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Abstract. Stochastic games are a well established model for multi-agent
sequential decision making under uncertainty. In reality, though, agents
have only partial observability of their environment, which makes the
problem computationally challenging, even in the single-agent setting of
partially observable Markov decision processes. Furthermore, in prac-
tice, agents increasingly perceive their environment using data-driven
approaches such as neural networks trained on continuous data. To tackle
this problem, we propose the model of neuro-symbolic partially-observable
stochastic games (NS-POSGs), a variant of continuous-space concurrent
stochastic games that explicitly incorporates perception mechanisms. We
focus on a one-sided setting, comprising a partially-informed agent with
discrete, data-driven observations and a fully-informed agent with con-
tinuous observations. We present a new point-based method, called one-
sided NS-HSVI, for approximating values of one-sided NS-POSGs and
implement it based on the popular particle-based beliefs, showing that
it has closed forms for computing values of interest. We provide experi-
mental results to demonstrate the practical applicability of our method
for neural networks whose preimage is in polyhedral form.

1 Introduction

Strategic reasoning is essential to ensure stable multi-agent coordination in com-
plex environments, as it allows the synthesis of optimal (or near-optimal) agent
strategies and equilibria that guarantee expected outcomes, even in adversar-
ial scenarios. Examples include coordination of autonomous road or underwa-
ter vehicles and robot motion planning. Partially-observable stochastic games
(POSGs) are a natural model for real-world settings involving multiple agents,
uncertainty and partial information, but pose significant challenges. Key prob-
lems are undecidable, already for the single-agent case of partially observable
Markov decision processes (POMDPs) [22], and practical algorithms for com-
puting or approximating optimal values and strategies are lacking.

Tractability can be improved using one-sided POSGs, a subclass of two-agent,
zero-sum POSGs where only one agent has partial information while the other
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agent is assumed to have full knowledge of the state [38,39]. This is well suited to
a variety of applications, particularly when making worst-case assumptions about
one agent; examples include the attacker in a security application, modelled,
e.g., as a patrolling or pursuit-evasion game, or safety-critical settings, e.g., a
pedestrian in an autonomous driving application.

From a computational perspective, one-sided POSGs avoid the need for
nested beliefs [37], i.e., reasoning about beliefs not only over states but also
over opponents’ beliefs, since the fully informed agent can always reconstruct
beliefs for the other agent from a full history of actions and observations. Recent
computational advances for this model [17] have led to the first practical vari-
ant of heuristic search value iteration (HSVI) [31] for computing approximately
optimal values and strategies in one-sided POSGs.

However, many realistic autonomous coordination scenarios involve agents
perceiving continuous environments using data-driven observation functions, typ-
ically implemented as neural networks (NNs). Examples include autonomous
vehicles using NNs to perform object recognition or to estimate pedestrian in-
tention, or NN-enabled vision in an airborne pursuit-evasion scenario.

Such perception mechanisms bring new challenges, notably continuous envi-
ronments, which are inherently tied to NN-enabled perception because of stan-
dard training regimes. Discretising continuous models to finite-state representa-
tions, e.g, to leverage methods such as [17], is also difficult: decision boundaries
obtained for data-driven perception are typically irregular and can be misaligned
with gridding schemes for discretisation, affecting the precision of the computed
strategies. In any case, discretisation may result in an exponential growth of the
state space, depending on the granularity and the horizon.

So, in this paper, we work directly with the continuous state space of POSGs.
It was shown in [26,17] that, under discrete observations and actions, continuous-
state POMDPs and finite-state one-sided POSGs both have a piecewise lin-
ear and convex value function. In [35], this representation was generalised for
continuous-state POMDPs with NN perception mechanisms (NS-POMDPs).
The key idea is that ReLU neural network classifiers induce a finite decomposi-
tion of the continuous environment into polyhedra for each classification label.
Building on this initial decomposition, a piecewise constant representation for
the value, reward and perception functions, called α-functions, is developed.
This forms the basis for a variant of HSVI, a point-based solution method that
computes a lower and upper bound on the value function from a given belief,
progressively subdividing the continuous state space over each iteration, and
finally generating an (approximately) optimal strategy.

We extend these ideas from the single-agent (POMDP) setting [35] to zero-
sum POSGs. This is significantly more challenging, even for the asymmetric one-
sided case, because each value backup involves solving a normal form game and
closure properties with respect to the minmax operator are needed to ensure
that the polyhedral representation can be adapted to the game setting. Our
approach also goes significantly beyond HSVI for finite POSGs [17] due to the
use of α-functions and polyehdra to manage the continuous state space.
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Contributions of the paper. We make the following contributions.

1. We introduce one-sided neuro-symbolic POSGs (NS-POSGs), which gener-
alise NS-POMDPs [35] to the two-agent zero-sum case, and extend one-sided
POSGs in [17,38,39] to continuous state spaces. One-sided NS-POSGs are a
subclass of continuous-state zero-sum POSGs with hybrid observations and
discrete actions, in which the observation function of the partially-informed
agent is discrete and synthesised in a data-driven fashion, and the other
agent is fully informed with continuous observations.

2. We prove that the value function of one-sided NS-POSGs is continuous and
convex and is a fixed point of a minimax operator, which has an equivalent
maxsup formulation, motivated by [17], for discounted cumulative rewards.

3. We show that the piecewise constant α-function representation of the value
function of [35], which admits a finite polyhedral representation, is closed
with respect to the minimax operator.

4. We present a new point-based method, one-sided NS-HSVI, for solving one-
sided NS-POSGs and implement it based on the popular particle-based be-
liefs, showing that it has closed forms for computing values of interest.

5. We provide experimental results showing the applicability of one-sided NS-
HSVI in practice for neural networks whose preimage is in polyhedral form.

Related work. Solving POSGs is largely intractable. Methods based on exact
dynamic programming [15] and approximations [21,11] exist but have high com-
putational cost. Further approaches exist for zero-sum POSGs, including conver-
sion to extensive-form games [3], counterfactual regret minimisation [40,19,20]
and methods based on reinforcement learning and search [5,24]. [9] proposes an
HSVI-like finite-horizon solver that provably converges to an ε-optimal solution;
[32] provides convexity and concavity results but no algorithmic solution.

Methods exist for one-sided POSGs: a space partition approach when actions
are public [38], a point-based approximate algorithm when observations are con-
tinuous [39] and projection to POMDPs based on factored representations [7].
But these are all restricted to finite-state games. Closer to our work, but still for
finite models, is [17], which proposes an HSVI method for POSGs. As discussed
above, our continuous-state model necessitates several new techniques.

For the continuous-state but single-agent (POMDP) setting, point-based
value iteration [26,6,36] and discrete space approximation [4] can be used; the
former also use α-functions to represent value functions but, unlike our ap-
proach, work with (approximate) Gaussian mixtures or dynamic Bayes nets. We
use the same representations for lower/upper bounds as for NS-POMDPs [35],
exploiting the underlying piecewise constant structure of the continuous-state
model induced by the neural perception mechanism, but need stronger closure
properties (under the minimax operator). A multi-agent model with perception,
NS-CSGs, is proposed in [34,33], including a value iteration algorithm in [33],
but partial observability is not considered, which is the main focus of this paper.
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2 Background

POSGs. The semantics of our models are continuous-state partially observable
concurrent stochastic games (POSGs) [19,5,16]. Letting P(X) denote the space
of probability measures on a Borel space X, POSGs are defined as follows.

A two-player POSG is a tuple G = (N,S,A, δ,O, Z), where: N = {1, 2} is a
set of 2 agents; S a Borel measurable set of states; A = A1×A2 a finite set of joint
actions where Ai are actions for agent i ∈ N ; δ : (S×A) → P(S) a probabilistic
transition function; O = O1 ×O2 a finite set of joint observations where Oi are
observations for agent i ∈ N ; and Z : S ×A× S → O an observation function.

In a state s of a POSG G, each agent i selects an action ai from Ai. The
probability to move to a state s′ is δ(s, (a1, a2))(s

′), and the subsequent obser-
vation is Z(s, (a1, a2), s

′) = (o1, o2), where agent i can only observe oi. A history
of G is a sequence of states and joint actions π = s0

a0

−→ · · · at−1

−−−→ st such that
δ(sk, ak)(sk+1) > 0 for each k. For a history π, we denote by π(k) the (k + 1)th
state, and π[k] the (k+1)th action. A (local) action-observation history (AOH) is
the view of history π from the perspective of agent i in terms of their knowledge
about the current state: πi = oi,0

ai,0−−→ · · · ai,t−1−−−−→oi,t. If an agent has full infor-
mation about the state, we assume that the agent is also informed of the last
taken joint action. Let FPathsG and FPathsG,i denote the sets of finite histories
of G and AOHs of agent i, respectively.

A (behaviour) strategy of agent i is a mapping from its finite AOHs to prob-
ability distributions over actions σi : FPathsG,i → P(Ai). We denote by Σi the
set of strategies of agent i. A (strategy) profile σ = (σ1, σ2) is a pair of strategies
for each agent and we denote by Σ = Σ1 ×Σ2 the set of all profiles.

Objectives. We focus on infinite-horizon discounted accumulated reward objec-
tives, where agents 1 and 2 aim to maximise and minimise the expected value,
respectively. For state-action reward r : (S × A) → R, the discounted reward
for an infinite history π is Y (π) =

∑∞
k=0 β

kr(π(k), π[k]) where β ∈ (0, 1) is the
discount factor. Eσ

b [Y ] denotes the expected value of Y when starting from the
state distribution b ∈ P(S) under profile σ ∈ Σ.

Values and minimax strategies. Given an objective Y and an initial state
distribution b, the upper value V (b) equals infσ2∈Σ2

supσ1∈Σ1
Eσ1,σ2

b [Y ] and the

lower value V (b) equals supσ1∈Σ1
infσ2∈Σ2

Eσ1,σ2

b [Y ]. If V (b) = V (b) for all b ∈
P(S), then the common function is called the value of G, denoted by V ⋆. A
profile σ⋆ = (σ⋆

1 , σ
⋆
2) is a minimax strategy profile if for all b ∈ P(S), Eσ⋆

1 ,σ
⋆
2

b [Y ] ≤
Eσ⋆

1 ,σ2

b [Y ] for all σ2 ∈ Σ2 and Eσ⋆
1 ,σ

⋆
2

b [Y ] ≥ Eσ1,σ
⋆
2

b [Y ] for all σ1 ∈ Σ1.

3 One-Sided Neuro-Symbolic POSGs

We now introduce our model, aimed at commonly deployed multi-agent scenarios
with data-driven perception, necessitating the use of continuous environments.
We also present a motivating example of a pedestrian-vehicle interaction.
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One-sided NS-POSGs. A one-sided neuro-symbolic POSG (NS-POSG) com-
prises a partially informed neuro-symbolic agent and a fully informed agent act-
ing in a continuous-state environment. The first agent has a finite set of local
states, and is endowed with a data-driven perception mechanism, through which
it makes (finite-valued) observations of the environment’s state, stored locally
as percepts. The second agent can observe the local state and percept of the first
agent, as well as the state of the environment directly.

Definition 1 (NS-POSG) A (two-player) one-sided NS-POSG C comprises
agents Ag1=(S1, A1, obs1, δ1) and Ag2=(A2) and environment E=(SE , δE) where:

– S1 = Loc1×Per1 is a set of states for Ag1, where Loc1 ⊆ Rb1 and Per1 ⊆ Rd1

are finite sets of local states and percepts, respectively;
– SE ⊆ Re is a closed set of continuous environment states;
– Ai is a finite set of actions for Agi and A := A1×A2 is a set of joint actions;
– obs1 : (Loc1 × SE) → Per1 is Ag1’s perception function;
– δ1 : (S1 ×A) → P(Loc1) is Ag1’s probabilistic local transition function;
– δE : (Loc1 ×SE ×A) → P(SE) is a finitely-branching probabilistic transition

function for the environment.

One-sided NS-POSGs are a subclass of two-agent continuous-state POSGs with
discrete observations (agent states S1) and actions for Ag1, and continuous ob-
servations (states S1 × SE) and discrete actions for Ag2. Thus, Ag1 is partially
informed, without access to the environment state, while Ag2 is fully informed.
Since Ag2 needs no observations, we omit its local state (and transition function).

The game executes as follows. A global state of C comprises a state s1 =
(loc1, per1) for the agent Ag1 (a local-state-percept pair) and an environment
state sE . In state s = (s1, sE), the two agents concurrently choose one of their
actions, resulting in a joint action a = (a1, a2) ∈ A. Next, the local state of
Ag1 is updated to some loc′1 ∈ Loc1, according to δ1(s1, a). At the same time,
the environment updates its state to some s′E ∈ SE according to δE(loc1, sE , a).
Finally, the first agent Ag1, based on loc′1, observes s

′
E to generate a new percept

per ′1 = obs1(loc
′
1, s

′
E) and C reaches the global state s′ = ((loc′1, per

′
1), s

′
E).

We allow any (deterministic) function obs1 from the continuous environment
and discrete local states to percepts. However, we here focus on perception func-
tions implemented via (trained) neural networks f : Rb1+e → P(Per1), yielding
scores over different percepts, from which the percept with the maximum score is
selected. The restriction to deterministic functions with discrete outputs is well
aligned with NN classifiers in applications, e.g., object detection. A polyhedral
decomposition of the continuous state space can be obtained by computing the
preimage of the (ReLU or ReLU approximated) perception function [23].

Motivating example: Pedestrian-vehicle interaction. A key challenge for
autonomous driving in urban environments is predicting the intentions or actions
of pedestrians. One solution is NN models, e.g., trained on video datasets [28,27].
We consider decision making for an autonomous vehicle using an NN-based in-
tention estimation model for a pedestrian at a crossing [27]. We use their simpler
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y1

Fig. 1: Pedestrian-vehicle example. Left: Positions of two agents. Middle: Sample
images from the PIE dataset [27]. Right: Slices of learnt perception function.

“vanilla” model, which takes the (relative) location of a pair of successive fixed-
size bounding boxes around the pedestrian, and classifies intention as: unlikely
to cross; likely to cross; very likely to cross. We train a feed-forward NN with
ReLU activation functions over the PIE dataset [27].

We build this perception mechanism into an NS-POSG model of a vehicle
yielding at a pedestrian crossing, based on [12] (see Figure 1). A pedestrian fur-
ther ahead at the side of the road may decide to cross and the vehicle must decide
how to adapt its speed. The first, partially-informed, agent represents the vehicle,
who perceives the environment (successive pedestrian positions (x1, y1), (x2, y2))
using an NN, storing the three possible intentions as percepts, and picks an ac-
celeration action. Its local state also includes its speed. The second agent, the
pedestrian, is fully informed, providing a worst-case analysis of the vehicle de-
cisions, and can decide to cross or return to the roadside. Figure 1 also shows
selected slices of the state space decomposition obtained by computing the preim-
age [23] of the learnt NN: green, yellow and red corresponding to classifications
not likely, likely and very likely to cross, respectively. The goal of the vehicle is
to minimise likelihood of collision with the pedestrian, which is achieved using a
positive reward for each step without a crash. More details are given in Appx. F.

One-sided NS-POSG semantics. The semantics of a one-sided NS-POSG C is
a POSG JCK over the product of the (discrete) states of Ag1 and the (continuous)
states of the environment, restricting to states that are percept compatible, i.e.,
where per1 = obs1(loc1, sE) for s = ((loc1, per1), sE). The semantics of a one-
sided NS-POSG is closed with respect to percept compatible states.

Definition 2 (NS-POSG semantics) Given a one-sided NS-POSG C, as in
Definition 1, its semantics is the POSG JCK = (N,S,A, δ,O, Z) where:

– N = {1, 2} is a set of two agents and A = A1 ×A2;
– S ⊆ S1 × SE is the set of percept compatible states;
– for s = (s1, sE), s

′ = (s′1, s
′
E) ∈ S and a ∈ A where s1 = (loc1, per1) and

s′1 = (loc′1, per
′
1), we have δ(s, a)(s′) = δ1(s1, a)(loc

′
1)δE(loc1, sE , a)(s

′
E);
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– O = O1 ×O2, where O1 = S1 and O2 = S;
– Z(s, a, s′) = (s′1, s

′) for s ∈ S, a ∈ A and s′ = (s′1, s
′
E) ∈ S.

Since δE has finite branching and S1 is finite, the branching set Θa
s = {s′ |

δ(s, a)(s′) > 0} is finite for all s ∈ S and a ∈ A. Note that, while one-sided
NS-POSGs are finite branching, they are not discrete.

One-sided NS-POSG Strategies. As JCK is a POSG, we consider (behaviour)
strategies for two agents. To align with the perfect information view of Ag2, we
assume that Ag2 also has full information about the joint actions taken, through
which it can recover the beliefs of Ag1, thus removing nested beliefs. Hence, the
AOHs of Ag2 are equal to the histories of C, i.e., FPathsJCK,2 = FPathsJCK.

We also consider the stage strategies at a single decision point, i.e., a history
of C, which are required for solving the induced zero-sum normal-formal games
in the minimax operator. For a history π of C, a stage strategy for Ag1 is a
distribution u1 ∈ P(A1) and a stage strategy for Ag2 is a function u2 : S →
P(A2), i.e., u2 ∈ P(A2 | S).
Beliefs. Since Ag1 is partially informed, it may need to infer the current state
from its AOH. For an Ag1 state s1 = (loc1, per1), we let Ss1

E be the set of
environment states compatible with s1, i.e., S

s1
E = {sE ∈ SE | obs1(loc1, sE) =

per1}. Since the states of Ag1 are also the observations of Ag1 and states of JCK
are percept compatible, a belief for Ag1, which can also be reconstructed by Ag2,
can be represented as a tuple of the form b = (s1, b1), where s1 ∈ S1, b1 ∈ P(SE)
and b1(sE) = 0 for all sE ∈ SE \ Ss1

E . We denote by SB the set of beliefs of Ag1.
Finally, given a belief (s1, b1), if action a1 is selected by Ag1, Ag2 is assumed

to take the stage strategy u2 ∈ P(A2 | S) and s′1 is observed, then the updated

belief of Ag1 via Bayesian inference is (s′1, b
s1,a1,u2,s

′
1

1 ) (see closed-form belief
updates and probability measures involved in Appx. A).

4 Values of One-Sided NS-POSGs

We establish the value of a one-sided NS-POSG, which is a function from initial
beliefs to values. We first show the convexity and continuity of the value function.
Next, to compute it, we introduce the minimax operator and a maxsup operator
specialised for one-sided NS-POSGs, and prove their equivalence. Finally, we
provide a fixed-point characterization of the value function.

The value function. The value function of C (see Section 2) represents the
minimax expected reward in each possible initial belief of the game and is given
by V ⋆ : SB → R, where V ⋆(s1, b1) = Eσ⋆

(s1,b1)
[Y ] for all (s1, b1) ∈ SB and σ⋆ is

a minimax strategy profile. The value for zero-sum POSGs may not exist when
the state space is uncountable [13,2,29] as in our case. In this paper, we only
consider one-sided NS-POSGs that are determined.

Convexity and continuity. Since r is bounded, the value function V ⋆ has lower
and upper bounds L = mins∈S,a∈A r(s, a)/(1−β) and U = maxs∈S,a∈A r(s, a)/(1−
β). We prove the following (this and all other results are proved in Appx. E).
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Theorem 1 (Convexity and continuity). For s1 ∈ S1, V
⋆(s1, ·) : P(SE) →

R is convex and continuous and b1, b
′
1 ∈ P(SE) : |V ⋆(s1, b1) − V ⋆(s1, b

′
1)| ≤

K(b1, b
′
1) where K(b1, b

′
1) =

1
2 (U − L)

∫
sE∈S

s1
E

∣∣b1(sE)− b′1(sE)
∣∣dsE.

Minimax and maxsup operators. Since the sup inf and inf sup do not provide
a straightforward recipe for computing value function V ⋆, we provide a fixed-
point characterization. We introduce a minimax operator and then simplify it to
an equivalent maxsup variant. The latter will be used in Section 5 to prove closure
of our representation for value functions and in Section 6 to formulate HSVI.
Given f : S → R and belief (s1, b1), let ⟨f, (s1, b1)⟩ =

∫
sE∈SE

f(s1, sE)b1(sE)dsE
and F(SB) denote the space of functions over the beliefs SB .

Definition 3 (Minimax) The minimax operator T : F(SB)→F(SB) is defined:

[TV ](s1, b1) = max
u1∈P(A1)

min
u2∈P(A2|S)

E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

(a1,s′1)∈A1×S1
P (a1, s

′
1 | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) (1)

for V ∈ F(SB) and (s1, b1) ∈ SB, where E(s1,b1),u1,u2
[r(s, a)] =

∫
sE∈SE

b1(sE)∑
(a1,a2)∈A u1(a1)u2(a2 | s1, sE)r((s1, sE), (a1, a2))dsE.

Minimising over P(A2 | S) in (1) is challenging as both P(A2 | S) and S are
uncountable sets. Motivated by [17], which proposed a comparable equivalent
operator for the discrete case, we instead prove that the minimax operator has
an equivalent simplified form over convex continuous functions of F(SB).

For Γ ⊆ F(S), we let ΓA1×S1 denote the set of vectors of elements of
the convex hull of Γ indexed by A1 × S1. Furthermore, for u1 ∈ P(A1), α =
(αa1,s

′
1)(a1,s′1)∈A1×S1

∈ ΓA1×S1 and a2 ∈ A2, we define fu1,α,a2
: S → R to be

the function such that, for any s ∈ S, fu1,α,a2
(s) equals the backup value at s if

Ag1 selects u1, Ag2 selects a2 at s and retrieves values from α, i.e., we have (the
summation over s′E is due to the finite branching of δ):

fu1,α,a2(s) =
∑

a1∈A1
u1(a1)r(s, (a1, a2))+

β
∑

(a1,s′1)∈A1×S1
u1(a1)

∑
s′E∈SE

δ(s, (a1, a2))(s
′
1, s

′
E)α

a1,s
′
1(s′1, s

′
E) . (2)

Definition 4 (Maxsup) If there exists Γ ⊆ F(S) such that for (s1, b1) ∈ SB,
V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩, then the maxsup operator T : F(SB) → F(SB) is
defined as: [TV ](s1, b1) = maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ for (s1, b1) ∈
SB where fu1,α(s) = mina2∈A2

fu1,α,a2
(s) for all s ∈ S.

In the maxsup operator, u1 and α are aligned with Ag1’s goal and both are
optimised to maximise the objective in Definition 4, where u1 is over action
distributions and α is over the convex combinations of functions in Γ . The
minimisation by Ag2 is simplified to an optimiation over the finite action set
and occurs in constructing the function fu1,α. Note that each state may require
a different minimiser a2, as Ag2 knows the current state before taking an action.
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The maxsup operator avoids the minimisation over Markov kernels with con-
tinuous states in the original minimax operator. Note that, given u1 and α, the
minimisation can induce a pure best-response stage strategy u2 ∈ P(A2 | S)
such that, for any s ∈ S, u2(a

′
2 | s) = 1 for some a′2 ∈ argmina2∈A2 fu1,α,a2(s).

The equivalence between the maxsup and minimax operators and the fixed-point
result are stated as follows, respectively.

Theorem 2 (Operator equivalence). The maxsup and minimax operators
are equivalent over functions V ∈ F(SB) where there exists Γ ⊆ F(S) such that
V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for all (s1, b1) ∈ SB.

Theorem 3 (Fixed point). The unique fixed point of T is V ⋆.

5 P-PWLC Value Iteration

We next show that piecewise constant (PWC) representations for the percep-
tion, reward and transition functions originally introduced for NS-POMDPs [35]
are closed with respect to the maxsup operator, and thus also sufficient for one-
sided NS-POSGs under mild assumptions. This representation, called P-PLWC,
extends the α-functions of [26,6,36], except that we work with polyhedral rep-
resentations induced from NNs, not Gaussian mixtures as in [26]. Building on
this representation, we give a (non-scalable) value iteration (VI) algorithm and
then, in Section 6, a more practical point-based HSVI algorithm.

PWC representations. A finite connected partition (FCP) of S, denoted Φ,
is a finite collection of disjoint connected regions (subsets) that cover S.

Definition 5 (PWC function) A function f : S → R is piecewise constant
(PWC) if there exists an FCP Φ of S such that f : ϕ → R is constant for all
ϕ ∈ Φ. Such an FCP Φ is called constant-FCP of S for f .

Since we use an NN for Ag1’s perception function obs1, it is PWC (as for the
one-agent case [35]) and the state space S of a one-sided NS-POSG can be
decomposed into a finite set of regions, each with the same observation. Formally,
there exists a perception FCP ΦP , the smallest FCP of S such that all states
in any ϕ ∈ ΦP are observationally equivalent, i.e., if (s1, sE), (s

′
1, s

′
E) ∈ ϕ, then

s1 = s′1 and we let sϕ1 = s1. We can use ΦP to find the set S
s′1
E for any agent

state s′1 ∈ S1 over which we integrate beliefs in closed form, see e.g., beliefs in
Section 3. Given an NN representation of obs1, the corresponding FCP ΦP can
be extracted (or approximated) offline by analyzing its pre-image [23].

In addition to this, we need to make some mild assumptions about a one-
sided NS-POSG’s transitions and reward functions (in a similar style to [35]).
We describe this informally below, and defer a precise definition to Appx. B.

Assumption 1 (Transition and reward functions) The functions δ1 and r
induce decompositions of the state space into a finite set of regions, so that states
in a given region transition to the same region and states in the same region have
the same rewards. The function δE is represented by a probabilistic choice over
a finite number of continuous (deterministic) functions.

9



Assumption 1 does not necessarily imply that V ⋆ itself is PWC, as the continuous-
state space S is typically continually subdivided as the computation of V ∗ pro-
gresses. We now show, using results for continuous-state POMDPs [35,26], that
V ⋆ is the limit of a sequence of α-functions, called piecewise linear and convex
under PWC α-functions (P-PWLC). This representation was first introduced
in [35] for NS-POMDPs. Let FC(S) be the subset of PWC functions of F(S).

Definition 6 (P-PWLC function) A function V : SB → R is piecewise lin-
ear and convex under PWC α-functions (P-PWLC) if there exists a finite set
Γ ⊆ FC(S) such that V (s1, b1) = maxα∈Γ ⟨α, (s1, b1)⟩ for all (s1, b1) ∈ SB where
the functions in Γ are called PWC α-functions.

Definition 6 implies that, if V ∈ F(SB) is P-PWLC, then it can be represented
by a set Γ of PWC continuous-state functions over S (i.e., as a finite set of
FCP regions and a value vector). For one-sided NS-POSGs, we demonstrate
that, under Assumption 1, a P-PWLC representation of value functions is closed
under the maxsup operator and the convergence of value iteration.

Closure property. We first show that if V is P-PWLC, the maxsup operator
[TV ](s1, b1) at a belief (s1, b1) can be computed by solving an LP. We prove
that fu1,α,a2

in (2) is PWC for any u1 ∈ P(A1), α ∈ ΓA1×S1 and a2 ∈ A2 (see
Lemma 7 in Appx. E). Then, there exists an FCP ΦΓ of S such that fu1,α,a2

is
constant in each region of ΦΓ for all u1 ∈ P(A1), α ∈ ΓA1×S1 and a2 ∈ A2.

Lemma 1 (LP for maxsup and P-PWLC) If V ∈ F(SB) is P-PWLC with
PWC α-functions Γ , then for any (s1, b1) ∈ SB, [TV ](s1, b1) is given by the LP

over the real-valued variables (vϕ)ϕ∈ΦΓ
, (λ

a1,s
′
1

α )(a1,s′1)∈A1×S1,α∈Γ and (pa1)a1∈A1
:

maximise
∑

ϕ∈ΦΓ
vϕ

∫
(s1,sE)∈ϕ

b1(sE)dsE subject to

vϕ ≤
∑

a1∈A1
pa1r((s1, sE), (a1, a2)) + β

∑
a1,s′1,s

′
E
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)

·
∑

α∈Γ λ
a1,s

′
1

α α(s′1, s
′
E), λ

a1,s
′
1

α ≥ 0, pa1=
∑

α∈Γλ
a1,s

′
1

α and
∑

a1∈A1
pa1=1 (3)

for all ϕ ∈ ΦΓ , a2 ∈ A2, (a1, s
′
1) ∈ A1 × S1 and α ∈ Γ where sE ∈ ϕ.

If (v⋆, λ
⋆

1, p
⋆
1) is the optimal solution to the LP (3), then the maximiser of the

maxsup operator in Definition 4 is (p⋆1, α
⋆), where α⋆ ∈ ΓA1×S1 is such that for

(a1, s
′
1) ∈ A1×S1, if a1 ∈ A1 and p⋆a1 > 0, then α⋆a1,s

′
1 =

∑
α∈Γ (λ

⋆a1,s
′
1

α /p⋆a1)α

and α⋆a1,s
′
1(s) = L for all s ∈ S otherwise. We can now show that the P-PWLC

representation is closed under the maxsup operator.

Theorem 4 (P-PWLC closure). If V ∈ F(SB) is P-PWLC, then so is [TV ].

The closure property from Theorem 4 enables iterative computation of a se-
quence of such functions to approximate V ⋆ to within a convergence guarantee.

Lemma 2 (P-PWLC convergence) If V 0 ∈ F(SB) is P-PWLC, then the
sequence (V t)∞t=0, such that V t+1 = [TV t] are P-PWLC and converges to V ⋆.
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An implementation of value iteration for one-sided NS-POSGs is therefore fea-
sible, since each α-function involved is PWC and thus allows for a finite rep-
resentation. However, as the number of α-functions grows exponentially in the
number of agent states S1, it is not scalable in practice.

6 Heuristic Search Value Iteration for NS-POSGs

To provide a more practical approach to solving one-sided NS-POSGs, we now
present a variant of HSVI (heuristic search value iteration) [31], an anytime al-
gorithm that approximates the value function V ⋆ via lower and upper bound
functions, updated through heuristically generated beliefs. HSVI was proposed
for NS-POMDPs in [35] using P-PWLC functions and belief-value induced func-
tions, ideas which we build upon to tackle one-sided NS-POSGs.

The presence of two agents with opposite goals brings three main challenges
to developing an HSVI algorithm. First, the value backups at a belief point re-
quire solving normal-formal games instead of maximising over the actions of one
agent. Second, since the first agent is not informed of the joint action, uncount-
ably many possible stage strategies by the second agent in the maxsup operator
have to be considered in the value backups and belief updates, whereas, in the
single-agent variant, the agent can decide the transition probabilistically on its
own. Third, the forward exploration heuristic is more complicated as the largest
difference between the lower and upper bounds at the next-step belief depends
on the stage strategies of two agents in two stage games. We now introduce the
key ingredients of our one-sided variant of the NS-HSVI algorithm.

6.1 Lower and Upper Bound Representations

Lower bound function. Selecting an appropriate representation for α-functions
requires closure properties with respect to the maxsup operator. Motivated
by [35], we represent the lower bound V Γ

lb ∈ F(SB) as the P-PWLC function
for a finite set Γ ⊆ FC(S) of PWC α-functions (see Definition 6), for which the
closure is guaranteed by Theorem 4. The lower bound V Γ

lb has a finite represen-
tation as each α-function is PWC, and is initialized as in [17].

Upper bound function. The upper bound V Υ
ub ∈ F(SB) is represented by a

finite set of belief-value points Υ = {((si1, bi1), yi) ∈ (S1 × P(SE)) × R | i ∈ I}
where yi is an upper bound of V ⋆(si1, b

i
1). Similarly to [35], for any (s1, b1) ∈

S1×P(SE) the upper bound V Υ
ub(s1, b1) is the lower envelope of the lower convex

hull of the points in Υ satisfying the following LP problem: minimise∑
i∈Is1

λiyi +Kub(b1,
∑

i∈Is1

λib
i
1) subject to λi ≥ 0 and

∑
i∈Is1

λi = 1 (4)

for i ∈ Is1
where Is1 = {i ∈ I | si1 = s1} and Kub : P(SE) × P(SE) → R

measures the difference between two beliefs such that, if K is the function from
Theorem 1, then for any b1, b

′
1, b

′′
1 ∈ P(SE): Kub(b1, b1) = 0,

Kub(b1, b
′
1) ≥ K(b1, b

′
1) and |Kub(b1, b

′
1)−Kub(b1, b

′′
1)| ≤ Kub(b

′
1, b

′′
1) . (5)
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Algorithm 1 Point-based Update(s1, b1) of (V
Γ
lb , V

Υ
ub)

1: (v⋆, λ
⋆
1, p

⋆
1)← [TV Γ

lb ](s1, b1) via the LP (3)
2: α⋆ ← a vector PWC α-functions using λ

⋆
1 and p⋆1

3: for ϕ ∈ ΦP do
4: if sϕ1 = s1 and

∫
(s1,sE)∈ϕ

b1(sE)dsE > 0 then

5: α⋆(ŝ1, ŝE)← fp⋆1 ,α⋆(ŝ1, ŝE) for (ŝ1, ŝE) ∈ ϕ ▷ ISPP backup
6: else α⋆(ŝ1, ŝE)← L for (ŝ1, ŝE) ∈ ϕ

7: Γ ← Γ ∪ {α⋆}
8: y⋆ ← [TV Υ

ub ](s1, b1) via (1) and (4)
9: Υ ← Υ ∪ {((s1, b1), y⋆)}

Note that (4) is close to the upper bound in regular HSVI for finite-state spaces,
except for the functionKub that measures the difference between two beliefs (two
continuous-state functions). With respect to the upper bound for NS-POMDPs
[35], Kub here needs to satisfy an additional triangle property in (5) to ensure
the continuity of V Υ

ub , for the convergence of the point-based algorithm below.
The properties on Kub imply that (4) is an upper bound after a value backup,
as stated in Lemma 4 below. The upper bound V Υ

ub is initialized as in [17].

Lower bound updates. For the lower bound V Γ
lb , in each iteration we add a

new PWC α-function α⋆ to Γ at a belief (s1, b1) ∈ SB such that:

⟨α⋆, (s1, b1)⟩ = [TV Γ
lb ](s1, b1) = ⟨fp⋆

1 ,α
⋆ , (s1, b1)⟩ (6)

where the second equality follows from the operator equivalence in Theorem 2
and the LP (3), (v⋆, λ

⋆

1, p
⋆
1) is an optimal solution to the LP (3) at (s1, b1) and

α⋆ ∈ ΓA1×S1 is the vector of PWC α-functions based on λ
⋆

1 and p⋆1.
Using p⋆1, α

⋆ and the perception FCP ΦP , Algorithm 1 computes a new α-
function α⋆ at belief (s1, b1). To guarantee (6) and improve the efficiency, we only
compute the backup values for regions ϕ ∈ ΦP over which (s1, b1) has positive

probabilities, i.e., sϕ1 = s1 (recall sϕ1 is the unique agent state appearing in ϕ)
and

∫
(s1,sE)∈ϕ

b1(sE)dsE > 0 and assign the trivial lower bound L otherwise.

For each region ϕ: α⋆(ŝ1, ŝE) = fp⋆
1 ,α

⋆(ŝ1, ŝE) or α⋆(ŝ1, ŝE) = L for all
(ŝ1, ŝE) ∈ ϕ. Computing the backup values in line 5 of Algorithm 1 state by
state is computationally intractable, as ϕ contains an infinite number of states.
However, the following lemma shows that α⋆ is PWC, allowing a tractable region-
by-region backup, called Image-Split-Preimage-Product (ISPP) backup, which
is adapted from the single-agent variant in [35]. The details of the ISPP backup
for one-sided NS-POSGs are in Appx. C. The lemma also shows that the lower
bound function increases and is valid after each update.

Lemma 3 (Lower bound) The function α⋆ generated by Algorithm 1 is a
PWC α-function satisfying (6), and if Γ ′ = Γ ∪ {α⋆}, then V Γ

lb ≤ V Γ ′

lb ≤ V ⋆.

Upper bound updates. For the upper bound V Υ
ub , due to representation (4),

at a belief (s1, b1) ∈ SB in each iteration, we add a new belief-value point
((s1, b1), y

⋆) to Υ such that y⋆ = [TV Υ
ub ](s1, b1). Computing [TV Υ

ub ](s1, b1) via

12



Algorithm 2 One-sided NS-HSVI for one-sided NS-POSGs

1: while V Υ
ub(s

init
1 , binit1 )− V Γ

lb (s
init
1 , binit1 ) > ε do Explore((sinit1 , binit1 ), 0)

2: return V Γ
lb and V Υ

ub via sets Γ and Υ
3: function Explore((s1, b1), t)
4: (ulb

1 , u
lb
2 )← minimax strategy profile in [TV Γ

lb ](s1, b1)
5: (uub

1 , uub
2 )← minimax strategy profile in [TV Υ

ub ](s1, b1)
6: Update(s1, b1) ▷ Algorithm 1
7: (â1, ŝ1)← select according to forward exploration heuristic

8: if P (â1, ŝ1 | (s1, b1), uub
1 , ulb

2 )excesst+1(ŝ1, b
s1,â1,u

lb
2 ,ŝ1

1 ) > 0 then

9: Explore((ŝ1, b
s1,â1,u

lb
2 ,ŝ1

1 ), t+ 1)
10: Update(s1, b1) ▷ Algorithm 1

(1) and (4) requires the concrete formula for Kub and the belief representations.
Thus, we will show how to compute [TV Υ

ub ](s1, b1) when introducing belief rep-
resentations below. The following lemma shows that y⋆ ≥ V ⋆(s1, b1) required by
(4), and the upper bound function is decreasing and is valid after each update.

Lemma 4 (Upper bound) Given belief (s1, b1) ∈ SB, if y
⋆ = [TV Υ

ub ](s1, b1),
then y⋆ is an upper bound of V ⋆ at (s1, b1), i.e., y

⋆ ≥ V ⋆(s1, b1), and if Υ ′ =
Υ ∪ {((s1, b1), y⋆)}, then V Υ

ub ≥ V Υ ′

ub ≥ V ⋆.

6.2 One-Sided NS-HSVI Algorithm

Algorithm 2 presents the NS-HSVI algorithm for one-sided NS-POSGs.

Forward exploration heuristic. The algorithm uses a heuristic approach to
select which belief will be considered next. Similarly to finite-state one-sided
POSGs [17], we focus on a belief that has the highest weighted excess gap. The
excess gap at a belief (s1, b1) with depth t from the initial belief is defined by
excesst(s1, b1) = V Υ

ub(s1, b1) − V Γ
lb (s1, b1) − ρ(t), where ρ(0) = ε and ρ(t + 1) =

(ρ(t) − 2(U − L)ε̄)/β, and ε̄ ∈ (0, (1 − β)ε/(2U − 2L)). Then, the next action-
observation pair (â1, ŝ1) for exploration is selected from:

argmax(a1,s′1)∈A1×S1
P (a1, s

′
1 | (s1, b1), uub

1 , ulb
2 )excesst+1(s

′
1, b

s1,a1,u
lb
2 ,s′1

1 ) . (7)

To compute the next belief via lines 8 and 9, the minimax strategy profiles in
stage games [TV Γ

lb ](s1, b1) and [TV Υ
ub ](s1, b1), i.e., (u

ub
1 , ulb

2 ), are required. Since
V Γ
lb is P-PWLC, then using Lemma 1, the strategy ulb

2 is obtained by solving
the dual of the LP (3). However, the computation of the strategy uub

1 depends
on the representation of (s1, b1) and the measure function Kub , and thus will be
discussed later. One-sided NS-HSVI has the following convergence guarantees.

Theorem 5 (One-sided NS-HSVI). For any (sinit1 , binit1 ) ∈ SB and ε > 0, Al-
gorithm 2 will terminate and upon termination: V Υ

ub(s
init
1 , binit1 )−V Γ

lb (s
init
1 , binit1 ) ≤

ε and V Γ
lb (s

init
1 , binit1 ) ≤ V ⋆(sinit1 , binit1 ) ≤ V Υ

ub(s
init
1 , binit1 ).
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6.3 Belief Representation and Computations

Implementing one-sided NS-HSVI depends on belief representations, as closed
forms are needed. We consider the popular particle-based representation [35,26,10],
which can approximate arbitrary beliefs and handle non-Gaussian systems.

Particle-based beliefs. A particle-based belief (s1, b1) ∈ SB is represented by
a weighted particle set {(siE , κi)}Nb

i=1 with normalized weights, where b1(sE) =∑Nb

i=1κiD(sE−siE) for sE ∈ SE andD(sE−siE) is a Dirac delta function centered
at 0. Let P (sE ; b1) be the probability of particle sE under b1.

To implement one-sided NS-HSVI using particle-based beliefs, we must demon-
strate that V Γ

lb and V Υ
ub are eligible representations for particle-based beliefs,

i.e., that closed forms exist for the quantities of interest. For a particle-based
belief (s1, b1), we can compute b

s1,a1,u2,s
′
1

1 , ⟨α, (s1, b1)⟩, ⟨r, (s1, b1)⟩ and P (a1, s
′
1 |

(s1, b1), u1, u2) as simple summations (see Appx. A).

Lower bound and stage game. Since V Γ
lb is P-PWLC with PWC α-functions

Γ , for a particle-based belief (s1, b1) represented by {(siE , κi)}Nb
i=1, using Defini-

tion 6, V Γ
lb (s1, b1) = maxα∈Γ

∑Nb

i=1 κiα(s1, s
i
E). Using Lemma 1, the stage game

[TV Γ
lb ](s1, b1) equals the optimal value of the LP (3). Solving (3) and its dual

LP (see Appx. D), we obtain the minimax strategy profile (ulb
1 , u

lb
2 ).

Upper bound and stage game. To compute V Υ
ub in (4), we need to design a

function Kub that measures belief differences that satisfy (5). We take Kub = K.
By the definition of K, Kub satisfies (5) and Kub(b1, b

′
1) is equal to:

Kub(b1, b
′
1) =

1
2 (U − L)

∑
b1(sE)+b′1(sE)>0|P (sE ; b1)− P (sE ; b

′
1)| . (8)

Given Υ = {((si1, bi1), yi) | i ∈ I}, the upper bound can be computed by solving
an LP as demonstrated by the following lemma.

Lemma 5 (LP for upper bound) Given the function Kub from (8), and for
particle-based belief (s1, b1), V

Υ
ub(s1, b1) is the optimal value of the LP:

minimise
∑

k∈Is1

λkyk + 1/2(U − L)
∑

sE∈S+
E
csE subject to

csE ≥ |P (sE ; b1)−
∑

k∈Is1

λkP (sE ; b
k
1)|, λk ≥ 0 and

∑
k∈Is1

λk = 1

for sE ∈ S+
E and k ∈ Is1

, where S+
E = {sE ∈ SE | b1(sE) +

∑
k∈Is1

bk1(sE) > 0}.

The minimax strategy profile (uub
1 , uub

2 ) in the stage game [TV Υ
ub ](s1, b1) is ob-

tained by solving an LP and its dual (see Appx. D), as demonstrated below.

Theorem 6 (LP for maxsup over upper bound). For Kub (see (8)) and
particle-based belief (s1, b1), [TV

Υ
ub ](s1, b1) is the optimal value of an LP.

7 Experimental Evaluation

We have built a prototype implementation in Python, using Gurobi [14] to solve
the LPs needed for computing lower and upper bound values, and the minimax
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Model
Initial

β |Γ | Lower bound |Υ | Upper bound
Iter.

Time
pts. init. final init. final (min)

Pursuit-evasion
(3x3, 1 pursuer)

1 0.7 184 0 5.065266 265 333.33 9.181894 169 15
1 0.7 515 0 5.279798 788 333.33 6.631739 264 120
2 0.7 413 0 4.529885 998 333.33 11.570381 299 120
1 0.8 468 0 9.882658 731 500 16.288952 170 120
1 0.9 331 0 22.386704 731 1000 58.906245 130 120

Pursuit-evasion
(3x3, 2 pursuers)

1 0.7 509 0 14.134097 790 333.33 39.943246 274 120

Pedestrian-vehicle
1 0.7 1928 0 620.537 4936 666.666 666.666 297 120
2 0.7 2783 0 526.344 8532 666.666 666.666 363 120
1 0.8 2089 0 805.924 5708 1000 1000 330 120

Table 1: Statistics for a set of one-sided NS-POSG solution instances.

values and strategies of one-shot games. We use the Parma Polyhedra Library [1]
to operate over polyhedral preimages of NNs, α-functions and reward structures.
The α-functions and reward functions are represented by associating values to
polyhedra described as linear constraints over the continuous variables.

We developed two one-sided NS-POSG case studies for evaluation, a pursuit-
evasion game and the pedestrian-vehicle scenario from Section 3. Table 1 shows
statistics for solving various instances, varying the number of points in the initial
belief and discount factor β. We show the initial/final values of the bounds, the
number |Γ | of α-functions generated, number |Υ | of belief points for the upper
bound computation, and iterations and time required (with a timeout of 2 hours)

Since our algorithm is anytime, lower and upper bounds hold throughout
computations and we successfully generate meaningful strategies (discussed fur-
ther below) on a range of models. However, computation is generally slow due
to the number of LP problems to solve (whose size increases with |Γ |), as well
as expensive operations over polyhedra and the probabilistic branching of mixed
strategies to guide exploration. We note that HSVI for finite one-sided POSGs,
in [17], is already computationally very expensive, even with multiple optimisa-
tions (they use a timeout of 10 hours, versus 2 hours here).

Pursuit-evasion. A pursuit-evasion game models a number of centrally con-
trolled (pursuer) agents trying to capture an evader, aiming to avoid capture. We
develop a continuous-space variant of the (discrete) model from [17] inspired by
mobile robotics applications [8,18]. The pursuing agents use NNs as perception
functions to determine their positions, while the evader is fully informed.

Figure 2 shows consecutive steps of the strategies synthesised for a 3×3 game
with a single pursuer and β = 0.7, with the NN-induced polyhedral decompo-
sition indicated in the top row. The strategies of the pursuer (red) and evader
(green) are indicated by probabilistic transitions showing the direction of move-
ment, and the pursuer’s beliefs are shaded in green. Analysing these highlights
interesting subtleties in both agents’ behaviour. For instance, in the third step,
the pursuer’s strategy is to move to the bottom-right regions with equal prob-
ability since, not only do they account for most of the probability in the belief,
but also the evader could still be in one of the three in the next step. The evader,
however, is fully informed and knows where the pursuer is. Thus, its strategy in

15



Fig. 2: Strategy and beliefs for the pursuer (top) and the evader (bottom).

Fig. 3: Paths generated from strategies for the pedestrian-vehicle example.

those regions is to move to the position where the pursuer was is in the previous
step or, if in the corner, to move up, left or stay with similar probabilities.

Pedestrian-vehicle interaction. Figure 3 shows paths generated from differ-
ent strategies for the pedestrian-vehicle example, aiming to minimise the like-
lihood of a crash. We plot (x2, y2), the current relative distances between the
vehicle and pedestrian. To generate these paths, we fix the pedestrian’s action
to progressively get closer to the vehicle so as to simulate a crossing scenario.
Observations made by the vehicle are marked in green, yellow or red (predicted
intentions not likely, likely and very likely to cross). Below and above each circle,
we indicate the current speed and acceleration action taken, respectively. The
crash area is the rectangle between the axes and the dashed lines.

We see that the synthesised strategies mostly produce safe paths, where the
vehicle reduces its speed as it nears the pedestrian. However, there are paths
where it does not and a crash occurs (see the rightmost plot in Figure 3). In
this instance, the computation had not converged within the timeout, yielding
strategies with residual probabilities associated to unsafe actions. We plan to
consider finite-horizon objectives to try and address this.
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8 Conclusions

We proposed one-sided neuro-symbolic POSGs, generalising NS-POMDPs [35] to
the two-agent zero-sum case, and extending one-sided POSGs [17,38,39] to con-
tinuous state spaces. We characterised the value function for discounted infinite-
horizon rewards, and are the first to design, implement and evaluate a practical
HSVI algorithm for computing (approximately) optimal strategies for this model,
and prove the algorithm’s convergence. The computational complexity is high
due to expensive polyhedra operations. Nevertheless, the techniques provide an
important baseline that accounts for true decision boundaries for game models
with neural perception mechanisms. As future work, we will consider restricted
two-sided NS-POSGs, e.g., with public observations [16].

Acknowledgements. This project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL, grant
agreement No.834115).
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A Probability Measure Computations

The main paper omits details of how to compute several required quantities in
terms of probability measures via closed forms. We provide the details below.

Belief updates. Section 3 (p. 7) discusses belief updates for agent Ag1 of a
one-sided NS-POSG. Given a belief (s1, b1), if action a1 is selected by Ag1, Ag2
is assumed to take the stage strategy u2 ∈ P(A2 | S) and s′1 is observed, then

the updated belief of Ag1 via Bayesian inference is (s′1, b
s1,a1,u2,s

′
1

1 ) where for
s′E ∈ SE :

b
s1,a1,u2,s

′
1

1 (s′E) =
P ((s′1, s

′
E) | (s1, b1), a1, u2)

P (s′1 | (s1, b1), a1, u2)
if s′E ∈ S

s′1
E and 0 otherwise. (9)

On the other hand, if it is assumed that a joint action a is taken, then the

updated belief of Ag1 is (s′1, b
s1,a,s

′
1

1 ), where for s′E ∈ SE :

b
s1,a,s

′
1

1 (s′E) =
P ((s′1, s

′
E) | (s1, b1), a)

P (s′1 | (s1, b1), a)
if s′E ∈ S

s′1
E and 0 otherwise. (10)

Then, we show how to compute the probability measures in the belief up-
dates (9) and (10). Recalling that s1 = (loc1, per1), for (9), using the syntax in
Definition 1, P (s′1 | (s1, b1), a1, u2) equals∫

sE∈SE
b1(sE)

∑
a2∈A2

u2(a2 | s1, sE)
∑

s′E∈SE
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)dsE

(11)

and if s′E ∈ S
s′1
E , then P ((s′1, s

′
E) | (s1, b1), a1, u2) equals∫

sE∈SE
b1(sE)

∑
a2∈A2

u2(a2 | s1, sE)δ((s1, sE), (a1, a2))(s′1, s′E)dsE .

For (10), P (s′1 | (s1, b1), a) equals∫
sE∈SE

b1(sE)
∑

s′E∈SE
δ((s1, sE), a)(s

′
1, s

′
E)dsE

and if s′E ∈ S
s′1
E , then P ((s′1, s

′
E) | (s1, b1), a) equals∫

sE∈SE
b1(sE)δ((s1, sE), a)(s

′
1, s

′
E)dsE .

Particle-based beliefs. Section 6.3 discusses computation of particle-based be-
liefs. For a particle-based belief (s1, b1) with weighted particle set {(siE , κi)}Nb

i=1,

it follows from (9) that for belief b
s1,a1,u2,s

′
1

1 we have, for any s′E ∈ SE , that

b
s1,a1,u2,s

′
1

1 (s′E) equals:∑Nb

i=1 κi

∑
a2
u2(a2 | s1, siE)δ((s1, siE), (a1, a2))(s′1, s′E)∑Nb

i=1 κi

∑
a2
u2(a2 | s1, siE)

∑
s′′E

δ((s1, siE), (a1, a2))(s
′
1, s

′′
E)

(12)

if s′E ∈ S
s′1
E and equals 0 otherwise. Similarly, we can compute ⟨α, (s1, b1)⟩,

⟨r, (s1, b1)⟩ and P (a1, s
′
1 | (s1, b1), u1, u2) as simple summations.
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B Assumptions on One-Sided NS-POSGs

We provide here formal definitions of our assumptions about the structure of
one-sided NS-POSGs, captured informally in the main paper as Assumption 1.

Assumption 2 (Transitions) For a ∈ A and FCP Φ of S, there exists an
FCP Φ′ of S, called the pre-image FCP of Φ for a, where for ϕ ∈ Φ and ϕ′ ∈ Φ′

either Θa
s ∩ ϕ = ∅ for all s ∈ ϕ′ or Θa

s ∩ ϕ ̸= ∅ for all s ∈ ϕ′, and if s, s̃ ∈ ϕ′,

then
∑

s′∈Θa
s∩ϕ δ(s, a)(s

′) =
∑

s̃′∈Θa
s̃∩ϕ δ(s̃, a)(s̃

′). Furthermore, δE =
∑Ne

i=1 µiδ
i
E

where δiE : (Loc1×SE×A) → SE is piecewise continuous, µi≥0 and
∑Ne

i=1 µi = 1.

Assumption 3 (Rewards) The reward function r(·, a) → R is bounded PWC
for all a ∈ A. Therefore, For each joint action a ∈ A, there exists a smallest
FCP of S, called the reward FCP under joint action a and denoted Φa

R, such
that all states in any ϕ ∈ Φa

R have the same rewards, i.e., if s, s′ ∈ ϕ, then
r(s, a) = r(s′, a).

C Image-Split-Preimage-Product (ISPP) Backup

We provide here the Image-Split-Preimage-Product (ISPP) backup for one-sided
NS-POSGs, adapted from the single-agent variant in [35], as used for a region-
by-region backup in line 5 of Algorithm 1 (Section 6.1).

For FCPs Φ1 and Φ2 of S, we denote by Φ1 +Φ2 the smallest FCP of S such
that Φ1+Φ2 is a refinement of both Φ1 and Φ2, which can be obtained by taking
all the intersections between regions of Φ1 and Φ2. Recall from Assumption 1
(formally, from Assumption 2) that δE can be represented as

∑Ne

i=1 µiδ
i
E .

Algorithm 3 shows the ISPP backup method. This method, inspired by
Lemma 3, is to divide a region ϕ into subregions where for each subregion α⋆ is
constant. Given any reachable local state loc′1 under a and continuous transition
function δiE , the image of ϕ under a and δiE to loc′1 is divided into image regions
Φimage such that the states in each region have a unique agent state. Each image
region ϕimage is then split into subregions by a constant-FCP of the PWC func-

tion αa1,s
ϕimage

1 by pairwise intersections where a = (a1, a2), and thus Φimage is
split into a set of refined image regions Φsplit. An FCP over ϕ, denoted by Φpre,
is constructed by computing the preimage of each ϕimage ∈ Φsplit to ϕ. Finally,
the product of these FCPs Φpre for all reachable local states and environment
functions and reward FCPs {Φa

R | a ∈ Ā1 ×A2}, denoted Φproduct, is computed.
The following lemma demonstrates that α⋆ is constant in each region of Φproduct,
and therefore that line 5 of Algorithm 1 can be computed by finite backups.
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Algorithm 3 Image-Split-Preimage-Product (ISPP) backup over a region

Input: region ϕ, action p⋆1, PWC functions α⋆

1: Ā1 ← {a1 ∈ A1 | p⋆1(a1) > 0}
2: Loc′a ← {loc′1 ∈ Loc1 | δ1(sϕ1 , a)(loc′1) > 0} for a ∈ Ā1 ×A2, Φproduct ← ϕ
3: for a = (a1, a2) ∈ Ā1 ×A2, loc

′
1 ∈ Loc′a, i = 1, . . . , Ne do

4: ϕ′
E ← {δiE(sE , a) | (sϕ1 , sE) ∈ ϕ} ▷ Image

5: Φimage ← divide ϕ′
E into regions over S by obs1(loc

′
1, ·)

6: Φsplit ← ∅ ▷ Split
7: for ϕimage ∈ Φimage do

8: Φα ← a constant-FCP of S for the PWC function α⋆a1,s
ϕimage

1

9: Φsplit ← Φsplit ∪ {ϕimage ∩ ϕ′ | ϕ′ ∈ Φα}
10: Φpre ← ∅ ▷ Preimage
11: for ϕimage ∈ Φsplit do
12: Φpre ← Φpre ∪ {(sϕ1 , sE) ∈ ϕ | δiE(sE , a) ∈ ϕimage}
13: Φproduct ← {ϕ1 ∩ ϕ2 | ϕ1 ∈ Φpre ∧ ϕ2 ∈ Φproduct} ▷ Product

14: Φproduct ← {ϕ1 ∩ ϕ2 | ϕ1 ∈ Φproduct ∧ ϕ2 ∈
∑

a∈Ā1×A2
Φa

R}
15: for ϕproduct ∈ Φproduct do ▷ Value backup
16: Take one state (ŝ1, ŝE) ∈ ϕproduct

17: α⋆(ϕproduct)← fp⋆1 ,α⋆(ŝ1, ŝE)

18: return: (Φproduct, α
⋆)

Lemma 6 (ISPP backup) The FCP Φproduct returned by Algorithm 3 is a
constant-FCP of ϕ for α⋆ and the region-by-region backup for α∗ satisfies the
line 5 of Algorithm 1.

Proof. For the PWC α-functions in the input of Algorithm 3, if Φa1,s′1
is an

FCP of S for αa1,s
′
1 , then let Φ =

∑
a1∈Ā1,s′1∈S1

Φa1,s′1
, i.e., Φ is the smallest

refinement of these FCPs.

According to Assumption 1, there exists a preimage-FCP of Φ for each joint
action a. Through the image, split, preimage and product operations of Algo-
rithm 3, all the states in any region ϕ′ ∈ Φproduct reach the same regions of Φ.

Since each α-function αa1,s
′
1 is constant over each region in Φ, all states in ϕ′

have the same backup value from αa1,s
′
1 for a1 ∈ Ā1 and s′1 ∈ S1. This implies

that Φproduct is the product of the preimage-FCPs of Φ for all a ∈ Ā1×A2. Since
the value backup in line 5 of Algorithm 1 is used for each region in Φproduct and
the image is from the region ϕ, then Φproduct is a constant-FCP of ϕ for α⋆, and
thus the value backup in line 5 of Algorithm 1 for α⋆ is achieved by considering
the regions of Φproduct.
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D Linear Programs

We provide some linear programs (LPs) and their dual versions, omitted for space
reasons in the main paper, in particular for the stage games [TV Γ

lb ](s1, b1) and

[TV Υ
ub ](s1, b1). Consider a particle-based belief (s1, b1) represented by {(siE , κi)}Nb

i=1.

Stage game over the lower bound. Using Lemma 1, the LP (3) for the stage
game [TV Γ

lb ](s1, b1) is simplified to the LP over the variables:

– (vsiE )
Nb
i=1;

– (λ
a1,s

′
1

α )(a1,s′1)∈A1×S1,α∈Γ ;
– (pa1)a1∈A1 ;

and is given by

maximise
∑Nb

i=1κivsiE subject to

vsiE ≤
∑

a1∈A1
pa1r((s1, s

i
E), (a1, a2)) + β

∑
(a1,s′1)∈A1×S1,s′E∈SE

δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

∑
α∈Γ λ

a1,s
′
1

α α(s′1, s
′
E)

λ
a1,s

′
1

α ≥ 0

pa1 =
∑

α∈Γλ
a1,s

′
1

α∑
a1∈A1

pa1 = 1 (13)

for all 1 ≤ i ≤ Nb, a2 ∈ A2, (a1, s
′
1) ∈ A1 × S1 and α ∈ Γ .

The dual of LP problem (13) is over the variables:

– v;
– (va1,s′1

)(a1,s′1)∈A1×S1
;

– (p
s1,s

i
E

a2 )a2∈A2,1≤i≤Nb
;

and is given by:

minimise v subject to

v ≥
∑Nb

i=1

∑
a2∈A2

p
s1,s

i
E

a2 r((s1, s
i
E), (a1, a2)) + β

∑
s′1∈S1

va1,s′1

va1,s′1
≥

∑Nb

i=1

∑
a2∈A2

p
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)α(s

′
1, s

′
E)∑

a2∈A2
p
s1,s

i
E

a2 = κi (14)

for all a1 ∈ A1, (a1, s
′
1) ∈ A1 × S1, α ∈ Γ and 1 ≤ i ≤ Nb.

By solving (13) and (14), we obtain the minimax strategy profile in the stage

game [TV Γ
lb ](s1, b1): u

lb
1 (a1) = p⋆a1 for a1 ∈ A1 and ulb

2 (a2 | s1, siE) = p
⋆s1,s

i
E

a2 /κi

for 1 ≤ i ≤ Nb and a2 ∈ A2.

Stage game over the upper bound. The LP for the stage game [TV Υ
ub ](s1, b1)

is over the variables:

23



– v;

– (c
a1,s

′
1

s′
E

)
(a1,s′1)∈A1×S1∧s′

E
∈S

a1,s′1
E

;

– (λ
a1,s

′
1

k )(a1,s′1)∈A1×S1,k∈Is′
1

;

– (p
s1,s

i
E

a2 )1≤i≤Nb,a2∈A2

and is given by

minimise v subject to

v ≥
∑Nb

i=1

∑
a2∈A2

κip
s1,s

i
E

a2 r((s1, s
i
E), (a1, a2))

+ β
∑

s′1∈S1

∑
k∈Is′

1

λ
a1,s

′
1

k yk + 1
2β(U − L)

∑
s′1∈S1

∑
s′E∈S

a1,s′1
E

c
a1,s

′
1

s′
E

c
a1,s

′
1

s′
E

≥
∣∣∣∑Nb

i=1

∑
a2∈A2

κip
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

−
∑

k∈Is′
1

λ
a1,s

′
1

k P (s′E ; b
k
1)
∣∣∣∑

k∈Is′
1

λ
a1,s

′
1

k =
∑Nb

i=1

∑
a2∈A2,s′E∈SE

κip
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

λ
a1,s

′
1

k ≥ 0

p
s1,s

i
E

a2 ≥ 0∑
a2∈A2

p
s1,s

i
E

a2 = 1 (15)

for all a1 ∈ A1, (a1, s
′
1) ∈ A1 ×S1 and s′E ∈ S

a1,s
′
1

E , k ∈ Is′
1
, a2 ∈ A2 and 1 ≤ i ≤

Nb where S
a1,s

′
1

E = {s′E ∈ SE |
∑

a2∈A2
b
s1,a1,a2,s

′
1

1 (s′E) +
∑

k∈Is′
1

bk1(s
′
E) > 0}.

The dual of LP problem (15) is the following LP problem over the variables:

– (vsiE )1≤i≤Nb
;

– (va1,s′1
)(a1,s′1)∈A1×S1

;
– (pa1)a1∈A1 ;
– (da1,s′1,s

′
E
)
(a1,s′1)∈A1×S1∧s′E∈S

a1,s′1
E

;

– (ea1,s′1,s
′
E
)
(a1,s′1)∈A1×S1∧s′E∈S

a1,s′1
E

;

and is given by:

maximise
∑Nb

i=1κivsiE subject to

vsiE ≤
∑

a1∈A1
pa1r((s1, s

i
E), (a1, a2)) + β

∑
a1∈A1,s′1∈S1,s′E∈S

a1,s′1
E

δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)(va1,s′1

+ da1,s′1,s
′
E
− ea1,s′1,s

′
E
)

va1,s′1
≤ ykp

a1 −
∑

s′E∈S
a1,s′1
E

(da1,s′1,s
′
E
− ea1,s′1,s

′
E
)P (s′E ; b

k
1)

da1,s′1,s
′
E
− ea1,s′1,s

′
E
≤ 1

2 (U − L)

da1,s′1,s
′
E
≥ 0
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ea1,s′1,s
′
E
≥ 0

pa1 ≥ 0∑
a1∈A1

pa1 = 1 (16)

for all a2 ∈ A2 and 1 ≤ i ≤ Nb, (a1, s
′
1) ∈ A1×S1, k ∈ Is′

1
and s′E ∈ S

a1,s
′
1

E where

S
a1,s

′
1

E = {s′E ∈ SE | ∃1 ≤ i ≤ Nb.∃a2 ∈ A2. δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E) > 0}.

By solving (15) and (16), we obtain the minimax strategy profile in stage game

[TV Υ
ub ](s1, b1): u

ub
1 (a1) = p⋆a1 for a1 ∈ A1 and uub

2 (a2 | s1, siE) = p
⋆s1,s

i
E

a2 for
1 ≤ i ≤ Nb and a2 ∈ A2.

E Proofs of Main Results

We provide here the proofs of the results from the main paper.

Proof (Proof of Theorem 1). Given s1 ∈ S1, we first prove that V ⋆(s1, ·)
is convex and continuous. For any b1 ∈ P(SE), since V ⋆(s1, b1) is the lower
value of Y , then V ⋆(s1, b1) = supσ1∈Σ1

infσ2∈Σ2 E
σ1,σ2

(s1,b1)
[Y ]. We define a payoff

function Vσ1
: P(SE) → R to be the objective of the sup optimisation in the

lower value such that for b1 ∈ P(SE) we have Vσ1
(s1, b1) = infσ2∈Σ2

Eσ1,σ2

(s1,b1)
[Y ].

Note that the value Vσ1(s1, b1) is the expected reward of σ1 against the best-
response strategy σ2, from the initial belief (s1, b1). Since Ag2 can observe the
true initial state (s1, sE) where sE is sampled from b1, and thus can play a
state-wise best-response to each initial state (s1, sE), the value Vσ1

(s1, b1) can
be rewritten as:

Vσ1(s1, b1) =
∫
sE∈SE

b1(sE)
(
infσ2∈Σ2 E

σ1,σ2

(s1,sE)[Y ]
)
dsE . (17)

Thus, Vσ1
(s1, ·) is a linear function in the belief b1 ∈ P(SE). Since V ⋆(s1, b1) =

supσ1∈Σ1
Vσ1(s1, b1) and any point-wise supremum of linear functions is convex

and continuous (it follows from the convexity and continuity in the discrete
case, see [17, Proposition 5.9]), we can conclude that V ⋆(s1, ·) is convex and
continuous.

Regarding the inequality in Theorem 1, for any b1, b
′
1 ∈ P(SE), we have:∫

sE∈S
s1
E
b1(sE)dsE =

∫
sE∈S

s1
E
b′1(sE)dsE = 1 . (18)

Now, letting S>
E = {sE ∈ Ss1

E | b1(sE) − b′1(sE) > 0} and S≤
E = {sE ∈ Ss1

E |
b1(sE) − b′1(sE) ≤ 0}, rearranging (18) and using the fact that S>

E ∪ S≤
E = Ss1

E

it follows that:∫
sE∈S

≤
E
(b1(sE)− b′1(sE))dsE = −

∫
sE∈S>

E
(b1(sE)− b′1(sE))dsE

from which we have:∫
sE∈S

s1
E
|b1(sE)− b′1(sE)|dsE =

∫
sE∈S>

E∪S
≤
E
|b1(sE)− b′1(sE)|dsE
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=
∫
sE∈S>

E
(b1(sE)− b′1(sE))dsE −

∫
sE∈S

≤
E
(b1(sE)− b′1(sE))dsE

= 2
∫
sE∈S>

E
(b1(sE)− b′1(sE))dsE (19)

and thus, using (19) and [35, Theorem 2], the inequality in Theorem 1 holds.

Theorem 7 (Operator equivalence - extended version of Theorem 2).
Given a function V ∈ F(SB), if there exist a set Γ of functions in F(S) such
that V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for all (s1, b1) ∈ SB, then the maxsup and
minimax operators are equivalent, i.e., for (s1, b1) ∈ SB we have:

[TV ](s1, b1) = maxu1∈P(A1)minu2∈P(A2|S)E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

a1∈A1

∑
s′1∈S1

P ((a1, s
′
1) | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) (20)

= minu2∈P(A2|S)maxu1∈P(A1)E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

a1∈A1

∑
s′1∈S1

P ((a1, s
′
1) | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) (21)

= maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ . (22)

Proof. Consider any V ∈ F(SB) and set Γ ⊆ F(S) such that:

V (s1, b1) = supα∈Γ ⟨α, (s1, b1)⟩ for all (s1, b1) ∈ SB . (23)

We first define a payoff function J : P(A1)×P(A2 | S) → R to be the objective of
the maximin and minimax optimisation in (20) and (21) such that for u1 ∈ P(A1)
and u2 ∈ P(A2 | S):

J(u1, u2) = E(s1,b1),u1,u2
[r(s, a)]+

β
∑

a1∈A1

∑
s′1∈S1

P (a1, s
′
1 | (s1, b1), u1, u2)V (s′1, b

s1,a1,u2,s
′
1

1 ) . (24)

Now for any belief (s1, b1) ∈ SB such that s1 = (loc1, per1), action a1 ∈ A1,
agent state s′1 ∈ S1 and stage strategy u2 ∈ P(A2 | S), letting P1 := P (s′1 |
(s1, b1), a1, u2) by (23) we have:

V (s′1, b
s1,a1,u2,s

′
1

1 ) = supα∈Γ ⟨α, (s′1, b
s1,a1,u2,s

′
1

1 )⟩

= supα∈Γ

∫
s′E∈SE

α(s′1, s
′
E)b

s1,a1,u2,s
′
1

1 (s′E)ds
′
E rearranging

= supα∈Γ

∫
s′E∈SE

α(s′1, s
′
E)

P ((s′1, s
′
E) | (s1, b1), a1, u2)

P (s′1 | (s1, b1), a1, u2)
ds′E by (9)

=
1

P1
supα∈Γ

∫
s′E∈SE

α(s′1, s
′
E)P ((s′1, s

′
E) | (s1, b1), a1, u2)ds

′
E rearranging

=
1

P1
supα∈Γ

(∫
s′E∈SE

α(s′1, s
′
E)

∫
s′E∈S

s′1
E ∧sE∈SE

b1(sE)
∑

a2∈A2
u2(a2 | s1, sE)

· δ((s1, sE), (a1, a2))(s′1, s′E)dsE
)
ds′E by (11)

=
1

P1
supα∈Γ

(∫
sE∈SE

(∫
s′E∈S

s′1
E

α(s′1, s
′
E)

∑
a2∈A2

u2(a2 | s1, sE)
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· δ((s1, sE), (a1, a2))(s′1, s′E)ds′E
)
b1(sE)dsE rearranging. (25)

Next, for any α ∈ F(S), s′1 ∈ S1, a1 ∈ A1 and u2 ∈ P(A2 | S) we let αa1,u2,s
′
1 :

S → R be the function where for any s = ((loc1, per1), sE) ∈ S:

αa1,u2,s
′
1(s) =

∫
s′E∈S

s′1
E

α(s′1, s
′
E)

∑
a2
u2(a2 | s)δ(s, (a1, a2))(s′1, s′E)ds′E

=
∑

a2
u2(a2 | s)

∑
s′E

δ(s, (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E) (26)

and the summation in s′E is due to the finite branching of δ. Combining (25)
and (26) we have:

V (s′1, b
s1,a1,u2,s

′
1

1 ) =
1

P1
supα∈Γ

∫
sE∈SE

αa1,u2,s
′
1(s1, sE)b1(sE)dsE

=
1

P (s′1 | (s1, b1), a1, u2)
supα∈Γ ⟨αa1,u2,s

′
1 , (s1, b1)⟩ (27)

by definition of P1. Substituting (27) into (24), the payoff function J(u1, u2)
equals:

E(s1,b1),u1,u2
[r(s, a)] + β

∑
a1,s′1

u1(a1)P (s′1 | (s1, b1), a1, u2)V (s′1, b
s1,a1,u2,s

′
1

1 )

= E(s1,b1),u1,u2
[r(s, a)] + β

∑
a1,s′1

u1(a1)supα∈Γ ⟨αa1,u2,s
′
1 , (s1, b1)⟩ . (28)

We next show that the von Neumann’s Minimax Theorem [25] applies to the
game JCK with the payoff function J and strategy spaces P(A1) and P(A2 | S).
This theorem requires that P(A1) and P(A2 | S) are compact convex sets (which
is straightforward to show) and that J is a continuous function that is concave-
convex, i.e.,

– J(·, u2) is concave for fixed u2 ∈ P(A2 | S);
– J(u1, ·) is convex for fixed u1 ∈ P(A1).

By Definition 3 the expectation E(s1,b1),u1,u2
[r(s, a)] can be rewritten as:∑

a1
u1(a1)

∫
sE∈SE

b1(sE)
∑

a2
u2(a2 | s1, sE)r((s1, sE), (a1, a2))dsE

and thus, E(s1,b1),u1,u2
[r(s, a)] is bilinear in u1 and u2, and thus concave in P(A1)

and convex in P(A2 | S).
We next show that u1(a1) supα∈Γ ⟨αa1,u2,s

′
1 , (s1, b1)⟩ is continuous and con-

cave in u1 ∈ P(A1) and convex in u2 ∈ P(A2 | S). The continuity and concavity
in u1 ∈ P(A1) follows directly as it is linear in u1 ∈ P(A1). For u2 ∈ P(A2 | S),
we consider the function f(u2) = ⟨αa1,u2,s

′
1 , (s1, b1)⟩. By (26) we have that f(u2)

equals:∫
sE∈SE

∑
a2
u2(a2 | s1, sE)

∑
s′E

δ((s1, sE), (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E)b1(sE)dsE

and therefore f(u2) is linear in u2. Since the point-wise maximum over linear
functions is continuous and convex, it follows that supα∈Γ f(u2) is continuous
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and convex in u2 ∈ P(A2 | S), and hence u1(a1) supα∈Γ ⟨αa1,u2,s
′
1 , (s1, b1)⟩ is

continuous and convex in u2 ∈ P(A2 | S). According to von Neumann’s Minimax
theorem:

maxu1∈P(A1) minu2∈P(A2|S) J(u1, u2) = minu2∈P(A2|S) maxu1∈P(A1) J(u1, u2)

and hence the equality between (20) and (21) holds.
Next we prove the equality of (20) and (22). Letting Conv(Γ ) be the convex

hull of Γ , recall that ΓA1×S1 is the set of vectors of functions in Conv(Γ ) indexed
by the elements of A1 × S1. The function J(u1, u2) in (28) can be rewritten as
follows:

supα∈ΓA1×S1

(
E(s1,b1),u1,u2

[r(s, a)]

+ β
∑

a1∈A1,s′1∈S1
u1(a1)⟨αa1,u2,s

′
1 , (s1, b1)⟩

)
(29)

where ᾱ = (αa1,s
′
1)a1∈A1,s′1∈S1

, and given u1 and u2, the supremum over Γ only
depends on a1 and s′1 and using the same arguments as [17, Proposition 4.11]
we have:

supα∈Γ ⟨α, (s1, b1)⟩ = supα∈Conv(Γ )⟨α, (s1, b1)⟩

for (s1, b1) ∈ SB . We next define the game with strategy spaces ΓA1×S1 and
P(A2 | S) and payoff function Ju1

: ΓA1×S1 × P(A2 | S) → R where for α ∈
ΓA1×S1 and u2 ∈ P(A2 | S):

Ju1(α, u2) = E(s1,b1),u1,u2
[r(s, a)] + β

∑
a1∈A1,s′1∈S1

u1(a1)⟨αa1,u2,s
′
1 , (s1, b1)⟩

= E(s1,b1),u1,u2
[r(s, a)] + β

∑
a1∈A1,s′1∈S1

u1(a1)
∫
sE∈SE

(∑
a2∈A2

u2(a2 | s1, sE)

·
∑

s′E∈SE
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)α

a1,s
′
1(s′1, s

′
E)

)
b1(sE)dsE by (26).

(30)

Substituting (29) and (30) into (20) we have:

maxu1∈P(A1)minu2∈P(A2|S)J(u1, u2)

= maxu1∈P(A1)minu2∈P(A2|S)supα∈ΓA1×S1Ju1
(α, u2) . (31)

We next show that Sion’s Minimax Theorem [30] applies to the game with strat-
egy spaces ΓA1×S1 and P(A2 | S) and payoff function Ju1

. Sion’s Minimax
Theorem requires that:

– ΓA1×S1 is convex;
– P(A2 | S) is compact and convex;
– for any u2 ∈ P(A2 | S) the function Ju1(·, u2) : ΓA1×S1 → R is upper

semicontinuous and quasi-concave;
– for any α ∈ ΓA1×S1 the function Ju1

(α, ·) : P(A2 | S) → R is lower semicon-
tinuous and quasi-convex.
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The first properties clearly hold and the second to follow from (30) which demon-
strate that both Ju1

(·, u2) and Ju1
(α, ·) are linear.

Therefore using Sion’s Minimax Theorem, we have:

minu2∈P(A2|S) supα∈ΓA1×S1 Ju1(α, u2) = supα∈ΓA1×S1 minu2∈P(A2|S) Ju1(α, u2)

and combining with (31) it follows that maxu1∈P(A1) minu2∈P(A2|S) J(u1, u2) equals:

maxu1∈P(A1) supα∈ΓA1×S1 minu2∈P(A2|S) Ju1
(α, u2)

= maxu1∈P(A1) supα∈ΓA1×S1 minu2∈P(A2|S)

∫
sE∈SE

∑
a2
u2(a2 | s1, sE)

∑
a1
u1(a1)

·r((s1, sE), (a1, a2))b1(sE)dsE + β
∫
sE∈SE

(∑
a2
u2(a2 | s1, sE)

∑
a1,s′1

u1(a1)

·
∑

s′E
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)α(s

′
1, s

′
E)

)
b1(sE)dsE by (30)

= maxu1∈P(A1) supα∈ΓA1×S1

∫
sE∈SE

minu2∈P(A2|S)

∑
a2
u2(a2 | s1, sE)(∑

a1
u1(a1)r((s1, sE), (a1, a2)) + β

∑
a1,s′1

u1(a1)∑
s′E

δ((s1, sE), (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E)

)
b1(sE)dsE rearranging

= maxu1∈P(A1) supα∈ΓA1×S1

∫
sE∈SE

mina2∈A2

(∑
a1
u1(a1)r((s1, sE), (a1, a2))

+β
∑

a1,s′1
u1(a1)

∑
s′E

δ((s1, sE), (a1, a2))(s
′
1, s

′
E)α(s

′
1, s

′
E)

)
b1(sE)dsE

since Ag2 is fully informed

= maxu1∈P(A1) supα∈ΓA1×S1

∫
sE∈SE

(
mina2∈A2 fu1,α,a2(s1, sE)

)
b1(sE)dsE

by (2)

= maxu1∈P(A1) supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ by Definition 4

which demonstrates that (20) and (22) are equal and completes the proof.

Proof (Proof of Theorem 3). We first prove that V ⋆ is a fixed point of the
operator T , i.e., V ⋆ = [TV ⋆]. According to the proof of Theorem 1, for (s1, b1) ∈
SB the value function V ⋆ can be represented by:

V ⋆(s1, b1) = supσ1∈Σ1
Vσ1

(s1, b1)

= supσ1∈Σ1

∫
sE∈SE

b1(sE)
(
infσ2∈Σ2

Eσ1,σ2

(s1,sE)[Y ]
)
dsE by (17)

= supσ1∈Σ1
⟨infσ2∈Σ2

Eσ1,σ2

(s1,sE)[Y ], (s1, b1)⟩

= supα∈Γ ⟨α, (s1, b1)⟩

where Γ := {infσ2∈Σ2
Eσ1,σ2

(s1,sE)[Y ] | σ1 ∈ Σ1}. According to the operator equiva-

lence in Theorem 2, we have:

[TV ⋆](s1, b1) = maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩ (32)

for all (s1, b1) ∈ SB , where ΓA1×S1 := {{αa1,s
′
1}a1∈A1,s′1∈S1

| αa1,s
′
1 ∈ Conv(Γ )}

and Γ is given above. Now, by following the same argument as in the proof of [17,
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Lemma 6.7], we can show that V ⋆(s1, b1) = [TV ⋆](s1, b1) for all (s1, b1) ∈ SB ,
i.e., V ⋆ = [TV ⋆].

Next we demonstrate that the operator T is a contraction mapping on the
space F(SB) with respect to the supremum norm ∥J∥ = sup(s1,b1)∈SB

|J(s1, b1)|.
Therefore consider any J1, J2 ∈ F(SB) and for any belief (s1, b1) ∈ SB , let
(u1⋆

1 , u1⋆
2 ) and (u2⋆

1 , u2⋆
2 ) be the minimax strategy profiles in the stage games

[TJ1](s1, b1) and [TJ2](s1, b1), respectively. Also, let J̄1(u1, u2) and J̄2(u1, u2) be
the values of state (s1, b1) of the stage game under the strategy pair (u1, u2) ∈
P(A1) × P(A2 | S) when computing the backup values in (24) for J1 and J2,
respectively. Without loss of generality, we assume [TJ1](s1, b1) ≤ [TJ2](s1, b1),
and thus since (u1⋆

1 , u1⋆
2 ) is minimax strategy profile for [TJ1](s1, b1):

J̄1(u
2⋆
1 , u1⋆

2 ) ≤ J̄1(u
1⋆
1 , u1⋆

2 )

= [TJ1](s1, b1) by definition of J̄1

≤ [TJ2](s1, b1) without loss of generality

= J̄2(u
2⋆
1 , u2⋆

2 ) by definition of J̄2

≤ J̄2(u
2⋆
1 , u1⋆

2 ) since (u2⋆
1 , u2⋆

2 ) is minimax strategy. (33)

Now using (33) for any (s1, b1) ∈ SB we have

|[TJ2](s1, b1)− [TJ1](s1, b1)| ≤ J̄2(u
2⋆
1 , u1⋆

2 )− J̄1(u
2⋆
1 , u1⋆

2 )

= β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u2⋆

1 , u1⋆
2 )

(
J2(s

′
1, b

s1,a1,u
1⋆
2 ,s′1

1 )− J1(s
′
1, b

s1,a1,u
1⋆
2 ,s′1

1 )
)

by (24)

≤ β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u2⋆

1 , u1⋆
2 )∥J2 − J1∥ by definition of ∥ · ∥

= β∥J2 − J1∥ since P (· | (s1, b1), u2⋆
1 , u1⋆

2 ) is a distribution. (34)

Now by definition of the supremum norm:

∥[TJ2]− [TJ1]∥ = sup(s1,b1)∈SB
|[TJ2](s1, b1)− [TJ1](s1, b1)|

≤ sup(s1,b1)∈SB
β∥J2 − J1∥ by (34)

= β∥J2 − J1∥ rearranging

and hence, since β ∈ (0, 1), we have that T is a contraction mapping. Thus,
the fact that the value function V ⋆ is the unique fixed point of T now follows
directly from Banach’s fixed point theorem.

Lemma 7 (PWC function) For any a ∈ A, s′1 ∈ S1 and α ∈ FC(S), if α
a,s′1 :

S → R is the function where for any s ∈ S:

αa,s′1(s) =
∑

(s′1,s
′
E)∈Θa

s
δ(s, a)(s′1, s

′
E)α(s

′
1, s

′
E)

then αa,s′1 is PWC.
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Proof (Proof of Lemma 7). Let a = (a1, a2). Since α is PWC, there exists
an FCP Φ of S such that α is constant in each region of Φ. According to As-
sumption 1 (formally, Assumption 2), there exists a preimage FCP Φ′ of Φ+ΦP

for joint action a, where ΦP is the perception FCP for Ag1. Consider any region
ϕ′ ∈ Φ′ and let ϕ be any region of Φ + ΦP such that Θa

s ∩ ϕ ̸= ∅ for all s ∈ ϕ′.
Since ΦP is the perception FCP for Ag1, there exists s′1 ∈ S1 such that if s′ ∈ ϕ,
then s′ = (s′1, s

′
E) for some s′E ∈ SE and let ϕE = {sE ∈ SE | (s′1, sE) ∈ ϕ}. If

s, s̃ ∈ ϕ′ such that s = (s1, sE) and s̃ = (s̃1, s̃E), then using Assumption 2 we
have

∑
s′∈Θa

s∩ϕ δ(s, a)(s
′) =

∑
s̃′∈Θa

s̃∩ϕ δ(s̃, a)(s̃
′) and s1 = s̃1. Now combining

this fact with Definition 2, it follows that:∑
(s′1,s

′
E)∈Θa

s∧s′E∈ϕE
δ(s, a)(s′1, s

′
E) =

∑
(s′1,s̃

′
E)∈Θa

s̃∧s̃′E∈ϕE
δ(s̃, a)(s′1, s̃

′
E) .

Since αa1,s
′
1(s′1, s

′
E) = αa1,s

′
1(s′1, s̃

′
E) for any (s′1, s

′
E), (s

′
1, s̃

′
E) ∈ ϕ and S

s′1
E =

{s′E ∈ SE | obs1(loc′1, s′E) = per ′1} is equal to {ϕE | ϕ ∈ Φs′1} for some finite set

of regions Φs′1 ⊆ Φ+ ΦP , it follows that∑
(s′1,s

′
E)∈Θa

s∧s′E∈S
s′1
E

δ(s, a)(s′1, s
′
E)α

a1,s
′
1(s′1, s

′
E)

=
∑

(s′1,s̃
′
E)∈Θa

s̃∧s̃′E∈S
s′1
E

δ(s̃, a)(s′1, s̃
′
E)α

a1,s
′
1(s′1, s̃

′
E)

and therefore αa,s′1(s) = αa,s′1(s̃), implying that αa,s′1 is constant in each region
of Φ′.

Proof (Proof of Lemma 1). Since V is P-PWLC, then according to Definitions
4 and 6 and Theorem 2:

[TV ](s1, b1) = maxu1∈P(A1)supα∈ΓA1×S1 ⟨fu1,α, (s1, b1)⟩
= maxu1∈P(A1)supα∈ΓA1×S1

∫
sE∈SE

(
mina2

fu1,α,a2
(s1, sE)

)
b1(sE)dsE (35)

which can be formulated as the following optimization problem:

[TV ](s1, b1) =maxu1∈P(A1),α∈ΓA1×S1 ,v

∑
ϕ∈ΦΓ

vϕ
∫
(s1,sE)∈ϕ

b1(sE)dsE

subject to vϕ ≤ fu1,α,a2
(s1, sE) for all ϕ ∈ ΦΓ and a2 ∈ A2

where v = (vϕ)ϕ∈ΦΓ
, fu1,α,a2

is constant over ϕ and (s1, sE) ∈ ϕ. Using (2), the
constraint vϕ ≤ fu1,α,a2

(s1, sE) can be written as:

vϕ ≤
∑

a1∈A1
u1(a1)r((s1, sE), (a1, a2))

+ β
∑

(a1,s′1)∈A1×S1,s′E∈SE
u1(a1)δ((s1, sE), (a1, a2))(s

′
1, s

′
E)α

a1,s
′
1(s′1, s

′
E).

Since αa1,s
′
1 ∈ Conv(Γ ), we have αa1,s

′
1 =

∑
α∈Γ λ

a1,s
′
1

α α for some vector of

real-values (λ
a1,s

′
1

α )(a1,s1)∈A1×S1
such that

∑
α∈Γ λ

a1,s
′
1

α = 1, and therefore:

vϕ ≤
∑

a1∈A1
u1(a1)r((s1, sE), (a1, a2)) + β

∑
(a1,s′1)∈A1×S1,s′E∈SE
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u1(a1)δ((s1, sE), (a1, a2))(s
′
1, s

′
E)

∑
α∈Γ λ

a1,s
′
1

α α(s′1, s
′
E)

=
∑

a1∈A1
pa1r((s1, sE), (a1, a2))+

+ β
∑

(a1,s′1)∈A1×S1,s′E∈SE
δ((s1, sE), (a1, a2))(s

′
1, s

′
E)

∑
α∈Γ λ

a1,s
′
1

α α(s′1, s
′
E)

where pa1
= u1(a1) for all a1 ∈ A1 and in the equality we scale λ

a1,s
′
1

α = pa1
λ
a1,s

′
1

α

for all a1 ∈ A1, s
′
1 ∈ S1 and α ∈ Γ , which gives the constraints:

λ
a1,s

′
1

α ≥ 0

pa1 =
∑

α∈Γλ
a1,s

′
1

α∑
a1∈A1

pa1 = 1

and hence the fact we can solve the LP problem (3) to compute [TV ](s1, b1)
follows directly.

Proof (Proof of Theorem 4). Consider the LP in Lemma 1, which computes
the minimax or maxsup backup [TV ](s1, b1) when V is P-PWLC. The polytope
of feasible solutions of the LP defined by the constraints is independent of the
environment belief b1, because b1 only appears in the objective. Therefore, the set
Qs1 of vertices of this polytope is also independent of b1. For each b1 ∈ P(SE), the
optimal value of an LP representing [TV ](s1, b1) can be found with the vertices
Qs1 , as the objective is linear in V̂ for any given b1. There is a finite number of
vertices q ∈ Qs1 , and each vertex q ∈ Qs1 corresponds to some assignment of
variables uq

1 and αq (uq
1 and αq are computed by (3)). Since Qs1 is finite, then

letting Q = {q ∈ Qs1 | s1 ∈ S1}, which is finite, we have:

[TV ](s1, b1) = maxq∈Q⟨fuq
1,α

q , (s1, b1)⟩ .

Moreover, since fu1,α,a2
is PWC for any u1 ∈ P(A1), α ∈ ΓA1×S1 and a2 ∈ A2,

then it follows from Definition 4, the function fup
1 ,α

p is PWC. This implies that
[TV ] ∈ F(SB) and P-PWLC.

Proof (Proof of Lemma 2). Using Theorem 3, the conclusion directly follows
from Banach’s fixed point theorem and the fact we have proved in Theorem 4
that if V ∈ F(SB) and P-PWLC, so is [TV ] .

Proof (Proof of Lemma 3). By following the proof of Theorem 4 and how p⋆1
and α⋆ are constructed, we can easily verify that in Algorithm 1 α⋆ is a PWC
α-function satisfying (6).

For V1, V2 ∈ F(SB), we use the notation V1 ≤ V2 if V1(ŝ1, b̂1) ≤ V2(ŝ1, b̂1) for

all (ŝ1, b̂1) ∈ SB . Since Γ ′ = Γ ∪ {α⋆}, then it follows from Definition 6 that
V Γ
lb ≤ V Γ ′

lb .
In Algorithm 1, if the backup at line 5 is executed, then the maxsup operator

is applied to some states in ϕ which may result in non-optimal minimax backup
for other states in ϕ, and if the backup at line 6 is executed, α⋆ is assigned the
lower bound L over ϕ. Therefore we have for any (ŝ1, b̂1) ∈ SB :

⟨α⋆, (ŝ1, b̂1)⟩ ≤ [TV Γ
lb ](ŝ1, b̂1)
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≤ [TV ⋆](ŝ1, b̂1) since V Γ
lb ≤ V ⋆

= V ⋆(ŝ1, b̂1) by Theorem 3. (36)

Combining this inequality with V Γ
lb ≤ V ⋆, we have V Γ ′

lb ≤ V ⋆ as required.

Proof (Proof of Lemma 4). Combining Theorem 1, (4) and (5), the conclusion
can be obtained by following the argument in the proof of [35, Lemma 4] for NS-
POMDPs.

The following lemma is required to prove the convergence of the algorithm.

Lemma 8 (Finite terminal belief points) For any t ≥ 0, if Ψt ⊆ SB of
belief points where the trials performed by the procedure Explore of Algorithm 2
terminated at exploration depth t, then Ψt is a finite set.

Proof (Proof of Lemma 8). Consider any t ≥ 0 and suppose that Ψt ⊆ SB

is the set of belief points where the trials performed by the procedure Explore
terminated at depth t. In order to prove that Ψt is a finite set, we first need to
show the following continuity of the lower and upper bounds. Using the same
argument in the proof Theorem 1, we can prove that the lower bound V Γ

lb also
has the continuity property of Theorem 1, i.e., for any (s1, b1), (s1, b

′
1) ∈ SB :

|V Γ
lb (s1, b1)− V Γ

lb (s1, b
′
1)| ≤ K(b1, b

′
1) . (37)

We still consider two beliefs (s1, b1), (s1, b
′
1) ∈ SB . Let (λ

⋆′
i )i∈Is1

be the solution
for V Υ

ub(s1, b
′
1) in (4), i.e.,

V Υ
ub(s1, b

′
1) =

∑
i∈Is1

λ⋆′
i yi +Kub(b

′
1,
∑

i∈Is1

λ⋆′
i b

i
1) . (38)

Now since (λ⋆′
i )i∈Is1

satisfies the constraints in (4) for Is1
, it follows that:

V Υ
ub(s1, b1) ≤

∑
i∈Is1

λ⋆′
i yi +Kub(b1,

∑
i∈Is1

λ⋆
i b

i
1)

=
(
V Υ
ub(s1, b

′
1)−Kub(b

′
1,
∑

i∈Is1

λ⋆
i b

i
1)
)
+Kub(b1,

∑
i∈Is1

λ⋆′
i b

i
1) by (38)

= V Υ
ub(s1, b

′
1) +

(
Kub(b1,

∑
i∈Is1

λ⋆′
i b

i
1)−Kub(b

′
1,
∑

i∈Is1

λ⋆
i b

i
1)
)

rearranging

≤ V Υ
ub(s1, b

′
1) +Kub(b1, b

′
1) by (5).

Using similar steps we can also show that:

V Υ
ub(s1, b

′
1) ≤ V Υ

ub(s1, b1) +Kub(b1, b
′
1)

and hence:
|V Υ

ub(s1, b1)− V Υ
ub(s1, b

′
1)| ≤ Kub(b1, b

′
1) . (39)

Let a belief point (st1, b
t
1) ∈ Ψt. Since the procedure Explore terminates at (st1, b

t
1)

with exploration depth t, then the action-observation pair (â1, ŝ1) computed by
(7) (from line 7 of Algorithm 2) satisfies

P (â1, ŝ1 | (st1, bt1), uub
1 , ulb

2 )excesst+1(ŝ1, b
st1,â1,u

lb
2 ,ŝ1

1 ) ≤ 0 .
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Thus, for any (a1, s
′
1) ∈ A1×S1, if P (a1, s

′
1 | (st1, bt1), uub

1 , ulb
2 ) > 0, then we have

excesst+1(s
′
1, b

st1,a1,u
lb
2 ,s′1

1 ) ≤ 0, i.e.,

V Υ
ub(s

′
1, b

st1,a1,u
lb
2 ,s′1

1 )− V Γ
lb (s

′
1, b

st1,a1,u
lb
2 ,s′1

1 ) ≤ ρ(t+ 1) . (40)

Let (ulb
1 , u

lb
2 ) and (uub

1 , uub
2 ) be the minimax strategy profiles in stage games

[TV Γ
lb ](s

t
1, b

t
1) and [TV Υ

ub ](s
t
1, b

t
1), respectively. Then, we denote by J lb(u1, u2)

and Jub(u1, u2) the value of the stage game at (st1, b
t
1) under the strategy pair

(u1, u2) ∈ P(A1)× P(A2 | S) when computing the backup values in (24) via V Γ
lb

and V Υ
ub , respectively. Thus, since (ulb

1 , u
lb
2 ) is a minimax strategy profile:

J lb(uub
1 , ulb

2 ) ≤ J lb(ulb
1 , u

lb
2 )

= [TV Γ
lb ](s

t
1, b

t
1) by definition of J lb

≤ [TV Υ
ub ](s

t
1, b

t
1) by Lemmas 3 and 4

= Jub(uub
1 , uub

2 ) by definition of Jub

≤ Jub(uub
1 , ulb

2 ) (uub
1 , uub

2 ) is a minimax strategy profile. (41)

Now using (41) we have:

[TV Υ
ub ](s

t
1, b

t
1)− [TV Γ

lb ](s
t
1, b

t
1) ≤ Jub(uub

1 , ulb
2 )− J lb(uub

1 , ulb
2 )

= β
∑

a1,s′1∈A1×S1
P (a1, s

′
1 | (st1, bt1), uub

1 , ulb
2 )

(V Γ
ub(s

′
1, b

st1,a1,u
lb
2 ,s′1

1 )− V Γ
lb (s

′
1, b

st1,a1,u
lb
2 ,s′1

1 )) by (24)

≤ β
∑

a1,s′1∈A1×S1
P (a1, s

′
1 | (st1, bt1), uub

1 , ulb
2 )ρ(t+ 1) by (40)

= βρ(t+ 1) since P is a distribution. (42)

Substituting (42) into the excess gap excesst(s
t
1, b

t
1) we have that the excess gap

after performing the point-based update at (st1, b
t
1) in line 10 of Algorithm 2:

excesst(s
t
1, b

t
1) ≤ βρ(t+ 1)− ρ(t)

= ρ(t)− 2(U − L)ε̄− ρ(t) by definition of ρ(t+ 1)

= −2(U − L)ε̄ rearranging.

Due to the continuity (37) and (39), for any (s1, b1), (s1, b
′
1) ∈ SB , we have

V Υ
ub(s1, b1)− V Γ

lb (s1, b1) ≤ V Υ
ub(s1, b

′
1)− V Γ

lb (s1, b
′
1) + 2Kub(b1, b

′
1) . (43)

Now, for every belief (st1, b1) ∈ SB satisfying Kub(b1, b
t
1) ≤ (U−L)ε̄, substituting

(43) into the excess gap excesst(s
t
1, b1):

excesst(s
t
1, b1) ≤ V Υ

ub(s
t
1, b

t
1)− V Γ

lb (s
t
1, b

t
1) + 2Kub(b1, b

t
1)− ρ(t)

βρ(t+ 1) + 2Kub(b1, b
t
1)− ρ(t) by (42)

≤ ρ(t)− 2(U − L)ε̄+ 2Kub(b1, b
t
1)− ρ(t) by definition of ρ(t+ 1)

≤ −2(U − L)ε̄+ 2(U − L)ε̄ since Kub(b1, b
t
1) ≤ (U − L)ε̄
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= 0 rearranging

which means that (st1, b1) /∈ Ψt. Since P(SE) is compact and thus totally bounded,
we can conclude that Ψt is finite.

Proof (Proof of Theorem 5). By the choice of ε̄, the sequence (ρ(t))t∈N is
monotonically increasing and unbounded. Since L ≤ V Γ

lb (sB) ≤ V Υ
ub(sB) ≤ U for

all sB ∈ SB , the difference between V Γ
lb and V Υ

ub is bounded by U−L. Therefore,
there exists Tmax such that ρ(Tmax) ≥ U−L ≥ V Υ

ub(sB)−V Γ
lb (sB) for all sB ∈ SB ,

and therefore the recursive procedure Explore always terminates.
To demonstrate that Algorithm 2 terminates, we reason about the sets Ψt ⊆

SB of belief points where the trials performed by the procedure Explore termi-
nated at exploration depth t. Initially, Ψt = ∅ for every 0 ≤ t < Tmax. Whenever
the Explore recursion terminates at exploration depth t (i.e., the condition on
line 9 does not hold), the belief stB (which was the last belief considered dur-
ing the trial) is added into the set Ψt, i.e., Ψt := Ψt ∪ {stB}. Since the agent
state space S1 is finite and the number of possible termination depth is finite
(0 ≤ t < Tmax) and the set Ψt is finite by Lemma 8, the algorithm has to
terminate. Then, combining Lemmas 3 and 4, the conclusion follows directly.

Proof (Proof of Lemma 5). The result follows directly from (4) and (8).

Theorem 8 (LP for minimax operator over upper bound – extended
version of Theorem 6). For the function Kub, see (8), and particle-based belief
(s1, b1) represented by {(siE , κi)}Nb

i=1, we have that [TV Υ
ub ](s1, b1) is the optimal

value of the LP (15).

Proof. We first prove that given any s1 ∈ S1, V
Υ
ub(s1, ·) is a convex function.

Consider any two beliefs b1, b
′
1 ∈ P(SE) and τ, τ ′ ≥ 0 such that τ + τ ′ = 1. Let

(λ⋆
k)k∈Is1

and (λ′⋆
k )k∈Is1

be optimal solutions of (4) for V Υ
ub(s1, b1) and V Υ

ub(s1, b
′
1)

respectively, i.e.,

V Υ
ub(s1, b1) =

∑
k∈Is1

λ⋆
kyk +Kub(b1,

∑
k∈Is1

λ⋆
kb

k
1)

V Υ
ub(s1, b

′
1) =

∑
k∈Is1

λ′⋆
k yk +Kub(b1,

∑
k∈Is1

λ′⋆
k b

k
1) . (44)

From the constraints of (4) it follows that:

τλ⋆
k + τ ′λ′⋆

k ≥ 0 for all k ∈ Is1 and
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k ) = 1. (45)

Also let:

S1
E = {sE ∈ SE | b1(sE) + b′1(sE) +

∑
k∈Is1

bk1(sE) > 0} (46)

S2
E = {sE ∈ SE | b1(sE) +

∑
k∈Is1

bk1(sE) > 0} (47)

S3
E = {sE ∈ SE | b′1(sE) +

∑
k∈Is1

bk1(sE) > 0} . (48)

Now using (8) and (46) we have:

Kub(τb1 + τ ′b′1,
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )b
k
1)
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= 1
2 (U − L)

∑
sE∈S1

E
|τb1(sE) + τ ′b′1(sE)−

∑
k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )b
k
1(sE)|

≤ 1
2 (U − L)

∑
sE∈S1

E

(∣∣∣τ(b1(sE)−∑
k∈Is1

λ⋆
kb

k
1(sE)

)
+ τ ′

(
b′1(sE)−

∑
k∈Is1

λ′⋆
k b

k
1(sE)

)∣∣∣) rearranging

= 1
2 (U − L)

∑
sE∈S1

E

(
τ |b1(sE)−

∑
k∈Is1

λ⋆
kb

k
1(sE)|

+ τ ′|b′1(sE)−
∑

k∈Is1

λ′⋆
k b

k
1(sE)|

)
since τ, τ ′ ≥ 0

= 1
2 (U − L)τ

∑
sE∈S2

E

∣∣b1(sE)−∑
k∈Is1

λ⋆
kb

k
1(sE)

∣∣
+ 1

2 (U − L)τ ′
∑

sE∈S3
E

∣∣b′1(sE)−∑
k∈Is1

λ′⋆
k b

k
1(sE)

∣∣ by (47) and (48)

= τKub(b1,
∑

k∈Is1

λ⋆
kb

k
1) + τ ′Kub(b

′
1,
∑

k∈Is1

λ′⋆
k b

k
1) . (49)

Next, from (4) we have:

V Υ
ub(s1, τb1 + τ ′b′1) = min(λk)k∈Is1

∑
k∈Is1

λkyk +Kub(τb1 + τ ′b′1,
∑

k∈Is1

λkb
k
1)

≤
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )yk +Kub(τb1 + τ ′b′1,
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )b
k
1) by (45)

≤
∑

k∈Is1

(τλ⋆
k + τ ′λ′⋆

k )yk + τKub(b1,
∑

k∈Is1

λ⋆
kb

k
1)

+ τ ′Kub(b
′
1,
∑

k∈Is1

λ′⋆
k b

k
1) by (49)

= τV Υ
ub(s1, b1) + τ ′V Υ

ub(s1, b
′
1) by (44)

and hence V Υ
ub(s1, ·) is convex in P(SE).

The inequality (39) shows that V Υ
ub(s1, ·) is continuous in P(SE). By following

the proof of [17, Proposition 4.12], we can prove that there exists a set Γ ′ of
functions F(S) such that V Υ

ub(s1, b1) = supα∈Γ ′⟨α, (s1, b1)⟩ for all (s1, b1) ∈ SB .
Therefore, according to Theorem 2, for any (s1, b1) ∈ SB :

[TV Υ
ub ](s1, b1) = maxu1∈P(A1)minu2∈P(A2|S)E(s1,b1),u1,u2

[r(s, a)]

+ β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u1, u2)V

Υ
ub(s

′
1, b

s1,a1,u2,s
′
1

1 )

= minu2∈P(A2|S)maxu1∈P(A1)E(s1,b1),u1,u2
[r(s, a)]

+ β
∑

a1,s′1
P (a1, s

′
1 | (s1, b1), u1, u2)V

Υ
ub(s

′
1, b

s1,a1,u2,s
′
1

1 ) . (50)

We now define a payoff function J : P(A1)× P(A2 | S) → R to be the objective
of the maximin and minimax optimisation in (50) such that for u1 ∈ P(A1) and
u2 ∈ P(A2 | S), letting E1 = E(s1,b1),u1,u2

[r(s, a)], pa1 = u1(a1), p
a1,u2,s

′
1 =

P (s′1 | (s1, b1), a1, u2) then we have:

J(u1, u2) = E1 + β
∑

a1,s′1
pa1pa1,u2,s

′
1V Υ

ub(s
′
1, b

s1,a1,u2,s
′
1

1 )

= E1 + β
∑

a1,s′1∈A1×S1
pa1pa1,u2,s

′
1min(λk)k∈I

s′
1(∑

k∈Is′
1

λkyk +Kub

(
b
s1,a1,u2,s

′
1

1 ,
∑

k∈Is′
1

λkb
s1,a1,u2,s

′
1

1

))
by (4).
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Now combining this with (8) we have:

J(u1, u2) = E1 + β
∑

a1,s′1
pa1pa1,u2,s

′
1V Υ

ub(s
′
1, b

s1,a1,u2,s
′
1

1 )

= E1 + β
∑

a1,s′1∈A1×S1
pa1pa1,u2,s

′
1minν,d

(∑
k∈Is′

1

νkyk + 1
2 (U − L)

∑
sE∈S+

E
dsE

)
where ν = (ν

a1,s
′
1

k )(a1,s′1)∈A1×S1,k∈Is′
1

and c = (d
a1,s

′
1

s′
E

)
(a1,s′1)∈A1×S1,s′E∈S

a1,s′1
E

are

real-valued vectors of variables subject to the following linear constraints

d
a1,s

′
1

s′E
≥ |P (s′E ; b

s1,a1,u2,s
′
1

1 )−
∑

k∈Is′
1

ν
a1,s

′
1

k P (s′E ; b
k
1)|

ν
a1,s

′
1

k ≥ 0 for k ∈ Is′
1
and

∑
k∈Is′

1

ν
a1,s

′
1

k = 1 (51)

and S
a1,s

′
1

E = {s′E ∈ SE |
∑

a2∈A2
b
s1,a1,a2,s

′
1

1 (s′E) +
∑

k∈Is′
1

bk1(s
′
E) > 0}. Letting

Ca1,s
′
1 = 1

2 (U − L)
∑

s′
E
∈S

a1,s′1
E

d
a1,s

′
1

s′
E

it follows that J(u1, u2) equals:

minν,c
(
E1 + β

∑
(a1,s′1)∈A1×S1

pa1pa1,u2,s
′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

. (52)

Now, given any u2 ∈ P(A2 | S), let Λ be the feasible set for (ν, c), which is convex
using (51). We then define a game with strategy spaces Λ and P(A1) and payoff
function Ju2

: Λ × P(A1) → R which is the objective of (52), i.e., for (ν, c) ∈ Λ
and u1 ∈ P(A1):

Ju2
((ν, c), u1) = E1 + β

∑
a1,s′1

pa1pa1,u2,s
′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
)
. (53)

Combining (50), (52) and (53) we have:

[TV Υ
ub ](s1, b1) = minu2∈P(A2|S)maxu1∈P(A1)J(u1, u2)

= minu2∈P(A2|S)maxu1∈P(A1)min(ν,c)∈ΛJu2
((ν, c), u1) . (54)

We next show that the von Neumann’s Minimax Theorem [25] applies to the
game with payoff function Ju2 and strategy spaces Λ and P(A1). This theorem
requires that:

– Λ and P(A1) are compact convex sets;
– Ju2 is a continuous function that is concave-convex, i.e., Ju2((ν, c), ·) is con-

cave for fixed (ν, c) and Ju2(·, u1) is convex for fixed u1.

Clearly Λ and P(A1) are compact convex sets and by (53), Ju2
is bilinear in ν, c

and u1, and thus concave in P(A1) and convex in Λ. Hence we can apply von
Neumann’s Minimax Theorem, which gives us:

maxu1∈P(A1) min(ν,c)∈Λ Ju2((ν, c), u1) = min(ν,c)∈Λ maxu1∈P(A1) Ju2((ν, c), u1) .
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Therefore, using this result and (54) we have that:

[TV Υ
ub ](s1, b1) = minu2∈P(A2|S)min(ν,c)∈Λmaxu1∈P(A1)Ju2

((ν, c), u1)

= minu2∈P(A2|S)min(ν,c)∈Λmaxu1∈P(A1)

(
E1+

+ β
∑

a1,s′1
pa1pa1,u2,s

′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

by (53)

= minu2∈P(A2|S)min(ν,c)∈Λmaxa1∈A1

(
E1+

+ β
∑

s′1
pa1,u2,s

′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

where the final equality follows from the fact that, for fixed u2 and ν and c,
the objective is linear in u1, from which [TV Υ

ub ](s1, b1) can be formulated as the
following LP problem:

minimise v subject to

v ≥ E1 + β
∑

s′1
pa1,u2,s

′
1
(∑

k∈Is′
1

ν
a1,s

′
1

k yk + Ca1,s
′
1
))

for all a1 ∈ A1. (55)

Letting λ
a1,s

′
1

k = pa1,u2,s
′
1ν

a1,s
′
1

k and c
a1,s

′
1

s′E
= pa1,u2,s

′
1d

a1,s
′
1

s′E
, we can reformulate

(55) as follows:

minu2,λ,ĉ,v̂,v v such that

v ≥
∑Nb

i=1

∑
a2
κip

s1,s
i
E

a2 r((s1, s
i
E), (a1, a2)) + β

∑
s′1
va1,s′1

va1,s′1
=

∑
k∈Is′

1

λ
a1,s

′
1

k yk + 1
2 (U − L)

∑
s′E∈S

a1,s′1
E

ĉ
a1,s

′
1

s′E

for all a1 ∈ A1 and s′1 ∈ S1, where u2(a2|s1, siE) = p
s1,s

i
E

a2 . We next compute the

constraints for λ
a1,s

′
1

k and ĉ
a1,s

′
1

s′E
. According to the belief update (9):

pa1,u2,s
′
1b

s1,a1,u2,s
′
1

1 (s′E) = P (s′1 | (s1, b1), a1, u2)
P (s′1, s

′
E | (s1, b1), a1, u2)

P (s′1 | (s1, b1), a1, u2)

= P (s′1, s
′
E | (s1, b1), a1, u2) rearranging

=
∑Nb

i=1

∑
a2
κip

s1,s
i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

where the final equality follows from the definition of a particle-based belief.

Since ν
a1,s

′
1

k and d
a1,s

′
1

s′E
are subject to the linear constraints (51), it follows that:

c
a1,s

′
1

s′E
≥

∣∣∣∑Nb

i=1

∑
a2
κip

s1,s
i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)−

∑
k∈Is′

1

λ
a1,s

′
1

k P (s′E ; b
k
1)
∣∣∣∑

k∈Is′
1

λ
a1,s

′
1

k =
∑Nb

i=1

∑
a2,s′E

κip
s1,s

i
E

a2 δ((s1, s
i
E), (a1, a2))(s

′
1, s

′
E)

λ
a1,s

′
1

k ≥ 0 (56)

for all (a1, s
′
1) ∈ A1 × S1, 1 ≤ i ≤ Nb and s′E ∈ SE , k ∈ Is′

1
. Thus, the

optimization problem can be reformulated as the LP problem in (15).
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Fig. 4: Pedestrian-vehicle interaction: local transition diagram over the vehicle
speeds with + for positive acceleration, − for negative acceleration, and 0 for
zero acceleration.

F Further Case Study Details

Finally, we give some additional details for the models developed for the two
case studies used for evaluation in Section 7.

Pedestrian-vehicle interaction. The one-sided NS-POSG for the pedestrian-
vehicle scenario is defined as follows:

– S1 = Loc1 × Per1, where Loc1 = {30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 0} (local
states) are the speeds (km/h) of the vehicle and Per1 = {1, 2, 3} are the
perceived pedestrian intentions with 1 representing unlikely to cross, 2 likely
to cross and 3 very likely to cross.

– SE = {(x1, y1, x2, y2) ∈ R4 | 0 ≤ x1, x2 ≤ 20, 0 ≤ y1, y2 ≤ 10} (m), where
[(x1, y1), (x1 +Lx, y1 −Ly)] and [(x2, y2), (x2 +Lx, y2 −Ly)] are the top-left
and bottom-right points of the 2D bounding boxes (of fixed size Lx by Ly)
around the pedestrian at the last and current steps, respectively.

– A = A1×A2, where A1 = {−3, 0, 3} (m/s
2
) are the possible accelerations of

the vehicle, and A2 = {cross, back} are the possible directions the pedestrian
to choose to move.

– The perception function obs1 : SE → Per1 is a data-driven pedestrian in-
tention estimation model implemented via a feed-forward NN with ReLU
activation functions and trained over the PIE dataset in [27].

– For (v1, per1) ∈ Loc1 × Per1, v
′
1 ∈ Loc1 and (a1, a2) ∈ A,

δ1((v1, per1), (a1, a2))(v
′
1) =

{
1 if v′1 = gnext(v1, a1)
0 otherwise

where gnext : Loc1 × A1 → Loc1 is the speed update function of the vehicle
with the transition diagram in Fig. 4.

– For v1 ∈ Loc1, (x1, y1, x2, y2), (x
′
1, y

′
1, x

′
2, y

′
2) ∈ SE and (a1, a2) ∈ A, if

x′
2 = x2 + a2v2∆t, y′2 = y2 − v1∆t− a1

2
∆t2

then δE(v1, (x1, y1, x2, y2), (a1, a2))(x
′
1, y

′
1, x

′
2, y

′
2) = 1, where v2 = 4.5 (m/s)

is the speed of the running pedestrian, a2 is the direction of the movement
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of the pedestrian action, e.g., a2 = −1 for cross and a2 = 1 for back, and
∆t = 0.3 (s)

A crash occurs if the environment state is in the set

Rcrash = {(x1, y1, x2, y2) ∈ SE | 0 ≤ x2 ≤ 0.5, 0 ≤ y2 ≤ 2.5}

i.e., the current bounding box around the pedestrian has a distance of no more
than 0.5 and 1.0 (m) along the x and y coordinates to the vehicle, respectively
(the bounding box has size Lx = 0.5 and Ly = 1.5 (m)). In the reward structure,
all action rewards are zero and the state reward function is such that for any
(s1, sE) ∈ S: rS(s1, sE) = 0 if sE ∈ Rcrash and 200 otherwise.

Pursuit-evasion game. We modify the example presented in [17] by consid-
ering a continuous environment R = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 3} that is
partitioned into multiple cells by their perception functions. In this game, we
have a pair of centrally controlled pursuers {P1, P2} that try to catch an evader
E. In each step, the evader moves by picking from the set of actions Ae =
{up, down, left, right}. The pursuers move in a similar manner, but as we consider
them to be a centrally controlled entity, they can be modelled as a single agent
with action set Ap = Ae × Ae. The perception function of the pursuers uses an
NN classifier f : R → Per , where Per = {(i, j) | i ∈ {1, . . . , 3}, j ∈ {1, . . . , 3}},
which takes the location (coordinates) of a player as input and outputs one of the
9 abstract grid points (cells), thus partitioning the environment. The pursuers
are partially observable, that is, they know which cell they are in, but do not
know their exact location and do not know which cell the evader is in as well as
its exact location. However, the evader is fully observable and knows the exact
locations of all players. The capture condition in [17] is also used, that is, the
evader is captured if it is in the same regression cell with at least one pursuer,
which means the capture states Rcapture are given by

{(xp1 , yp1 , xp2 , yp2 , xe, ye) ∈SE | ∃k ∈ {1, 2},∃(i, j) ∈ Per ,

subject to i− 1 ≤ xpk
, xe < i, j − 1 ≤ ypk

, ye < j} .

This is modelled as a one-sided NS-POSG as follows:

– S1 = Loc1 × Per1, where Loc1 = ∅ and Per1 = Per × Per .
– SE = R3 = {(xp1

, yp1
, xp2

, yp2
, xe, ye) ∈ R6 | (xi, yi) ∈ R, i ∈ {p1, p2, e}}.

– A = A1 ×A2, where A1 = Ap and A2 = Ae.
– The perception function obs1 : SE → Per1 is implemented via a feed-forward

NN f with one hidden ReLU layer and 14 neurons, takes the coordinate
vector of the pursuers as input and then outputs a pair of the 9 abstract
grid points.

– For sE = (xp1
, yp1

, xp2
, yp2

, xe, ye), s
′
E = (x′

p1
, y′p1

, x′
p2
, y′p2

, x′
e, y

′
e) ∈ SE ,

loc1 ∈ Loc1 and a ∈ A, δE(loc1, sE , a)(s
′
E) is equal to

1 if sE ∈ Rcapture and sE = s′E∏
i∈{p1,p2,e} δEi((xi, yi), dai)(x

′
i, y

′
i) if sE /∈ Rcapture

0 otherwise

40



0 50 100 150 200 250 265
−50

0

50

100

150

200

250

300

number of iterations

value for the initial belief

lower bound

upper bound

Fig. 5: Lower and upper bound values for a pursuit-evasion game (3 × 3, one
pursuer, β = 0.7.

where for i ∈ {p1, p2, e}, if x′′
i = xi + dxai∆t and y′′i = yi + dyai∆t, then

δEi((xi, yi), dai)(x
′
i, y

′
i) =

1 if (x′′
i , y

′′
i ) ∈ R and (x′

i, y
′
i) = (x′′

i , y
′′
i )

1 if (x′′
i , y

′′
i ) ̸∈ R and (x′

i, y
′
i) = (xi, yi)

0 otherwise

where da = (dap1
, dap2

, dae) indicates the direction of movement of a for each
agent and dai = (dxai, d

y
ai), e.g., d(up,up,up) = ((0, 1), (0, 1), (0, 1)), and ∆t is

the time step.

As the environment transition δE indicates, the evader is captured if at any point
the environment state is in the set Rcapture and then the game ends by keeping
the state consistent afterwards. In case the pursuers are successful, that is, if at
least one of them enters the same regression cell as the evader, the team receives
a reward of 100. The reward for all other states is zero. All action rewards are
zero. For the model with a single pursuer, in contrast to [17], as well as being
able to move vertically or horizontally, it can also move diagonally. The evader,
however, cannot move diagonally but has the option of staying still when in one
of the border cells, which the pursuer is not allowed to do. Instead of stopping
when capture happens as in [17], the game continues indefinitely in all models.
Figure 5 shows in more detail how the computed values for lower and upper
bounds change as more iterations are performed.
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