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Abstract
Consider an agent acting to achieve its temporal
goal, but with a “trembling hand”. In this case, the
agent may mistakenly instruct, with a certain (typ-
ically small) probability, actions that are not in-
tended due to faults or imprecision in its action
selection mechanism, thereby leading to possible
goal failure. We study the trembling-hand prob-
lem in the context of reasoning about actions and
planning for temporally extended goals expressed
in Linear Temporal Logic on finite traces (LTLf ),
where we want to synthesize a strategy (aka plan)
that maximizes the probability of satisfying the
LTLf goal in spite of the trembling hand. We con-
sider both deterministic and nondeterministic (ad-
versarial) domains. We propose solution tech-
niques for both cases by relying respectively on
Markov Decision Processes and on Markov De-
cision Processes with Set-valued Transitions with
LTLf objectives, where the set-valued probabilistic
transitions capture both the nondeterminism from
the environment and the possible action instruction
errors from the agent. We formally show the cor-
rectness of our solution techniques and demonstrate
their effectiveness experimentally through a proof-
of-concept implementation.

1 Introduction
In this paper, we study the trembling-hand (TH) problem in
the context of reasoning about actions and planning for tem-
porally extended goals expressed in Linear Temporal Logic
on finite traces LTLf [De Giacomo and Vardi, 2013].1 In
a chess game, a player may have a trembling hand due to,
e.g., nervousness, anxiety, or stress, which results in mistaken
moves that were not intended. Likewise, an agent acting in an
environment could mistakenly instruct a different action, e.g.,
due to faults, leading to possible goal failure.

1All results presented here apply to other linear temporal logics
on finite traces, such as LDLf [De Giacomo and Vardi, 2013] and
Pure Past LTL [Bonassi et al., 2023], as long as the set of traces that
satisfy a formula can be characterized by a regular language, i.e., by
a deterministic finite state automaton.

The TH problem originates from Game Theory in Eco-
nomics, see e.g. [Marchesi and Gatti, 2021], referring to the
situation where players erroneously select unintended moves
with a small quantifiable probability. This problem high-
lights the importance of introducing some form of resilience
to these errors [Vardi, 2020] in the player strategies and has
given rise to the well-known notion of Trembling Hand Per-
fect Equilibrium in Economics [Bielefeld, 1988].

Here, we study this problem in the context of reasoning
about actions [Reiter, 2001] and planning [Geffner and Bonet,
2013]. Specifically, we consider an agent acting in a domain.
At each state of the domain, when the agent instructs an ac-
tion, with a certain probability, it can mistakenly instruct a
different action. Notice that this uncertainty is on the agent
decision-making capabilities, not on how the environment ex-
ecutes the instructed actions. To stress this point, we consider
two settings: deterministic domains, where the environment
has no choices in responding to agent actions, as in classi-
cal planning [Geffner and Bonet, 2013]; and nondeterministic
domains, where the environment can adversarially respond to
agent actions, as in Fully Observable Nondeterministic Do-
mains (FOND), when considering strong plans [Cimatti et
al., 2003; Ghallab et al., 2004; Geffner and Bonet, 2013;
De Giacomo and Rubin, 2018]. In both settings, we want
to synthesize a strategy (aka plan) that guarantees to maxi-
mize the probability of fulfilling a temporally extended goal
expressed in LTLf , in spite of the adversarial response of the
environment in the case of nondeterministic domains.

We devise solution techniques to solve the problem in the
two settings by relying respectively on Markov Decision Pro-
cesses (MDPs) [Puterman, 2014] in the case of determin-
istic domains and on Markov Decision Processes with Set-
valued Transitions (MDPSTs) [Trevizan et al., 2007; Tre-
vizan et al., 2008] in the case of nondeterministic domains.
MDPs specify concrete probability values for each transition.
MDPs with imprecise probabilities (MDPIPs) [White III and
Eldeib, 1994; Satia and Lave Jr, 1973; Givan et al., 2000]
and Uncertain MDPs (UMDPs) [Nilim and El Ghaoui, 2004;
Buffet et al., 2005; Hahn et al., 2019] have been proposed for
scenarios where the probability values are uncertain. MDP-
STs constitute a restricted subclass of MDPIPs, which com-
bine probabilistically quantifiable uncertainty with unquan-
tifiable uncertainty (nondeterminism) in a unified framework.
They are attractive because they admit a simplified Bellman
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equation compared to MDPIPs, UMDPs [Trevizan et al.,
2007], and thus stochastic games.

In both settings, we consider LTLf objectives instead of
standard reachability. Note that MDPs with LTLf objec-
tives have been studied in [Brafman et al., 2018; Wells et al.,
2021]. Instead, MDPSTs with LTLf objectives are studied
for the first time in this paper. We lift the definition of sat-
isfying LTLf objectives from MDPs to MDPSTs by defining
the notion of robust strategy, and then an efficient value it-
eration algorithm is proposed for synthesizing an optimal ro-
bust strategy. We evaluate the effectiveness of the proposed
solution techniques on a human-robot co-assembly problem,
where the robot operates with a trembling hand, and demon-
strate promising scalability.

Related Work
Interestingly, the trembling-hand problem has never been
specifically studied in reasoning about actions and planning,
though some related work exists. For example, the classi-
cal work on reasoning with noisy sensors and effectors in
Situation Calculus [Bacchus et al., 1999] is indeed related.
There, sensors and effectors are considered to be noisy, so
they introduce a stochastic element to be taken into account
in reasoning. In particular, uncertainty on the effectors may
be considered similarly to our trembling hand. There is, how-
ever, an important distinction between the two: in our case,
the uncertainty is on which action is actually instructed by
the agent; instead, in their case, the uncertainty is on how the
action (perfectly instructed) is actually executed by the envi-
ronment. In other words, in our case, the uncertainty is on the
agent, while in theirs, the uncertainty is on the environment,
which has been more extensively studied since it corresponds
to uncertainty in modeling the reaction of the world to agent
moves. In fact, there is a growing interest in forms of synthe-
sis/planning that are resilient to errors in modeling the envi-
ronment. For example, in [Zhu and De Giacomo, 2022], one
could compute a maximally permissive strategy for the agent,
allowing it to switch from one strategy to another while in ex-
ecution, in case exceptional environment changes occur such
that the predetermined strategy fails. In [Aminof et al., 2021;
Ciolek et al., 2020], multiple models of the environment are
considered to handle exceptions during planning, aiming to
mitigate the intrinsic risk in a single environment model.
In [Aineto et al., 2023], a k-resilient strategy allows the agent
to fail k times maximally at a repeatedly occurring state.

Nevertheless, in all these works, the focus is on er-
rors/exceptions wrt expected environment behaviors. The
trembling hand, on the other hand, is about errors in the agent
behavior, and, as such, has not been much studied yet. Only
two papers [Wells et al., 2020a; Wells et al., 2021] touched
on this aspect, accounting for possible errors in robot deci-
sions. Nevertheless, the environment considered is either de-
terministic or has probabilistic uncertainty. In contrast, our
environment admits adversarial behaviors.

2 Preliminaries
We study the trembling hand (TH) problem in the context of
planning for temporally extended goals expressed in LTLf .

We now briefly introduce the logic LTLf , deterministic and
nondeterministic planning domains, and the notion of strat-
egy (aka plan) in a domain achieving an LTLf goal.
LTLf . Linear Temporal Logic on finite traces (LTLf )
is a specification language expressing temporal properties
on finite, nonempty traces. In particular, LTLf shares
syntax with LTL, which is instead interpreted over infi-
nite traces [Pnueli, 1977]. Given a set of atomic propo-
sitions Prop, LTLf formulas are generated as follows:

φ ::= a | φ ∧ φ | ¬φ | ◦φ | φU φ,
where a ∈ Prop is an atom, ◦ (Next) and U (Until) are
temporal operators. We make use of standard Boolean ab-
breviations, e.g., ∨ (or) and → (implies), true and false .
In addition, we define the following abbreviations: Weak
Next •φ ≡ ¬◦¬φ, Eventually ♢φ ≡ true U φ and Always
□φ ≡ falseRφ, whereR is for Release.

A trace π = π0π1 . . . is a sequence of propositional inter-
pretations (sets), where for every i ≥ 0, πi ∈ 2Prop is the
i-th interpretation of π. Intuitively, πi is interpreted as the set
of propositions that are true at instant i. We denote the last
instant (i.e., index) in a trace π by lst(π). By πk = π0 · · ·πk

we denote the prefix of π up to the k-th iteration, and πk = ϵ
denotes an empty trace if k < 0. We denote π satisfies φ by
π |= φ. The detailed semantics of LTLf can be found in [De
Giacomo and Vardi, 2013]. It is also shown there that, for
every LTLf formula φ, one can construct a Deterministic Fi-
nite Automaton (DFA) Autφ = (2Prop,Q, q0, δ, acc), where
2Prop is a finite alphabet, Q is a finite set of states, q0 ∈ Q is
the initial state, δ : Q×2Prop → Q is the transition function,
and acc is the set of accepting states, such that for every trace
π we have π |= φ iff π is accepted by Autφ.
Deterministic Domain. A deterministic domain is a tuple
D = (S, s0, A, Fd,L), where S is a finite set of states, s0 ∈ S
is an initial state, A is a finite set of actions, Fd : S ×A 7→ S
is the deterministic transition function, where s′ = Fd(s, a)
is the successor state after performing an applicable action a
at s. We use A(s) ⊆ A to denote the set of applicable actions
at s. L : S → 2Prop is the labeling function, where Prop is a
finite set of propositions. Note that, compared to typical for-
mulations of domains in planning [Geffner and Bonet, 2013],
we are assuming that more than one state can have the same
evaluation of the propositions (fluents).
Nondeterministic Domain. A nondeterministic domain is
a tuple N = (S, s0, A, Fn,L), where S, s0, A, and L are
defined as in deterministic domains, and Fn : S ×A 7→ 2S is
now a nondeterministic transition function such that Fn(s, a)
denotes the non-empty set of possible successor states that
follow an applicable action a ∈ A(s) in s. It is worth noting
that domains that are typically compactly represented, e.g.,
in Planning Domain Description Language (PDDL) [Haslum
et al., 2019], can be encoded using a number of bits that is
logarithmic in the number of states.
LTLf Planning. A path of D (resp. N ) is a finite or infinite
sequence of alternating states and actions ρ = s0a0s1a1 · · · ,
ending with a state if finite, where s0 is the initial state, and
Fd(si, ai) = si+1 (resp. si+1 ∈ Fn(si, ai)) for all i with
0 ≤ i < |ρ|, and |ρ| ∈ N ∪ {∞}. We denote by ρk =
s0a0s1a1 · · · sk the finite prefix of ρ up to the k-th alternation.

2



The sequence π(ρ,D) = L(s0)L(s1) · · · (resp. π(ρ,N ) =
L(s0)L(s1) · · · ) over Prop is called the trace induced by ρ
over D (resp. N ). FPaths denotes the set of all finite paths.
An agent strategy (or plan) is a function σp : FPaths → A
mapping a finite path on D (resp.N ) to agent actions that are
applicable at the last state of the finite path. For nondetermin-
istic domains, we assume that the nondeterminism is resolved
by the environment, which acts according to an (unknown)
strategy as an (adversarial) antagonist of the agent. Environ-
ment strategies are functions of the form γp : FPaths×A→
S, which need to comply with the domain, in the sense that
given a finite path ρ ∈ FPaths and an action a ∈ A(lst(ρ))
it must be the case that γp(ρ) ∈ Fn(lst(ρ), a). Note that, in
the case of deterministic domains, this constraint forces the
environment to have only one strategy. Given an agent strat-
egy σp and an environment strategy γp, there is a unique path
ρ(σp, γp) = s0a0s1a1 · · · generated by σp and γp, where s0
is the initial state and for every i ≥ 0 it holds that ai = σp(ρ

i)
and si+1 = γp(ρ

i, ai). Sometimes, for simplicity, we write ρ
instead of ρ(σp, γp), when it is clear in the context.

An agent strategy σp enforces an LTLf φ in a domain
D (resp. N ) if for every environment strategy γp, the infinite
path ρ(σp, γp) contains a finite prefix ρi such that the finite
trace π(ρi,D) |= φ (resp. π(ρi,N ) |= φ). LTLf planning
concerns computing such an agent strategy σp, if one exists.

3 TH in Deterministic Domains
We begin investigating the trembling-hand problem for LTLf

planning by focusing on the case of deterministic domains,
where the environment has only one strategy, i.e., following
the transitions of the domain. Hence, the only uncertainty
is the stochastic one, arising from the “trembling hand”. In
the next section, we consider the case of nondeterministic do-
mains, where the environment employs adversarial strategies.

3.1 Problem formulation
The “trembling hand” refers to the agent intending to instruct
a certain action but, by mistake, instructing a different ac-
tion with a (small) quantified probability. This probability
only depends on the domain state where the action is in-
structed (and then performed). Notice that, here, the envi-
ronment is fully deterministic, and hence, once the action is
instructed, it will be executed (without any error) in a deter-
ministic way. The problem that we want to address is to max-
imize the probability of achieving a given LTLf objective in a
deterministic domain in spite of the (state dependent) action-
instruction errors due to the “trembling hand”.

We formalize the action-instruction errors as follows. Let
D = (S, s0, A, Fd,L) be a deterministic domain, s ∈ S a
domain state, and a ∈ A(s) an applicable action at s. We
denote by err(s, a) ∈ Dist(A(s)) the probability distribution
of instructing an action a′ instead of a in state s. For instance,
suppose the set of applicable actions at s is such that A(s) =
{a, a′, a′′} and err(s, a) = [0.9, 0.04, 0.06]. This means that,
when the agent intends to instruct action a at state s, then with
probability 0.04 and 0.06, it may instruct actions a′ and a′′,
respectively. Let E = {err(s, a) : (s, a) ∈ S × A} be the
set of the (state-dependent) action-instruction errors caused

by the “trembling hand”. The set of actions that could be
instructed when the agent intends to instruct action a at state s
is the support set of err(s, a), denoted by supp(s, a) ⊆ A(s).
In this example, supp(s, a) = {a, a′, a′′}.

Recall that, without a trembling hand, executing an agent
strategy σp in a deterministic domain D results in a unique
path. Yet, in the presence of a “trembling hand”, i.e., action-
instruction errors E , we get perturbed paths, where the actu-
ally instructed action may differ from the intended one with a
probability following E .
Definition 1 (Perturbed path in D). Let D be a determin-
istic domain, σp an agent strategy, and E a set of action-
instruction errors. A perturbed path in D wrt E is a sequence
of triples ρ(σp, E) = (s0, a0, a

′
0)(s1, a1, a

′
1) · · · , where for

every i ≥ 0, ai = σp(ρ
i) (the intended action), a′i ∈

supp(si, ai) (the actually instructed action), and si+1 =
Fd(si, a

′
i). The set of all perturbed paths in D wrt σp and

E is denoted by Φσp,E .
Given a deterministic domain D, an LTLf formula φ, and

a set of action-instruction errors E , the probability of σp en-
forcing φ in D wrt E is defined as Pr

σp,E
D (φ) := PrD({ρ ∈

Φσp,E | π(ρk,D) |= φ for some k ≥ 0}).
Definition 2 (TH problem for LTLf planning in D). The
problem is a tuple Pd = (D, φ, E), where D is a determin-
istic domain, φ is an LTLf formula, and E is a set of action-
instruction errors. Solving Pd consists in synthesizing an
agent strategy σ∗

p that maximizes the probability of enforc-
ing φ in D wrt E , i.e., an optimal strategy for Pd, that is:
σ∗
p = argmaxσp

Pr
σp,E
D (φ).

In the following, an example is given to demonstrate a per-
turbed transition in a deterministic domain D.
Example 1. Consider a robot assembly problem, where the
robot aims to assemble an arch using N blocks. In Figure 1,
the goal configurations for N (2 ≤ N ≤ 6) blocks are
depicted (which are used later in Section 5). Let OBJ =
{Obji | i ∈ {1, · · · , N}} be the set of blocks and LOC =
{Lj | j ∈ {0, · · · ,M}} be the set of locations, where L0

represents the storage. Initially, all the blocks are stored in
the storage.

During assembly, the robot can perform move actions to
relocate blocks. The set of robot actions is A = {(Obji, Lj) :
Obji ∈ OBJ,Lj ∈ LOC}∪{do-nothing}, where (Obji, Lj)
means move block i to location j. Due to the “trembling
hand” (which may be caused by drifting), the robot’s action
is subject to uncertainty. For instance, if the robot intends to
move block i to location j, there exists a probability that it
may mistakenly move a different block i′ ̸= i or inaccurately
place it in location j′ ̸= j. In addition, the probability of
errors varies for different actions. For instance, if the robot
chooses DO-NOTHING, one can safely assume that the proba-
bility of error is 0. However, if the robot chooses to move, we
assume a positive probability of error, leading to perturbed
transitions resulting in perturbed paths.

Figure 2 shows a perturbed transition example in this case.
The dashed arrow shows the intended action and the solid
arrows represent the set of actions that may be actually in-
structed with their respective probabilities.
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Figure 1: An arch. Left: 2, 3, and 4 blocks. Right: 5 and 6 blocks.
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trembling hand

Figure 2: A perturbed transition in a det. domain.

3.2 MDPs with LTLf objectives
Solving Pd = (D, φ, E) requires a modeling technique that is
able to capture the action-instruction errors E in a determin-
istic domain. To this end, we first review Markov Decision
Processes (MDPs), which are used in our solution technique.

MDPs allow action choice in each state, and each state ac-
tion transition is a probability distribution on successor states,
which provides a natural way of capturing the probability
of the agent mistakenly taking a different action in a deter-
ministic domain. Following [Puterman, 2014], an MDP is
a tuple M = (S, s0, A, T ,L), where S is a finite set of
states, s0 ∈ S is the initial state, A is a finite set of actions,
T : S × A × S → [0, 1] is the probabilistic transition func-
tion, and L : S → 2Prop is the proposition labelling function.
Analogously to planning domains, for each s ∈ S, the set of
actions applicable at state s is denoted by A(s).

Denote by ξ = s0a0s1a1 · · · a path and by FPaths the
set of all finite paths of M. In this work, we focus on de-
terministic agent strategies for MDPs, instead of randomized.
A strategy σm ofM is a function σm : FPaths → A such
that, for each ξ ∈ FPaths, σm(ξ) ∈ A(lst(ξ)), where lst(ξ)
is the last state of ξ. We denote by Ξσm the set of all probably
infinite paths ofM generated by σm.

Given an MDP M = (S, s0, A, T ,L) and a set of goal
states G ⊆ S, the probability of an agent strategy σm enforc-
ing G in M is defined as Prσm

M (G) := PrM({ξ ∈ Ξσm |
lst(ξk) ∈ G for some k ≥ 0}). Computing an optimal strat-
egy σ∗

m that maximizes the probability of enforcing G is the

reachability problem overM. Analogously, an agent strategy
can also enforce a temporal objective on an MDP. Given an
MDPM and an LTLf formula φ, the probability of an agent
strategy σm enforcing φ in M is defined as Prσm

M (φ) :=
PrM({ξ ∈ Ξσm | π(ξk,M) |= φ for some k ≥ 0}). The
problem of MDP with LTLf objective is to compute an opti-
mal strategy σ∗

m, which maximizes the probability of enforc-
ing φ inM [Baier and Katoen, 2008].

3.3 Solution technique
We now present our solution technique to synthesize an op-
timal agent strategy σ∗

p for Pd = (D, φ, E), which aims to
maximize the probability of enforcing φ in D in spite of E .
The key idea is to reduce Pd to an MDP with an LTLf ob-
jective. Intuitively, the MDP provides a probabilistic abstrac-
tion of instructing mistaken actions in the domain due to the
trembling hand. Hence, the MDP has the same states as the
domain, retains its original action choices, and incorporates
the probability of action-instruction errors in its transitions.
Probabilistic abstraction. We define an MDP M =
(S, s0, A, T ,L) from Pd = (D, φ, E) as follows. S, s0, A,
and L are the same as in D. In order to construct the proba-
bilistic transition function T : S × A× S → [0, 1], note that
T (s, a, s′) gives the probability of transitioning from state s
to s′ on action a. Assuming no “trembling hand” errors, we
have that T (s, a, s′) = 1 if s′ = Fd(s, a) and T (s, a, s′) = 0
otherwise. Due to “trembling-hand” errors, however, unin-
tended actions (e.g., a′) may be instructed with some prob-
ability (given by err(s, a)(a′)), thus resulting in a different
successor state s′′ = Fd(s, a

′). Following this observation,
we construct T as follows:

T (s, a, s′) =
{
err(s, a)(a′), if a′ ∈ A(s), s′ = Fd(s, a

′),

0, otherwise.
The TH problem for LTLf planning in deterministic do-

mains is now reduced to an MDP with an LTLf objective.

Theorem 1. Let Pd = (D, φ, E) be a TH problem defined
in Def. 2, andM the constructed MDP described above. An
optimal strategy forM with φ is an optimal strategy for Pd

and vice versa, that is:
σ∗
p = argmax

σm

{Prσm

M (φ)},

where σ∗
p (optimal strategy for Pd) is given in Def. 2.

Proof. First, we observe that σp = σm, by construction. Sec-
ond, one can derive, according to Def. 1 that Φσp,E = Ξσm if
σp = σm. Finally, given a state s and an intended action a =
σp(s) in Pd, one has that, with probability err(s, σp(s))(a

′),
the agent may actually instruct a different action a′ and then
transit to s′ = Fd(s, a

′). Denote by PrPd(s′|s, σp(s)) the
probability of transiting to state s′ from the state s with
action σp(s). We obtain that if σp(s) = σm(s), then
PrPd(s′|s, σp(s)) = err(s, σp(s))(a

′) = T (s, σm(s), s′).
Hence, the conclusion follows.

Thm. 1 allows us to utilize existing algorithms for MDPs
with LTLf objectives to solve the TH problem for LTLf plan-
ning in deterministic domains. The common approach is
by reduction to the reachability problem of an MDP [Baier
and Katoen, 2008; Wells et al., 2021]. More specifically,
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given an MDP M with LTLf objective φ, we first con-
struct the corresponding DFA Autφ of the LTLf formula
φ, then construct the product MDP M× of M and Autφ.
In this case, computing an optimal strategy for M with φ
reduces to the reachability problem over M×, where the
goal states G are those in M× that consist of the accept-
ing states of Autφ. The reachability problem of M× wrt
G can be solved via value iteration, strategy iteration, or lin-
ear programming [Altman, 1998; Wells et al., 2021]. Due
to the cross product, every finite path ρ ∈ FPathsD such
that ρ = s0a0s1a1 · · · sk+1, where FPathsD denotes the fi-
nite paths on D, corresponds to a finite path ρ× on M×,
where ρ× = (s0, q0)a0(s1, q1)a1 · · · (sk, qk)ak(sk+1, qk+1).
Therefore, every strategy σ∗

m forM× wrt G induces a strat-
egy for Pd = (D, φ, E) as follows: σ∗

p(ρ) = σ∗
m(ρ×) for

ρ ∈ FPathsD. Together with Thm. 1, the following theorem
is an immediate result.

Theorem 2. Let Pd = (D, φ, E) be a TH problem defined
in Def. 2,M× =M× Autφ the constructed product MDP,
and G the set of goal states. We have that the computed opti-
mal strategy σ∗

m ofM× with reachability goal G induces an
optimal strategy σ∗

p for Pd.

4 TH in Nondeterministic Domains
We now turn to the case in which the domain is nondetermin-
istic, i.e., the environment can choose its strategy adversar-
ially. Hence, in planning, we have to overcome two forms
of uncertainty: the stochastic uncertainty from the trembling
hand and the adversarial uncertainty from the environment.

4.1 Problem formulation
Consider the case where the agent acts in a nondeterminis-
tic (adversarial) domain. We assume the nondeterminism is
unquantifiable, so it is adversarial without a probabilistic be-
havior. In this setting, we want to synthesize an agent strategy
that maximizes the probability of achieving its goal in spite
of the adversarial behavior of the environment and the (small)
probability of instructing wrong actions at every step. In other
words, the agent seeks a maxi-min strategy, that is, a strat-
egy that maximizes the minimal probability across all possi-
ble environment strategies. We find this case to be particu-
larly interesting, since it combines the probabilistic aspects
of the previous case’s action-instruction errors and the envi-
ronment’s adversarial nondeterminism.

We first define perturbed paths of an agent acting in a non-
deterministic domainN with action-instruction errors E , i.e.,
the trembling hand, and adversarial environment behaviors.

Definition 3 (Perturbed paths in N ). Let N be a nondeter-
ministic domain, σp an agent strategy, γp an environment
strategy, and E a set of action-instruction errors. A per-
turbed path inN wrt E is a sequence of triples ρ(σp, γp, E) =
(s0, a0, a

′
0)(s1, a1, a

′
1) · · · . We denote by ρ′ the projection of

ρ by considering only the states si and actually instructed
actions a′i. It holds that, for every i ≥ 0, ai ∈ σp(ρ

′i) (the in-
tended action), a′i ∈ supp(si, ai) (the actually instructed ac-
tion), and si+1 = γp(ρ

′i, a′i). The set of all perturbed paths
in N wrt σp, γp, E is denoted by Φσp,γp,E .

The probability of an agent strategy σp enforcing φ consid-
ering environment strategy γp and the action-instruction error
E is denoted by Pr

σp,γp,E
N (φ).

Definition 4 (TH problem for LTLf planning in N ). The
problem is a tuple Pn = (N , φ, E), where N is a nonde-
terministic domain, φ is an LTLf formula, and E is a set of
action-instruction errors. Solving Pn consists in synthesizing
an agent strategy σ∗

p that maximizes the probability of enforc-
ing φ in N with E in spite of adversarial strategies of the
environment, i.e., an optimal strategy for Pn, that is:

σ∗
p = argmax

σp

min
γp

Pr
σp,γp,E
N (φ).

Example 2. Consider the human-robot co-assembly problem
adapted from [He et al., 2019], where the robot aims to as-
semble an arch along with a human in a shared workspace.
During assembly, the robot can perform actions to relocate
blocks, and the human may perform moves to intervene. The
robot has a “trembling hand” as described in Example 1.
Compounding this issue, the robot must ensure that the arch
is successfully built, considering the human involvement.
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red-L2   0.06blue-L2  0.9blue-L3  0.04

L1 L2 L1

L1

L3

L1 L2

L1

L3

L1L1

L3

L1 L2

L3

L1

trembling hand
in nondet. domain

L1

Figure 3: A perturbed transition in a nondet. domain.

At each step, the robot instructs an action to relocate a
block, though with a trembling hand, and then the human
can react by moving blocks among locations. Human move-
ments are not controllable, thus introducing nondeterminism
into the consequences of instructed robot actions. Figure 3
shows a perturbed transition example of a robot working in
such a nondeterministic domain with a trembling hand. Note
that each intended action (dashed arrow) corresponds to a set
of actions (solid arrow) that may be actually instructed, to-
gether with their respective probabilities. Furthermore, each
actually instructed action leads to a set of possible changes
due to uncontrollable human intervention.

4.2 MDPSTs with LTLf objectives
We now introduce Markov Decision Processes with Set-
valued Transitions (MDPSTs), which combine probabilis-
tically quantifiable uncertainty with unquantifiable uncer-
tainty (nondeterminism), hence providing a natural proba-
bilistic abstraction of an agent acting with a trembling hand in
a nondeterministic domain. Note that MDPSTs are favorable
due to their simplified Bellman equation compared to MD-
PIPs, UMDPs, and thus stochastic games. This distinction
will be further clarified in Section 4.3.
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An MDPST is a tupleMN = (S, s0, A,F , TN ,L), where
S, s0, A, and L are defined as for MDPs, and

• F : S × A ⇒ 2S is the set-valued nondeterministic
transition function;

• TN : S×A×2S → [0, 1] is the transition probability (or
mass assignment) function, i.e., given a set Θ ∈ F(s, a),
where Θ ⊆ S, TN (s, a,Θ) = Pr(Θ|s, a).

Note that, in MDPSTs, the transition function F(s, a) returns
a set of state sets, i.e., F(s, a) ⊆ 2S , and the transition proba-
bility function T expresses the probability of transitioning to
such sets via a given action.

It is worth noting that the problem of MDPSTs with LTLf

objectives is studied for the first time in this paper. To de-
fine the problem, one needs to lift the definition of enforc-
ing LTLf objectives from MDPs to MDPSTs by defining the
notion of robustness for strategies to incorporate the unquan-
tifiable uncertainty. In an MDPST, due to the unquantifiable
uncertainty, the distribution on the set of reachable succes-
sor states of a state-action pair (s, a), where a ∈ A(s), is
not uniquely determined by (s, a), in contrast to MDPs. We
denote by Post(s, a) the set of reachable states of (s, a), de-
spite both quantifiable and unquantifiable uncertainties. For-
mally, Post(s, a) = {s′ | ∃Θ ∈ F(s, a) s.t. TN (s, a,Θ) > 0
and s′ ∈ Θ}. A feasible distribution of an MDPST guaran-
tees that, given a state action pair (s, a), where a ∈ A(s), (i)
only one state is chosen within Θ for each Θ ∈ F(s, a); (ii)
the sum of probabilities of selecting a state from Post(s, a)
equals 1; and (iii) the probability of selecting a state out
of Post(s, a) is 0. In the following definition, ιΘs′ indicates
whether s′ is in Θ. Hence ιΘs′ = 1 if s′ ∈ Θ and ιΘs′ = 0
otherwise. Furthermore, αΘ

s′ indicates whether s′ is selected
from Θ. Hence αΘ

s′ = 1 if s′ is selected from Θ, and αΘ
s′ = 0

otherwise.

Definition 5 (Feasible distribution in MDPSTs). LetMN =
(S, s0, A,F , TN ,L) be an MDPST, (s, a) a state-action pair,
where a ∈ A(s). has ∈ Dist(S) is a feasible distribution of
(s, a), denoted by s

a−→ has , if
(i)

∑
s′∈Θ αΘ

s′ = 1, for Θ ∈ F(s, a);
(ii) hax(s

′)=
∑

Θ∈F(s,a)

ιΘs′α
Θ
s′TN (s, a,Θ), for s′∈Post(s, a);

(iii) has(s
′) = 0, for s′ ∈ S \ Post(s, a).

Following Def. 5, it is evident that, in MDPSTs, a feasi-
ble distribution is not uniquely determined for a given state-
action pair, in contrast to MDPs. It highly depends on αΘ

s′ (see
item (ii)), the unquantifiable uncertainty of whether s′ is se-
lected from Θ. We now introduce nature for MDPSTs to
characterize this unquantifiable uncertainty, motivated by the
definition of nature in robust MDPs [Nilim and El Ghaoui,
2004]. One can intuitively perceive nature as the environment
in the context of nondeterministic domains, playing a role in
resolving nondeterminism. We denote by Ha

s the set of fea-
sible distributions of state action pair (s, a). Analogously to
MDPs, FPaths denotes the set of finite paths of an MDPST.

Definition 6 (Nature for MDPSTs). A nature of an MDPST is
a function γm : FPaths×A→ Dist(S) such that, γ(ξ, a) ∈
Ha

s for ξ ∈ FPaths and a ∈ A(lst(ξ)).

Suppose we fix a nature γm. The probability of an agent

strategy σm enforcing φ is denoted by Prσm,γm

MN
(φ) :=

PrMN
({ξ ∈ Ξσm,γm | π(ξk,MN ) |= φ for some k ≥ 0}),

where Ξσm,γm is the set of all probable paths generated by the
agent strategy σm and nature γm. We now define (optimal)
robust strategies for MDPSTs, which quantify all natures.

Definition 7 (Robust strategy). LetMN be an MDPST, φ an
LTLf formula, and β ∈ [0, 1] a threshold. An agent strat-
egy σm robustly enforces φ in MN wrt β, if for every na-
ture γm, the probability of the probably generated paths sat-
isfying φ is no less than β, that is, Pσm

MN
(φ) ≥ β, where

Pσm

MN
(φ) := minγm

{Prσm,γm

MN
(φ)}. Such σm is referred to

as a robust strategy forMN (wrt β).

Definition 8 (Optimal robust strategy). An optimal strategy
σ∗
m robustly enforces an LTLf formula φ in an MDPSTMN

is σ∗
m = argmaxσm

{Prσm

MN
(φ)}. In this case, σ∗

m is referred
to as an optimal robust strategy forMN .

The problem of MDPSTs with LTLf objectives is to com-
pute an optimal robust strategy σ∗

m, which maximizes the
probability of robustly enforcing φ in MN , i.e., achieving
the maximal value of β. Analogously, we can also define an
MDPST with simple reachability, i.e., reaching a set of goal
states. To avoid repetition, it has been omitted.

4.3 Solution technique
The key idea to solve the TH problem for LTLf planning
in nondeterministic domains is to combine the quantifiable
action-instruction errors and the unquantifiable adversarial
nondeterminism of the domain into an MDPST. This MDPST
has the same states as the domain N , and incorporates the
action-instruction errors and the domain’s adversarial nonde-
terminism into its transitions. In this case, we reduce Pn to
an MDPST with an LTLf objective.
Probabilistic abstraction. We build an MDPST MN =
(S, s0, A,F , TN ,L) from Pn = (N , φ, E) as follows. S, s0,
A, and L are the same as in N . To construct the set-valued
nondeterministic transition function F and the mass assign-
ment function TN , we incorporate the action-instruction er-
rors E into the probabilistic transitions, much like in deter-
ministic domains. In nondeterministic domains, however, the
successor for each state-action pair is not singular due to the
adversarial environment behaviour. Consequently, the suc-
cessor of each probabilistic transition is a set, with environ-
ment deciding which element of the set to transit to.

Based on these observations, we can construct the set-
valued nondeterministic transition function F as F(s, a) =
∪a′∈A(s){Fn(s, a

′)}, such that F(s, a) is a set of subsets in
S, for s ∈ S and a ∈ A(s). The corresponding mass assign-
ment function TN is such that

TN (s, a,Θ) =

{
err(s, a)(a′), if a′ ∈ A(s),Θ = Fn(s, a

′),

0, otherwise.
We now reduce Pn to an MDPST with an LTLf objective.

Theorem 3. Let Pn = (N , φ, E) be a problem defined in
Def. 4, and MN the constructed MDPST described above.
An optimal robust strategy forMN with φ is an optimal strat-
egy for Pn, and vice versa, that is:

σ∗
p = argmax

σm

{Prσm

MN
(φ)},
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where σ∗
p is given in Def. 4, and Prσm

MN
(φ) is in Def. 7.

Proof. First, we observe that σp = σm, by construction. Sec-
ond, one can derive, according to Definitions 4, 5, and 6 that
∪γp

Φσp,γp,E = ∪γm
Ξσm,γm if σp = σm. The rest of the

proof can be completed similarly to Theorem 1.

Finally, we propose an algorithm to solve the problem of
MDPSTs with LTLf objectives. This algorithm is based on a
reduction to an MDPST with simple reachability, i.e., reach-
ing a set of goal states. The algorithm is motivated by ex-
isting value iteration algorithms for MDPs with LTLf objec-
tives [Wells et al., 2020b]. Essential adaptations, however,
are needed to handle the set-valued transitions in MDPSTs.

Given an MDPST MN = (S, s0, A,F , T ,L) and an
LTLf formula φ, we first construct the corresponding DFA
Autφ = (2Prop,Q, q0, δ, acc) of φ. Then, the product
MDPST M×

N = (S×, s×0 , A×,F×, T ×,L×) is constructed
accordingly with S× = S × Q,A× = A. The set of goal
states is given by acc× = {(s, q) ∈ S | q ∈ acc}.

For the efficiency of strategy synthesis, we further intro-
duce an optimization that computes an optimal robust strategy
on a sub-MDPST, which only consists of states that are (for-
ward) reachable from the initial state s×0 and (backward)
reachable from the set of accepting states acc×. To do so,
we first partition S× wrt the initial state s×0 and the set of ac-
cepting states acc×. Specifically, let Sr ⊆ S× be the set of
states that can be reached from s×0 . We now partition S× into
S× = Sn ∪ Sd ∪ Sp, where Sn = S× \ Sr consists of states
that cannot be reached from s0, Sd ⊆ Sr consists of states
reachable from s0 but that cannot reach any states in acc×,
and Sp = Sr \ Sd includes those that can be reached from
both the initial and accepting states.

We construct a sub-MDPST Z = (Sp, s0, Ap,Fp, Tp,Lp)
fromM×

N with respect to Sp as follows. Ap = A× ∪ {aϵ},
where aϵ denotes self-loop action. The set-valued transition
function is such that Fp(s, a) = F×(s, a),∀s ∈ Sp \ acc×
and Fp(s, aϵ) = s,∀s ∈ acc×. The mass assignment func-
tion Tp is then given by i) Tp(s, a,Θ) = T ×(s, a,Θ),∀Θ ∈
Fp(s, a) if s ∈ Sp \ acc×, a ∈ A×, and ii) Tp(s, aϵ, s) = 1 if
s ∈ acc×.

Define a value function VZ : Sp → R≥0 by VZ(s) =
maxσm

minγm
{Prσm,γm

Z (acc×)}, which represents the max-
imal probability of reaching acc× from s. Then one can get
that VZ(s) = 1,∀s ∈ acc×. For s ∈ Sp \ acc×, the Bellman
principle of optimality is [Satia and Lave Jr, 1973]:

VZ(s) = max
a∈Ap(s)

min
Pr(·|s,a)∈Ha

s

{ ∑
s′∈Sp

Pr(s′|s, a)VZ(s
′)
}
.

(1)
Moreover, it was further shown in [Trevizan et al., 2007]

that a simplified Bellman equation exists for MDPSTs. That
is, one can safely pull the min operator inside the summation,
which gives a more efficient variant

VZ(s) = max
a∈Ap(s)

{ ∑
Θ∈Fp(s,a)

Tp(s, a,Θ) min
s′∈Θ
{VZ(s

′)}
}
.

(2)
An optimal robust strategy σ∗

m can be derived from VZ .
Analogously to Sec. 3.3, due to cross product, every strategy

σm forM×
N wrt acc× induces a strategy for Pn = (N , φ, E).

Together with Thm. 3, we have the following.

Theorem 4. Let Pn = (N , φ, E) be as defined in Def. 4,
M×

N = MN × Autφ the constructed product MDPST, and
acc× the set of goal states. The computed optimal robust
strategy σ∗

m ofM×
N with reachability goal acc× induces an

optimal strategy σ∗
p for Pn.

Remark 1. Let F̄ = maxs∈Sp
{maxa∈Ap(s) |Fp(s, a)|} be

an upper bound of |Fp(s, a)| for all (s, a) ∈ Sp × Ap. Let ϵ
be the convergence precision of the value iteration (i.e., Eqn.
(2)). The complexity for achieving an ϵ-suboptimal solution
is O(|Sp|2|Ap|F̄ log 1

ϵ ). We highlight that MDPSTs are a
subclass of MDPIPs, and they admit more efficient strategy
synthesis algorithms than general MDPIPs. This is because
for general MDPIPs, each round of value iteration of its cor-
responding Bellman equation (Eqn. (1)) involves two stages:
1) the inner minimization problem is solved (e.g., using a bi-
section algorithm) for each state and each action and 2) the
value function is updated with dynamic programming.

5 Implementation and Experimental Results
We implemented the solution technique described in Sec. 4,
which subsumes the method described in Sect. 3, in Python,
and use LYDIA [De Giacomo and Favorito, 2021] for
LTLf -to-DFA construction. The implementation details of
our algorithms and experiments can be found on GitHub:
https://github.com/piany/Tremblinghand LTLf.

In this section, we present a case study to demonstrate the
effectiveness of the proposed method. Our case study is based
on the human-robot co-assembly problem, described in Ex-
ample 2. The “trembling-hand” robot aims to stack blocks
to a certain configuration with unpredictable human interven-
tions. Note that we assume the human only has a limited
number K of moves (otherwise, the robot has no way to guar-
antee task completion [He et al., 2019].). In particular, we
consider the configurations of having certain objects in cer-
tain locations. The goal configurations for N blocks are de-
picted in Figure 1, involving objects ranging from 2 to 6 (i.e.,
|OBJ | ∈ {2, 3, · · · , 6}).
Implementation. The key challenge in the implementation is
an effective representation of the planning domain with error
actions. On one hand, it impacts the efficiency for model con-
struction. As shown in [Wells et al., 2021], the state space of
the co-assembly problem grows exponentially in the number
of objects. Therefore, it is extremely challenging to build a
tractable model for a large number of objects. On the other
hand, the efficiency of strategy synthesis is also impacted, as
discussed in Remark 1.

In [Wells et al., 2021], three different choices are examined
to encode the state space, integer encoding (states are enu-
merated by breadth-first search), object encoding (use tuples,
e.g., (1, 2, 0), mapping each object to its location), and loca-
tion encoding (using tuples, e.g., (0, 1, 1, 0), mapping each
location to the number of objects therein), where location en-
coding shows the best overall performance. We follow this
observation and use location encoding for state-space repre-
sentation. Note, however, that in our case a single tuple is
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Figure 4: An execution example of an optimal strategy for the arch-building task. Robot-intended actions, robot-executed actions, and human
interventions are shown in black, brick, and blue, respectively.

not enough to represent a state. This is due to the one-to-
one correspondence between objects and locations in the goal
configuration. For example, in the configuration involving 5
objects (where the goal configuration is shown on the upper
right of Figure 1), if the locations of the green and blue blocks
are interchanged, the task is deemed incomplete. To resolve
this issue, we use a tuple of tuples for state encoding. For in-
stance, a state ((0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0)) means that
Obj1 is at location 3, Obj2 is at the storage (the first ele-
ment in each tuple represents storage), and Obj3 is at loca-
tion 1. Therefore, given N objects, the co-assembly domain
has at most 2N(N+1) states. Luckily, many of the states are
invalid due to physical constraints, e.g., one block cannot be
at two different locations, and each location (except for stor-
age) can have at most one block. Using these physical con-
straints, we design a recursive algorithm (to avoid enumerat-
ing all possible states, hence greatly improving efficiency) to
prune the co-assembly state space such that only valid states
are maintained. The details of the state pruning algorithm can
be found in Appendix.

Moreover, the K-move limitation of the human should also
be considered. We use a counter C = {0, 1, · · · ,K} to record
the human moves. Together with the (pruned) state-space X
of domain N = (S, s0, A, Fn,L), i.e., X ⊆ S, we obtain an
augmented state-space S ′ = X × C. If the counter value is
K, then the set of applicable human actions is restricted to
DO-NOTHING for all s ∈ S ′. Finally, we can construct the
probabilistic abstraction of the co-assembly problem in the
form of an MDPST over S ′ following Sec. 4.3.

Figure 4 depicts a (simplified) execution example of an op-
timal strategy for an arch-building task with 5 blocks at 5
certain locations (see the right-most arch). All blocks are in
storage (state s0) at the beginning. Then, the robot intends to
put the green block at L1, which succeeds without any inter-
ference from the human (state s1). Next, the robot intends to
finish building the base level by putting the blue block at L2.
However, due to the trembling hand, the blue block was put
to L3. Furthermore, the human put the red block at L2 to pre-
vent the robot from building the arch (state s2). Note that the
red block is supposed to be at L5 (see the right-most arch).
In this case, the robot intends to remove the red block, which
succeeds (state s3). After a finite number of executions, in
spite of the trembling hand and the interventions from the hu-
man, the robot builds the arch (state sn).
Experimental results. In our experiments, the convergence
precision for the value iteration in Eqn. (2) was set to 10−3.
All experiments were carried out on a Macbook Pro (2.6 GHz
6-Core Intel Core i7 and 16 GB of RAM).

We first show the effectiveness of the state-pruning tech-

nique. For the case that K = 3, the number of states and
transitions in the constructed MDPST are shown in Figure 5
for different numbers of objects (2 ≤ |OBJ | ≤ 6). It is worth
noting that six is the maximum number of objects that have
been considered in the literature [Wells et al., 2021] (due to
the exponential blowup in the number of states). It is evi-
dent that the state space, post-pruning, exhibits much slower
growth compared to exponential expansion.
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Figure 5: Number of states and transitions in the constructed
MDPST for 2 ≤ |OBJ | ≤ 6 (in log scale).
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Figure 6: Computation time for model construction and strategy
synthesis for 2 ≤ |OBJ | ≤ 6.

In addition, the computation time for model construc-
tion (including state-space pruning and MDPST construction)
and strategy synthesis (including DFA construction, product
MDPST computation, and robust value iteration of Eqn. (2))
with respect to different number of objects (2 ≤ |OBJ | ≤ 6)
are depicted in Figure 6. Note that LTLf synthesis in non-
deterministic domains is 2EXPTIME-complete in the size of
the LTLf formula and EXPTIME-complete in the size of the
domain [De Giacomo et al., 2023]. Moreover, the probabilis-
tic behaviour of the agent (caused by the “trembling hand”)
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Table 1: Model construction and synthesis computation times for 5
objects.

K States Transitions Model Const.
(s)

Synthesis
(s)

3 1724 5324 3.222 45.81
4 2155 6655 4.685 78.820
5 2586 7986 6.958 132.42
6 3017 9317 9.283 190.203
7 3448 10648 12.383 263.826
8 3879 11979 15.768 347.015

further complicates the synthesis problem. Nevertheless, one
can see that, for the case of six objects, the overall problem
(including model construction and strategy synthesis) can still
be solved quite efficiently using the proposed algorithm.

For the case of 5 objects, we further explore situations
where the upper bounds on human interventions range from
3 to 8 (i.e., K ∈ {3, 4, · · · , 8}). The experimental results
are shown in Table 1, where the size of the problem, i.e., the
number of states and transitions, and the computation time
for MDPST construction and strategy synthesis with respect
to K, are listed. It is clear that, although both the num-
ber of states and transitions grow linearly as K increases (as
does the model construction time), the synthesis time grows
faster. This is because computing an ϵ-suboptimal solution
for an MDPSTMN = (S, s0, A,F , TN ,L), which consists
of reachable states only (following the partition optimization
described in Section 4.3), is O(|S|2|A|F̄ log 1

ϵ ).

6 Conclusions
In this paper, we have investigated the trembling hand prob-
lem for LTLf planning in deterministic and nondeterminis-
tic domains. We formulate the problem formally by defin-
ing action-instruction errors and perturbed paths influenced
by these errors. For the case of deterministic domains, we
show that the problem can be reformulated as an MDP with
an LTLf objective, leveraging existing algorithms for synthe-
sis. In the case of nondeterministic domains, on the other
hand, we utilise MDPSTs with LTLf objectives, for which
we propose an efficient robust value iteration algorithm for
synthesis. In particular, MDPSTs with LTLf objectives have
been studied here for the first time. We also demonstrate
the promising scalability of the proposed algorithm in a case
study. For future work, we plan to leverage symbolic tech-
niques for synthesis, aiming to improve efficiency.

Appendix: State Pruning Algorithm
Given N objects, the co-assembly domain has at most
2N(N+1) states. To obtain an effective representation of
the co-assembly domain, we design a state pruning algo-
rithm (Algorithm 1), which takes into account the physical
constraints: (1) each block cannot be at more than one loca-
tion, and (2) each location (except for storage) can have at
most one block. In this way, only a set of valid states that sat-
isfy these constraints are maintained for strategy synthesis.

Algorithm 2 State Pruning

Input: the number of objects N .
Return: the set of valid states Svalid(N).

1: for i = 2, · · · , N do
2: if i = 2 then
3: S← CreateStates(i, i+ 1)
4: for s ∈ S do
5: if RowsSumIsOne(s) and ColsSumIsOne(s)

then
6: add s into Svalid(i)
7: end if
8: end for
9: end if

10: if i ≥ 3 then
11: rvalid ← CreateRow(i)
12: for si−1 ∈ Svalid(i− 1) do
13: for r(k) in si−1 do
14: rnew(k)← {r(k) + (0), (0, · · · , 0, 1)}
15: end for
16: Scomb ← (rnew(0), · · · , rnew(i− 2), rvalid)
17: for sexpand in Product(Scomb) do
18: if RowsSumIsOne(sexpand) and

ColsSumIsOne(sexpand) then
19: add sexpand to Svalid(i)
20: end if
21: end for
22: end for
23: end if
24: end for

Note that Algorithm 1 employs a recursive approach, strate-
gically avoiding the enumeration of all possible states. This
recursive nature enhances efficiency.

Algorithm 1 takes as input the number of objects N and
outputs the set of valid states Svalid(N). It starts by com-
puting Svalid(2) for 2 objects (lines 2-9), followed by the re-
cursive computation of Svalid(≥ 3) through Svalid(N) (lines
10-23). When i = 2, we first create all possible states S us-
ing CreateStates(i, i + 1), where each state is a 2 × 3 tuple
and each element of the tuple is either 0 or 1 (line 3). Then
for a state s ∈ S, if all the rows sum equal to 1 (checked
by RowsSumIsOne) and all the columns (except for column
0, which represents storage) sum equal to 1 (checked by
ColsSumIsOne), then s is added to Svalid(2) (lines 4-8).

When i ≥ 3, we compute Svalid(i) by expanding each
state si−1 ∈ Svalid(i − 1) (which is a (i − 1) × i tuple) into
a set of valid states si (which is a i × (i + 1) tuple). In line
11, sub-algorithm CreateRow(i) returns a set of 1 × (i + 1)
tuples whose row sum equals to 1 (i.e., rvalid). In lines 13-15,
we expand each row r(k) of si−1 into a set of two rows, i.e.,
rnew(k), by adding one element (either 0 or 1) to the end of
r(k). Then, in line 17, sub-algorithm Product(·) computes a
set of tuples containing all possible combinations of elements
from rnew(0), · · · , rnew(i − 2) and rvalid (i.e., Scomb). For
each sexpand in Scomb, if all the rows sum equal to 1 and all
the columns sum (except for column 0) equal to 1, the state
sexpand is added to Svalid(i) (lines 17-21).
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