
work may benefit from our splitting strategies to scale to higher dimensions.

7 Conclusion

We present an efficient and flexible algorithm for preimage under-approximation
of neural networks. Our anytime method derives from the observation that linear
relaxation can be used to efficiently produce under-approximations, in conjunc-
tion with custom-designed strategies for iteratively decomposing the problem
to rapidly improve the approximation quality. Unlike previous approaches, it is
designed for, and scales to, both low and high-dimensional problems. Experi-
mental evaluation on a range of benchmark tasks shows significant advantage in
runtime efficiency and scalability, and the utility of our method for important
applications in quantitative verification and robustness analysis.

Acknowledgments This project received funding from the ERC under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (FUN2MODEL,
grant agreement No. 834115) and ELSA: European Lighthouse on Secure and
Safe AI project (grant agreement No. 101070617 under UK guarantee). This
work was done in part while Benjie Wang was visiting the Simons Institute for
the Theory of Computing.

18 X. Zhang et al.

References

1. VnnComp 2022. https://github.com/ChristopherBrix/vnncomp2022_benchmarks,
accessed: 2022-09-30

2. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Computer Aided
Verification - 25th International Conference, CAV 2013, Proceedings. Lec-
ture Notes in Computer Science, vol. 8044, pp. 313–329. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_22

3. Ayala, D., Wolfson, O., Xu, B., DasGupta, B., Lin, J.: Parking slot assignment
games. In: 19th ACM SIGSPATIAL International Symposium on Advances in Ge-
ographic Information Systems, ACM-GIS, Proceedings. pp. 299–308. ACM (2011)

4. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification
for deep neural networks. In: Proceedings of the 43rd International Conference on
Software Engineering: Companion Proceedings. p. 248–249. ICSE ’21, IEEE Press
(2021)

5. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algo-
rithm for convex hulls. ACM Trans. Math. Softw. pp. 469–483 (1996).
https://doi.org/10.1145/235815.235821

6. Benoy, P.M.: Polyhedral domains for abstract interpretation in logic programming.
Ph.D. thesis, University of Kent, UK (2002)

7. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

8. Boutonnet, R., Halbwachs, N.: Disjunctive relational abstract interpretation for
interprocedural program analysis. In: Verification, Model Checking, and Ab-
stract Interpretation - 20th International Conference, VMCAI 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11388, pp. 136–159. Springer (2019).
https://doi.org/10.1007/978-3-030-11245-5_7

9. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. CoRR (2016), http://arxiv.org/abs/1606.01540

10. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research pp. 1–39 (2020)

11. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS. pp. 4795–4804 (2018)

12. Chevallier, A., Cazals, F., Fearnhead, P.: Efficient computation of the the vol-
ume of a polytope in high-dimensions using piecewise deterministic markov pro-
cesses. In: International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2022, 28-30 March 2022, Virtual Event. Proceedings of Machine Learning
Research, vol. 151, pp. 10146–10160. PMLR (2022)

13. Codevilla, F., Müller, M., López, A.M., Koltun, V., Dosovitskiy, A.: End-to-end
driving via conditional imitation learning. In: Proceedings of the 2018 IEEE In-
ternational Conference on Robotics and Automation. pp. 1–9. IEEE, Brisbane,
Australia (2018). https://doi.org/10.1109/ICRA.2018.8460487

14. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic pp. 269–285 (1957)

15. Dathathri, S., Gao, S., Murray, R.M.: Inverse abstraction of neural net-
works using symbolic interpolation. In: The Thirty-Third AAAI Conference

Provable Preimage Under-Approximation for Neural Networks 19

on Artificial Intelligence, AAAI 2019. pp. 3437–3444. AAAI Press (2019).
https://doi.org/10.1609/aaai.v33i01.33013437

16. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: Computer Aided Verification: 32nd International Con-
ference, CAV 2020, Proceedings, Part I 32. pp. 43–65. Springer (2020)

17. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net (2022)

18. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract in-
terpretation. In: 2018 IEEE symposium on security and privacy (SP). pp. 3–18.
IEEE (2018)

19. Gopinath, D., Converse, H., Păsăreanu, C.S., Taly, A.: Property inference for deep
neural networks. In: Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering. p. 797–809. ASE ’19, IEEE Press (2020).
https://doi.org/10.1109/ASE.2019.00079

20. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Computer Aided Verification - 29th International Conference, CAV
2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3–29.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_1

21. Julian, K.D., Kochenderfer, M.J.: A reachability method for verifying
dynamical systems with deep neural network controllers. CoRR (2019),
http://arxiv.org/abs/1903.00520

22. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: Computer Aided Ver-
ification: 29th International Conference, CAV 2017, Proceedings, Part I 30. pp.
97–117. Springer (2017)

23. Kotha, S., Brix, C., Kolter, Z., Dvijotham, K., Zhang, H.: Provably bound-
ing neural network preimages. Accepted to NeurIPS 2023, CoRR (2023).
https://doi.org/10.48550/arXiv.2302.01404

24. Kotha, S., Brix, C., Kolter, Z., Dvijotham, K., Zhang, H.: INVPROP for provably
bounding neural network preimages. https://github.com/kothasuhas/verify-input
(accessed October, 2023)

25. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J., et al.:
Algorithms for verifying deep neural networks. Foundations and Trends in Opti-
mization pp. 244–404 (2021)

26. Mangal, R., Nori, A.V., Orso, A.: Robustness of neural networks: a probabilistic
and practical approach. In: Sarma, A., Murta, L. (eds.) Proceedings of the 41st In-
ternational Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2019. pp. 93–96. IEEE / ACM (2019)

27. Matoba, K., Fleuret, F.: Exact preimages of neural network aircraft collision avoid-
ance systems. In: Proceedings of the Machine Learning for Engineering Modeling,
Simulation, and Design Workshop at Neural Information Processing Systems 2020
(2020)

28. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural net-
works. In: Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019. pp. 15762–
15772 (2019)

20 X. Zhang et al.

29. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Computer Aided Verification: 22nd International
Conference, CAV 2010, Proceedings 22. pp. 243–257. Springer (2010)

30. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2018. pp. 2651–2659. ij-
cai.org (2018)

31. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation barrier
to tight robustness verification of neural networks. In: Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019. pp. 9832–9842 (2019)

32. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages pp. 1–30
(2019)

33. Sotoudeh, M., Thakur, A.V.: Syrenn: A tool for analyzing deep neural networks. In:
Tools and Algorithms for the Construction and Analysis of Systems: 27th Interna-
tional Conference, TACAS 2021, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2021, Proceedings, Part II 27. pp.
281–302. Springer (2021)

34. Tit, K., Furon, T., Rousset, M.: Efficient statistical assessment of neural network
corruption robustness. In: Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual. pp. 9253–9263 (2021)

35. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019. OpenReview.net (2019)

36. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C., Kolter, J.Z.: Beta-crown:
Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In: Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual. pp. 29909–29921 (2021)

37. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to as-
sessing neural network robustness. In: 7th International Conference on Learning
Representations, ICLR 2019. OpenReview.net (2019)

38. Wicker, M., Laurenti, L., Patane, A., Kwiatkowska, M.: Probabilistic safety for
bayesian neural networks. In: In Proc. 36th Conference on Uncertainty in Artificial
Intelligence (UAI-2020). PMLR (2020)

39. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: International conference on machine learning. pp.
5286–5295. PMLR (2018)

40. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.: Automatic perturbation analysis for scalable certified robustness and
beyond. In: Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020)

41. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.: Fast and
complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event. OpenReview.net (2021)

Provable Preimage Under-Approximation for Neural Networks 21

42. Yang, P., Li, R., Li, J., Huang, C., Wang, J., Sun, J., Xue, B., Zhang, L.: Improving
neural network verification through spurious region guided refinement. In: Tools
and Algorithms for the Construction and Analysis of Systems - 27th International
Conference, TACAS 2021, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2021, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 12651, pp. 389–408. Springer (2021)

43. Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y.: Action-decision networks for visual
tracking with deep reinforcement learning. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017. pp. 1349–1358. IEEE Computer
Society (2017)

44. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018. pp. 4944–4953 (2018)

45. Zhang, X., Wang, B., Kwiatkowska, M.: Provable preimage under-approximation
for neural networks. arXiv preprint arXiv:2305.03686 (2023)

