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Abstract
We consider a variant of continuous-state partially-observable stochastic games with neural per-
ception mechanisms and an asymmetric information structure. One agent has partial information,
with the observation function implemented as a neural network, while the other agent is assumed to
have full knowledge of the state. We present, for the first time, an efficient online method to com-
pute an ε-minimax strategy profile, which requires only one linear program to be solved for each
agent at every stage, instead of a complex estimation of opponent counterfactual values. For the
partially-informed agent, we propose a continual resolving approach which uses lower bounds, pre-
computed offline with heuristic search value iteration (HSVI), instead of opponent counterfactual
values. This inherits the soundness of continual resolving at the cost of pre-computing the bound.
For the fully-informed agent, we propose an inferred-belief strategy, where the agent maintains an
inferred belief about the belief of the partially-informed agent based on (offline) upper bounds from
HSVI, guaranteeing ε-distance to the value of the game at the initial belief known to both agents.
Keywords: Minimax strategies, continual resolving, partially observable stochastic games.

1. Introduction

Partially-observable stochastic games (POSGs) are a modelling formalism that enables strategic
reasoning and (near-)optimal synthesis of strategies and equilibria in multi-agent settings with par-
tial observations and uncertainty. One-sided POSGs (Horák et al., 2023) are a tractable subclass of
two-agent, zero-sum POSGs with an asymmetric information structure, where only one agent has
partial information while the other agent is assumed to have full knowledge. This is well suited to
autonomous safety- or security-critical settings, such as patrolling or pursuit-evasion games, which
require reasoning about worst-case assumptions. Since real-world settings increasingly often utilise
neural networks (NNs) for perception tasks such as localisation and object detection, one-sided
neuro-symbolic POSGs (one-sided NS-POSGs) were introduced (Yan et al., 2023). In this model
the agent with partial information observes the environment only through a trained NN classifier,
and consequently the game is generalised to continuous environments, to align with NN semantics,
while observations remain discrete. A point-based NS-HSVI method was developed to approximate
values of one-sided NS-POSGs working with (polyhedral decompositions of) the continuous space.

Strategy synthesis for continuous games is more challenging than for the finite-state case (Horák
et al., 2023), since continuous-state spaces lead to an infinite number of strategies and discretisation
suffers from the curse of dimensionality. Several offline methods exist, based on counterfactual
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regret minimisation, heuristics or reinforcement learning (see Related Work, below). In this paper,
we consider online methods, which can improve efficiency and adaptability. The best performing
online method (Moravčı́k et al., 2017) continually resolves a local strategy that only keeps track of
the agent’s belief of its opponent state and a vector of opponent counterfactual values. Apart from
Horák et al. (2023), existing continual resolving approaches (Moravčı́k et al., 2017; Šustr et al.,
2019; Schmid et al., 2023) are for extensive form games (EFGs), and cannot be directly applied
to POSGs. This is because, although the two formalisms are connected (Kovařı́k et al., 2022),
transitioning between them is not straightforward.

Contributions. We develop a continual resolving approach for one-sided NS-POSGs, addressing
several challenges. Firstly, existing continual resolving approaches need to estimate the opponent’s
counterfactual values by solving a subgame at each stage (Moravčı́k et al., 2017), which would be
intractable for continuous games. Instead, for the agent with partial observation (Ag1), we use the
lower bound computed offline by NS-HSVI (Yan et al., 2023), giving a polyhedral bound without
solving a subgame. At each stage, we solve a linear program (LP), whose size is linear in the num-
ber of states in the current belief rather than the number of states reached, to compute the agent’s
action choice and update the lower bound. Thus, a stage strategy is computed online, in the spirit
of continual resolving, for each situation as it arises during execution, instead of storing a complete
strategy. Although we require offline computation for NS-HSVI, existing continual resolving ap-
proaches need to train deep counterfactual value networks to solve the subgame. Importantly, our
NS-HSVI continual resolving does not lose soundness, i.e., ε-exploitability (Burch et al., 2014).

We can use any synthesis method for fully-observable stochastic games to generate an ε-minimax
strategy for the fully-informed agent (Ag2) (Yan et al., 2022). However, solving the fully-observable
case would generate a complete strategy, which can be costly in terms of memory. We instead pro-
pose an online inferred-belief strategy by observing that, by using the offline upper bound from
NS-HSVI, Ag2 only needs to keep track of an inferred belief about Ag1’s belief and solve an LP, lin-
ear in the number of states in the current belief, to synthesise an action and the next inferred-belief
of Ag2. Since Ag2 is fully informed, it does not need to store its belief. This allows us to generate a
simpler strategy than the complete strategy for Ag2, which guarantees the value at the initial belief,
known to both agents, but cannot optimally employ the suboptimal actions of Ag1 during play.

Summarising the contribution, we present, for the first time, an efficient online method to com-
pute an ε-minimax strategy profile for one-sided NS-POSGs, a variant of two-player continuous-
state POSGs with neural perception mechanisms, by exploiting bounds pre-computed offline by a
variant of HSVI. We implement our approach, evaluate it on a pursuit-evasion model inspired by
mobile robotics and investigate the synthesised agent strategies.

Related Work. Existing offline strategy synthesis methods for one-sided POSGs include a space
partition approach (Zheng et al., 2022), a point-based approximate algorithm for continuous ob-
servations (Zheng et al., 2023), projection to POMDPs based on factored representations (Carr
et al., 2021) and HSVI algorithms for finite (Horák et al., 2023) and continuous-state spaces (Yan
et al., 2023). Since POSGs and EFGs are connected through factored-observation stochastic games
(Kovařı́k et al., 2022), we next review relevant methods for two-agent zero-sum EFGs.

Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) exploits the fact that the
time-averaged strategy profile of regret minimizing algorithms converges to an ε-minimax strategy
profile, in two-agent zero-sum EFGs with imperfect information. Since its introduction, a variety of
CFR variants have been proposed and successfully applied to games (Lanctot et al., 2009; Lisỳ et al.,
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2015; Burch et al., 2014). However, since the CFR-based approaches require iterative traversal of
the game tree, they become intractable when the tree is large. Additionally, these approaches are
offline algorithms, returning a complete solution strategy that is difficult to represent and store.

A number of algorithms based on game-theoretic learning models such as reinforcement learn-
ing and heuristic search have also been proposed, which are able to compute strategies for two-agent
zero-sum games with imperfect information, including (Bosansky et al., 2014; Heinrich et al., 2015;
Lanctot et al., 2017; McAleer et al., 2021) and heuristic search value iteration (HSVI) (Yan et al.,
2023; Delage et al., 2023), which we utilise in our work. However, these approaches are also offline
algorithms and unable to refine strategies at test time.

The most related approach is continual resolving used in Horák et al. (2023), which is based
on DeepStack (Moravčı́k et al., 2017), although other variants have also been proposed, e.g., (Šustr
et al., 2019; Schmid et al., 2023; Brown et al., 2020). Both Horák et al. (2023) and our work are
variants of continual resolving for one-sided POSGs, except we consider continuous-state spaces.
Under the belief update in Horák et al. (2023), the current state could be missed and the belief might
be empty. We assume a uniform stage strategy to fix this issue and ensure that the true state is always
in the current belief. The LP size in Horák et al. (2023) is fixed, while the LP in our case varies at
each stage because of no prior enumeration of all reachable states. Horák et al. (2023) performs the
belief update before Ag1 taking action and observing, whereas we update the belief using the action
and the next observation, which results in a more accurate belief.

2. Background

We briefly review the model of Yan et al. (2023), which generalises one-sided POSGs (Horák et al.,
2023) to continuous-state spaces and allows neural perception mechanisms. Let P(X) and F(X)
denote the spaces of probability measures and functions on a Borel space X , respectively.

One-sided NS-POSGs. A one-sided neuro-symbolic POSG (NS-POSG) C is a two-player zero-sum
infinite-horizon game with discrete actions and observations, where one player (Ag1) is partially
informed and the other (Ag2) is fully informed. Unlike Horák et al. (2023), the game is played
in a closed continuous environment SE , which Ag1 perceives only using perception function obs1
given as a (trained) ReLU NN classifier that maps environment states to so called percepts, ranging
over a finite set Per1. The use of classifiers is aligned with, e.g., object detection or vision tasks
in autonomous systems. We further assume that Ag1 has a discrete local state space Loc1, which is
observable to both agents, and that Ag2 has full knowledge of the environment’s state.

A game C comprises agents Ag1= (S1, A1, obs1, δ1), Ag2=(A2) and environment E=(SE , δE),
where S1 = Loc1×Per1; A = A1×A2 are joint actions; obs1 : (Loc1×SE) → Per1 is Ag1’s per-
ception function (note that we allow NNs to additionally depend on local states); δ1 : (S1×A) →
P(Loc1) is Ag1’s local transition function; and δE : (Loc1×SE×A) → P(SE) is E’s finite-
branching transition function. We work in the belief space SB ⊆ P(S), where S = S1×SE ,
and assume an initial belief binit using the particle-based representation (Porta et al., 2006; Doucet
et al., 2001). A belief of Ag1 is given by b = (s1, b1), where s1 ∈ S1, b1 ∈ P(SE) and b1 is
represented by a weighted particle set {(siE , κi)}

Nb
i=1 where κi ≥ 0 and

∑Nb
i=1κi = 1.

The game starts in a state s = (s1, sE), where s1 = (loc1, per1) ∈ S1, and s is sampled from
binit . At each stage of the game, both agents concurrently choose one of their actions. If a =
(a1, a2) ∈ A is chosen, the local state loc1 of Ag1 is updated to loc′1 ∈ Loc1 via δ1(s1, a), while the
environment updates its state to s′E ∈ SE via δE(loc1, sE , a). Finally, Ag1, based on loc′1, generates
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its percept per ′1 = obs1(loc
′
1, s

′
E) at s′E and C reaches the state s′ = ((loc′1, per

′
1), s

′
E). The

probability of transitioning from s to s′ under a is δ(s, a)(s′) = δ1(s1, a)(loc
′
1)δE(loc1, sE , a)(s

′
E).

Strategies. We distinguish between a history π (a sequence of states and joint actions, where π(k)
is the (k+1)th state, and π[k] is the (k+1)th action) and a (local) action-observation history (AOH)
for Agi (a sequence of its observations and actions). For the fully-informed Ag2, an AOH is a
history. A strategy of Agi is a mapping σi : FPathsC,i → P(Ai), where FPathsC,i is the set of
Agi’s finite AOHs. A (strategy) profile σ = (σ1, σ2) is a pair of strategies and we denote by Σi and
Σ the sets of strategies of Agi and profiles. The choices for the players after a history π are given by
stage strategies: for Ag1 this is a distribution u1 ∈ P(A1) and for Ag2 a function u2 : S → P(A2),
i.e., u2 ∈ P(A2 | S). Given a belief (s1, b1), if Ag1 chooses a1, assumes Ag2 chooses u2 and
observes s′1, then the updated belief of Ag1 via Bayesian inference is denoted (s′1, b

s1,a1,u2,s′1
1 ).

Objectives and values. We focus on infinite-horizon expected accumulated reward Eσ
b [Y ] when

starting from b under σ, where Y (π) =
∑∞

k=0 β
kr(π(k), π[k]) for an infinite history π, reward

structure r : (S×A) → R and discount β ∈ (0, 1), and Ag1 and Ag2 maximise and minimise the
expected value. Given ε≥0, a profile σ⋆ = (σ⋆

1, σ
⋆
2) is an ε-minimax strategy profile if for any

b ∈ SB , Eσ⋆

b [Y ] ≤ Eσ⋆
1 ,σ2

b [Y ]+ε for all σ2 and Eσ⋆

b [Y ] ≥ Eσ1,σ⋆
2

b [Y ]−ε for all σ1. If ε=0, then
Eσ⋆

b [Y ] is the value of C, denoted V ⋆.

One-sided NS-HSVI. HSVI is an anytime algorithm that approximates the value V ⋆ via lower and
upper bound functions, updated through heuristically generated beliefs. One-sided NS-HSVI (Yan
et al., 2023) works with the continuous-state space of a one-sided NS-POSG using a generalisation
of α-functions, similar to Porta et al. (2006), except it uses polyhedral representations induced
from NNs instead of Gaussian mixtures. For ε > 0, one-sided NS-HSVI returns lower and upper
bound functions V Γ

lb , V
Υ
ub ∈ F(SB) to approximate V ⋆ such that V Γ

lb (b) ≤ V ⋆(b) ≤ V Υ
ub(b) for all

b ∈ SB and V Υ
ub(b

init) − V Γ
lb (b

init) ≤ ε. Given f : S → R and belief (s1, b1), let ⟨f, (s1, b1)⟩ =∫
sE∈SE

f(s1, sE)b1(sE)dsE . The lower bound V Γ
lb is represented via a finite set Γ ⊆ F(S) of

piecewise-constant (PWC) α-functions such that V Γ
lb (s1, b1) = maxα∈Γ⟨α, (s1, b1)⟩. The upper

bound V Υ
ub is represented by a finite set of belief-value pairs Υ ⊆ SB×R and computed via an LP.

3. NS-HVSI Continual resolving

Continual resolving, e.g., (Moravčı́k et al., 2017), is an online method for computing an ε-minimax
strategy in two-player, zero-sum imperfect information EFGs; it keeps track of an agent’s belief of
its opponent state and opponent counterfactual values to build and solve a subgame to synthesise
choices, without building a complete strategy. It is sound, in computing an ε-minimax strategy, but
can be expensive as it needs to estimate opponent counterfactual values by traversing the game tree.

We now present a novel variant of continual resolving, which utilises the lower bound function
V Γ
lb computed by one-sided NS-HSVI to synthesise an ε-minimax strategy for Ag1 that achieves

the desired ε distance to the value function at the initial belief. The method is efficient as it only
requires solving a single LP at each stage. We first introduce the following minimax operator.

Definition 1 (Minimax) The minimax operator T : F(SB)→F(SB) is given by:

[TV ](s1, b1) = maxu1∈P(A1)minu2∈P(A2|S) E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

(a1,s′1)∈A1×S1
P (a1, s

′
1 | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s′1
1 ) (1)
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ALGORITHM 1 NS-HSVI continual resolving for Ag1’s strategy via the lower bound
Input: (sinit1 , binit1 ), a finite set of PWC functions Γ ⊆ F(S) from one-sided NS-HSVI

1: Resolve1((s
init
1 , binit1 ), αinit) where αinit = argmaxα∈Γ⟨α, (sinit1 , binit1 )⟩

2: function Resolve1((s1, b1), α1)
3: (v⋆, λ

⋆
1, p

⋆
1)← solve the LP (2) at (s1, b1)

4: ulb1 (a1)← p⋆a1 for all a1 ∈ A1

5: sample and play a1 ∼ ulb1
6: s′1 ← observed Ag1’s agent state
7: α⋆a1,s′1 ←

∑
α∈Γ(λ

⋆a1,s′1
α /p⋆a1)α, ulb2 ← an assumed stage strategy for Ag2

8: Resolve1((s
′
1, b

s1,a1,ulb
2 ,s′1

1 ), α⋆a1,s′1)

for V ∈ F(SB) and (s1, b1) ∈ SB , where E(s1,b1),u1,u2
[r(s, a)] is the expected value of r.

NS-HSVI continual resolving. Motivated by (Horák et al., 2023, Section 9.2), our online game-
playing algorithm NS-HSVI continual resolving, see Algorithm 1, generates a strategy for Ag1,
denoted σlb

1 , by using the HSVI lower bound instead of opponent counterfactual values used in
Moravčı́k et al. (2017). Since we have pre-computed V Γ

lb offline, our NS-HSVI continual resolving
only keeps track of a belief (s1, b1) and a PWC function α1 in the the convex hull, Conv(Γ), of Γ.
Importantly, Γ can be used to compute an action to play and update the tracking information at each
stage (a belief and a PWC function) by solving the LP presented below, thus avoiding the need to
estimate the opponent counterfactual values.

Definition 2 (Stage strategy) For ((s1, b1), α1) ∈ SB × Conv(Γ) where b1 is represented by
{(siE , κi)}

Nb
i=1, a stage strategy ulb1 for Ag1 is such that ulb1 (a1) = p⋆a1 for a1 ∈ A1, where (v⋆

siE
)Nb
i=1,

(λ
⋆a1,s′1
α )(a1,s′1)∈A1×S1,α∈Γ and (p⋆a1)a1∈A1 is a solution to the following LP:

maximise
∑Nb

i=1κivsiE
subject to

vsiE
≤

∑
a1∈A1

pa1r((s1, s
i
E), (a1, a2)) + β

∑
(a1,s′1)∈A1×S1,s′E∈SE

· δ((s1, siE), (a1, a2))(s′1, s′E)
∑

α∈Γ λ
a1,s′1
α α(s′1, s

′
E) for 1 ≤ i ≤ Nb and a2 ∈ A2

vsiE
≥ α1(s1, s

i
E) for 1 ≤ i ≤ Nb

λ
a1,s′1
α ≥ 0 for a1 ∈ A1, s

′
1 ∈ S1 and α ∈ Γ

pa1 =
∑

α∈Γλ
a1,s′1
α for a1 ∈ A1 and s′1 ∈ S1∑

a1∈A1
pa1 = 1. (2)

Compared with the LP in Yan et al. (2023) for solving [TV Γ
lb ](s1, b1), the LP (2) includes the addi-

tional constraints vsiE ≥ α1(s1, s
i
E) for 1 ≤ i ≤ Nb (Horák et al., 2023, Section 9.2) to refine the

minimax stage strategy in [TV Γ
lb ](s1, b1), such that the lower bound from α1 can be kept as the game

evolves, since multiple minimax stage strategies for Ag1 may exist and some of them may deviate
from α1.

We illustrate how the strategy σlb
1 is obtained in Fig. 1 (left), where the red and orange cir-

cles indicate the current state, with the size of the interior solid circle representing the probability.
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(s1, b1), α1 LP: HSVI Γ
belief
update (s′1, b

′
1), α

′
1

(s1, b1)
a1∼ulb

1
s′1

(s′1, b
′
1)

a2∼u2

α′
1

(s1, b1) LP: HSVI Υ
belief
update (s′1, b

′
1)

(s1, b1)
a2∼uub

2

a1∼u1

s′1 a1 (s′1, b
′
1)

Figure 1: Left: NS-HSVI continual resolving for the partially-informed agent Ag1 (blue). Right:
inferred-belief strategy synthesis for the fully-informed agent Ag2 (red).

When resolving the game locally ((s1, b1), α1), Ag1 (blue) plays an action a1 sampled from a stage
strategy ulb1 computed via (2). Simultaneously, Ag2 (red) plays an action a2 sampled from a stage
strategy u2, which is unknown to Ag1. The game moves to the next state and consequently Ag1
observes a new agent state s′1 ∈ S1. Based on a1, s′1 and an assumed stage strategy ulb2 for Ag2,

see lines 7–8 of Algorithm 1, Ag1 updates its belief to (s′1, b
s1,a1,ulb

2 ,s′1
1 ) via Bayesian inference, and

generates α⋆a1,s′1 ∈ Conv(Γ) from a solution to (2), which forms a new pair for the next resolving.

Remark 1 There are two key properties of Algorithm 1. First, LP (2) admits at least one solution
as V Γ

lb is computed by the one-sided NS-HSVI. Second, the current state has to be in the support of
the current belief, i.e., Ag1 does not lose track of the current state. Such a belief is called a proper
belief and this is ensured by assuming the uniform stage strategy for Ag2.

Lemma 1 (Existence and proper belief) For the NS-HSVI continual resolving at ((s1, b1), α1),
the LP (2) admits at least one solution, and if the current state is (s1, sE), then b1(sE) > 0.

Proof The optimal value V ⋆ has lower and upper bounds L = mins∈S,a∈A r(s, a)/(1 − β) and
U = maxs∈S,a∈A r(s, a)/(1 − β). Let V Γ′

lb be the lower bound of one-sided NS-HSVI (Yan et al.,
2023). Existence follows if (2) admits one solution after any point-based update. The key is to
check the feasibility of the first two constraints for vsiE of (2). Initially Γ′ = {α0} with α0(s) = L
for s ∈ S, and since α1 = α0 it is straightforward to verify that (2) admits at least one solution.

For the inductive step, we assume that (2) admits at least one solution for α ∈ Γ and α1 ∈
Conv(Γ). The point-based update computes a new set Γ′ = Γ ∪ {α⋆} of PWC functions, where
(2) admits at least one solution for α1 = α⋆. Thus, (2) admits at least one solution for α ∈ Γ and
α1 ∈ Conv(Γ) ∪ {α⋆}. Following the proof of (Horák et al., 2023, Lemma 9.6), we can show that
(2) admits at least one solution for α ∈ Γ′ and α1 ∈ Conv(Conv(Γ) ∪ {α⋆}), i.e., α1 ∈ Conv(Γ′).

To show the belief is proper, since the initial state is sampled from (sinit1 , binit1 ), which is known
to Ag1, and the uniform stage strategy for Ag2 is assumed, then the result follows.

We next show that our NS-HSVI continual resolving can inherit the soundness of continual resolv-
ing, i.e., it can compute an ε-minimax strategy for Ag1.

Theorem 1 (ε-minimax strategy for Ag1) The strategy σlb
1 in Algorithm 1 is an ε-minimax strat-

egy for Ag1 at (sinit1 , binit1 ), i.e., Eσlb
1 ,σ2

(sinit1 ,binit1 )
[Y ] ≥ V ⋆(sinit1 , binit1 )− ε for all σ2 ∈ Σ2.

Proof We adapt the proof presented for discrete one-sided POSGs in (Horák et al., 2023, Propo-
sition 9.7). Let Eσ

s [Y ] denote the expected value of Y when starting from s ∈ S under σ ∈ Σ.
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Consider any b = (s1, b1) ∈ SB and α1 ∈ Conv(Γ). We assume that Ag1 follows Resolve1 in Al-
gorithm 1 at the first t stages and then follows the uniform stage strategy. We denote such a strategy
by σb,α1,t

1 . Lemma 1 guarantees that Resolve1 can run for t stages. We next prove that, for any sE
with b1(sE) > 0, the expected value of Y from (s1, sE) under σb,α1,t

1 has the bound by α1:

Eσ
b,α1,t
1 ,σ2

(s1,sE) [Y ] ≥ α1(s1, sE)− βt(U − L) for all σ2 ∈ Σ2. (3)

We prove (3) by induction on t ∈ N. For t=0, (3) holds as U and L are trivial lower and upper
bounds, and α1 ∈ Conv(Γ) and α(s) ≤ U for all s ∈ S and α ∈ Γ. We assume (3) holds for the first
t stages and any b′ = (s′1, b

′
1) ∈ SB . The strategy σb,α1,t+1

1 implies that, at (s1, b1), Ag1 takes ulb1
(line 4) and then follows the strategy σb′,α′,t

1 if a1 is taken and s′1 is observed, where b′ = (s′1, b
′
1),

b′1 = b
s1,a1,ulb

2 ,s′1
1 and α′ = α⋆a1,s′1 . Letting u2 ∈ P(A2 | S) be the stage strategy of Ag2 at b given

by σ2, using b1(sE) > 0 by Lemma 1, the left side of (3) by replacing t with t+ 1 equals:

Eulb
1 ,u2

[r((s1, sE), a)] + β
∑

(a1,a2)∈A∧(s′1,s′E)∈Su
lb
1 (a1)u2(a2 | s1, sE)

· δ((s1, sE), (a1, a2))(s′1, s′E)E
σb′,α′,t
1 ,σ2

(s′1,s
′
E)

[Y ] by definition of ulb1 , u2 and δ

≥ mina2∈A2

(∑
a1∈A1

ulb1 (a1)r((s1, sE), (a1, a2)) + β
∑

a1∈A1∧(s′1,s′E)∈Su
lb
1 (a1)

· δ((s1, sE), (a1, a2))(s′1, s′E)E
σb′,α′,t
1 ,σ2

(s′1,s
′
E)

[Y ]
)

by linearity in u2

≥ mina2∈A2

(∑
a1∈A1

ulb1 (a1)r((s1, sE), (a1, a2)) + β
∑

a1∈A1∧(s′1,s′E)∈Su
lb
1 (a1)

· δ((s1, sE), (a1, a2))(s′1, s′E)(α⋆a1,s′1(s′1, s
′
E)− βt(U − L))

)
by induction

= mina2∈A2

(∑
a1∈A1

ulb1 (a1)r((s1, sE), (a1, a2)) + β
∑

a1∈A1∧(s′1,s′E)∈Su
lb
1 (a1)

· δ((s1, sE), (a1, a2))(s′1, s′E)α⋆a1,s′1(s′1, s
′
E)

)
− βt+1(U − L) rearranging

≥ v⋆sE − βt+1(U − L) since (v⋆, λ
⋆
1, p

⋆
1) is a solution to (2) (first constraint)

≥ α1(s1, sE)− βt+1(U − L) since (v⋆, λ
⋆
1, p

⋆
1) is a solution to (2) (second constraint)

and hence (3) holds. Letting σlb
1 = limt→∞ σbinit ,αinit ,t

1 by definition:

Eσlb
1 ,σ2

binit
[Y ] =

∫
sE∈SE

binit1 (sE)E
σlb
1 ,σ2

(sinit1 ,sE)
[Y ]dsE

≥ ⟨αinit , (sinit1 , binit1 )⟩ by (3) and definition of ⟨·, ·⟩
= V Γ

lb (b
init) by line 1 of Algorithm 1

≥ V ⋆(binit)− ε since V Γ
lb is returned by one-sided NS-HSVI

which completes the proof.

4. Inferred-Belief Strategy Synthesis

We complement our variant of continual resolving with strategy synthesis for Ag2, which utilises
the upper bound function V Υ

ub pre-computed offline and keeps track of an inferred belief about what
Ag1 believes, which could differ from Ag1’s true belief. Any offline method for fully-observable
stochastic games could instead be used, with the associated high computational and storage cost of
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ALGORITHM 2 Inferred-belief strategy synthesis for Ag2 via the upper bound
Input: (sinit1 , binit1 ), a finite set of belief-value pairs Υ by one-sided NS-HSVI

1: Resolve2(s
init
1 , binit1 )

2: function Resolve2(s1, b1)
3: uub2 ← Ag2’s minimax strategy in [TV Υ

ub ](s1, b1), (s1, sE)← current observed state
4: sample and play a2 ∼ uub2 (· | s1, sE)
5: (a1, s

′
1)← Ag1’s action and updated agent state

6: Resolve2(s
′
1, b

s1,a1,uub
2 ,s′1

1 )

generating a complete strategy. Instead, we present an efficient online algorithm, where only one LP
is solved at each stage, to synthesise an ε-minimax strategy for Ag2. Since we have pre-computed
the offline upper bound, this strategy can guarantee the minimax value from the initial belief, which
is known to both agents, but cannot optimally employ the suboptimal actions of Ag1 during play.

Inferred-belief strategy synthesis. Our inferred-belief strategy synthesis for Ag2 (Algorithm 2)
returns a strategy σub

2 based on V Υ
ub . The main idea of σub

2 is that Ag2 keeps a belief (s1, b1), about
Ag1’s belief at the current stage, and then computes an action via Resolve2 based on (s1, b1) and
V Υ
ub . This belief (s1, b1) is inferred, as Ag2 has no access to what Ag1 actually believes about the

state, except the initial belief which is common knowledge. However, since Ag2 is fully-informed,
it can simulate an inferred belief update of Ag1, i.e., its belief about Ag1’s next belief.

We illustrate the obtained strategy σub
2 in Fig. 1 (right). If (s1, b1) is what Ag2 believes about

Ag1’s belief and (s1, sE) is the current state observed by Ag2, then Ag2 chooses a2 sampled from
the stage strategy uub2 conditioned on (s1, sE) in [TV Υ

ub ](s1, b1) computed via an LP (Yan et al.,
2023). At the same time, Ag1 takes a1 ∈ A1 sampled from a stage strategy u1, where Ag2 does not
know u1. Then, the game moves to the next state and thus Ag1 observes s′1 ∈ S1. Based on a1, s′1
and uub2 , Ag2 updates its belief about Ag1’s belief via Bayesian inference to (s′1, b

s1,a1,uub
2 ,s′1

1 ).
We next show that the inferred-belief strategy is sound, i.e., the inferred-belief carries enough

information to generate an ε-minimax strategy for Ag2.

Lemma 2 (Monotonicity) If V Υ
ub is an upper bound generated during the one-sided NS-HSVI, then

[TV Υ
ub ](s1, b1) ≤ V Υ

ub(s1, b1) for all (s1, b1) ∈ SB .

Proof For a given set Υ of belief-value pairs, we first show [TV Υ
ub ] is convex and continuous. From

(Yan et al., 2023, Theorem 6 and 7) we have that [TV Υ
ub ](s1, b1) = supα∈ΓΥ⟨α, (s1, b1)⟩, where

ΓΥ ⊆ F(S) and L ≤ α(s) ≤ U for all s ∈ S and α ∈ ΓΥ. By (Horák et al., 2023, Proposition 4.9),
it follows that [TV Υ

ub ](s1, ·) is convex. For b1, b′1 ∈ P(SE) and α ∈ ΓΥ, using (Yan et al., 2023,
Theorem 1), we have |⟨α, (s1, b1)⟩ − ⟨α, (s1, b′1)⟩| ≤ Kub(b1, b

′
1), where Kub measures belief

difference, and hence |[TV Υ
ub ](s1, b1)− [TV Υ

ub ](s1, b
′
1)| ≤ Kub(b1, b

′
1).

Let V Υt

ub and It be the upper bound and the associated index set after the t-th point-based update,
respectively. Similarly to (Horák et al., 2023, Lemma 9.11), we can now prove the monotonicity
of [TV Υt

ub ] by induction on t ∈ N. For t=0, since Υ0 = {((si1, bi1), U) ∈ SB×R | i ∈ I0}
for some initial index set I0. For any (s1, b1) ∈ SB , using (1), we have [TV Υ0

ub ](s1, b1) ≤
maxs∈S∧a∈Ar(s, a) + βU = (1− β)U + βU = U = V Υ0

ub (s1, b1).
For the inductive step, we assume that [TV Υt

ub ](s′1, b
′
1) ≤ V Υt

ub (s′1, b
′
1) for all (s′1, b

′
1) ∈ SB .

Thus yi ≥ V Υt

ub (si1, b
i
1) ≥ [TV Υt

ub ](si1, b
i
1) for i ∈ It. Let (s1, b1) ∈ SB be the belief for the
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(t+1)-th point-based update. By lines 8 and 9 of (Yan et al., 2023, Algorithm 1), we have y⋆ =
[TV Υt

ub ](s1, b1) and Υt+1 = Υt ∪ {((s1, b1), y⋆)}. Using (Yan et al., 2023, Lemma 4), we have
V Υt

ub (s′1, b
′
1) ≥ V Υt+1

ub (s′1, b
′
1) for all (s′1, b

′
1) ∈ SB , from which [TV Υt

ub ](si1, b
i
1) ≥ [TV Υt+1

ub ](si1, b
i
1)

for any i ∈ It+1. Therefore we have that yi ≥ [TV Υt

ub ](si1, b
i
1) ≥ [TV Υt+1

ub ](si1, b
i
1) for any i ∈ It+1.

Now, for any (s′1, b
′
1) ∈ SB , if (λ⋆

i )i∈It+1

s′1
is a solution for V Υt+1

ub (s′1, b
′
1), then by construction:

V Υt+1

ub (s′1, b
′
1) =

∑
i∈It+1

s′1
λ⋆
i yi +Kub(b

′
1,
∑

i∈It+1

s′1
λ⋆
i b

i
1)

≥
∑

i∈It+1

s′1
λ⋆
i [TV

Υt+1

ub ](si1, b
i
1) +Kub(b

′
1,
∑

i∈It+1

s′1
λ⋆
i b

i
1) by induction

≥ [TV Υt+1

ub ](s′1,
∑

i∈It+1

s′1
λ⋆
i b

i
1) +Kub(b

′
1,
∑

i∈It+1

s′1
λ⋆
i b

i
1) since [TV Υt+1

ub ] is convex

≥ [TV Υt+1

ub ](s′1, b
′
1) since [TV Υt+1

ub ] is Kub-continuous

and hence by induction [TV Υ
ub ] is monotone as required.

Theorem 2 (ε-minimax strategy for Ag2) The strategy σub
2 in Algorithm 2 is an ε-minimax strat-

egy for Ag2 at (sinit1 , binit1 ), i.e., Eσ1,σub
2

(sinit1 ,binit1 )
[Y ] ≤ V ⋆(sinit1 , binit1 ) + ε for all σ1 ∈ Σ1.

Proof Consider b=(s1, b1) ∈ SB . We assume that Ag2 follows Resolve2 in Algorithm 2 for the
first t stages and then follows the uniform strategy, and denote this strategy by σb,t

2 . We prove by
induction on t ∈ N that the expected value of Y from b under σb,t

2 has the following upper bound:

Eσ1,σ
b,t
2

b [Y ] ≤ V Υ
ub(b) + βt(U − L) for all σ1 ∈ Σ1. (4)

For t = 0, the strategy σb,0
2 implies that Ag2 adopts the uniform strategy, and therefore (4) directly

follows as U and L are lower and upper bounds.
For the inductive step, we assume (4) holds for the first t stages. The strategy σb,t+1

2 implies
that at b = (s1, b1), Ag2 takes uub2 (line 4) and then if a1 is taken and s′1 is observed, follows the

strategy σb′,t
2 , where b′ = (s′1, b

′
1) and b′1 = b

s1,a1,uub
2 ,s′1

1 . Letting u1 ∈ P(A1) be Ag1’s stage strategy
at b given by any σ1, the left-hand side of (4) by replacing t with t+ 1 equals:

Eb,u1,uub
2
[r(s, a)] + β

∑
(a1,s′1)∈A1×S1

P (a1, s
′
1 | b, u1, uub2 )Eσ1,σ

b′,t
2

b′ [Y ]

≤ Eb,u1,uub
2
[r(s, a)] + β

∑
(a1,s′1)∈A1×S1

P (a1, s
′
1 | b, u1, uub2 )(V Υ

ub(b
′) + βt(U − L)) by induction

≤ Eb,uub
1 ,uub

2
[r(s, a)] + β

∑
(a1,s′1)∈A1×S1

P (a1, s
′
1 | b, uub1 , uub2 )V Υ

ub(b
′) + βt+1(U − L)

rearranging and since uub1 is a minimax strategy

= [TV Υ
ub ](b) + βt+1(U − L) by definition of [TV Υ

ub ]

≤ V Υ
ub(b) + βt+1(U − L) by Lemma 2

as required. Now, letting σub
2 = limt→∞ σbinit ,t

2 , from (4) we have:

Eσ1,σub
2

binit
[Y ] ≤ V Υ

ub(b
init) ≤ V ⋆(binit) + ε

where the last inequality follows from the fact that V Υ
ub is returned by one-sided NS-HSVI.

Corollary 1 (ε-minimax strategy profile) The profile (σlb
1 , σ

ub
2 ) is an ε-minimax strategy profile.
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Figure 2: Snippets of a synthesised strategy for the pursuer and evader (from left to right).

5. Experiments

We evaluated our method on a variant of a pursuit-evasion game (Horák et al., 2023), inspired by
mobile robotics (Chung et al., 2011; Isler and Karnad, 2008); see the appendix of Yan et al. (2023)
for more detail. The game involves a pursuer, whose aim is to capture an evader. The pursuer is
equipped with a ReLU NN classifier, which takes the location (coordinates) of the pursuer as input
and outputs one of the 9 abstract grid cells, each consisting of multiple polytopes, with the initial
decomposition obtained by computing the preimage of the NN (Matoba and Fleuret, 2020). The
pursuer therefore observes which cell it is in, but not its exact location, and knows neither the exact
location nor cell of the evader. The evader is fully informed and knows the exact locations of both
agents. The evader is captured when both agents are in the same cell. We set a discount of 0.7,
reward 100 for capture and timeout of 2h. The (offline) lower and upper bounds for the value of the
initial belief are 5.0699 and 6.0665, respectively. We synthesise strategies, which demonstrate that
the pursuer can eventually capture the evader with positive probability. Fig. 2 shows stage strategies
and lower bounds of states in the belief of the pursuer (top), and evader’s strategies and inferred
beliefs (bottom), at different stages. Lower bounds are coloured green and inferred beliefs yellow.
The agent positions are highlighted (pink dot for pursuer and light green for evader). The belief
of the pursuer and inferred-belief of the evader do not always coincide, e.g., in the third column,
the state with bound 2.14 is in the pursuer’s belief, but not the inferred belief. We observe that the
pursuer’s strategy selects the moves according to the magnitude of the bound, e.g., in the fourth
column, the pursuer moves up or right, since the top right evader position has the highest bound.

6. Conclusions

We have developed an efficient online method to synthesise strategies for a variant of one-sided
continuous-state POSGs with discrete observations and validated it on a pursuit-evasion game, in
which the partially-informed agent uses a neural network for perception. We have shown that com-
bining continual resolving, inferred beliefs and HSVI bounds computed offline can generate an
ε-minimax strategy profile online. For future work, we will consider aggressive assumed stage
strategies for the fully-informed agent, since uniform strategies may lead to a large number of states
in the belief and consequently large LPs to solve.
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