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Abstract—Artificial intelligence and robotic competitions are
accompanied by a class of game paradigms in which each player
privately commits a strategy to a game system which simulates
the game using the collected joint strategy and then returns
payoffs to players. This paper considers the strategy commitment
for two-player symmetric games in which the players’ strategy
spaces are identical and their payoffs are symmetric. First, we
introduce two digraph-based metrics at a meta-level for strategy
evaluation in two-agent reinforcement learning, grounded on sink
equilibrium. The metrics rank the strategies of a single player and
determine the set of strategies which are preferred for the private
commitment. Then, in order to find the preferred strategies under

the metrics, we propose two variants of the classical learning
algorithm self-play, called strictly best-response and weakly better-
response self-plays. By modeling learning processes as walks
over joint-strategy response digraphs, we prove that the learnt
strategies by two variants are preferred under two metrics,
respectively. The preferred strategies under both two metrics
are identified and adjacency matrices induced by one metric and
one variant are connected. Finally, simulations are provided to
illustrate the results.

Index Terms—Game theory, best and better responses, self-
play, sink equilibrium, multi-agent reinforcement learning

I. INTRODUCTION

Problem description and motivation: Multi-agent reinforce-

ment learning (MARL) has achieved many successes in solv-

ing sequential decision-making problems in control [1], [2]

and games [3]. In a multi-player competition scenario, each

player learns a strategy locally through MARL algorithms

and privately commits the learnt strategy to a game system

which simulates the game using the collected joint strategy

and returns payoffs to players [4], [5]. Which strategies should

be committed and how to find them in the absence of the

strategies to be committed by other players, are long-standing

challenges in this paradigm and have attracted many attentions

[6], [7], [8], [9], [10], [11].

This paper introduces two metrics for strategies of a single

player in two-player symmetric games in which the players’
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strategies are identical and their payoffs are symmetric (e.g.,

Go [12], chess, poker [13] and video games [14]). The metrics

rank the strategies and thus help the players to commit proper

strategies. We also aim at developing learning algorithms with

a finite memory to find the preferred strategies according to

the proposed metrics. To this end, we formulate the underlying

game system as a stochastic game and then analyze it as a

meta-game which focuses on high-level interactions between

players. We further propose two digraph-based metrics, and

then design two new learning algorithms which are able to

find the preferred strategies.

Literature review: Two-player symmetric games have been a

central interest of the recent development of MARL [12], [13],

[14], where the payoff for playing a particular strategy depends

only on the other strategy employed, not on who is playing it.

In solving such games, strategy evaluation and learning have

been a long-standing challenge [8], [7], [11], [9], [15] due to

multidimensional learning goals, nonstationary environment,

intransitive behaviors (e.g., Rock–Paper–Scissors) and scala-

bility issues on the strategy space. Additionally, it is more

common in artificial intelligence and robotic competitions that

each player learns locally before playing against the opponent

and then commits a learnt strategy to play the game [6], [4].

This paradigm further complicates the evaluation and learning

before the commitment, as the strategy that will be committed

by the other player is unknown.

For the strategy evaluation, the Elo rating system [16] and

TrueSkill [17] have been widely used for evaluating the skills

or abilities of artificial intelligence [18], [14]. Unfortunately,

these methods cannot deal with intransitive behaviors between

strategies [10]. Focusing on intransitivity issues, many works

have proposed response-graph based evaluation methods [11],

[6], [15], [7], [10], [9]. For example, the work [11] proposes

α-Rank as a graph-based game-theoretical solution to multi-

agent evaluation, which leverages perturbed better-response

dynamics to rank strategies. More recent extensions of α-

Rank can be found in [9], [10]. In [15], the authors show

that the response-graph based strategy evaluation enables the

creation of a landscape of games, quantifying relationships

between games of varying sizes and characteristics. In [6],

sink equilibria [19], defined through the walks over response

digraphs, are used to design cycle-based and memory-based

strategy metrics. Though appealing, the above methods evalu-

ate joint strategies and cannot be applied to our cases, because

each player here does not know the other player’s strategy and

commits its own strategy independently, i.e., the evaluation of

strategies of single players. The problem of designing proper

multi-agent evaluation methods that address these issues, is

http://arxiv.org/abs/2204.12791v1
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still open.

Game theory is a powerful tool in synthesizing strategies

at a high-level for multiple interacting self-interested players.

Most game-theoretical learning algorithms are based on best-

response dynamics [20], in which each player plays a best

response to the carefully designed stationary environment

alternately which are equivalent to walks over the underlying

best-response digraphs. In the classical self-play [21], copies

of the learning player play each other in a best-response

pattern. In the well-known fictitious play [22], each player

optimally reacts to the empirical frequency of the opponents’

previous plays. In adaptive play [23], each player recalls a

finite number of previous strategies used by the opponents and

then plays a best response to the mixture of strategies sampled

from the former set. In double oracle [24], each player plays

a best response to the Nash equilibrium of its opponent

over all previous learned joint strategies. A unified approach,

called policy-space response oracles (PSRO) [8], generalizes

fictitious play and double oracle. In the perturbed iterated best-

response [3], [6], [25], the strategy selection of the player who

needs to play a best response, is slightly perturbed such that,

with a small probability, the player explores in the strategy

space and adopts other strategies.

Game-theoretic approaches typically study how to converge

to “good” strategies in the form of different equilibria, under

the assumption that the players are “rational” in some sense.

For instance, best-response dynamics is known for its con-

vergence to pure-strategy Nash equilibrium in finite potential

games [26]. Fictitious play and double oracle are guaranteed to

converge to the set of Nash equilibria in two-player zero-sum

games [22], [24]. Perturbed strictly best-response dynamics

is able to find the joint strategies with maximum underlying

metrics for a class of multi-player nonzero-sum games [6]. In

[27], distributed differential games are designed to compute

the stable strategies/controllers for multi-agent systems. Ratio-

nal imitation dynamics can guarantee finite time convergence

to an imitation equilibrium profile for spatial public goods

games [28]. Log-linear learning [29], [30], [31], a well-

known distributed learning algorithm, guarantees the emergent

behavior optimizes the system-level objective for multi-player

nonzero-sum games. In [32], how to select a player to play

a best response is investigated to avoid undesirable equilibria

for anticoordination network games. Converging to Nash equi-

libria with disturbance rejection is considered for networked

games in [33]. Proximal dynamics is proved to have global

convergence to a network equilibrium for a class of multi-

agent network games in [34]. Designing learning algorithms

which can converge to the preferred strategies under a given

evaluation method is an ongoing research direction [8], [6].

Contributions: In this paper we focus on strategy evaluation

and learning algorithms from the perspective of a single player

who needs to commit a strategy independently to two-player

symmetric games abstracted from stochastic games using high-

level interactions, in the absence of the strategy committed by

the other player. The main contributions are as follows.

(i) We first provide two metrics for the strategies of a single

player, based on digraphs over the strategy space. Our

metrics, differently from those of [7], [10], [11], [6], [9]

TABLE I: Notation Table

Symbol Description

s, si, s
i Strategies of a single player

s
J, sJ

i
Joint strategy of two players

S , SJ Set of strategies and joint strategies
B(s) Set of best responses to a strategy s

GB, GN Best-response and non-dominated digraphs
QB, QN Set of sink equilibria (SEs) over GB and GN

Q
#
B

, Q
#
N

Set of strategies in the elements of QB and QN

GJ
ST

, GJ
WR

Joint strategy strictly best-response and joint strategy
weakly better-response digraphs

QJ
ST

, QJ
WR Set of SEs over GJ

ST
and GJ

WR

Q
J#
ST

, Q
J#
WR Set of strategies in the elements of QJ

ST
and QJ

WR

which evaluate joint strategies, rank the strategies of one

player.

(ii) Then, we propose two variants of self-play [21], strictly

best-response and weakly better-response self-plays, and

prove that they are able to learn the preferred strategies of

the proposed metrics. Compared with the classical self-

play, the first variant changes strategies with additional

positive increment and thus simplifies the strategy jumps,

and the second is more practical as determining better-

response strategies is easier than best-response strategies

given learning players.

(iii) Finally, we identify the strategies preferred by both two

metrics and through digraph product, connect the adja-

cency matrices induced by one metric and one variant.

Paper organisation: In Section II, we model the two-agent

RL as a two-player stochastic game and reformulate it, at a

high-level, as a symmetric normal-form game, and present the

problems. In Section III, two metrics are introduced, and two

learning algorithms adapted from self-play are proposed. In

Section IV, we connect the proposed metrics and learning

algorithms. We provide an example in Section V and conclude

the article in Section VI.

Notations. Let R and N>0 be the set of reals and positive

integers, respectively. For any finite set S, let |S| be its

cardinality, ∆S the set of probability distributions over S,

and 2S the power set of S. All vectors are column vectors.

Let 1 denote the vector with all elements equal to 1, ei the

i-th standard basis vector, and I the identity matrix (their

dimensions will be clear from the context). The Kronecker

product of two matrices A and B is denoted by A ⊗ B.

If A, B, C and D are matrices with appropriate dimensions,

then the mixed-product property of the Kronecker product says

that (A ⊗B)(C ⊗D) = (AC) ⊗ (BD). Partial important

notations are provided in Table I as an aid to understand the

paper, which will be also explained in more details later.

II. PROBLEM STATEMENT

A. Two-Player Stochastic Games and Normal-Form Games

Stochastic games have long been applied in MARL to model

interactions among self-interested agents (players) in a shared

environment. Consider a two-player stochastic game G =
(N,X , d, {Ai}i∈N , P, {Ri}i∈N , {βi}i∈N ), where N = {1, 2}
is a set of players, X is a finite set of states, d ∈ ∆X is

an initial distribution over the states with d(x0) representing
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the probability of starting the game from a state x0 ∈ X ,

and Ai is a finite set of actions for player i ∈ N . The

function P : X ×A1 ×A2 → ∆X determines the probability

P (x′ | x, a1, a2) of transition from state x to x′ under joint

action (a1, a2) ∈ A1 ×A2. The immediate reward of player i
is given by Ri : X ×A1 ×A2 → R. The scalar βi ∈ (0, 1) is

the discount factor for player i.

For player i ∈ N , a stationary deterministic strategy si is

a function from X to Ai [25], that is, ai = si(x). Denote

the set of such strategies by Si, which is finite and satisfies

|Si| = |Ai||X |. Let SJ = S1 × S2 denote the joint strategy

space, and a joint strategy sJ = (s1, s2) ∈ SJ is also referred

to as sJ = (si, s−i) for any i ∈ N .

Given a joint strategy sJ ∈ SJ, the expected accumulated

discounted payoff of player i is computed by

J i(sJ) =
∑

x∈X

d(x)E
[

∞
∑

t=0

(βi)tRi(x(t), a1(t), a2(t)) | x0 = x
]

.

It is well-known that if each player has a set of finitely many

strategies, then the related stochastic game has a normal-form

game (NFG) representation [35]. From this, since Si is finite

for all i ∈ N , the NFG representation of the game G con-

sidered here can be described by the triple (N,SJ, {J i}i∈N ),
where the payoff of player i under a joint strategy sJ ∈ SJ

is J i(sJ) for i ∈ N . This NFG representation of a stochastic

game is also called meta-game in many literature [11], [36],

[6]. A meta-game is a simplified model of complex interactions

which focuses on meta-strategies (or styles of play) rather than

atomic actions [37]. For example, meta-strategies in poker may

correspond to “passive/aggressive” or “tight/loose” strategies.

The two-player NFG is symmetric [38] if the strategy spaces

of the players are identical and the payoffs of players are

symmetric, i.e., S1 = S2 =: S (consequently SJ = S × S),

and J1(s1, s2) = J2(s2, s1) for all s1 ∈ S and s2 ∈ S. By

S1 = S2, the action spaces are identical, i.e., A1 = A2 =: A.

Note that in two-player symmetric NFGs (S-NFGs), the pay-

offs for playing a particular strategy depend only on the other

strategy employed, not on who is playing it. Many real-world

games, e.g., Go [12], chess and poker [13], are interesting

examples of two-player S-NFGs. This paper will focus on two-

player S-NFGs.

B. Problem of Interest

In many areas, e.g., artificial intelligence and robotics, the

two-player S-NFG G is played as follows [13], [15]. Each

player first privately selects a strategy from the strategy set

S and commits it to the game system (for example, game

simulators). Then, the game system is fully driven by the joint

strategy which cannot be modified by the players once it starts.

After many episodes, the game system returns an (expected)

payoff to each player (averaged over the episodes). Each player

tries to maximize its returned expected payoff by choosing a

proper strategy from S, given that the strategy committed by

the opponent is unknown. Noting this, the aim of this article is,

given G, to present a game-theoretical solution to the following

problems.

Problem 1 (Strategy evaluation). Design evaluation metrics

over the strategies in S to help each player commit a proper

strategy in S in the absence of the committed strategy by the

opponent, so as to maximize its payoff.

Problem 2 (Strategy learning). Given an evaluation metric,

can we find, through learning, the (part of) strategies which

are preferred under the evaluation metric?

III. STRATEGY EVALUATION AND LEARNING

This section introduces two graph-based metrics to evaluate

the strategies in S. Then, two strategy learning algorithms are

proposed, where the first one is closely related to the classical

self-play [21] and the second is less well studied but more

useful in practice.

A. Sink Equilibrium

Before presenting the strategy evaluation and learning, we

first introduce a game-theoretical concept called sink equilib-

rium first proposed by Goemans et al. [19]. Let G be a digraph

with the node set being either S or SJ, and an associated edge

set which will be clear in the context.

Definition 1 (Sink strongly connected component). A strongly

connected component (SCC) of a digraph G is a maximal

subgraph in which there is a path in each direction between

each pair of nodes of the subgraph. A sink strongly connected

component (SSCC) is an SCC with no outgoing edges.

Definition 2 (Sink equilibrium, [19]). A set Q of nodes in the

digraph G is a sink equilibrium (SE) of an S-NFG G over G,

if there exists an SSCC of G which is the induced-subgraph

from Q.

B. Strategy Evaluation

Before playing the game G, each player needs to commit a

strategy in S. From one player’s point of view, the strategies in

S must be properly evaluated and ranked before the commit-

ment. Next, we introduce two digraph-based metrics. More

precisely, a metric is a function assigning a real number to

each strategy, and a larger number means a higher preference.

Recently, evaluating the strategies for multi-agent systems

through digraphs has been attracting much attention (see for

example, [10], [11], [15], [6]). One advantage of this method

is that it can model the incentive of a player changing its

strategy to improve the payoff, when the strategies of the

others are fixed. Most of the existing works [10], [15], [6] that

use digraphs for strategy evaluation assign numbers to joint

strategies in SJ instead of strategies in S, and thus they are

not applicable in our scenarios because each player here has

to select one strategy from S rather than SJ and the strategy

committed by the opponent is unknown. In addition, evaluating

strategies in S is easier, because S has far less elements than

SJ. Strategy evaluation over S has been used in [11], but with

different digraphs and without detailed analysis. In this paper

we will evaluate the strategies in S through two digraphs.

The set of best responses to a strategy s ∈ S is defined as

B(s) =
{

s1 ∈ S | J
1(s1, s) = max

s2∈S
J1(s2, s)

}

,
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For s1, s2 ∈ S, if not specified, the first strategy in J1(s1, s2)
or J2(s1, s2) is for player 1 and the second is for player 2.

Definition 3 (Best-response digraph). A best-response digraph

GB = (S, EB) of an S-NFG G is a digraph where each node

represents a strategy s ∈ S and an edge es1s2 from s1 ∈ S to

s2 ∈ S exists in EB if and only if s2 ∈ B(s1).

Definition 4 (Non-dominated digraph). A non-dominated di-

graph GN = (S, EN) of an S-NFG G is a digraph where each

node represents a strategy s ∈ S and an edge es1s2 from

s1 ∈ S to s2 ∈ S exists in EN if and only if there exists a

strategy s ∈ S such that J1(s2, s) ≥ J1(s1, s).

Let QB ⊆ 2S and QN ⊆ 2S be the set of the SEs over GB

and GN, respectively. We denote by Q
#
B ⊆ S and Q

#
N ⊆ S

the set of strategies contained in the elements of QB and QN,

respectively.

Definition 5 (Best-dominating metric). A function M : S → R

is a best-dominating (BD) metric if M(s1) > M(s2) for all

pairs s1 ∈ Q
#
B and s2 ∈ S\Q

#
B . In other words, the strategies

in Q
#
B are preferred under the BD metric.

Remark 1. Note that in the best-response digraph GB, there

is a transition from one strategy to another in S if and only

if adopting the latter results in the maximal payoff when the

opponent is using the former. In other words, a strategy is

better than another strategy if and only if the latter is a best

response to the former. The BD metric says that the strategies

in the SEs over GB are preferred than the ones not.

Definition 6 (Non-dominated metric). A function M : S → R

is a non-dominated (ND) metric if M(s1) > M(s2) for all

pairs s1 ∈ Q
#
N and s2 ∈ S \ Q

#
N . The strategies in Q

#
N are

preferred under the ND metric.

Remark 2. Regarding the non-dominated digraph GN, there

is a transition from one strategy to another in S if and only

if the latter is not dominated by the former, i.e., there exists

at least one strategy in S against which adopting the latter

gains a greater or equal payoff than adopting the former. The

ND metric implies that, the strategies in the SEs over GN are

preferred than the ones not.

C. Strategy Learning

Based on the previous two metrics for strategy evaluation,

we present two learning algorithms to find the strategies in

Q
#
B or Q

#
N which by definition, are assigned greater numbers

than the ones outside correspondingly. That is, these strategies

are preferred to commit under the proposed metrics.

In general, it is computationally intractable to enumerate all

nodes in GB or GN and then to determine the strategies in Q
#
B

or Q
#
N , because if the S-NFG G is induced from a stochastic

game as considered here, the number of nodes in these graphs

is |S| = |A||X |. Noting this, we propose two game-theoretical

learning algorithms by adapting the well-known self-play [21].

We emphasize that different from the strategy evaluation, the

opponent strategies are accessible during the local learning.

With respect to the conventional self-play, the strictly best-

response variant described in Algorithm 1, differs in that the

Algorithm 1: Strictly best-response self-play

Data: N = {1, 2}, initial joint strategy sJ
0 = (s10, s

2
0),

maximum episode τmax, memory length L
Result: a set of joint strategies

1 τ ← 0
2 repeat

3 Choose a player i from N randomly

4 Learn a strategy s∗ ∈ S for player i such that

s∗ ∈ B(s−i
τ ) and J i(s∗, s−i

τ ) > J i(sJ
τ ). If such an

s∗ is not found within a given time, then s∗ ← siτ
5 siτ+1 ← s∗, s−i

τ+1 ← s−i
τ

6 sJ
τ+1 ← (siτ+1, s

−i
τ+1)

7 τ ← τ + 1
8 until τ = τmax;

9 return: {sJ
τ+1}

τmax
τ=τmax−L+1

Algorithm 2: Weakly better-response self-play

Data: N = {1, 2}, initial joint strategy sJ
0 = (s10, s

2
0),

maximum episode τmax, memory length L
Result: a set of joint strategies

1 τ ← 0
2 repeat

3 Choose a player i from N randomly

4 Learn a strategy s∗ ∈ S for player i such that

J i(s∗, s−i
τ ) ≥ J i(sJ

τ )
5 siτ+1 ← s∗, s−i

τ+1 ← s−i
τ

6 sJ
τ+1 ← (siτ+1, s

−i
τ+1)

7 τ ← τ + 1
8 until τ = τmax;

9 return: {sJ
τ+1}

τmax
τ=τmax−L+1

chosen player i ∈ N at the episode τ deviates from its current

strategy siτ to a learnt strategy s∗ if and only if s∗ is not only

a best response to the opponent’s current strategy s−i
τ but also

results in a strictly greater payoff (lines 4 and 5). The other

player follows its previous strategy. We assume that only the L
latest learnt joint strategies are stored due to a finite memory

constraint. The weakly better-response variant described in

Algorithm 2 allows the chosen player i to change its strategy

from siτ to s∗ if and only if adopting s∗ gains a weakly better

payoff than adopting siτ . The second variant is more useful in

practice than both conventional self-play and the first variant,

because learning a best-response strategy is generally harder

and more time-consuming than a better-response strategy, and

it is also inefficient to verify that a strategy is a best response

for reinforcement learning. In order to investigate the joint

strategy behaviors in two variants, we introduce joint strategy

response digraphs to model the dynamics of learning process,

as in [15], [6], [25].

Definition 7 (Joint strategy strictly best-response digraph). A

joint strategy strictly best-response digraph GJ
ST = (SJ, E J

ST) of

an S-NFG G is a digraph where each node is a joint strategy

sJ ∈ SJ and an edge esJ
1
sJ
2

from sJ
1 ∈ S

J to sJ
2 ∈ S

J exists

in E J
ST if and only if sJ

1 and sJ
2 differ in exactly one player’s
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Evaluation Learning

BD metric Strictly best-response self-play

ND metric Weakly better-response self-play

T
h
eo

rem
3

Theorem 1

Theorem 4

Theorem 2

Corollary
1

Fig. 1: Main results on strategy evaluation and learning.

strategy (say i ∈ N ), si2 ∈ B(s−i
1 ) and J i(sJ

2) > J i(sJ
1).

Definition 8 (Joint strategy weakly better-response digraph). A

joint strategy weakly better-response graph GJ
WR = (SJ, E J

WR)
of an S-NFG G is a digraph where each node represents a

joint strategy sJ ∈ SJ and an edge esJ
1
sJ
2

from sJ
1 ∈ S

J to

sJ
2 ∈ S

J exists in E J
WR if and only if sJ

1 and sJ
2 differ in exactly

one player’s strategy (say i ∈ N ), and J i(sJ
2) ≥ J i(sJ

1).

The learning processes of strictly best-response and weakly

better-response self-plays are the walks over GJ
ST and GJ

WR,

respectively. This idea has been used for modeling multi-agent

strategy learning behaviors in [10], [11], [15], [6], because the

induced digraphs can keep track of the way that the players

explore in the strategy space. Let QJ
ST ⊆ 2S

J

and QJ
WR ⊆ 2S

J

be the set of the SEs over GJ
ST and GJ

WR, respectively. Then

we denote by Q
J#
ST ⊆ S and Q

J#
WR ⊆ S the set of strategies

contained in the elements of QJ
ST and QJ

WR, respectively.

Remark 3. For a sufficiently large τmax, the set of strate-

gies contained in the elements of the learnt joint strategies

{sJ
τ+1}

τmax
τ=τmax−L+1

through strictly best-response and weakly

better-response self-plays is a subset of Q
J#
ST and Q

J#
WR, re-

spectively.

Since the initial joint strategy sJ
0 is randomly chosen, then

any strategy in Q
J#
ST or Q

J#
WR might be learnt after a long run.

Noting this, we next discuss whether two variants of self-play

proposed in this paper can find the preferred strategies under

two metrics, through investigating the relationships between

four sets of strategies Q
#
B , Q

#
N , Q

J#
ST and Q

J#
WR.

IV. BRIDGES BETWEEN EVALUATION AND LEARNING

This section builds the bridges between the proposed eval-

uation metrics and learning algorithms, as depicted in Fig. 1.

First, we show that after many episodes, all learnt strategies

by weakly better-response self-play are preferred under the

ND metric, while all learnt strategies by strictly best-response

self-play are preferred under the BD metric for a subclass of

S-NFGs. Then, we compare the preferred strategies of the BD

and ND metrics. Finally, the adjacency matrices related to the

BD metric and strictly best-response self-play are connected.

A. Learning Preferred Strategies

In the following analysis, we assume that for two variants of

self-play, the maximum episode τmax is large enough such that

the walks over the joint strategy strictly best-response digraph

GJ
ST or joint strategy weakly better-response digraph GJ

WR, have

s1 s2 s3

s1 2, 2 1, 2 1, 1

s2 2, 1 1, 1 2, 0

s3 1, 1 0, 2 2, 2

(a)

s1 s2

s3

(b)

s1s1 s1s2 s1s3

s2s1 s2s2 s2s3

s3s1 s3s2 s3s3

(c)

Fig. 2: BD metric and strictly best-response self-play, where

(a) payoffs of a two-player S-NFG; (b) best-response di-

graph GB with QB = {{s1, s2}} and Q
#
B = {s1, s2}; (c)

joint strategy strictly best-response digraph GJ
ST with QJ

ST =
{{(s1, s1)}, {(s1, s2)}, {(s2, s1)}, {(s2, s2)}, {(s3, s3)}}, and

Q
J#
ST = {s1, s2, s3}. Thus, Q

#
B ( Q

J#
ST .

s1 s2 s3

s1 2, 2 1, 2 2, 1

s2 2, 1 1, 1 1, 2

s3 1, 2 2, 2 1, 1

(a)
s1 s2

s3

(b)

s1s1 s1s2 s1s3

s2s1 s2s2 s2s3

s3s1 s3s2 s3s3

(c)

Fig. 3: BD metric and strictly best-response self-play, where

(a) payoffs of a two-player S-NFG; (b) best-response digraph

GB with QB = {{s1, s2, s3}} and Q
#
B = {s1, s2, s3}; (c)

joint strategy strictly best-response digraph GJ
ST with QJ

ST =

{{(s1, s1)}} and Q
J#
ST = {s1}. Thus, Q

J#
ST ( Q

#
B .

entered an SSCC and all L latest learnt joint strategies belong

to the corresponding SE over GJ
ST or GJ

WR.

We first connect the strategies preferred by the BD metric

with the strategies returned by strictly best-response self-play.

Lemma 1 (BD metric and strictly best-response self-play).

For the BD metric and strictly best-response self-play,

(i) there exists a two-player S-NFG G such that the strictly

best-response self-play can return a strategy which is not

preferred under the BD metric;

(ii) there exists a two-player S-NFG G such that there exists

a preferred strategy under the BD metric which cannot

be returned by strictly best-response self-play.

Proof. Regarding (i), we consider a two-player S-NFG in Fig.

2, where Q
#
B = {s1, s2} and Q

J#
ST = {s1, s2, s3}. Therefore,

we have Q
#
B ( Q

J#
ST .

Regarding (ii), we consider a two-player S-NFG in Fig. 3,

where Q
#
B = {s1, s2, s3} and Q

J#
ST = {s1}. Therefore, we

have Q
J#
ST ( Q

#
B .

According to Lemma 1, learning through the strictly best-

response self-play may find the un-preferred strategies under

the BD metric, thus providing bad candidates for the commit-

ment. However, we are able to find that if a class of strategies

are excluded (thus inducing a subclass of two-player S-NFGs),

then Q
J#
ST = Q

#
B . Such strategies are defined as follows.
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Definition 9 (Self best-response strategy). A strategy s ∈ S
is called a self best-response strategy of a two-player S-NFG

G if s ∈ B(s), i.e., (s, s) is a pure-strategy Nash equilibrium.

Definition 10 (Mutual best-response pair). A pair of strategy

{s1, s2} (s1, s2 ∈ S) is called a mutual best-response pair of a

two-player S-NFG G if s1 6= s2, s2 ∈ B(s1) and s1 ∈ B(s2).

In order to prove the result, we require the following lemma.

Lemma 2 (Structure of GB). If a two-player S-NFG G has

no self best-response strategies and no mutual best-response

pairs, then

(i) every SE over GB has at least three distinct strategies;

(ii) let s1, s2 and s′ be three distinct strategies in an SE

over GB. If either s2 ∈ B(s1) or s1 ∈ B(s2), then there

must exist a directed path in GJ
ST from (s1, s2) to a joint

strategy containing s′.

Proof. Regarding (i), if an SE (say Q) in GB contains a unique

strategy s, then by Definition 3 we have s ∈ B(s), which

contradicts with no self best-response strategies. If Q only

contains two distinct strategies s1 and s2, there exist edges

connecting them from both sides, that is, {s1, s2} is a mutual

best-response pair. Thus, the conclusion (i) holds.

Regarding (ii), we first focus on s2 ∈ B(s1) and the case

s1 ∈ B(s2) follows similarly. Since s2 and s′ are two distinct

strategies in an SE (say Q1) over GB, there must exist a best-

response path from s2 to s′. By attaching the best response

from s1 to s2 at the beginning, this best-response path can be

formulated as

s1 → s2 → s3 → s4 → · · · → sk → s′, (1)

where si+1 ∈ B(si) for all i = 1, 2 . . . , k−1, and s′ ∈ B(sk).
Using (1), we construct the following joint strategy path

(s1, s2)→ (s3, s2)→ (s3, s4)→ · · · → (sk, s
′). (2)

We assume that the path (2) ends up with (sk, s
′) and the case

(s′, sk) follows similarly. Since G has no self best-response

strategies, then any two strategies which are adjacent in the

path (1) are distinct. Since G has no mutual best-response

pairs, then s1 /∈ B(s2) (using s2 ∈ B(s1)). Combining it with

s3 ∈ B(s2), we have J1(s3, s2) > J1(s1, s2), implying that

the edge from (s1, s2) to (s3, s2) is a strictly best response,

i.e., e(s1,s2)(s3,s2) ∈ E
J
ST. By the same argument until (sk, s

′),
we are able to prove that (2) is a joint strategy strictly best-

response path, which as required, connects (s1, s2) with a joint

strategy containing s′.

We are ready to present the result connecting the strategies

preferred by the BD metric with the ones returned by strictly

best-response self-play for two-player S-NFGs which have no

self best-response strategies and no mutual best-response pairs.

Theorem 1 (BD metric and strictly best-response self-play).

If a two-player S-NFG G has no self best-response strategies

and no mutual best-response pairs, then the set of preferred

strategies under the BD metric coincides with the set of all

possible strategies returned by strictly best-response self-play,

i.e., Q
#
B = Q

J#
ST .

Proof. Before proving the relation between Q
#
B and Q

J#
ST , we

first define a set of subgraphs of GJ
ST induced by the SEs in GB.

For each SE Q ∈ QB, let ḠJ
ST(Q) = (S̄J(Q), Ē J

ST(Q)) be the

subgraph of GJ
ST such that S̄J(Q) = {(s1, s2) | s1 ∈ Q, s2 ∈

Q} and esJ
1
sJ
2
∈ Ē J

ST(Q) if and only if esJ
1
sJ
2
∈ E J

ST for all

sJ
1, s

J
2 ∈ S̄

J(Q). Note that if Q1 and Q2 are two different SEs

over GB, then ḠJ
ST(Q1) and ḠJ

ST(Q2) are two disjoint subgraphs

of GJ
ST, as Q1 and Q2 share no common strategies.

For an SE Q ∈ QB, we prove that any walk over GJ
ST cannot

leave the subgraph ḠJ
ST(Q) once entering it. We assume that

there exists an edge in E J
ST leaving ḠJ

ST(Q), i.e., there exist

three strategies s1 ∈ S \ Q, s2 ∈ Q and s3 ∈ Q (s2 and s3
might be the same) such that s1 ∈ B(s2) and J1(s1, s2) >
J1(s3, s2). However, in view of s1 ∈ S \Q and s2 ∈ Q, we

obtain the contradiction s1 /∈ B(s2) as Q is an SE over GB.

Now we are ready to prove the relation. Suppose s1 ∈ Q
J#
ST .

We assume, for the sake of contradiction, that s1 /∈ Q
#
B , i.e.,

there exists a best-response path over GB from s1 to strategies

in an SE (say Q1) over GB. More precisely, this best-response

path can be formulated as

s1 → s2 → s3 → s4 → · · · → sk → sk+1, (3)

where si+1 ∈ B(si) for all i = 1, 2 . . . , k, s1 /∈ Q1, sk ∈ Q1

and sk+1 ∈ Q1 by noting that Q1 has at least three distinct

strategies by (i) in Lemma 2. Since G has no self best-response

strategies, then si and si+1 are different for all i = 1, 2 . . . , k.

Next, we prove that every joint strategy in SJ containing s1
has a joint strategy strictly best-response path to a subgraph

ḠJ
ST(Q) induced by some SE Q ∈ QB. Given a strategy s′ ∈ S,

we consider the joint strategy (s′, s1), and the case (s1, s
′)

follows similarly. Using (3), we consider the following joint

strategy path

(s′, s1)→ (s2,s1)→ (s2, s3)

→ (s4, s3)→ · · · → (sk, sk+1).
(4)

If (4) ends up with (sk+1, sk), we can also follow the same

argument as below. There are three cases with respect to s′,
and we next discuss them separately.

Case 1: s′ /∈ B(s1). Since s2 ∈ B(s1), we have J1(s2, s1) >
J1(s′, s1), implying that the edge from (s′, s1) to (s2, s1) is

a joint strategy strictly best response, i.e., e(s′,s1)(s2,s1) ∈ E
J
ST.

Since G has no mutual best-response pair, then s1 /∈ B(s2)
(using s2 ∈ B(s1)). Then combining it with s3 ∈ B(s2), we

have J2(s2, s3) > J2(s2, s1), implying that the edge from

(s2, s1) to (s2, s3) is a joint strategy strictly best response, i.e.,

e(s2,s1)(s2,s3) ∈ E
J
ST. By the same argument until (sk, sk+1),

we are able to prove that (4) is a joint strategy strictly best-

response path. Recall that s1 /∈ Q1, sk ∈ Q1 and sk+1 ∈ Q1.

Therefore, all joint strategies in the subgraph ḠJ
ST(Q1) don’t

contain s1, (sk, sk+1) is included in ḠJ
ST(Q1) and (s′, s1) is at

the outside of ḠJ
ST(Q1). Since any walk over GJ

ST cannot leave

ḠJ
ST(Q1) once entering it, then (s′, s1) doesn’t lie in any SE

over GJ
ST, noting that it can enter ḠJ

ST(Q1) along (4).

Case 2: s′ ∈ B(s1) and s′ = s2. Then, we consider the joint

strategy path

(s2, s1)→ (s2, s3)→ (s4, s3)→ · · · → (sk, sk+1),
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and prove that (s2, s1) doesn’t lie in any SE over GJ
ST similarly.

Case 3: s′ ∈ B(s1) and s′ 6= s2. Since s1 /∈ Q
#
B , then there

exists a best-response path over GB from s1 to s′ and then from

s′ to strategies in an SE in QB. This implies that we have a

path similar to (3) and thus can prove that (s′, s1) doesn’t lie

in any SE over GJ
ST by following the similar argument to Case

2.

Since s′ can be any strategy in S, we obtain the contradic-

tion s1 /∈ Q
J#
ST . Then, s1 ∈ Q

#
B and thus Q

J#
ST ⊂ Q

#
B .

Conversely, suppose s1 ∈ Q
#
B , i.e., there exists an SE

Q1 ∈ QB such that s1 ∈ Q1. We assume, for the sake of

contradiction, that s1 /∈ Q
J#
ST . This implies that there exists a

joint strategy strictly best-response path over GJ
ST from (s1, s1)

to a joint strategy in an SE (say QJ
1) in QJ

ST and all joint

strategies in this SE QJ
1 don’t contain s1. More precisely, this

joint strategy strictly best-response path from (s1, s1) to a joint

strategy in QJ
1 can be formulated as follows

(s1, s1)→ (s2, s1)→ (s2, s3)→ (s4, s3)→ · · · → (sk, sk+1),
(5)

where si+1 ∈ B(si) for all i = 1, 2 . . . , k, and there is a strict

payoff improvement for the player playing the best response at

each edge and (sk, sk+1) ∈ QJ
1. We can construct the path (5)

with the following reasons: Firstly, the first edge is because

G has no self best-response strategies (i.e., s1 is not a best

response of itself); secondly, two players must play strictly best

responses alternately along a path over GJ
ST using Definition

7; thirdly, all joint strategies in the path except the first one

(s1, s1) have different strategies for two players because of

no self best-response strategies. If the path starts with player

2 playing the best response first or ends up with (sk+1, sk),
we can have the same argument as below. According to these

features, (5) induces a best-response path over GB:

s1 → s2 → s3 → s4 → · · · → sk → sk+1. (6)

Recall that s1 ∈ Q1. Then, we have sk ∈ Q1 and sk+1 ∈ Q1.

Since no joint strategy in QJ
1 contains s1 and (sk, sk+1) ∈ QJ

1,

then s1 is distinct from sk and sk+1. Since sk is different

from sk+1 and sk+1 ∈ B(sk), then by (ii) in Lemma 2, there

exists a joint strategy strictly best-response path in GJ
ST from

(sk, sk+1) to a joint strategy (say sJ) containing s1, which

implies that sJ ∈ QJ
1. This contradicts with the fact that no

joint strategy in QJ
1 contains s1. Then, we have s1 ∈ Q

J#
ST and

thus Q
#
B ⊂ Q

J#
ST .

Next we connect the strategies preferred by the ND metric

with the strategies returned by weakly better-response self-play

for two-player S-NFGs. Before presenting the main results, the

following lemma is required.

Lemma 3 (SE in GN). For a two-player S-NFG G, GN admits

a unique SE.

Proof. For any s1, s2 ∈ S, we have J1(s1, s1) ≤ J1(s2, s1)
or J1(s1, s1) ≥ J1(s2, s1), i.e., either es1s2 ∈ EN or es2s1 ∈
EN. Therefore, there exists at least one edge between any two

nodes in GN.

Suppose that GN has more than one SE. Let Q1 and Q2

be two distinct SEs in GN. Take one node from each SE, say

s1 s2 s3

s1 2, 2 2, 1 1, 0

s2 1, 2 1, 1 2, 0

s3 0, 1 0, 2 0, 0

(a)

s1 s2

s3

(b)

s1s1 s1s2 s1s3

s2s1 s2s2 s2s3

s3s1 s3s2 s3s3

(c)

Fig. 4: ND metric and weakly better-response self-play, where

(a) payoffs of a two-player S-NFG; (b) non-dominated digraph

GN with QN = {{s1, s2}} and Q
#
N = {s1, s2}; (c) joint

strategy weakly better-response digraph GJ
WR with QJ

WR =

{{(s1, s1)}} and Q
J#
WR = {s1}. Thus, Q

J#
WR ( Q

#
N .

s1 ∈ Q1 and s2 ∈ Q2. Since there exists at least one edge

between s1 and s2, implying that Q1 and Q2 cannot be two

distinct SEs. Therefore, GN admits a unique SE (the existence

is obvious).

Theorem 2 (ND metric and weakly better-response self-play).

Consider a two-player S-NFG G. Let Q be the unique SE over

GN. Then,

(i) if Q is a singleton, the set of preferred strategies under the

ND metric coincides with the set of all possible strategies

returned by weakly better-response self-play, i.e., Q
#
N =

Q
J#
WR;

(ii) if Q is a non-singleton, the strategies returned by weakly

better-response self-play must be preferred under the

ND metric, i.e., Q
J#
WR ⊆ Q

#
N . Moreover, there exists a

two-player S-NFG G such that there exists a preferred

strategy which cannot be returned, i.e., Q
J#
WR ( Q

#
N .

Proof. By Lemma 3, we have Q
#
N = Q. Regarding (i), sup-

pose that Q = {s1}. Since s1 is the unique SE, by Definition

4 we have J1(s1, s3) > J1(s2, s3) for all s2 ∈ S \ {s1} and

s3 ∈ S (if S = {s1}, then (i) holds). By symmetry, we have

J2(s3, s1) > J2(s3, s2) for all s2 ∈ S \ {s1} and s3 ∈ S. We

will use these payoff inequalities below.

Next, we prove that there exists a (weakly better-response)

path in GJ
WR from any distinct joint strategy (si, sj) ∈ S

J to

(s1, s1). If si = s1 and sj 6= s1, then e(si,sj)(s1,s1) ∈ E
J
WR

by J2(s1, s1) > J2(si, sj). If si 6= s1 and sj = s1, we can

prove it similarly. If si 6= s1 and sj 6= s1, then e(si,sj)(s1,sj) ∈
E J

WR and e(s1,sj)(s1,s1) ∈ E
J
WR by J1(s1, sj) > J1(si, sj) and

J2(s1, s1) > J2(s1, sj), respectively. In conclusion, (si, sj)
can reach (s1, s1) along the edge e(si,sj)(s1,s1) or the edges

(e(si,sj)(s1,sj), e(s1,sj)(s1,s1)) in GJ
WR.

Furthermore, since there is no outgoing edge for (s1, s1) in

GJ
WR, (s1, s1) is the unique SE over GJ

WR, i.e, Q
J#
WR = {s1}.

Therefore, we have Q
J#
WR = Q

#
N .

Regarding (ii), let ḠJ
WR = (S̄J, Ē J

WR) be the subgraph of GJ
WR

such that S̄J = {(s1, s2) | s1 ∈ Q, s2 ∈ Q} and esJ
1
sJ
2
∈ Ē J

WR

if and only if esJ
1
sJ
2
∈ E J

WR for all sJ
1, s

J
2 ∈ S̄

J. Since Q is the

unique SE in GN, then by definition for s1 ∈ Q and s3 ∈ S\Q,

we have J1(s1, s4) > J1(s3, s4) for all s4 ∈ S. By symmetry,
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we have J2(s4, s1) > J2(s4, s3) for all s4 ∈ S. This implies

that any walk over GJ
WR cannot leave ḠJ

WR once reaching it.

Suppose, for the sake of contradiction, that there exists a

strategy s1 ∈ Q
J#
WR and s1 /∈ Q

#
N = Q. Next, we prove that

every joint strategy in SJ containing s1 can reach ḠJ
WR through

the walks over GJ
WR and cannot leave it forever.

Given any strategy s2 ∈ S, we consider the joint strategy

(s1, s2), and the case (s2, s1) follows similarly. If s2 ∈ Q,

we have J1(s2, s2) > J1(s1, s2) noting that Q is the unique

SE over GN and by assumption s1 /∈ Q. This implies that

e(s1,s2)(s2,s2) ∈ E
J
WR. Since (s2, s2) occurs in ḠJ

WR, (s1, s2)
can reach ḠJ

WR along the edge e(s1,s2)(s2,s2) over GJ
WR. On the

other side, if s2 /∈ Q, then by taking another strategy s3 ∈ Q,

we have e(s1,s2)(s3,s2) ∈ E
J
WR and e(s3,s2)(s3,s3) ∈ E

J
WR

using J1(s3, s2) > J1(s1, s2) and J2(s3, s3) > J2(s3, s2)
respectively. Since (s3, s3) occurs in ḠJ

WR, (s1, s2) can reach

ḠJ
WR along the edges (e(s1,s2)(s3,s2), e(s3,s2)(s3,s3)) over GJ

WR.

In conclusion, (s1, s2) is not included in any SE over GJ
WR.

Noting that s2 can be any strategy in S, we obtain the

contradiction that s1 /∈ Q
J#
WR. Therefore, Q

J#
WR ⊆ Q

#
N .

Moreover, an example of two-player S-NFGs is provided in

Fig. 4, where Q
#
N = {s1, s2} and Q

J#
WR = {s1}. Therefore, we

have Q
J#
WR ( Q

#
N .

B. Comparing Two Metrics

Recall that the BD and ND metrics depend on different di-

graphs, and thus they might have different preferred strategies.

Investigating the connections between their preferred strategies

can shed light on the metric selection, and further on the

selection of self-play variants in practice.

Theorem 3 (Preferred strategies under the BD and ND

metrics). For a two-player S-NFG G, the preferred strategies

under the BD metric are also preferred under the ND metric,

i.e., Q
#
B ⊆ Q

#
N .

Proof. By definition, GB is a subgraph of GN. The theorem is

proved by checking all SEs in QB.

Suppose that |EN| − |EB| = K ≥ 0, and by adding these

K non-dominated edges to GB, GN is obtained. The order of

adding these K edges does not affect the SEs over GN, so the

following order is used.

To visualize the edge addition, an illustrative example is

provided in Fig. 5, where the initial GB has two SEs high-

lighted in green (Fig. 5(a)). First, consider all non-dominated

edges in EN connecting a) two non-sink nodes in GB, b) two

nodes in the same SE in GB, or c) a non-sink node to a sink

node in GB, as indicated by red dashed edges in Fig. 5(b).

Adding all these edges to EB has no impact on the SE, since

they neither introduce a new SE nor remove any current one.

Then, if |QB| > 1, we consider the edges in EN between

two distinct SEs Q1 ∈ QB and Q2 ∈ QB, as Fig. 5(c) shows.

Take two strategies s1 ∈ Q1 and s2 ∈ Q2. Since Q1 ∈ QB,

there exists a strategy s′1 ∈ Q1 (s1 and s′1 might be the same)

such that J1(s1, s
′
1) ≥ J1(s, s′1) for all s ∈ S, implying that

J1(s1, s
′
1) ≥ J1(s2, s

′
1). By definition, we have es2s1 ∈ EN,

i.e., there exists an edge in EN from one node in Q2 to one

node in Q1, as indicated by red dashed edges in Fig. 5(c). We

Q1

Q2

(a)

Q1

Q2

(b)

Q

(c)

Q′

(d)

Fig. 5: An illustrative example for the proof of Theorem 3.

Newly added non-dominated edges are dashed in red, and all

SEs are highlighted in green. (a) There are two SEs in the best-

response digraph GB. (b) Edges which do not change the SEs

are added to the graph. (c) Edges between two SEs Q1 and Q2

are added, which merges these two SEs into a larger SE Q.

(d) Edges from a node in Q to a non-sink node enlarges the

strategy set of all SEs, and finally the non-dominated digraph

GN is retained.

have the similar conclusion from Q1 to Q2. Therefore, all SEs

in QB are merged into a larger SE, denoted Q, through these

edges in EN.

Next, we consider edges in EN from the merged SE Q to a

non-sink node s. Since s is a non-sink node, there exists a path

(s, s1, s2, . . . , sk, s
′) (k ∈ N>0) from the non-sink node s to

s′ ∈ Q. By adding an edge from Q to s, the SE will be further

enlarged as Q′ = Q∪{s, s1, s2, . . . , sk}, as in Fig. 5(d), and it

is also true when adding an edge from Q′ to another non-sink

node.

With these edge addition, all non-dominated edges in EN are

added to EB, which means that the digraph GN is obtained. In

this process the strategy set of all SEs monotonically expands.

Thus, the strategy set of all SEs in QB is a subset of the

strategy set in QN, which completes the proof.

We provide an example to show that Theorem 3 has revealed

the full connection between two metrics.

Example 1. Consider the S-NFG in Fig. 4 again. By Fig. 4(b),

we have Q
#
N = {s1, s2}, and by drawing the best-response

graph GB, we have Q
#
B = {s1}. This implies that Q

#
B ( Q

#
N ,

i.e., there exists a preferred strategy of the ND metric which

is not preferred by the BD metric.

Combining Theorems 1 and 3, we connect the ND metric

and the strictly best-response self-play as follows.
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Corollary 1 (ND metric and strictly best-response self-play).

If a two-player S-NFG G has no mutual best-response pairs

and no self best-response strategies, then all possible strategies

returned by strictly best-response self-play are preferred under

the ND metric, i.e., Q
J#
ST ⊆ Q

#
N .

C. Adjacency Matrices for GB and GJ
ST

Our methods for strategy evaluation and learning crucially

depend on the edges of the underlying digraphs. We next show

that the adjacency matrices of GB and GJ
ST are closely related

through a class of digraph products [39]. Let |S| = n and

AB = (aij)n×n and AJ
ST = (aij)n2×n2 be the adjacency

matrices of GB and GJ
ST respectively, where aij = 1 if there is

an edge from node i to node j in the corresponding digraph,

and aij = 0 otherwise.

Digraph products [39] are commonly used to construct new

families of possibly larger graphs from smaller ones. One of

the most important and well-known digraph products is the

digraph Cartesian product as follows.

Definition 11 (Digraph Cartesian product, [39]). The Carte-

sian product of two digraphs G1 = (S1, E1) and G2 =
(S2, E2), denoted G1�G2, is a digraph GJ = (SJ, E J) such

that the set of nodes is SJ = S1 × S2, and two nodes

sJ
1 = (s11, s

2
1), s

J
2 = (s12, s

2
2) ∈ S

J are adjacent in GJ (i.e.,

esJ
1
sJ
2
∈ E J), if and only if either

1) s11 = s12, and es2
1
s2
2
∈ E2, or

2) s21 = s22, and es1
1
s1
2
∈ E1.

It is known [39] that if GJ = G1�G2, then their adjacency

matrices are related by the concise algebraic relation

AGJ = In1
⊗AG2 +AG1 ⊗ In2

, (7)

where n1 = |S1|, n2 = |S2|, and AGJ , AG1 and AG2 are the

adjacency matrices of GJ, G1 and G2, respectively. For digraphs

GB = (S, EB) and GJ
ST = (SJ, E J

ST), the node sets satisfy the

Cartesian product property, i.e., SJ = S × S. However, the

following theorem shows that the edge conditions in Definition

11 are deviated by GB and GJ
ST, implying that GJ

ST 6= GB�GB.

Noting this, we instead slightly modify the edge conditions

in digraph Cartesian product such that AB and AJ
ST can be

connected via a new relation similar to (7).

Theorem 4 (Adjacency matrices between GB and GJ
ST). Con-

sider the response digraphs GB and GJ
ST of a two-player S-NFG

G. Let S = {1, 2, . . . , n}1 and SJ = {1, 2, . . . , n2} such that

each node r = (i− 1)n+ j ∈ SJ consists of a strategy i ∈ S
for player 1 and a strategy j ∈ S for player 2. Then, the

adjacency matrices AB and A
J
ST satisfy the condition

A
J
ST =

n
∑

k=1

(

eke
⊤
k ⊗ Āk + Āk ⊗ eke

⊤
k

)

, (8)

where ek ∈ Rn and Āk = 1e
⊤
k AB −A

⊤
B eke

⊤
k AB.

Proof. To avoid confusion, let AJ
ST = (brm)n2×n2 . Next, the

theorem is proved by checking each element brm (r,m ∈ SJ)

via Definitions 7 and 3, given (8) holds. According to the

1For simplicity, this theorem adopts integers for strategies in S .

indexes of nodes in S and SJ, let ir, jr, im, jm ∈ S such that

r = (ir − 1)n+ jr and m = (im − 1)n+ jm. Thus for brm,

brm = (e⊤ir ⊗ e
⊤
jr
)AJ

ST(eim ⊗ ejm)

=
n
∑

k=1

(e⊤ir ⊗ e
⊤
jr
)
(

eke
⊤
k ⊗ Āk + Āk ⊗ eke

⊤
k

)

(eim ⊗ ejm)

=

n
∑

k=1

(

e
⊤
ir
eke

⊤
k eim ⊗ e

⊤
jr
Ākejm

+ e
⊤
ir
Ākeim ⊗ e

⊤
jr
eke

⊤
k ejm

)

=

n
∑

k=1

(

e
⊤
ir
eke

⊤
k eime

⊤
jr
Ākejm + e

⊤
ir
Ākeime

⊤
jr
eke

⊤
k ejm

)

,

(9)

where the first equality is by the index definition, the second

equality follows from (8), the third equality follows from the

mixed-product property of Kronecker product and the fourth

equality is because the elements on both sides of ⊗ are 1-by-

1 dimensional. Next, several cases are discussed separately,

depending on the relations among ir, jr, im and jm
Case 1: ir 6= im and jr 6= jm. For all 1 ≤ k ≤ n, we have

e
⊤
ir
eke

⊤
k eim = 0, e

⊤
jr
eke

⊤
k ejm = 0,

and thus it follows from (9) that brm = 0, which satisfies Def-

inition 7 because there is no edge from r to m in GJ
ST when

two players have different strategies at r and m.

Case 2: ir = im and jr 6= jm. By (9), brm becomes

brm =

n
∑

k=1

(

e
⊤
ir
eke

⊤
k eime

⊤
jr
Ākejm

)

= e
⊤
jr
Āirejm

= e
⊤
jr

(

1e
⊤
ir
AB −A

⊤
B eire

⊤
ir
AB

)

ejm

= e
⊤
ir
ABejm −

(

e
⊤
jr
A

⊤
B eir

)(

e
⊤
ir
ABejm

)

= airjm − airjrairjm ,

(10)

where the first equality follows from e⊤jreke
⊤
k ejm = 0 for all

1 ≤ k ≤ n, the second equality is because e⊤ireke
⊤
k eim =

1 when k = ir and otherwise e⊤ireke
⊤
k eim = 0, the third

equality is due to the definition of Āir and the last equality

follows from the index definition for AB. If airjm = 0, then

brm = 0. This coincides with Definition 7, because airjm = 0
implies that jm /∈ B(ir), and thus there is no edge from r to

m in GJ
ST. If airjm = 1 and airjr = 0, then brm = 1. This is

true because airjm = 1 and airjr = 0 imply that jm ∈ B(ir)
and jr /∈ B(ir), and thus there is an edge from r to m in

GJ
ST. If airjm = 1 and airjr = 1, then brm = 0. This is true

because airjm = 1 and airjr = 1 imply that jm ∈ B(ir) and

jr ∈ B(ir), and thus there is no edge from r to m in GJ
ST.

Case 3: ir = im and jr = jm. By (9), brm becomes

brm = e
⊤
jr
Āirejr + e

⊤
ir
Ājreir

= e
⊤
jr
(1e⊤irAB −A

⊤
B eire

⊤
ir
AB)ejr

+ e
⊤
ir
(1e⊤jrAB −A

⊤
B ejre

⊤
jr
AB)eir

= e
⊤
ir
ABejr − e

⊤
jr
A

⊤
B eire

⊤
ir
ABejr

+ e
⊤
jr
A

t0
eir − e

⊤
ir
A

⊤
B ejre

⊤
jr
ABeir

= airjr − (e⊤jrA
⊤
B eir )(e

⊤
ir
ABejr )

+ ajrir − (e⊤irA
⊤
B ejr )(e

⊤
jr
ABeir )

= airjr − a2irjr + ajrir − a2jrir = 0,
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s1 s2 s3 s4 s5 s6 s7 s8 s9

s1 +1 -1 +3 0 +2 0 +1 +2 -1

s2 +5 0 +2 +1 0 -1 0 +3 0

s3 +3 +2 0 +4 0 +3 +1 +2 +1

s4 +1 0 0 +3 +4 0 0 +4 0

s5 -2 -3 -1 -2 -1 -2 -1 +1 -4

s6 0 +1 0 +2 0 -1 +3 +4 0

s7 -1 +1 0 +1 +2 0 0 +5 0

s8 +3 0 +2 0 0 +4 0 +2 +4

s9 -2 -2 -1 -1 -1 -4 -1 +1 -2

(a)

s1
s2

s3

s4

s5 s6

s7

s8

s9

(b)

s1s2

s3 s4

s6

s7

s8

s5

s9

(c)

s1 s2 s3 s4 s5 s6 s7 s8 s9

0

0.5

1

(d)

s1 s2 s3 s4 s5 s6 s7 s8 s9

0

0.5

1

(e)

Fig. 6: Strategy evaluation and learning for an abstract S-NFG G. (a) The payoff matrix is for the row player and its transpose

is for the column player, where the maximum payoff of each column is highlighted in red. (b) The best-response digraph GB has

two SEs which induce the preferred strategies of the BD metric. (c) The non-dominated digraph GN has two SEs which induce

the preferred strategies of the ND metric, where the self-loops are omitted for clarity and each double arrow indicates that the

node has an arrow to all the nodes in the green rectangle. (d) The frequency of each strategy learnt by strictly best-response

self-play. (e) The frequency of each strategy learnt by weakly better-response self-play.

where the first equality is due to the second equality in (10),

and the last equality follows from the fact that airjr , ajrir ∈
{0, 1}. This coincides with Definition 7, because ir = im and

jr = jm implies that r = m, and there is no edge from r to

itself in GJ
ST. The case ir 6= im and jr = jm follows from the

similar argument to Case 2.

Remark 4. The term A⊤
B eke

⊤
k AB in Āk is used to remove

the self-loops which are not allowed in GJ
ST by Definition 7.

According to (7), the Cartesian product of GB (with itself) can

be algebraically represented as

AGB�GB
= In ⊗AB +AB ⊗ In

=

n
∑

k=1

(

eke
⊤
k ⊗AB +AB ⊗ eke

⊤
k

)

.

from which A
J
ST 6= AGB�GB

, i.e., GJ
ST 6= GB�GB.

V. NUMERICAL EXAMPLE

This section demonstrates the previous theoretical develop-

ments on a numerical example. In view of our focus on the

strategy evaluation and learning, we consider an abstract two-

player S-NFG instead of stochastic games directly.

Consider a two-player S-NFG G with 9 different strategies

S = {si}
9
i=1 for each player, in which the row player’s payoff

matrix is given by Fig. 6(a) and the maximum payoff of each

column is in red. We omit the column player’s payoff matrix,

as by symmetry, it is the transpose of the matrix in Fig. 6(a).

The induced best-response digraph GB and non-dominated

digraph GN are drawn in Figs. 6(b) and 6(c) respectively, where

the self-loops are omitted for clarity and each double arrow

in Fig. 6(c) indicates that the involved node has an arrow

to all the nodes in the related green rectangle. Therefore by

definition, the sets of preferred strategies under the BD and

ND metrics, i.e., the strategies preferred for committing to the

game system under the metrics, are

Q
#
B = {s1, s2, s3, s6, s7, s8},Q

#
N = {s1, s2, s3, s4, s6, s7, s8},

respectively. Therefore, we have Q
#
B ( Q

#
N .

With regard to the strategy learning, we consider the strictly

best-response and weakly better-response self-plays both with

maximum episode τmax = 300 and memory length L = 10.

The initial joint strategies are uniformly sampled from SJ =
S × S. We run each variant of self-play for 10000 times and

then count how many times each strategy has been learnt in

the final memory. The frequency of each strategy appearing in

the final memory using the strictly best-response and weakly

better-response self-plays is shown in Figs. 6(d) and 6(e) (bar

charts), respectively. The statistics also align with the set of

strategies occurring in the SEs over the joint strategy strictly

best-response digraph GJ
ST and joint strategy weakly better-

response digraph GJ
WR, respectively given by

Q
J#
ST = {s1, s2, s3, s6, s7, s8},

Q
J#
WR = {s1, s2, s3, s4, s6, s7, s8}.

Thus, Q
J#
ST = Q

#
B and Q

J#
WR = Q

#
N , that is, the set of all pos-

sible strategies returned by strictly best-response and weakly

better-response self-plays coincides with the set of preferred

strategies under the BD and ND metrics, respectively.

VI. CONCLUSION

We proposed the digraph-based BD and ND metrics for

the strategy evaluation in two-player symmetric games which

rank the strategies of a single player and thus help agents

commit proper strategies to the game system. For the strategy

learning, we introduced strictly best-response self-play which
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considers the strategy deviation with positive gain and weakly

better-response self-play in which checking the conditions for

changing strategies is efficient in practice. We proved that all

possible learnt strategies by weakly better-response self-play

are preferred under the ND metric, and all possible learnt

strategies by strictly best-response self-play are preferred

under the BD metric for a subclass of games. We demonstrated

that the preferred strategies by the BD metric are also preferred

by the ND metric. The adjacency matrix for the strictly best-

response self-play is a new digraph product of that for the

BD metric. Future works will involve strategy evaluation and

learning before the commitment for multi-player asymmetric

games.
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