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Abstract
In light of the inherently complex and dynamic nature of real-world environments, incorporating
risk measures is crucial for the robustness evaluation of deep learning models. In this work, we pro-
pose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN. Our
method leverages sampling and optimisation to compute a sound approximation of the output set of
a BNN, represented using a set of template polytopes. To enhance robustness evaluation, we inte-
grate a coherent distortion risk measure—Conditional Value at Risk (CVaR)—into the certification
framework, providing probabilistic guarantees based on empirical distributions obtained through
sampling. We validate RAC-BNN on a range of regression and classification benchmarks and
compare its performance with a state-of-the-art method. The results show that RAC-BNN effec-
tively quantifies robustness under worst-performing risky scenarios, and achieves tighter certified
bounds and higher efficiency in complex tasks.
Keywords: Uncertainty, Bayesian neural networks, risk measure, probabilistic certification

1. Introduction

There has been growing interest in formal verification of neural networks (Huang et al., 2017;
Katz et al., 2017; Zhang et al., 2018; Singh et al., 2019; Tjeng et al., 2019; Xu et al., 2020), in
particular when deploying deep neural models to safety- and security-critical systems, autonomous
vehicles (Bojarski et al., 2016; Codevilla et al., 2018), healthcare systems (Babak et al., 2015), and
cyber security (Dahl et al., 2013; Shin et al., 2015). Different from deterministic neural networks
which learn a fixed set of weights and biases from a set of training data, Bayesian neural networks
(BNNs) provide a principled approach to modelling uncertainty (Neal, 2012) and learn a posterior
distribution over these network parameters. During inference, BNNs quantify uncertainty and assign
high uncertainty values to out-of-distribution inputs instead of being overconfident in wrong predic-
tions (Kahn et al., 2017). At the same time, the stochastic nature of BNNs complicates certification,
as both the model parameters and, as a result, the predictive outputs are probability distributions
rather than point estimates. Even when applying relaxation-based certification techniques to BNNs,
the computational complexity can increase drastically.
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In order to reliably deploy BNN solutions and reason about their safety in the presence of uncer-
tainty, techniques have been developed to handle stochastic constraints within BNNs and compute
certified bounds on their reachable outputs. These approaches typically fall into two categories:
sampling-based techniques, which provides probabilistic guarantees (Cardelli et al., 2019; Wicker
et al., 2020; Michelmore et al., 2020), and approximation-based techniques, which evaluate the ro-
bustness of BNNs by computing the expectation of the output distributions over an input set (Adams
et al., 2023; Wicker et al., 2024b). While approximation techniques significantly increase the scal-
ability of evaluating larger-size BNNs, they often introduce relaxation losses to the certified output
range. Such relaxation can lead to conservative output bounds, limiting the precision of robustness
evaluations. Furthermore, existing works focus on bounding the expectation of the entire output dis-
tribution. However, in real-world decision-making scenarios, considering the average performance
over the full distribution may not suffice. Instead, it is important to account for challenging scenar-
ios by adopting a risk-averse perspective; that is, to evaluate robustness under adverse conditions
(e.g., the most adversarially unstable 25% cases).

In this work, we highlight the importance of a risk-averse perspective for BNN certification.
Specifically, we propose a principled approach to BNN certification that incorporates coherent dis-
tortion risk measures – Conditional Value at Risk (CVaR) (Rockafellar et al., 2000) – which enables
flexible and targeted evaluation of BNN performance. The key idea of our method is to sample the
input points and the parameters of the BNN weights, obtaining the empirical output distribution,
to compute a sound approximation of the output set (using template polytopes) and certified CVaR
bounds with probabilistic guarantees. We implement our method as a prototype tool, RAC-BNN,
and demonstrate that it achieves tighter certification bounds with better efficiency than state-of-the-
art techniques on a range of regression and classification benchmarks. To the best of our knowledge,
RAC-BNN is the only method capable of computing certified bounds under different risk levels
(denoted by α), enabling the flexibility between analysing average robustness over the entire output
distribution (α = 1) and evaluating robustness against worst-performing outcomes (α < 1).

2. Related Work

We now discuss closely related works in the certification of BNNs and risk-averse learning.

Robustness Certification of BNNs The last decade has witnessed a growing interest in formal cer-
tification of neural networks, including complete verification methods based on constraint solving
(Huang et al., 2017; Katz et al., 2017; Tjeng et al., 2019) and incomplete verifiers based on convex
relaxation (Zhang et al., 2018; Singh et al., 2019; Xu et al., 2020). However, these methods all as-
sume deterministic neural networks with fixed weights and thus cannot be directly applied to certify
BNNs. To this end, a series of certification techniques have been proposed for the certification of
BNNs (Cardelli et al., 2019; Wicker et al., 2020; Adams et al., 2023; Wicker et al., 2024b).

Cardelli et al. (2019) proposed a statistical approach to estimate the probability of the exis-
tence of adversarial examples with a priori guarantees by viewing the robustness of a BNN as a
Bernoulli random variable. Wicker et al. (2020) focused on the probabilistic robustness of BNNs,
that is, the probability of the sampled weights from the posterior for which the resulting determin-
istic neural network satisfying a safety property. The method computes a certified lower bound
for the probabilistic safety based on relaxation techniques of interval and linear bound propaga-
tion. These bounds are later generalised in Wicker et al. (2021), where they are applied to bound
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sequential decisions on BNN-based models, and specifically in Wicker et al. (2024a) for reach-
avoid (bounded-until) specifications. Wicker et al. (2024b) further investigated decision robustness,
which focuses on the decision step aligned with Bayesian decision theory, as also used in this work,
and proposed a unified approach to compute certified lower and upper bounds for both probabilis-
tic robustness and decision robustness. Adams et al. (2023) leveraged dynamic programming to
bound the output range of BNNs over an input region. There are also certification methods that
are able to reason about the robustness of the closed-loop systems where BNNs are applied for
decision-making. Michelmore et al. (2020) introduced a statistical framework to evaluate the safety
of end-to-end BNN controllers in autonomous driving.

Risk-Averse Learning Risk-averse learning has emerged as a critical area in machine learning,
particularly for applications where decisions have significant consequences under uncertainty. Tra-
ditional machine learning models often focus on minimising expected loss, which may not ade-
quately capture the potential for rare but severe adverse outcomes. To solve this, researchers have
investigated risk-averse approaches that consider not just the expected performance but also the tail
risks Vitt et al. (2019); Lakdawalla and Phelps (2021); O’Donoghue and Somerville (2018); Tamar
et al. (2015). For example, Vitt et al. (2019) introduced a risk-averse classification framework
leveraging coherent risk measures to address class-specific misclassification risks, demonstrating
its effectiveness through applications to support vector machines. In healthcare engineering, Lak-
dawalla and Phelps (2021) introduced the risk-adjusted cost-effectiveness framework, which inte-
grates risk aversion and diminishing returns into health technology assessments. By accounting for
tail risks and variability in treatment outcomes, this approach addresses limitations of traditional
cost-effectiveness analysis, particularly for severe illnesses and uncertain interventions.

3. Preliminaries and Problem Formulation

Next we introduce the necessary background and notations to be employed throughout the paper.

Notation We denote the input space by X ⊆ Rm, the output space by Y ⊆ Rn, and the pa-
rameter space by W ⊆ Rp. We denote by P(X ) the set of probability distribution over X ,
that is, P(X ) =

{
µ :

∫
X µ(dξ) = 1, µ ≥ 0

}
, and similarly for Y and W . For a finite collection

of points {x1, . . . , xN} in X , we denote the corresponding empirical distribution as µ̂N (x) =
1
N

∑N
i=1 δxi(x), where δxi(x) denotes the Dirac measure centered at xi. Similarly, for points in the

output space Y and parameter space W , we denote the empirical distribution by ν̂N and λ̂N , respec-
tively. Given two probability distributions µ and µ′ defined on the input space, i.e., µ, µ′ ∈ P(X ),
we denote by W1(µ, µ

′) the type-1 Wasserstein distance between these measures, defined as

W1(µ, µ
′) = inf

π∈Π(µ,µ′)

∫
X×X

∥ξ1 − ξ2∥dπ(ξ1, ξ2), (1)

where Π(µ, µ′) is the set of couplings (or joint distributions) with marginals given by µ and µ′.
Conditional Value at Risk (CVaR) is a coherent risk measure. For a random variable X with the

cumulative distribution function (CDF) denoted by F and a specified risk level α ∈ (0, 1], the CVaR
value is given by CVaRα[X] = EF [X|X > VaRα[X]], where VaRα[X] = inf{y : FX(y) ≥ 1−α}
represents the 1− α quantile of the distribution, also known as the Value at Risk (VaR). Intuitively,
CVaR captures the average of the worst-case outcomes within the upper α% of the distribution.
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Bayesian Neural Networks In this section, we define Bayesian neural networks (BNNs) and re-
view related concepts using the notation introduced in the previous section.

Definition 1 (Bayesian Neural Network) Given a distribution λ ∈ P(W) over the parameter
space W , a Bayesian Neural Network (BNN) is defined as a continuous stochastic function f :
X ×W 7→ Y , where the weight w is sampled from the distribution λ, i.e., w ∼ λ.

In the training of BNNs, we start with a prior distribution p(w) over the parameters w and then
compute the posterior distribution p(w|D) conditioned on dataset D = {(xi, yi) ∈ X × Y : i =
1, . . . , N}. Note that the measure λ ∈ P(W) in Definition 1 refers to the posterior distribution
p(w|D). With dataset D observed, the prior distribution of a BNN is updated according to the
likelihood, p(D|w) =

∏nD
i=1 p(yi|xi, w), which models how likely the outputs are observed under

the stochasticity of model parameters and the inputs. The posterior distribution, given the dataset,
is then computed by virtue of the Bayes formula, i.e., p(w|D) ∝ p(D|w)p(w). In practice, the
posterior distribution p(w|D) can be obtained by different inference techniques, e.g., Hamiltonian
Monte Carlo (HMC) (Neal, 2012), Variational Inference (VI) (Blundell et al., 2015), and Monte
Carlo Dropout (MCD) (Gal and Ghahramani, 2016).

The posterior p(w|D) then induces the distribution over outputs called the posterior predictive
distribution for an input point x∗, which is defined as p(y∗|x∗,D) =

∫
p(y∗|x∗, w)p(w|D)dw. The

final decision is obtained using Bayesian decision theory for regression and classification, which
selects the value ŷ that minimises the corresponding loss function L averaged over the predictive
distribution: ŷ = argminy

∫
Rn L(y, y∗)p(y∗|x∗,D)dy∗.
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Figure 1: Tail distributions exist in
Bayesian neural networks when recog-
nising images with different types of
perturbations.

Motivating Example In this section, we present a moti-
vating example to demonstrate why investigating the ex-
pectation of the entire distribution alone is insufficient to
evaluate the performance of BNNs. In high-stakes appli-
cations, outputs that deviate significantly from the safe
region and lead to catastrophic consequences are unac-
ceptable, even if their probability of occurrence is low. In
such cases, relying solely on the expectation of the out-
puts fails to account for the risks, as illustrated in the fol-
lowing example.

We consider the MNIST classification task and visu-
alise the empirical output distribution of a BNN under
three types of perturbations: Gaussian noise applied to all
image pixels, rotation that alters image orientation, and
changes in brightness contrast. To evaluate the robustness performance, we define the function
h(y) = maxt∈[10]\c yt − yc, where yt denotes the random variable of the BNN output for the
second-largest probability class, and yc denotes the BNN output for the ground-truth class c. The
value of y ranges from -1 to 1, with -1 indicating the BNN is robust and correctly classifies the
input, while 1 indicates the BNN makes a confident incorrect decision. A value h(y) > 0 indicates
that the BNN is not robust to the perturbations.

As shown in Figure 1, we observe tail distribution bumps under Gaussian noise within the
interval around [−0.1, 0.1], contrast perturbations within the interval around [0.1, 0.3] and under
rotation perturbations lying around [0.25, 0.75]. These tails correspond to cases where the BNN
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confidently makes incorrect predictions. In risk-sensitive or safety-critical applications, such tail
risks can lead to severe consequences. Standard expected values fail to capture the reliability of a
BNN in these high-risk scenarios, highlighting the need for risk-averse certification techniques.

3.1. Problem Statement

Consider a BNN f , with the input x ∼ µ and the parameters w ∼ λ, and the output given by
y = f(x,w). Let ν denote the distribution of y. We assume that the output set Y is compact. This
assumption holds for many tasks of BNNs. One can further render this assumption true by mapping
the output to a prescribed compact set. For a given risk-averse level α and an evaluation function
h : Y → R, we define the risk-averse evaluation as ϕPerf = CVaRα,y∼ν [h(y)]. In this work, we
evaluate a BNN through the following problems.

1. Output support set computation: approximate Y = {f(x,w) | x ∈ X , w ∈ W};

2. Risk-averse evaluation: compute certified bounds on the CVaR value of the BNN output.

In the motivating example, evaluating the performance of the BNN involves addressing two in-
terrelated tasks: approximating the output set of yt and yc, and computing the CVaR value of the
performance function h. Approximating the output set enables a visual assessment of the BNN’s
outputs, allowing us to determine whether they fall within a safe region and meet desirable crite-
ria. However, the set approximation alone cannot capture the probabilistic information about the
likelihood of outputs lying in the safe region. The second task, i.e., computing the CVaR value,
addresses this drawback, as it quantifies the tail risks by focusing on the most extreme and poten-
tially hazardous outcomes. Together, these tasks provide a comprehensive framework for assessing
the reliability and robustness of the BNN in high-stakes applications, where both the nature of the
outputs and their risk profiles are crucial considerations.

4. Methodology

4.1. Output Set Approximation

In this section, we present our sampling-based solution to approximate the output support set. Ac-
cording to the posterior distribution λ and the input distribution µ, we first collect a group of i.i.d.
sampled inputs xi ∈ X and a group of i.i.d. sampled parameters wj ∈ W . Based on these collected
samples, we can then compute the corresponding output samples yij = f(xi, wj). We rewrite the
output samples as yk for notation simplicity and use N to denote the total number of samples.

For the output set approximation, we aim to compute a convex approximation of Y . Leveraging
the output samples, we build the approximation by taking the intersection of all half-spaces that
contain {yk}Nk=1. This convex hull for the output samples and the tractable over-approximations
can be conveniently represented as a template polytope, which provides high-confidence guarantees
for the approximation gap by applying the scenario optimisation theory to our problem.

Consider a convex template polytope V = {z ∈ Rn | V z ≤ 1} where V ∈ RL×n and L is the
number of half spaces or inequalities. Given the set V, and θ ∈ RL, we introduce a parameterised
set in the form of H(θ) := {z ∈ Rn | V z ≤ θ}. We now approximate the output set Y by
computing the optimal parameterised set H(θ⋆

N ) with respect to the output samples, where θ⋆
N is
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the optimal solution to following optimisation problem min
θ∈RL

1Tθ

s.t V yk ≤ θ, k = 1, · · · , N.
(2)

The optimisation result is presented in the following proposition. The proof can be found in
(Zhang et al., 2024).

Proposition 2 The optimal solution θ⋆
N to the optimisation problem in Equation (2) is

[θ⋆
N ]i = max

k=1,··· ,N
[V ]iyk, (3)

where [V ]i denotes the i-th row of V . Let ŶN = H(θ⋆
N ). Given ϵ1 ∈ (0, 1), β1 ∈ (0, 1), and

the Euler’s constant e, if N ≥ 1
ϵ1

e
e−1

(
ln 1

β1
+ n + L

)
, then, with probability no less than 1 − β1,

P[y ∈ Y : y /∈ ŶN ] =
∫
Y\ŶN

ν(dξ) ≤ ϵ1.

Proposition 2 provides a statistical bound on the discrepancy between the estimated output set
ŶN and the true output set Y . The error bound ϵ1 has an inverse relationship with N , indicating that
achieving tighter error bounds necessitates a significantly larger sample size. The dimensionality of
the sample space, n, and of the structured polytope, L, contributes linearly to the sample size, re-
flecting the increased effort needed to address higher-dimensional or structurally complex problems.
Besides, the term ln 1

β1
introduces a logarithmic dependence on the confidence level. These results

indicate that tighter precision and higher confidence come at the cost of increased computational
and data collection demands.

4.2. Risk-Averse Evaluation

Given the output samples {yk}Nk=1, we define ν̂N (y) = 1
N

∑N
i=1 δyi(y) as the empirical distribution

of ν. Our goal is to estimate the value of CVaRα,y∼ν [h(y)], which represents the CVaR value of
the performance function h at level α under the distribution ν. Specifically, we aim to construct
a certified bound for this value with probabilistic confidence guarantees, which is presented in the
following proposition. The proof can be found in (Zhang et al., 2024).

Proposition 3 Suppose that h(y) is L0-Lipschitz continuous in y. Then, we have |CVaRα,y∼ν̂N [h(y)]−
CVaRα,y∼ν [h(y)]| ≤ L0

α ϵ2(β), with probability at least 1 − β, where ϵ2(β) = ρ(Y)(C∗N− 1
n +

√
n(2 lnβ−1)

1
2N− 1

2 ), C∗ =
√
n2(n−2)/2

(
1

1−21−n/2 + 2
)

, ρ(Y) is the diameter of the support of y.

Proposition 3 states that the distance between the empirical CVaR value and the true CVaR
value is related to the sample size N . Given a target certification range H with probability at least

1 − β, the required number of samples is given by
(
L0ρ(Y)(C∗+

√
n(2 lnβ−1)

1
2 )

αH

)n
, where n denotes

the output dimension of the performance function. The sample size N is inversely proportional to
Hn, indicating that as the certified bound tightness H decreases, N increases exponentially with an
exponent related to n. Additionally, a smaller α, which focuses on the largest α% of the distribution,
necessitates a larger number of samples to accurately estimate the expected value within this specific
portion of the distribution. Finally, N depends logarithmically on the confidence level β, meaning
that achieving higher confidence (smaller β) necessitates an increase in the sample size.
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5. Experiments

In this section, we present the experiment setup and evaluation results of the proposed approach.
Benchmark and Baseline. Following recent work (Adams et al., 2023), we evaluate our method
on three regression tasks, including a 1D noisy sine dataset where the BNN is trained on samples
from 1D sine function with additive noise, a 2D equivalent of Noisy Sine, and the Kin8nm dataset
where the BNN is trained on a dataset of state-space readings for the dynamics of an eight-link
robot arm. We further investigate the performance of our method on classification tasks where
BNNs are trained on the MNIST and Fashion-MNIST datasets. For each experiment, we evaluate
the risk-averse robustness of BNN models against different noise and attack settings by computing
the certified CVaR values under a range of risk levels. Specifically, for risk level 1, we consider the
state-of-the-art method BNN-DP in Adams et al. (2023) for robustness certification of BNNs and
conduct performance comparison in terms of the tightness of the certified bounds and the computa-
tion overhead. All experiments are conducted on a cluster with Intel Xeon Gold 6252 2.1GHz CPU,
and NVIDIA 2080Ti GPU.
Evaluation Metric. To evaluate the certification performance of our approach, we use γ-robustness
(Adams et al., 2023), which computes the difference between the upper and lower bounds on the
expectation outptus of BNNs with regard to a property formulated by the performance function. A
smaller γ-robustness value implies a tighter certified bound computation.

5.1. Evaluation Results

5.1.1. RQ1: IS OUR APPROACH EFFECTIVE IN CHARACTERISING THE OUTPUT SET?

Figure 2: Output set computation for
Bayesian neural networks when recog-
nising images with different types of
perturbations.

Consider again the specific case of the MNIST dataset
under two distinct perturbation scenarios: rotation per-
turbation and noise perturbation. Figure 2 illustrates the
relationship between two output variables of the BNN:
yc representing the output probability for the true class c,
and yt representing the output probability for the second-
most likely class. The black dashed line yt = yc serves as
a threshold: if a data point lies below this line, the BNN
classifies correctly, as the true class yc has a higher prob-
ability than yt. Points marked in red and blue correspond
to samples affected by rotation and noise perturbations,
respectively. Given a desired error 0.05 with a high con-
fidence level of 95%, and using Proposition 2, we select
L = 16 and compute the required number of samples to
be 665.

To systematically assess the BNN’s robustness under
such conditions, we propose computing the output support set, defined as the convex hull of all
possible output pairs (yt, yc) under each perturbation type. The output support set provides a visual
and quantitative measure of BNN performance. If the support set lies predominantly below the
black line, the BNN demonstrates robustness against the perturbation. Conversely, if a large portion
of the support set extends above the black line, it indicates vulnerability. Obviously, from Figure 2,
the BNN shows robustness to noise perturbations but exhibits vulnerability to rotation perturbations.
This geometric perspective enables a straightforward evaluation of the BNN’s performance.
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5.1.2. RQ2: IS OUR APPROACH EFFECTIVE IN CHARACTERISING RISK-AVERSE

PERFORMANCE OF BNNS?

To answer this question, we evaluate the effectiveness of our approach in characterising certified
CVaR bounds under a range of risk levels. A comparison of certification performance for the entire
output distribution (α = 1) with the baseline method BNN-DP is deferred to Section 5.1.3.

Table 1: Certified CVaR bounds under different confidence and risk levels for regression tasks.

Tasks β = 0.05 β = 0.01

α = 1 α = 0.5 α = 0.25 α = 1 α = 0.5 α = 0.25

1D Noisy Sine 0.074 ± 0.1 0.146 ± 0.1 0.147 ± 0.1 0.058 ± 0.1 0.148 ± 0.1 0.165 ± 0.1
2D Noisy Sine 0.081 ± 0.1 0.173 ± 0.1 0.268 ± 0.1 0.077 ± 0.1 0.203 ± 0.1 0.272 ± 0.1

Kin8nm 0.080 ± 0.1 0.088 ± 0.1 0.097 ± 0.1 0.079 ± 0.1 0.088 ± 0.1 0.103 ± 0.1

Regression Benchmarks. We first evaluate the proposed method on BNNs trained with three re-
gression datasets: 1D Noisy Sine, its 2D equivalent, and Kin8nm. To assess the effectiveness of
our method, we compute certified CVaR bounds under different levels of risk (α = 0.25, 0.5, 1)
and confidence guarantees (β = 0.05, 0.1). Table 1 summarises the evaluation results for the re-
gression tasks. For each configuration, the CVaR value represents the estimated expectation of the
subset of the distribution of the performance function. The maximum deviation from the true value
is constrained by a pre-defined limit of H = 0.1. For the 1D Noisy Sine task, we apply noise up
to 0.01 around the input point π/2 and the property of interest is the deviation from the ground
truth output, with the performance function defined as h(y) = 1 − y. As expected, when we focus
on the worst-case outcomes, the CVaR values, which indicate the average deviation in the subset
scenarios, show an increase. For the 2D Noisy Sine task, we use the same perturbation noise (up
to 0.01), except that the perturbations are applied to two input features rather than one. The same
performance function, h(y) = 1 − y, is used for evaluation. In this case, CVaR values show slight
increases across all settings compared to the 1D dataset, largely due to the added noises to the 2D
input space.

For the Kin8nm dataset, we simulate input perturbation noise up to 0.01 for eight input features
and evaluate the output deviation from the ground truth, formulated using the performance function
h(y) = |y∗ − y| where y∗ indicates the ground-truth value. Notably, the estimated CVaR values
demonstrate small variance across difference risk levels (α = 1, 0.5, 0.25). As previously discussed,
a consistent performance under varying risk levels is the ideal risk-averse robustness we aim to
achieve for BNN certification.

Table 2: Certified CVaR bounds for different attacks on classification tasks.

Tasks CVaR Level L∞ noise Rotation Contrast

MNIST
α = 1 -0.999 ± 0.1 -0.998 ± 0.1 -0.997 ± 0.1
α = 0.5 -0.999 ± 0.1 -0.998 ± 0.1 -0.993 ± 0.1
α = 0.25 -0.999 ± 0.1 -0.997 ± 0.1 -0.986 ± 0.1

FASHION
α = 1 -0.191 ± 0.1 -0.119 ± 0.1 -0.152 ± 0.1
α = 0.5 0.443 ± 0.1 0.525 ± 0.1 0.562 ± 0.1
α = 0.25 0.885 ± 0.1 0.964 ± 0.1 0.849 ± 0.1
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Classification Benchmarks. Table 2 summarises the certified bounds for classification tasks under
different levels of risk α. We evaluate the risk-averse robustness of BNNs against three types of
attacks: L∞ attack, where perturbation noise up to a specific limit is applied to all image pixels,
and two geometric attacks, rotation (altering the image’s orientation) and contrast (changing its
brightness and contrast). For each configuration, the CVaR value represents the estimated expected
value of the performance function, w.r.t. a property of interest, over (the subset of) the distribution.

For the MNIST dataset, the perturbation limit for the L∞ attack is set to 0.1, the rotation range
to [−45◦, 45◦], and the contrast factor to 0.5. Robustness is evaluated by checking whether the
predicted labels remain consistent with the ground truth label, denoted as c∗ among the 10 classes.
The corresponding performance function is defined as h(y) = maxi∈[10]\c∗ yi − yc∗ , where c∗ is
the ground-truth label. The BNN is robust to perturbations if h(y) < 0. For both L∞ and rotation
attacks, our approach reveals that the trained BNN achieves strong certified risk-averse robustness,
with very low variance in performance across the entire output distribution and the worst 25%
outcomes. Under the contrast attack, the BNN shows small variance when evaluating the overall
expectation and the worst-performing 25% subset. Nonetheless, the expected values for the most
challenging cases remain far below 0, demonstrating the BNN’s risk-averse robustness across all
attack types.

For the FASHION dataset, we set the perturbation limit for the L∞ attack to 0.1, the rotation
range to [−15◦, 15◦], and the contrast factor to 0.9. As with the MNIST dataset, We investigate
output label consistency, formulated by the performance function h(y) = maxi∈[10]\c∗ yi − yc∗ .
Note that the expectation values over the full output distribution for all three attack types are nega-
tive, indicating overall certified robustness. However, when focusing on the worst-performing 50%
and 25% subset of the output distribution, the expectation values are all positive, highlighting the
necessity of risk-averse evaluation for BNNs. Compared with the BNN for the MNIST dataset, this
BNN demonstrates a lack of robustness, especially in scenarios requiring a risk-averse approach.

Table 3: Comparison with SOTA in tightness of the certified bounds and computation time.

Method 1D Noisy Sine Kin8nm MNIST

γ-robustness Time (s) γ-robustness Time (s) γ-robustness Time (s)

BNN-DP 0.065 6.148 0.137 7.886 1.572 24.956
RAC-BNN (0.1) 0.2 0.815 0.2 0.984 0.2 1.064
RAC-BNN (0.05) 0.1 1.640 0.1 1.893 0.1 4.099

5.1.3. RQ3: WHAT IS THE CERTIFICATION PERFORMANCE OF OUR APPROACH IN TIGHTNESS

AND EFFICIENCY?

We perform comparison experiments with BNN-DP in computing certified bounds for the entire
output distribution (corresponding to α = 1). The evaluation focuses on two metrics: the tightness
of the certified bounds (γ-robustness) and the computation time of the certification procedure. Table
3 summarises the results for both regression and classification tasks. In the evaluation, we present
the performance results of our method (RAC-BNN) under two certification range settings, H = 0.1
and H = 0.05, and the γ-robustness is 2H .

The evaluation results demonstrate that our method improves both the tightness and efficiency
of computing certified bounds. For the 1D Noisy Sine dataset, while BNN-DP demonstrates com-
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petitive performance in certification tightness, to achieve comparable tightness with our method
requires further tightening of the certification range H . On the other hand, our method significantly
reduces the computational overhead for certification. As the input dimension increases and the task
gets more complex, the advantages of our method in certification performance become more signif-
icant than the baseline method. Specifically, when H = 0.05, our method surpasses the baseline
in tightness for all remaining tasks. Particularly, for the MNIST dataset, our method improves the
tightness of the certified bounds by 87.3% and 93.6% for H = 0.1 and H = 0.05, respectively. In
terms of computation time, our method achieves a reduction of 76.0% and 83.6% for Kin8nm and
MNIST under the H = 0.05 setting.

Table 4: Sample complexity for different hyper-parameters.

Task γ-robustness β = 0.05 β = 0.01

α = 1 α = 0.5 α = 0.25 α = 1 α = 0.5 α = 0.25

Kin8nm
H = 0.1 17648 69923 278354 26950 107129 427177
H = 0.05 69923 278354 1110733 107129 427177 1706025

MNIST
H = 0.1 2520 9835 38844 3808 14986 59445
H = 0.05 9835 38844 154379 14986 59445 236783

5.1.4. RQ4: WHAT IS THE SAMPLE COMPLEXITY OF OUR APPROACH?

In Section 4.2, Proposition 3 provides a theoretical relation between the sampling complexity and
key hyper-parameters, including precision tightness, risk levels and confidence errors. For the
benchmark tasks, the performance function h(y) – which measures the output difference to the
ground-truth value for regression tasks or label consistency for classification tasks – is a scalar ran-
dom variable. With the dimension n reduced to 1, according to Proposition 3, the required sample
size N is inversely proportional to H and the risk level α, while depending logarithmically on the
confidence level β.

To demonstrate the practical sampling feasibility of our approach, we compute the required
sample size under different configurations to evaluate the impact of individual parameters on sam-
pling complexity. The results are summarised in Table 4. Across all configurations, the sampling
complexity is manageable, with the largest required sample size reaching 106. This is the case when
evaluating a narrow 25% worst-performing portion of the distribution with a tightness bound of 0.05
and a 99% confidence guarantee.

6. Conclusion

We introduce a novel risk-averse evaluation method for computing certified bounds of Bayesian
neural networks using the coherent risk measure CVaR. By leveraging sampling and optimisation,
our approach approximates the output distribution and bounds the CVaR values with probabilistic
guarantees. We implement this method in a tool, RAC-BNN, and demonstrate its ability to compute
sound approximations of output sets and quantify robustness under worst-performing conditions.
The results show that RAC-BNN achieves improved certification tightness and better efficiency
compared to existing methods. An interesting future direction is to extend our approach to the
safety evaluation of closed-loop dynamical systems with BNN controllers.
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Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certi-
fying neural networks. Proceedings of the ACM on Programming Languages, pages 1–30, 2019.

Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Policy gradient for co-
herent risk measures. Proceedings of Annual Conference on Advances in Neural Information
Processing Systems, 28, 2015.

Vincent Tjeng, Kai Yuanqing Xiao, and Russ Tedrake. Evaluating robustness of neural networks
with mixed integer programming. In Proceedings of International Conference on Learning Rep-
resentations. OpenReview.net, 2019.

Constantine Alexander Vitt, Darinka Dentcheva, and Hui Xiong. Risk-averse classification. Annals
of Operations Research, pages 1–35, 2019.

Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska. Probabilistic safety for
bayesian neural networks. In Proceedings of Conference on Uncertainty in Artificial Intelligence,
pages 1198–1207. PMLR, 2020.

Matthew Wicker, Luca Laurenti, Andrea Patane, Nicola Paoletti, Alessandro Abate, and Marta
Kwiatkowska. Certification of iterative predictions in Bayesian neural networks. In Cassio
de Campos and Marloes H. Maathuis, editors, Proceedings of the Thirty-Seventh Conference

12



RISK-AVERSE CERTIFICATION OF BNNS

on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine Learning Re-
search, pages 1713–1723. PMLR, 27–30 Jul 2021. URL https://proceedings.mlr.
press/v161/wicker21a.html.

Matthew Wicker, Luca Laurenti, Andrea Patane, Nicola Paoletti, Alessandro Abate, and Marta
Kwiatkowska. Probabilistic reach-avoid for bayesian neural networks. Artificial Intelligence,
334:104–132, 2024a. doi: https://doi.org/10.1016/j.artint.2024.104132. URL https://www.
sciencedirect.com/science/article/pii/S0004370224000687.

Matthew Wicker, Andrea Patane, Luca Laurenti, and Marta Kwiatkowska. Adversarial robustness
certification for bayesian neural networks. In Proceedings of International Symposium on Formal
Methods, pages 3–28. Springer, 2024b.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. In Proceedings of Annual Conference on Advances in Neural Information
Processing Systems, 2020.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Proceedings of Annual
Conference on Advances in Neural Information Processing Systems, pages 4944–4953, 2018.

Xiyue Zhang, Zifan Wang, Yulong Gao, Licio Romao, Alessandro Abate, and Marta
Kwiatkowska. Risk-averse certification of bayesian neural networks. 2024. URL https:
//drive.google.com/file/d/1H_RXVJSLtvx5irRNv3wtA_5AGsiBQipp/
view?usp=sharing.

13

https://proceedings.mlr.press/v161/wicker21a.html
https://proceedings.mlr.press/v161/wicker21a.html
https://www.sciencedirect.com/science/article/pii/S0004370224000687
https://www.sciencedirect.com/science/article/pii/S0004370224000687
https://drive.google.com/file/d/1H_RXVJSLtvx5irRNv3wtA_5AGsiBQipp/view?usp=sharing
https://drive.google.com/file/d/1H_RXVJSLtvx5irRNv3wtA_5AGsiBQipp/view?usp=sharing
https://drive.google.com/file/d/1H_RXVJSLtvx5irRNv3wtA_5AGsiBQipp/view?usp=sharing

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Problem Statement

	Methodology
	Output Set Approximation
	Risk-Averse Evaluation

	Experiments
	Evaluation Results
	RQ1: Is our approach effective in characterising the output set?
	RQ2: Is our approach effective in characterising risk-averse performance of BNNs?
	RQ3: What is the certification performance of our approach in tightness and efficiency?
	RQ4: What is the sample complexity of our approach?


	Conclusion

