
Point-based Value Iteration for
Neuro-Symbolic POMDPs

Rui Yana, Gabriel Santosa, Gethin Normanb, David Parkera,
Marta Kwiatkowskaa

aDepartment of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
bSchool of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK

Abstract

Neuro-symbolic artificial intelligence is an emerging area that combines tra-
ditional symbolic techniques with neural networks. In this paper, we con-
sider its application to sequential decision making under uncertainty. We in-
troduce neuro-symbolic partially observable Markov decision processes (NS-
POMDPs), which model an agent that perceives a continuous-state envi-
ronment using a neural network and makes decisions symbolically, and study
the problem of optimising discounted cumulative rewards. This requires func-
tions over continuous-state beliefs, for which we propose a novel piecewise
linear and convex representation (P-PWLC) in terms of polyhedra covering
the continuous-state space and value vectors, and extend Bellman backups to
this representation. We prove the convexity and continuity of value functions
and present two value iteration algorithms that ensure finite representabil-
ity by exploiting the underlying structure of the continuous-state model and
the neural perception mechanism. The first is a classical (exact) value iter-
ation algorithm extending α-functions of Porta et al (2006) to the P-PWLC
representation for continuous-state spaces. The second is a point-based (ap-
proximate) method called NS-HSVI, which uses the P-PWLC representation
and belief-value induced functions to approximate value functions from below
and above for two types of beliefs, particle-based and region-based. Using
a prototype implementation, we show the practical applicability of our ap-

Email addresses: rui.yan@cs.ox.ac.uk (Rui Yan), gabriel.santos@cs.ox.ac.uk
(Gabriel Santos), gethin.norman@glasgow.ac.uk (Gethin Norman),
david.parker@cs.ox.ac.uk (David Parker), marta.kwiatkowska@cs.ox.ac.uk
(Marta Kwiatkowska)

ar
X

iv
:2

30
6.

17
63

9v
1

 [
ee

ss
.S

Y
]

 3
0

Ju
n

20
23

proach on two case studies that employ (trained) ReLU neural networks as
perception functions, dynamic car parking and an aircraft collision avoidance
system, by synthesising (approximately) optimal strategies. An experimen-
tal comparison with the finite-state POMDP solver SARSOP demonstrates
that NS-HSVI is more robust to particle disturbances.

Keywords:
Neuro-symbolic systems, continuous-state POMDPs, point-based value
iteration, heuristic search value iteration

1. Introduction

An emerging trend in artificial intelligence is to integrate traditional sym-
bolic techniques with data-driven components in sequential decision making
and optimal control. Application domains include mobile robotics [1], visual
reasoning [2], autonomous driving [3] and aircraft control [4]. In real-world
autonomous navigation systems, agents rely on unreliable sensors to per-
ceive the environment, typically represented using continuous-state spaces,
and planning and control must deal with environmental uncertainty. Neural
networks (NNs) have proven effective in these complex settings at providing
fast data-driven perception mechanisms capable of performing tasks such as
object detection or localisation, and are increasingly often deployed in con-
junction with conventional controllers. Because of the potential applicability
in safety-critical domains, there is growing interest in methodologies for au-
tomated optimal policy synthesis for such neuro-symbolic systems, which are
currently lacking.

Partially observable Markov decision processes (POMDPs) provide a con-
venient mathematical framework to plan under uncertainty. Solving POMDPs
in a scalable and efficient manner is already challenging for finite-state mod-
els [5, 6], but significant progress has been made, e.g., through point-based
methods [7], which extend the classic value iteration algorithm for MDPs
by applying it to a selected set of belief states of the POMDP. Typically,
a belief state is a distribution over the states of the model representing an
agent’s knowledge about the current state. Since the resulting belief MDP
is infinite-state, conventional value iteration cannot be directly applied and
instead point-based methods rely on a so-called α-vector parameterisation, a
linear function characterised by its values in the vertices of the belief simplex,
which is finitely representable since the value function is piecewise linear and

2

convex.
Compared to finite-state POMDPs, solving continuous-state POMDPs

suffers from additional challenges due to the uncountably infinite underlying
state space. The common approach to discretise or approximate the con-
tinuous components with a grid and use methods for finite-state POMDPs
may compromise accuracy and lead to an exponential growth in the num-
ber of states. Refinement of the discretization to improve accuracy further
increases computational complexity. Therefore, an important research direc-
tion is to instead consider POMDP solution techniques that operate directly
in continuous domains.

Additionally, belief spaces for continuous-state POMDPs have infinitely
many dimensions, which further complicates the problem. Since functions
over continuous spaces can have arbitrary forms not amenable to computa-
tion, a key challenge is finding an efficient representation of the value function
that allows closed-form belief updates and Bellman backups for the under-
lying (parameterisable) transition and reward functions. This problem was
addressed by Porta et al in [8], where it was proved that continuous-state
POMDPs with discrete observations and actions have a piecewise linear and
convex value function and admit a finite representation in terms of so-called
α-functions, which generalise α-vectors by replacing weighted summation
with integration. Working with a representation in terms of linear combi-
nations of Gaussian mixtures, they derive point-based value iteration and
implement it by randomly sampling belief points to approximate the value
function.

In this paper, we address the problem of optimal policy synthesis for
discounted cumulative rewards on a subclass of continuous-state POMDPs
with discrete observations and actions, called neuro-symbolic POMDPs (NS-
POMDPs), whose transition and reward functions are symbolic while ob-
servation functions are synthesised in a data-driven fashion, e.g., by means
of NNs. The strengths of NNs include trainability from data and fast in-
ference for complex scenarios (e.g., object detection and recognition), while
symbolic approaches can provide high interpretability, provable correctness
guarantees and ease of inserting human expert knowledge into the under-
lying systems [9]. Our model is expressive enough for realistic perception
functions, while being sufficiently tractable to solve.

Working directly with continuous state spaces rather than a discretisa-
tion, we propose novel finite representations of the value function inspired
by the α-functions of [8], prove convergence and continuity of the value func-

3

tion, and present two algorithms for this representation, the classical value
iteration (VI), and a variant of the HSVI (Heuristic Search Value Iteration)
algorithm [10]. Our first main contribution is demonstrating that, by exploit-
ing the structure of NS-POMDPs, one can indeed find an α-function repre-
sentation, namely piecewise linear and convex representation under piecewise
constant α-functions (P-PWLC), that has a simple parameterisation and is
closed with respect to belief updates and the Bellman operator. More specif-
ically, we show that value functions can be represented using pointwise max-
ima of piecewise constant α-functions (a finite set of polyhedra and a value
vector), which can be obtained directly as the preimage of the (NN) percep-
tion function, in conjunction with mild assumptions that ensure closure with
respect to the transition and reward functions of NS-POMDPs. In contrast
to [8], where Gaussian mixtures are used to represent α-, transitions and re-
ward functions, thus possibly requiring approximation of NS-POMDPs, our
representation closely matches the structure of NS-POMDPs, even with NN
perception functions.

Since α-functions for VI increase exponentially in the number of obser-
vations, our second main contribution is a continuous-state space variant
of HSVI, called NS-HSVI, for scalable computation of approximate value
function from below and above. Starting with the polyhedral preimage of
the model’s NN perception function, NS-HSVI works by progressively sub-
dividing the continuous state space during value backups to compute lower
bounds, and is able to track the evolution of the system without requiring
a priori knowledge about how to discretise the state space. We use a lower
K-Lipschitz envelope of a convex hull to approximate an upper bound. We
formulate two representations of the belief space, which have closed forms
for the quantities of interest: particle-based, which relies on sampling of in-
dividual points, and region-based, which places a (uniform) distribution over
a region of continuous space.

We develop a prototype implementation of the techniques and provide
experimental results for strategy (policy) synthesis for particle- and region-
based beliefs on two case studies: dynamic car parking and an aircraft col-
lision avoidance system. We find that region-based values are more robust
to disturbance than particle-based. We also compare our particle-based NS-
HSVI to a finite-state POMDP approximation of an NS-POMDP model us-
ing SARSOP, and observe that our method consistently yields tighter lower
bound values, at a higher computational cost due to expensive polyhedra
computations, because the accuracy of SARSOP’s lower bound depends on

4

the length of the horizon considered when building the model.

Contributions. In summary, this paper makes the following contributions.

1. We propose neuro-symbolic POMDPs (NS-POMDPs), a subclass of
continuous-state POMDPs with discrete observations and actions, whose
observation functions are synthesised in a data-driven fashion.

2. We propose a novel piecewise constant α-function representation of the
value function (as a pointwise maximum function over a set of piecewise
constant α-functions defined over the continuous-state space). We show
that this representation admits a finite polyhedral representation and
is closed with respect to the Bellman operator.

3. We prove continuity and convexity of the value function for discounted
cumulative rewards and derive a value iteration (VI) algorithm.

4. We present a new point-based method called NS-HSVI for approximat-
ing values of NS-POMDPs, proving that piecewise constant α-functions
are a suitable representation for lower bound approximations of values.
We develop two variants of the algorithm, one based on the popular
particle-based beliefs and the other on novel region-based beliefs, and
show they have closed forms for computing the quantities of interest.

5. We provide experimental results to demonstrate the applicability of
NS-HSVI in practice for neural networks whose preimage (or that of
their approximation) is in polyhedral form.

Related work. Various approaches have been proposed to solve continuous-
state POMDPs, including point-based value iteration [8, 11, 12], simulation-
based policy iteration [13], discrete space approximation [14], locally-valid
approximation [15] and tree search planning [16]. However, these approaches
focus on traditional symbolic systems and, while extended to continuous
transitions via sampling [8], they are not adapted to data-driven perception
functions. HSVI is a point-based value iteration for finite-state POMDPs
[10, 17], which was recently extended to stochastic games [18] and works in
the continuous belief space, but, to the best our knowledge, has not been
applied to continuous-state POMDPs.

5

Approaches based on discretisation suffer from loss of accuracy and ex-
ponential growth in the number of states and the finite horizon. The point-
based methods of [8, 11, 12] use α-functions, which is similar to our approach,
but they represent value functions as Gaussian mixtures or dynamic Bayes
nets, which may result in looser approximation for NNs than our polyhedral
representation. This is because our P-PWLC representation exploits the
underlying piecewise constant structure of the continuous-state model and
the neural perception mechanism (for which the value function may not be
piecewise constant).

While our VI and NS-HSVI algorithms work directly in the continuous
state space of the POMDP, most existing approaches rely on constructing
a finite-state POMDP to approximate the continuous-state POMDP and
then solving the finite-state model. PBVI [19] was the first point-based
algorithm to demonstrate good performance on large POMDPs. HSVI [10,
17] uses effective heuristics to guide the forward exploration towards beliefs
that significantly reduce the gap between the upper and lower bounds on
the optimal value function. FSVI [20], also a point-based value iteration
method, explores the belief space by maintaining the true states, using the
optimal value function of the underlying MDP to decide which action to take
and then sampling the next states and observations. SARSOP [21], one of
the fastest existing point-based algorithms, first approximates the optimally
reachable belief space in each iteration by sampling a belief according to its
stored lower and upper bound functions, then performs backups at selected
nodes in the belief tree and finally prunes the α-vectors that are dominated
by others over a neighbourhood of the belief tree.

Formal verification approaches for neuro-symbolic systems have been de-
veloped for the non-stochastic case [4] and for stochastic multi-agent sys-
tems [22, 23, 24] but under full observability. When the controller is data-
driven which is a counterpart to the neural perception, the risk of the closed-
loop stochastic systems is verified in [25]. Verified NN-based POMDP policies
are synthesised in [26], though only for the finite-state setting. Our focus in
this paper is on optimal policy synthesis for neuro-symbolic systems, moti-
vated by the need for such guarantees in safety-critical domains. To the best
of our knowledge, our approach is the first value computation method for
partially observable continuous-state neuro-symbolic systems.

Structure of the paper. The remainder of the paper is structured as
follows. Section 2 overviews the preliminaries of the POMDP framework.

6

Section 3 proposes our model of neuro-symbolic POMDPs, together with its
belief MDP, and gives an illustrative example. Section 4 introduces piecewise
constant representations for functions in NS-POMDPs, and shows that they
have a finite representation (P-PWLC) that ensures closure under the Bell-
man operator. A new value iteration (VI) algorithm is also proposed, and we
prove the convexity and continuity of the value function. Section 5 presents
a new HSVI algorithm for NS-POMDPs, which uses P-PWLC functions and
belief-value induced functions to approximate the value function from below
and above, and considers two belief representations for the implementation.
Section 6 presents a prototype implementation and experimental evaluation
of our algorithm for solving and optimal strategy synthesis for NS-POMDPs
on two case studies. Section 7 concludes the paper. To ease presentation,
proofs of the theorems and lemmas have been placed in the Appendix.

2. Background

This section introduces the notation and preliminaries concerning Markov
decision processes (MDPs) and their partially observable variant (POMDPs),
execution paths and strategies (also called policies), and the construction of
the (fully observable) belief MDP of a POMDP.

Notation. The space of probability measures on a Borel space X is denoted
P(X), the space of bounded real-valued functions on X is denoted F(X) and
the subset of piecewise constant (PWC) functions of F(X) is FC(X).

MDPs. We focus on (Borel measurable) continuous-state MDPs, which
model a single agent executing in a continuous environment by transitioning
probabilistically between states. Formally, an MDP is given as a tuple M =
(S,Act ,∆, δ), where S is a Borel measurable set of states, Act a finite set of
actions, ∆ : S → 2Act an available action function and δ : (S×Act) → P(S)
a probabilistic transition function.

When in state s of MDP M, the agent has a choice between available
actions ∆(s) and, if a ∈ ∆(s) is chosen, then the probability of moving to
state s′ is δ(s, a)(s′). A path of M is a sequence π = s0

a0−→ s1
a1−→ · · · such

that si ∈ S, ai ∈ ∆(si) and δ(si, ai)(si+1) > 0 for all i. We let π(i) = si and
π[i] = ai for all i. FPathM is the set of finite paths of M and last(π) is the
last state of π for any π ∈ FPathM.

A strategy (policy) of M resolves the choices in each state based on the
execution so far. Formally, a strategy σ is a Borel measurable mapping

7

σ : FPathM → P(Act) such that, if σ(π)(a) > 0, then a ∈ ∆(last(π)). We
denote by ΣM the set of strategies of M. A strategy is memoryless if the choice
depends only on the last state of each path and deterministic if it always
selects an action with probability 1. Fixing a strategy σ, the behaviour of M
from an initial state s is represented by a probability measure Pσ

s over infinite
paths starting in s.

POMDPs. POMDPs are an extension of MDPs, in which the agent cannot
perceive the underlying state but instead must infer it based on observations.
Formally, a POMDP is a tuple P = (S,Act ,∆, δ,O, obs), where (S,Act ,∆, δ)
is an MDP, O is a finite set of observations and obs : S → O is a labelling
of states with observations such that, for any s, s′ ∈ S, if obs(s) = obs(s′)
then ∆(s) = ∆(s′). Note that the underlying state space of the POMDP is
uncountably infinite with a continuous-state structure.

When in a state s of a POMDP P, a strategy cannot determine this state
s, but only the observation obs(s). The definitions of paths and strategies
for P carry over from MDPs. However, the set of strategies ΣP of P includes
only observation-based strategies. Formally, a strategy σ is observation-based
if, for paths π = s0

a0−→ · · · an−1−−−→ sn and π′ = s′0
a0−→ · · · an−1−−−→ s′n such that

obs(si) = obs(si) for 0 ≤ i ≤ n, then we have σ(π) = σ(π′).

Objectives, values and optimal strategies. We focus on the discounted
accumulated reward objectives, since they balance the importance of immedi-
ate rewards compared to future rewards, and allow optimizing the behaviour
over an infinite horizon. We note that the problem of undiscounted reward
objectives is undecidable already for finite-state POMDPs. For reward struc-
ture r = (rA, rS), where rA : (S×Act) → R and rS : S → R are action and
state bounded reward functions, the discounted accumulated reward for a
path π of a POMDP P is given by:

Y (π) =
∑∞

k=0β
k
(
rA(π(k), π[k]) + rS(π(k))

)
where β ∈ (0, 1) is the discount factor. Given a state s and strategy σ of
P, Eσ

s [Y] denotes the expected value of Y when starting from s under σ.
Solving P means finding an optimal strategy σ⋆ ∈ ΣP that maximises the
objective function and the (optimal) value function V ⋆ : S → R is defined as
V ⋆(s) = Eσ⋆

s [Y] for s ∈ S.

Belief MDP. A strategy of POMDP P can infer the current state from
the observations and actions performed. The usual way of representing this

8

knowledge is as a belief b ∈ P(S). In general, observation-based strategies
represent more informative than belief-based strategies. However, since we
focus on accumulated discounted rewards, under the Markov assumption
belief-based strategies carry sufficient information to plan optimally [27], and
therefore, for a given objective Y , there exists an optimal (observation-based)
strategy σ of P, which can be represented as σ : P(S) → Act . The strategy
updates its belief b to ba,o via Bayesian inference based on the executed action
a and observation o, i.e. for s′ ∈ S:

ba,o(s′) = (P (o | s′)/P (o | b, a))
∫
s∈S δ(s, a)(s

′)b(s)ds .

Using this update we can define the corresponding (fully observable) belief
MDP in a standard way [28], from which an optimal strategy can be derived.
We remark that belief spaces for continuous-state POMDPs are continuous
and have infinitely many dimensions.

3. Neuro-Symbolic POMDPs

In this section we introduce our model of neuro-symbolic POMDPs, aimed
at scenarios where the agent perceives its environment using a data-driven
perception function. While the model admits a wide class of perception func-
tions, including those synthesised using machine learning methods such as
regression or random forests, our main focus is on demonstrating practical
applicability for models using neural network perception, which are being
increasingly used in real-world applications [29] to partition continuous en-
vironments. This trend necessitates an integrated and automated approach
to model and verify such systems. After defining the model, we give an illus-
trative example and then describe how a (fully observable) belief MDP can
be obtained for an NS-POMDP.

NS-POMDPs. The model of neuro-symbolic POMDPs comprises a neuro-
symbolic agent acting in a continuous-state environment. This model is a
single-agent partially observable variant of the fully-observable neuro-symbolic
concurrent stochastic game model of [23, 24] and shares its syntax. The agent
has finitely many local states and actions, and is endowed with a percep-
tion mechanism through which it can observe the state of the environment,
recording such observations as (a discrete set of finitely many) percepts. Be-
fore discussing the special case of NN perception functions, we consider the
general case, defined formally as follows.

9

Definition 1 (Syntax of NS-POMDPs). An NS-POMDP P comprises
an agent Ag = (SA,Act ,∆A, obsA, δA) and environment E = (SE, δE) where:

• SA = Loc×Per is a set of states for Ag, where Loc ⊆ Rb and Per ⊆ Rd

are finite sets of local states and percepts, respectively;

• SE ⊆ Re is a closed set of continuous environment states;

• Act is a nonempty finite set of actions for Ag;

• ∆A : SA → 2Act is an available action function for Ag;

• obsA : (Loc × SE)→ Per is Ag’s perception function;

• δA : (SA × Act)→ P(Loc) is Ag’s probabilistic transition function;

• δE : (SE ×Act)→ P(SE) is a finitely-branching probabilistic transition
function for the environment.

NS-POMDPs are a subclass of continuous-state POMDPs with discrete ob-
servations (i.e., agent states SA, which are pairs consisting of a local state
and percept) and actions. This model captures a number of key properties
of POMDP models that we target. The environment is continuous, as many
real-world systems such as robot navigation are naturally modelled by con-
tinuous states, and probabilities are used to account for uncertainties. At
the same time, the agent’s state space is finite to ensure tractability.

The system executes as follows. A (global) state for an NS-POMDP P
comprises an agent state sA = (loc, per), where loc is its local state and
per is the percept, and environment state sE. In state s = (sA, sE), the
agent Ag chooses an action a available in sA, then updates its local state
to loc ′ according to the distribution δA(sA, a) and, at the same time, the
environment updates its state to s′E according to δE(sE, a). Finally, the
agent, based on loc′ (since it may require different information regarding the
environment depending on its local state), observes s′E to generate a new
percept per ′ = obsA(loc

′, s′E) and P reaches the state s′ = ((loc ′, per ′), s′E).
While the NS-POMDP model admits any (deterministic) function obsA

from the continuous environment to percepts, in this work we focus on percep-
tion functions implemented via (trained) neural networks f : Rb+e → P(Per),
yielding normalised scores over different percept values. A rule is then ap-
plied that selects the percept value with the maximum score. While restrict-
ing perception to deterministic functions with discrete outputs is limiting,

10

40

4

3

2

1

321

x

y

1

2

16
...

...

0 1 2 3 4

1

2

3

4

Figure 1: Car parking example, perception NN and perception FCP of its preimage con-
sisting of 62 polygons and 16 classes.

it is well aligned with NN classifiers in applications such as object detection
and localisation that we target. A polyhedral decomposition of the contin-
uous state space can then be obtained by computing the preimage of the
perception function [30].

To motivate our definition of NS-POMDPs, we consider a dynamic vehicle
parking example, in which an autonomous vehicle uses an NN for localisation
while looking for a parking spot. We are interested in automated synthesis
of an optimal strategy to reach the spot.

Example 1. We consider the problem of an agent Ag (vehicle) looking for
the green parking spot (Fig. 1, left). The vehicle uses an NN as a perception
mechanism (Fig. 1, middle) that subdivides the continuous environment R =
{(x, y) ∈ R2 | 0 ≤ x, y ≤ 4} into 16 cells, resulting in a grid-like abstraction
of the environment. We trained an NN with one hidden ReLU layer on
randomly generated data to take the coordinates of the vehicle as input and
output one of the 16 abstract grid points (percepts). The parking spot region
is RP = {(x, y) ∈ R2 | 2 ≤ x ≤ 3 ∧ 3 ≤ y ≤ 4}. We assume the agent can
start from any position and has constant speed.

The environment’s state space R corresponds to the continuous coordi-
nates of the vehicle, with the percept value stored locally by the agent. The
agent’s actions are to move up, down, left or right, or park, and a suggested
subset of these actions is associated with each percept (see Table 1). Since
the NN is trained from data, the percepts do not perfectly align with the
abstract grid (Fig. 1, right), the agent additionally records a trust value to
reflect whether actions recommended by the perception function but disal-
lowed (see Table 1), e.g., to park before physically reaching the parking spot,
are actually taken by the agent.

At each step, the agent updates the trust level in the recommended ac-
tions and receives a percept of the environment to keep track of its position

11

in the abstract grid. Then, the agent takes an action based on the path of
previous trust-percept pairs. Next, the agent increases the trust level if the
percept is compliant with the executed action and decreases it probabilis-
tically otherwise. The environment’s transition function corresponds to the
vehicle moving in the direction specified by the agent for a fixed time step.
Finally, the agent updates its percept of the updated environment state using
its NN observation function.

Formally, the car parking example can be modeled as an NS-POMDP
with the following components.

• SA = Loc × Per where Loc = {1, . . . , 5} (local states) are the 5 trust
levels and Per = {1, . . . , 16} (percepts) are the 16 abstract grid points
which are ordered according to Table 1.

• SE = R = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 4}.

• Act = {up, down, left , right , park}.

• For (tr , per) ∈ SA we have ∆A(tr, per) = Act if per = 15 and otherwise
∆A(tr, per) = {up, down, left , right}.

• For tr ∈ Loc and (x, y) ∈ SE we have obsA(tr , (x, y)) = argmax(f(x, y)),
where f is implemented via a feed-forward NN with one hidden ReLU
layer and 14 neurons, takes the coordinate vector of the vehicle as input
and then outputs one of the 16 abstract grid points (Fig. 1, middle).
The boundary coordinate is resolved by assigning the grid point with
the smallest label.

• For sA = (tr, per) ∈ SA, tr′ ∈ Loc and a ∈ Act , if a is compliant with
per , see Table 1, then:

δA(sA, a)(tr
′) =

1 if (tr ≤ 4) ∧ (tr ′ = tr + 1)
1 if (tr = 5) ∧ (tr ′ = tr)
0 otherwise

on the other hand, if a is not compliant with per , then:

δA(sA, a)(tr
′) =

0.5 if (tr ≥ 2) ∧ (tr ′ = tr − 1)
0.5 if (tr ≥ 2) ∧ (tr ′ = tr)
1 if (tr = 1) ∧ (tr ′ = tr)
0 otherwise.

12

Cell label Abstract grid point Suggested Cell label Abstract grid point Suggested
(per) actions (per) actions

1 (1, 1) up, right 9 (1, 3) up, right
2 (2, 1) up, right 10 (2, 3) up, right
3 (3, 1) up 11 (3, 3) up
4 (4, 1) up, left 12 (4, 3) up, left
5 (1, 2) up, right 13 (1, 4) right
6 (2, 2) up, right 14 (2, 4) right
7 (3, 2) up 15 (3, 4) park
8 (4, 2) up, left 16 (4, 4) left

Table 1: Suggested actions for each percept of car parking (4×4), where the abstract grid
point (i, j) is the ith and jth cell along the positive x-axis and y-axis, respectively.

• For (x, y), (x′, y′) ∈ SE and a ∈ Act if x′′ = x + ∆tdax and y′′ =
y +∆tday , then

δE((x, y), a)(x
′, y′) =

1 if (x′′, y′′) ∈ R and (x′, y′) = (x′′, y′′)
1 if (x′′, y′′) ̸∈ R and (x′, y′) = (x, y)
0 otherwise

where ∆t = 1.0 is the time step and da = (dax , day) is the direction of
movement of the action a, e.g., dup = (0, 1) and dleft = (−1, 0). ■

NS-POMDP semantics. The semantics of an NS-POMDP P is a POMDP
JPK over the product of the (discrete) states of the agent and the (continuous)
states of the environment, except that we restrict those to states that are
percept compatible. A state s = ((loc, per), sE) is percept compatible if per =
obsA(loc, sE). The semantics of an NS-POMDP is closed with respect to
percept compatible states.

Definition 2 (Semantics of NS-POMDPs). Given an NS-POMDP P, the
semantics of P is the POMDP JPK = (S,Act ,∆, δ, SA, obs) where:

• S ⊆ SA×SE is the set of percept compatible states, which contain both
discrete and continuous elements;

• ∆(sA, sE) = ∆A(sA) for (sA, sE) ∈ S;

• obs(sA, sE) = sA for (sA, sE) ∈ S;

• for s = (sA, sE), s
′ = (s′A, s

′
E) ∈ S and a ∈ ∆(s), if s′A = (loc′, per ′) is

percept compatible, then δ(s, a)(s′) = δA(sA, a)(loc
′)δE(sE, a)(s

′
E) and

δ(s, a)(s′) = 0 otherwise.

13

Since δE has finite branching and SA is finite, the branching set Θa
sE

= {s′E |
δE(sE, a)(s

′
E) > 0} is finite for all sE ∈ SE and a ∈ Act , and the branching

set Θa
s = {s′ | δ(s, a)(s′) > 0} is finite for all s ∈ S and a ∈ ∆(s). Note that,

while NS-POMDPs are finite branching, they are not discrete.

NS-POMDP strategies. As JPK is a POMDP, we consider observation-
based strategies, which can be represented by memoryless strategies over its
belief MDP JPKB. Given agent state sA = (loc, per), we let SsA

E = {sE ∈
SE | obsA(loc, sE) = per}, i.e., the environment states generating percept
per given loc. Since agent states are observable and states of JPK are percept
compatible, beliefs can be represented as pairs (sA, bE), where sA ∈ SA is an
agent state, bE ∈ P(SE) is a belief over environment, and bE(sE) = 0 for all
sE ∈ SE \ SsA

E , i.e., those states that are not percept compatible.
Before giving the definition of JPKB, we consider how beliefs are updated

in this setting. Therefore, suppose sA is the current agent state, i.e., what
is observable, and bE is the current belief about the environment. Then if
action a is executed and s′A is observed, the updated belief is such that for
any s′E ∈ SE:

b
sA,a,s′A
E (s′E) =

P ((s′A, s
′
E) | (sA, bE), a)

P (s′A | (sA, bE), a)
if s′E ∈ S

s′A
E and equals 0 otherwise.

(1)

Belief MDP and belief updates. We can now derive the belief MDP
of an NS-POMDP, which follows through a standard construction [28] while
relying on Borel measurability of the underlying uncountable state space of
the NS-POMDP.

Definition 3 (Belief MDP). The belief MDP of an NS-POMDP P is the
MDP JPKB = (SB,Act ,∆B, δB), where:

• SB ⊆ SA × P(SE) is the set of percept compatible beliefs;

• ∆B(sA, bE) = ∆A(sA) for (sA, bE) ∈ SB;

• for (sA, bE), (s
′
A, b

′
E) ∈ SB, and a ∈ ∆B(sA, bE):

δB((sA, bE), a)(s
′
A, b

′
E) =

{
P (s′A | (sA, bE), a) if b′E = b

sA,a,s′A
E

0 otherwise.

14

Finally, in this section we discuss how the beliefs and probabilities of Defini-
tion 3 can be computed. For any (sA, bE), (s

′
A, b

′
E) ∈ SB and s′A = (loc ′, per ′),

we have that P (s′A | (sA, bE), a) equals:

δA(sA, a)(loc
′)

(∫
sE∈SE

bE(sE)
∑

s′E∈S
s′
A

E

δE(sE, a)(s
′
E)dsE

)
. (2)

Furthermore, P ((s′A, s
′
E) | (sA, bE), a) equals:

δA(sA, a)(loc
′)
(∫

sE∈SE
bE(sE)δE(sE, a)(s

′
E)dsE

)
(3)

if s′E ∈ S
s′A
E and 0 otherwise. Thus, using (1) we have that bsA,a,s′A

E (s′E) equals:∫
sE∈SE

bE(sE)δE(sE, a)(s
′
E)dsE∫

sE∈SE
bE(sE)

∑
s′′E∈S

s′
A

E

δE(sE, a)(s′′E)dsE
if s′E ∈ S

s′A
E and 0 otherwise. (4)

We note that the belief MDP JPKB is continuous and infinite-dimensional,
with finite branching. Thus, solving it exactly is intractable as closed-form
operations and parametric forms for continuous functions are required. For
efficient computation, beliefs also need to be in closed form.

4. Value Iteration

A common approach to solving continuous-state POMDPs is to discretise
or approximate the continuous components with a grid and use methods for
finite-state POMDPs. As this may compromise accuracy and leads to an
exponential growth in the number of states, we instead aim to operate directly
in the continuous domain. Since functions over continuous spaces can have
arbitrary forms not amenable to computation, we will extend α-functions to
the setting of NS-POMDPs, aided by the theoretical formulation of [8], where
it was proved that continuous-state POMDPs with discrete observations and
actions have a piecewise linear and convex value function. Rather than work
with Gaussian mixtures as in [8], which would require approximations, we
will directly exploit the structure of the model to induce a finite (polyhedral)
representation of the value function.

More specifically, in this section we show that piecewise constant repre-
sentations for the perception, reward and transition functions are sufficient
for NS-POMDPs under mild assumptions, in the sense that they offer a finite

15

representation and are closed with respect to belief update and the Bellman
operator. We next propose a value iteration (VI) algorithm that utilises
piecewise constant α-functions, which does not scale but serves as a basis for
designing a practical point-based algorithm in Section 5. We conclude this
section by investigating the convexity and continuity of the value function.

Value functions. We work with the belief MDP JPKB = (SB,Act ,∆B, δB) of
an NS-POMDP P and consider discounted accumulated reward objectives Y .
The value function is given by V ⋆ : SB → R, where V ⋆(sA, bE) = Eσ⋆

(sA,bE)[Y]

for all (sA, bE) ∈ SB. We require the following notation to evaluate beliefs
through a function over the state space S. Given f : S → R and belief
(sA, bE), let:

⟨f, (sA, bE)⟩ =
∫
sE∈SE

f(sA, sE)bE(sE)dsE (5)
for which an integral over SE is required.

Recall that F(SB) denotes the space of functions over the beliefs.

Definition 4 (Bellman operator). Given V ∈ F(SB), the operator T :
F(SB)→ F(SB) is defined as follows: [TV](sA, bE) equals

max
a∈∆A(sA)

{
⟨Ra, (sA, bE)⟩+ β

∑
s′A∈SA

P (s′A | (sA, bE), a)V (s′A, b
sA,a,s′A
E)

}
(6)

for (sA, bE) ∈ SB, where Ra(s) = rA(s, a) + rS(s) for s ∈ S.

Since JPKB, the semantics of NS-POMDP P, is a continuous-state POMDP
with discrete observations and actions, according to [8] the value function
V ⋆ is the unique fixed point of the operator T , and thus, theoretically, value
iteration can be used to compute V ⋆. However, as the functions involved are
defined over probability density functions from P(SE) and SE is a continuous
space, to ensure feasible computation we require a finite parameterisable
representation for the value function. To this end, we will extend the class of
α-functions with special structure introduced for continuous-state POMDPs
in [8], which generalise α-vector representations for finite-state POMDPs [31].

We first observe that perception functions are piecewise constant (PWC),
and can therefore be used to induce a finite partition of the continuous state
space consisting of connected and observationally-equivalent regions by com-
puting the preimage of the perception function. We then impose mild as-
sumptions on the NS-POMDP structure (Assumption 1) to ensure that the
agent and environment transition functions preserve the PWC properties of
this partition, and on the reward function to ensure region-based reward
accumulation (Assumption 2).

16

4.1. PWC Representations
A finite connected partition (FCP) of S, denoted Φ, is a finite collection

of disjoint connected subsets (regions) that cover S.

Definition 5 (PWC function). A function f : S → R is piecewise con-
stant (PWC) if there exists an FCP Φ of S such that f : ϕ→ R is constant
for all ϕ ∈ Φ. Such an FCP Φ is called constant-FCP of S for f .

Since the perception function is PWC, we can show that the continuous-state
space of an NS-POMDP can be decomposed into a finite set of regions such
that the states in each region have the same observation.

Lemma 1 (Perception FCP). There exists a smallest FCP of S, called
the perception FCP, denoted ΦP , such that all states in any ϕ ∈ ΦP are
observationally equivalent, i.e., if (sA, sE), (s

′
A, s

′
E) ∈ ϕ, then sA = s′A and

we let sϕA = sA.

The perception FCP ΦP can be used to find the set S
s′A
E for any agent state

s′A ∈ SA over which we integrate beliefs in closed form, see e.g., (2) and (4).
If the perception function obsA is specified as an NN, the corresponding FCP
ΦP can be extracted, or approximated, by analyzing its pre-image [30], which
can be computed offline.

Implementing the transition functions δ and δE over continuous-state
spaces is intractable. Since the perception function induces a decomposi-
tion into a finite set of regions, we further assume that such a decomposition
is preserved under the transition function, so that states in a given FCP
region reach the same regions of some other FCP under δ (and likewise the
same rewards). We assume that δE is represented by a probabilistic choice
over Ne ∈ N (deterministic) continuous transition functions and that the
reward structure is bounded PWC.

Assumption 1 (Transitions). For a ∈ Act and FCP Φ of S, there exists
an FCP Φ′ of S, called the pre-image FCP of Φ for a, where for ϕ ∈ Φ and
ϕ′ ∈ Φ′ either Θa

s ∩ ϕ = ∅ for all s ∈ ϕ′, or Θa
s ∩ ϕ ̸= ∅ for all s ∈ ϕ′ and

if s, s̃ ∈ ϕ′, then
∑

s′∈Θa
s∩ϕ

δ(s, a)(s′) =
∑

s̃′∈Θa
s̃∩ϕ

δ(s̃, a)(s̃′). Furthermore,
δE =

∑Ne

i=1 µiδ
i
E where δiE : (SE×Act) → SE is piecewise continuous, µi ≥ 0

and
∑Ne

i=1 µi = 1.

17

Assumption 2 (Rewards). The reward functions rA(·, a), rS : S → R are
bounded PWC for all a ∈ Act . Therefore, for each action a ∈ Act , there
exists a smallest FCP of S, called the reward FCP under action a and denoted
Φa

R, such that all states in any ϕ ∈ Φa
R have the same rewards, i.e., if s, s′ ∈ ϕ,

then rA(s, a) = rA(s
′, a) and rS(s) = rS(s

′).

Example 2. Fig. 1 (right) shows an FCP representation for the pre-image
of the perception function of Example 1. The FCP was constructed via the
exact computation method from [30], and is composed of 62 polygons. Each
colour indicates one of the grid cells as perceived by the agent. In the reward
structure, all action rewards are zero and the state reward function is such
that for any (sA, (x, y)) ∈ S: rS(sA, (x, y)) = 1000 if (x, y) ∈ RP and 0
otherwise, i.e., there is a positive reward if the parking spot is found. ■

We emphasize that, although the states in any region of the perception
FCP are observationally equivalent, by Assumption 1 the transitions have
finite representations, and by Assumption 2 the states in any region of the
reward FCP have the same reward, such states can still have different values
as taking the same actions can yield paths that need not be observationally
equivalent. Therefore, the value function V ⋆ may not be piecewise constant.
Our results demonstrate that analysing NS-POMDPs under these PWC re-
strictions remains challenging, since any discretisation would imply that all
states contained in an abstract region have the same sequences of transitions
and rewards given a sequence of actions, and thus have the same value. Thus,
it is not possible to construct, a priori, a partition of the state space that
reduces the problem to finding the values of a finite-state POMDP. It would
be possible to find, from some initial belief, all reachable states up to some
finite depth and then compute an approximate value for the initial belief.
However, this approach can yield an exponential blow up in the number of
beliefs, or even infinitely many reachable states, for instance, when the initial
belief has positive probabilities over a region of the continuous-state space.

Instead of unrolling, our algorithm progressively subdivides the contin-
uous state space during value backups. Additionally, we remark that finite
branching of the environment transition function does not make the NS-
POMDP discrete because, unlike in finite-state POMDPs, these transitions,
represented by a finite number of piecewise continuous transition functions,
cannot be characterized via a finite set of state-to-state transitions. Be-
sides, if the current belief has positive probabilities over an infinite number

18

of states, then the updated belief can also have an infinite number of states
with positive probabilities.

4.2. PWC α-Function Value Iteration
We can now show, utilising the results for continuous-state POMDPs [8],

that V ⋆ is the limit of a sequence of α-functions, called piecewise linear and
convex under PWC α-functions (P-PWLC), where each such function can be
represented by a (finite) set of PWC functions (concretely, as a finite set of
FCP regions and a value vector).

Definition 6 (P-PWLC function). A function V : SB → R is piecewise
linear and convex under PWC α-functions (P-PWLC) if there exists a finite
set Γ ⊆ FC(S) such that V (sA, bE) = maxα∈Γ⟨α, (sA, bE)⟩ for all (sA, bE) ∈
SB where the functions in Γ are called PWC α-functions.

Definition 6 implies that, if V ∈ F(SB) is P-PWLC, then it can be represented
by a set Γ of PWC continuous functions over S. For NS-POMDPs, we
demonstrate that, under Assumptions 1 and 2, a P-PWLC representation of
value functions is closed under the Bellman operator and the value iteration
converges.

Theorem 1 (P-PWLC closure and convergence). If V ∈ F(SB) and
P-PWLC, then so is [TV]. If V 0 ∈ F(SB) and P-PWLC, then the sequence
(V t)∞t=0, such that V t+1 = [TV t] are P-PWLC and converges to V ⋆.

We remark that an implementation of this exact value iteration is feasible,
since each α-function involved is PWC and thus allows for a finite represen-
tation. However, as the number of α-functions grows exponentially in the
number of agent states, it is not scalable.

4.3. Convexity and Continuity of the Value Function
In Section 5, we will derive a variant of HSVI for lower and upper bound-

ing of the value function, which is more scalable. To this end, the following
properties will be required.

Using Theorem 1 the value function can be represented as a pointwise
maximum V ⋆(sA, bE) = supα∈Γ⟨α, (sA, bE)⟩ for (sA, bE) ∈ SB, where Γ ⊆
FC(S) may be infinite. We now show that V ⋆ is convex and continuous for
any fixed sA ∈ SA. Since we assume bounded reward functions, the value
function V ⋆ has lower and upper bounds:

L = mins∈S,a∈Act Ra(s)/(1−β) and U = maxs∈S,a∈Act Ra(s)/(1−β) . (7)

19

Theorem 2 (Convexity and continuity). For any sA ∈ SA, the value
function V ⋆(sA, ·) : P(SE)→ R is convex and for any bE, b

′
E ∈ P(SE):

|V ⋆(sA, bE)− V ⋆(sA, b
′
E)| ≤ K(bE, b

′
E) (8)

where K(bE, b
′
E) = (U − L)

∫
sE∈SbE>b

′
E

E

(bE(sE) − b′E(sE))dsE and S
bE>b′E
E =

{sE ∈ SsA
E | bE(sE)− b′E(sE) > 0}.

5. Heuristic Search Value Iteration

Value iteration with point-based updates has been proposed for finite-
state POMDPs [8, 10, 7, 17, 32], relying on the fact that performing many
fast approximate updates often results in a more useful value function than
performing a few exact updates. HSVI [10] approximates the value func-
tion V ⋆ at a given initial belief via lower and upper bound functions, which
are updated through heuristically generated beliefs. SARSOP [21] improves
efficiency, but sacrifices convergence guarantees due to aggressive pruning.
These methods focus on finite-state POMDPs and are not directly applicable
to continuous-state NS-POMDPs, as they rely on discretisation or approxi-
mation.

We now present a new HSVI algorithm for NS-POMDPs, which uses
P-PWLC functions and belief-value induced functions to approximate V ⋆

from below and above. This HSVI algorithm progressively subdivides the
continuous state space during value backups, to obtain a piecewise constant
lower bound and a lower K-Lipschitz envelope of a convex hull upper bound
on V ⋆ that itself may not be piecewise constant.

We first introduce the representations of the lower and upper bound func-
tions to the value function, then present point-based updates followed by our
HSVI algorithm, and finally consider two belief representations for the imple-
mentation, both with closed forms for the quantities of interest, one based on
particles (individually sampled points) and the other on regions (polyhedra)
of the continuous space.

5.1. Lower and Upper Bound Representations

Lower bound function. Selecting an appropriate representation for α-
functions requires closure properties with respect to the Bellman opera-
tor, which includes both the transition function and the reward function.

20

Rather than relying on Gaussian mixtures [8], which require both the tran-
sition and reward functions to be in this form, we represent the lower bound
V Γ
LB ∈ F(SB) as a P-PWLC function for the finite set Γ ⊆ FC(S) of PWC

α-functions (see Definition 6), for which closure is guaranteed by Theorem 1.
This is finitely representable as each α-function is PWC. In contrast to
Gaussian mixtures, our P-PWLC representation is designed to match the
NS-POMDP perfectly, with the necessary closure properties ensured by ex-
ploiting the structure of the NS-POMDP.

Upper bound function. The upper bound V Υ
UB ∈ F(SB) is represented by

a finite set of belief-value points Υ = {((siA, biE), yi) | i ∈ I}, where yi is an
upper bound of V ⋆(siA, b

i
E). Since V ⋆(sA, ·) is convex by Theorem 2, letting

IsA
= {i ∈ I | siA = sA}, for any λi ≥ 0 such that

∑
i∈IsA

λi = 1, we have:

V ⋆(sA,
∑

i∈IsA
λib

i
E) ≤

∑
i∈IsA

λiV
⋆(siA, b

i
E) ≤

∑
i∈IsA

λiyi .

This fact is used in HSVI for finite-state POMDPs [10], as any new belief
is a convex combination of the beliefs in Υ, and therefore the convexity of
V ⋆(sA, ·) yields an upper bound. However, there is no such convex combi-
nation guarantee in NS-POMDPs since, as Υ is finite and beliefs are over
a continuous-state space, any convex combinations of beliefs in Υ cannot
cover the belief space. Therefore, the upper bound V Υ

UB is instead defined as
the lower envelope of the lower convex hull of the points in Υ satisfying the
following problem:

V Υ
UB(sA, bE) = minimize

∑
i∈IsA

λiyi +KUB(bE,
∑

i∈IsA
λib

i
E)

subject to: λi ≥ 0,
∑

i∈IsA
λi = 1 for all (sA, bE) ∈ SB (9)

where KUB : P(SE) × P(SE) → R measures the difference between two be-
liefs such that, if K is from Theorem 2 showing the continuity of the value
function, then for any bE, b

′
E ∈ P(SE):

KUB(bE, b
′
E) ≥ K(bE, b

′
E) and KUB(bE, bE) = 0 . (10)

It can be seen that (9) is close to the classical upper bound function used
in regular HSVI for finite-state spaces, except for the function KUB that
measures the difference between two beliefs (two functions). We require that
KUB satisfies (10) to ensure that (9) is an upper bound after a value backup,
as stated in Lemma 4 below.

21

Bound initialization. The lower bound V Γ
LB is initialized using the lower

bound of the blind strategies of the form “always choose action a ∈ Act”,
which is given by

∑∞
k=0 β

k infs∈S Ra(s). Therefore, a lower bound for V Γ
LB is

given by:

RLB = maxa∈Act
(∑∞

k=0β
k infs∈S Ra(s)

)
= 1/(1− β)maxa∈Act infs∈S Ra(s) .

The PWC α-function set Γ for the initial V Γ
LB contains a single PWC function

α, where α(s) = RLB for all s ∈ S and the associated FCP is the perception
FCP ΦP . We initialize the upper bound V Υ

UB by sampling a set of initial
beliefs {(siA, biE)}i∈I and letting yi = U for all (siA, biE).

5.2. Point-Based Updates

Lower bound updates. For the lower bound V Γ
LB , in each iteration we add

a new PWC α-function α⋆ to Γ leading to Γ′ at a belief (sA, bE) ∈ SB such
that:

⟨α⋆, (sA, bE)⟩ = [TV Γ
LB](sA, bE) . (11)

To that end, let ā be an action maximizing the Bellman backup (6) at
(sA, bE), i.e., ā is a maximizer when computing [TV Γ

LB](sA, bE). If action ā is
taken, then S̄A = {s′A ∈ SA | P (s′A | (sA, bE), ā) > 0} are agent states that
can be observed. If s′A is observed, then the backup value at belief (sA, bE)
from an α-function α ∈ Γ equals

∫
sE∈SE

bval((sA, sE), ā, s
′
A, α)bE(sE)dsE,

where for any sE ∈ SE:

bval((sA, sE), ā, s
′
A, α) = βδA(sA, ā)(loc

′)
∑

s′E∈Θā
sE

∩Ss′A
E

δE(sE, ā)(s
′
E)α(s

′
A, s

′
E) .

For s′A ∈ S̄A, let αs′A ∈ Γ be an α-function maximizing the backup value, i.e.,
αs′A ∈ argmaxα∈Γ

∫
sE∈SE

bval((sA, sE), ā, s
′
A, α)bE(sE)dsE.

Using ā, αs′A for s′A ∈ S̄A and the perception FCP ΦP , Algorithm 1
computes a new α-function α⋆ at belief (sA, bE). To guarantee (11) and
improve the efficiency, we only compute the backup values for regions ϕ ∈ ΦP

over which (sA, bE) has positive probabilities, i.e. sϕA = sA (recall sϕA is the
unique agent state appearing in ϕ) and

∫
(sA,sE)∈ϕ bE(sE)dsE > 0 and assign

the trivial lower bound L otherwise. More precisely, for each such region ϕ
and (ŝA, ŝE) ∈ ϕ:

α⋆(ŝA, ŝE) = Rā(ŝA, ŝE) +
∑

s′A∈SA
bval((ŝA, ŝE), ā, s

′
A, α

s′A) (12)

22

Algorithm 1 Point-based Update(sA, bE) of (V Γ
LB , V

Υ
UB)

1: ā← the maximum action in computing [TV Γ
LB](sA, bE)

2: S̄A ← {s′A ∈ SA | P (s′A | (sA, bE), ā) > 0}
3: αs′A ← argmaxα∈Γ

∫
sE∈SE

bval((sA, sE), ā, s
′
A, α)bE(sE)dsE for all s′A ∈ S̄A

4: for ϕ ∈ ΦP do
5: if sϕA = sA and

∫
(sA,sE)∈ϕ bE(sE)dsE > 0 then

6: Compute α⋆(ŝA, ŝE) by (12) for (ŝA, ŝE) ∈ ϕ ▷ ISPP backup
7: else α⋆(ŝA, ŝE)← L for (ŝA, ŝE) ∈ ϕ

8: Γ← Γ ∪ {α⋆}
9: p⋆ ← [TV Υ

UB](sA, bE)
10: Υ← Υ ∪ {((sA, bE), p⋆)}

where if s′A /∈ S̄A, then αs′A can be any α-function in Γ. Computing the
backup values (12) state by state is computationally intractable, as region ϕ
contains an infinite number of states. However, the following lemma shows
that α⋆ is PWC, thus resulting in a tractable region-by-region backup. The
lemma also shows that the lower bound function increases uniformly, is valid
after each update, and performs no worse than the Bellman backup at the
current belief.

Lemma 2 (Lower bound). At belief (sA, bE) ∈ SB, the function α⋆ gener-
ated by Algorithm 1 is a PWC α-function satisfying (11), V Γ

LB ≤ V Γ′
LB ≤ V ⋆

and V Γ′
LB(sA, bE) ≥ [TV Γ

LB](sA, bE).

Since α⋆ is PWC, we next present a new backup for (12) through finite
region-by-region backups. Recall from Assumption 1 that δE can be repre-
sented as

∑Ne

i=1 µiδ
i
E. Algorithm 2 presents an Image-Split-Preimage-Product

(ISPP) backup method to compute (12) region by region. This method, in-
spired by Lemma 2, is to divide a region ϕ into subregions, where for each
subregion α⋆ is constant, illustrated in Fig. 2. Given any reachable local state
loc ′ under ā and continuous transition function δiE, the image of ϕ under ā
and δiE to loc′ is divided into image regions Φimage such that the states in
each region have a unique agent state. Each image region ϕimage is then split
into subregions by a constant-FCP of the PWC function αs

ϕimage
A by pairwise

intersections, and thus Φimage is split into a set of refined image regions Φsplit.
An FCP over ϕ, denoted by Φpre, is constructed by computing the preimage
of each ϕimage ∈ Φsplit to ϕ. Finally, the product of these FCPs Φpre for all

23

Algorithm 2 Image-Split-Preimage-Product (ISPP) backup over a region
Input: region ϕ, action ā, PWC αs′A for all s′A ∈ SA

1: Loc′ ← {loc ′ ∈ Loc | δA(sϕA, ā)(loc
′) > 0}, Φproduct ← ϕ

2: for loc ′ ∈ Loc ′, i = 1, . . . , Ne do
3: ϕ′

E ← {δiE(sE, ā) | (s
ϕ
A, sE) ∈ ϕ} ▷ Image

4: Φimage ← divide ϕ′
E into regions over S by obsA(loc

′, ·)
5: Φsplit ← ∅ ▷ Split
6: for ϕimage ∈ Φimage do
7: Φα ← a constant-FCP of S for the PWC function αs

ϕimage
A

8: Φsplit ← Φsplit ∪ {ϕimage ∩ ϕ′ | ϕ′ ∈ Φα}
9: Φpre ← ∅ ▷ Preimage

10: for ϕimage ∈ Φsplit do
11: Φpre ← Φpre ∪ {(sϕA, sE) ∈ ϕ | δiE(sE, ā) ∈ ϕimage}
12: Φproduct ← {ϕ1 ∩ ϕ2 | ϕ1 ∈ Φpre ∧ ϕ2 ∈ Φproduct} ▷ Product
13: Φproduct ← {ϕ1 ∩ ϕ2 | ϕ1 ∈ Φproduct ∧ ϕ2 ∈ Φā

R}
14: for ϕproduct ∈ Φproduct do ▷ Value backup
15: Take one state (ŝA, ŝE) ∈ ϕproduct

16: α⋆(ϕproduct)← Rā(ŝA, ŝE) +
∑

s′A∈SA
bval((ŝA, ŝE), ā, s

′
A, α

s′A)

17: return: (Φproduct, α
⋆)

reachable local states and environment functions and reward FCP Φā
R, de-

noted Φproduct, is computed. The following lemma demonstrates that α⋆ is
constant in each region of Φproduct, and therefore (12) can be computed by
finite backups.

Lemma 3 (ISPP backup). The FCP Φproduct returned by Algorithm 2 is
a constant-FCP of ϕ for α⋆ and the region-by-region backup for α∗ satisfies
(12).

Computing bval((ŝA, ŝE), ā, s
′
A, α

s′A) in the value backup requires αs′A(s′A, s
′
E).

To obtain this value, we need to find the region in the constant-FCP for αs′A

containing (s′A, s
′
E). Instead of searching, we record the region connections

during ISPP, and thus can locate the region containing (s′A, s
′
E) improving

the efficiency.

Upper bound updates. For the upper bound V Υ
UB , working with the rep-

resentation given in (9), at a belief (sA, bE) ∈ SB in each iteration, we add

24

ϕ Φimage Φsplit Φpre Φproduct

Figure 2: Illustration of the steps taken by the ISPP algorithm.

Algorithm 3 NS-HSVI for NS-POMDPs
1: Initialize V Γ

LB and V Υ
UB

2: while V Υ
UB((s

init
A , binitE)− V Γ

LB(s
init
A , binitE) > ε do Explore((sinitA , binitE), ε, 0)

3: function Explore((sA, bE), ε, t)
4: if V Υ

UB(sA, bE)− V Γ
LB(sA, bE) ≤ εβ−t then return

5: for a ∈ ∆A(sA), s′A ∈ SA do
6: pa,s

′
A ← P (s′A | (sA, bE), a)V Υ

UB(s
′
A, b

sA,a,s′A
E)

7: â← argmaxa∈∆A(sA)⟨Ra, (sA, bE)⟩+ β
∑

s′A∈SA
pa,s

′
A

8: Update(sA, bE)

9: ŝA ← argmaxs′A∈SA
excess t+1(s

′
A, b

sA,â,s′A
E)

10: Explore((ŝA, b
sA,â,ŝA
E), ε, t+ 1)

11: Update(sA, bE)

a new belief-value point ((sA, bE), p
⋆) to Υ such that p⋆ = [TV Υ

UB](sA, bE).
The following lemma shows that p⋆ ≥ V ⋆(sA, bE) required by (9), the up-
per bound function is decreasing uniformly, is valid after each update, and
performs no worse than the Bellman backup at the current belief.

Lemma 4 (Upper bound). Given belief (sA, bE) ∈ SB, if p⋆ = [TV Υ
UB](sA, bE),

then p⋆ is an upper bound of V ⋆ at (sA, bE), i.e., p⋆ ≥ V ⋆(sA, bE), and
if Υ′ = Υ ∪ {((sA, bE), p⋆)}, then V Υ

UB ≥ V Υ′
UB ≥ V ⋆ and V Υ′

UB(sA, bE) ≤
[TV Υ

UB](sA, bE).

5.3. NS-HSVI Algorithm
Algorithm 3 presents the NS-HSVI algorithm for NS-POMDPs. Similarly

to the heuristic search in HSVI [10], the algorithm (lines 5–7) selects an
action â greedily according to the upper bound at belief (sA, bE) ∈ SB, i.e.,

25

â is a maximizer when computing [TV Υ
UB](sA, bE). Furthermore, given ε > 0,

it selects an agent state ŝA (observation) with the highest weighted excess
approximation gap (line 9), denoted excess t+1(s

′
A, b

sA,â,s′A
E), which equals:

P (s′A | (sA, bE), â)
(
V Υ
UB(s

′
A, b

sA,â,s′A
E)− V Γ

LB(s
′
A, b

sA,â,s′A
E)− εβt+1

)
where t is the depth of (sA, bE) from the initial belief sinitB = (sinitA , binitE) ∈ SB.
NS-HSVI has the following convergence guarantees.

Theorem 3 (NS-HSVI). Algorithm 3 will terminate and upon termina-
tion:

1. V Υ
UB(s

init
B)− V Γ

LB(s
init
B) ≤ ε;

2. V Γ
LB(s

init
B) ≤ V ⋆(sinitB) ≤ V Υ

UB(s
init
B);

3. V ⋆(sinitB)−Eσ̂
sinitB

[Y] ≤ ε where σ̂ is the one-step lookahead strategy from
V Γ
LB .

Proof. Given belief (sA, bE) ∈ SB, through Lemma 2 after updating a lower
bound V Γ

LB we have:

V Γ
LB ≤ V Γ′

LB ≤ V ⋆ and V Γ′

LB(sA, bE) ≥ [TV Γ
LB](sA, bE) (13)

and through Lemma 4 after updating an upper bound V Υ
UB , we have:

V Υ
UB ≥ V Υ′

UB ≥ V ⋆ and V Υ′

UB(sA, bE) ≤ [TV Υ
UB](sA, bE) . (14)

Now, since V Γ
LB and V Υ

UB are initially bounded and from Lemmas 2 and 4
are uniformly improvable, δ has finite branching and β ∈ (0, 1), using [33,
Theorem 6.8] we have that Algorithm 3 terminates after finite steps.

Next, combining (13) and (14), and using [33, Section 6.5] both 1 and 2
follow directly. Finally, concerning 3, by (B.1), we have

⟨α⋆, (ŝA, ŝE)⟩ ≤ [TV Γ
LB](ŝA, ŝE) (15)

for all (ŝA, ŝE) ∈ SB. If V Γ
LB ≤ TV Γ

LB , we have V Γ′
LB ≤ TV Γ

LB using (15). Then,
since Algorithm 3 terminates, according to [33, Theorem 3.18]:

V ⋆(sinitA , binitE)− Eσ̂
(sinitA ,binitE)[Y] ≤ V Υ

UB(s
init
A , binitE)− V Γ

LB(s
init
A , binitE) ≤ ε

26

which completes the proof. □

Pruning. We apply the following pruning to speed up Algorithm 3. First,
a new α-function α⋆ is added to Γ at belief (sA, bE) in each update only if
α⋆ strictly improves the value at (sA, bE), i.e., ⟨α⋆, (sA, bE)⟩ > V Γ

LB(sA, bE).
This leads to fewer α-functions in Γ without changing convergence, and thus
faster lower bound computation. Second, for the heuristic search, since the
action â (line 6) maximizing the upper bound backup may not be unique
and different â could result in different maximum gaps (line 8), we keep all
maximizers and select the pair (â, ŝA) with the largest gap. We find this
new excess heuristic to be empirically superior, as it tends to reduce the
uncertainty the most.

Convergence. Each belief update of Algorithm 3 is focused on a single be-
lief, and therefore the number of iterations can be higher than value iteration;
on the other hand, iterations are cheaper to perform. In the finite-state case,
an upper bound on the number of HSVI iterations required can be calculated
[33, Theorem 6.8]. However, such analysis would be difficult in our setting,
as the number of points to update depends on the initial beliefs, and which
beliefs are updated at each iteration, and varies as the algorithm progresses.

5.4. Two Belief Representations
An implementation of the NS-HSVI algorithm crucially depends on the

representations of beliefs, as a closed form is needed when computing belief
b
sA,a,s′A
E , expected values ⟨α, (sA, bE)⟩ and ⟨Ra, (sA, bE)⟩, probability P (s′A |
(sA, bE), a) and upper bound V Υ

UB(sA, bE). We first consider the popular
particle-based belief representation and then propose a region-based belief
representation to overcome the problem of requiring many particles to con-
verge in the particle-based representation [34].

Particle-based beliefs. Particle-based representations have been widely
used in applications from computer vision [35], robotics [36, 8] to machine
learning [37]. They can approximate arbitrary beliefs (given sufficient parti-
cles), handle nonlinear and non-Gaussian systems, and allow efficient com-
putations.

Definition 7 (Particle-based belief). A belief (sA, bE) ∈ SB is repre-
sented by a weighted particle set {(siE, wi)}Nb

i=1 with normalized weights if

bE(sE) =
∑Nb

i=1wiD(sE − siE)

27

where wi > 0, siE ∈ SE for all 1 ≤ i ≤ Nb and D(sE − siE) is a Dirac
delta function centered at 0. Let B(sE) be a small neighborhood of sE, and
P (sE; bE) =

∫
s′E∈B(sE)

bE(s
′
E)ds′E be the probability of particle sE under bE.

Given an initial particle-based belief (sinitA , binitE), the number of states reach-
able in any finite number of steps is finite, and therefore standard methods
for finite-state POMDPs can be used to solve the resulting finite-state game
tree, similarly to [22] under fully-observable strategies. However, the size of
the game tree can increase exponentially as the number of steps increases,
particularly given that the reachable states are likely to be distinct due to
the continuous-state space.

To implement NS-HSVI given in Algorithm 3 using particle-based be-
liefs, we must demonstrate that V Γ

LB and V Υ
UB are eligible representations [8]

for particle-based beliefs, that is, there are closed forms for the quantities
of interest. For a particle-based belief (sA, bE) with weighted particle set
{(siE, wi)}Nb

i=1, it follows from (4) that for belief b
sA,a,s′A
E we have, for any

s′E ∈ SE, bsA,a,s′A
E (s′E) equals:∑Nb

i=1wiδE(s
i
E, a)(s

′
E)∑Nb

i=1 wi

∑
sE′′∈Ss′A

E

δE(siE, a)(s
′′
E)

if s′E ∈ S
s′A
E and equals 0 otherwise. (16)

Similarly, we can compute ⟨α, (sA, bE)⟩, ⟨Ra, (sA, bE)⟩ and P (s′A | (sA, bE), a)
as simple summations. It remains to compute V Υ

UB in (9), which we achieve
by designing a function KUB that measures belief differences that satisfy
(10). However, (10) is hard to check as, for beliefs bE and b′E, calculating
K(bE, b

′
E) involves the integral over the region S

bE>b′E
E . For particle-based

beliefs, we propose the function KUB where:

KUB(bE, b
′
E) = (U − L)NbmaxsE∈SE∧bE(sE)>0 |P (sE; bE)− P (sE; b

′
E)| (17)

where Nb is the number of particles in bE, which is shown to satisfy (10)
and given Υ = {((siA, biE), yi) | i ∈ I}, the upper bound can be computed by
solving a linear program (LP) as demonstrated by the following lemma.

Lemma 5 (LP for upper bound). The function KUB from (17) satisfies
(10), and for particle-based belief (sA, bE) represented by {(siE, wi)}Nb

i=1, we
have that V Υ

UB(sA, bE) is the optimal value of the LP:

minimize:
∑

k∈IsA
λkyk + (U − L)Nbc

subject to: c ≥ |wi −
∑

k∈IsA
λkP (siE; b

k
E)| for 1 ≤ i ≤ Nb

λk ≥ 0 for k ∈ IsA
and

∑
k∈IsA

λk = 1 .

28

Since all quantities of interest in Algorithm 3 are computed exactly, the
convergence guarantee in Theorem 3 holds for any initial particle-based belief.

Region-based beliefs. Particle filter approaches [35] are required to ap-
proximate the updated belief of particle-based representations if the current
belief has zero weight at the true state due to partial observations and random
perturbations. However, for NS-POMDPs the usual sampling importance
re-sampling (SIR) approach [38] requires many particles, which can be com-
putationally expensive. Therefore, we propose a new belief representation
using regions of the continuous state space and show that it performs well
empirically in handling the uncertainties. For any connected subset (region)
ϕE ⊆ SE, let vol(ϕE) =

∫
sE∈ϕE

dsE.

Definition 8 (Region-based belief). A belief (sA, bE) ∈ SB is represented
by a weighted region set {(ϕi

E, wi)}Nb
i=1 if bE(sE) =

∑Nb

i=1χϕi
E
(sE)wi where

wi > 0, ϕi
E is a region of SsA

E and χϕi
E
: SE → R is such that χϕi

E
(sE) = 1 if

sE ∈ ϕi
E and 0 otherwise for 1 ≤ i ≤ Nb, and

∑Nb

i=1 wivol(ϕi
E) = 1.

In the case of region-based beliefs, finite-state POMDPs are not applicable
even when approximating by finding all reachable states up to some finite
depth, as from an initial (region-based) belief this would yield infinitely many
reachable states. Region-based beliefs assume a uniform distribution over
each region and allow the regions to overlap. Ensuring that belief updates
of region-based beliefs result in region-based beliefs is difficult [39], as even
simple transitions of variables with simple distributions can lead to complex
distributions. Assumption 1 only ensures a finite partitioning of the state
space for the transitions, but not that the updated belief places a uniform
distribution over each region. We now provide conditions on the deterministic
continuous components δiE, see Assumption 1, of the environment transition
function, under which region-based beliefs are closed.

Lemma 6 (Region-based belief closure). If δiE(·, a) : SE → δiE(SE, a) is
piecewise differentiable and invertible and the Jacobian determinant of the
inverse function is PWC for any a ∈ Act and 1 ≤ i ≤ Ne, then region-based
beliefs are closed under belief updates.

We next present an implementation of NS-HSVI using region-based beliefs
for environment transition functions satisfying Lemma 6. For a region-based
belief (sA, bE), Algorithm 4 computes the belief update as the image of each

29

Algorithm 4 Region-based belief update
Input: (sA, bE) represented by {(ϕi

E, wi)}Nb
i=1, action a, observation s′A =

(loc′, per ′)

1: if δA(sA, a)(loc
′) > 0 then

2: P ← ∅
3: for i = 1, . . . , Nb, j = 1, . . . , Ne do
4: ϕ′

E ← {δ
j
E(sE, a) | sE ∈ ϕi

E} ▷ Image
5: Φimage ← divide ϕ′

E into regions over SE by obsA(loc
′, ·)

6: w′ ← (vol(ϕi
E)/vol(ϕ′

E))wiµj ▷ Weight update
7: P ← P ∪ {(ϕE, w

′) | ϕE ∈ Φimage ∧ ϕE ⊆ S
s′A
E }

8: Normalise the weights in P
9: b′E(s

′
E)←

∑
(ϕE ,w)∈P χϕE

(s′E)w for all s′E
10: else b′E(s

′
E)← 0 for all s′E

11: return: (s′A, b
′
E)

region, dividing the images by perception functions into regions of SE, updat-
ing weights and selecting the regions with desired observations. The region-
based belief update and expected values are summarised in Lemma 7.

Lemma 7 (Region-based belief update). For region-based belief (sA, bE)
represented by {(ϕi

E, wi)}Nb
i=1, action a and observation s′A: (s′A, b

′
E) returned

by Algorithm 4 is region-based and b′E = b
sA,a,s′A
E . Furthermore, if h : S → R

is PWC and ΦE is a constant-FCP of SE for h at sA, then ⟨h, (sA, bE)⟩ =∑Nb

i=1

∑
ϕE∈ΦE

h(sA, sE)wivol(ϕi
E ∩ ϕE) where sE ∈ ϕE.

For the upper bound V Υ
UB , the function KUB has to compare beliefs over re-

gions. We let KUB = K, and thus (10) holds. Instead of a computationally
expensive exact bound, which involves a large number of region intersections,
Algorithm 5 is approximate, based on maximum densities, and involves solv-
ing an LP.

Lemma 8 (Region-based upper bound). For region-based belief (sA, bE)
represented by {(ϕi

E, wi)}Nb
i=1 and Υ = {((skA, bkE), yk) | k ∈ I}, if KUB = K,

(ϕmax
E , p) is returned by Algorithm 5, b′E =

∑
k∈IsA

λ⋆
kb

k
E and ϕmax

E ⊆ S
bE>b′E
E

where λ⋆
k is a solution to the LP of Algorithm 5, then p is an upper bound of

V Υ
UB at (sA, bE). Furthermore, if Nb = 1, then p = V Υ

UB(sA, bE).

30

Algorithm 5 Approximate region-based upper bound via maximum density
Input: (sA, bE) represented by {(ϕi

E, wi)}Nb
i=1, Υ = {((skA, bkE), yk) | k ∈ I}

1: Ib ← argmaxIb⊆{1,...,Nb}
∑

i∈Ib wi subject to: ∩i∈Ibϕi
E ̸= ∅

2: ϕmax
E ← ∩i∈Ibϕi

E ▷ Maximum density
3: p = minimize

∑
k∈IsA

λkyk + (U − L)c

4: subject to: c ≥ 1−
∑

k∈IsA

∑Nk
b

j=1 λkwkjvol(ϕkj
E ∩ ϕmax

E),
λk ≥ 0,

∑
k∈IsA

λk = 1

5: return: (ϕmax
E , p)

6. Implementation and Experimental Evaluation

In this section, we present a prototype implementation and experimental
evaluation of our NS-HSVI algorithm for solution and optimal strategy syn-
thesis on NS-POMDPs. We first summarise the details of the experimental
setup, then discuss the results of two case studies, and conclude the section
by discussing performance comparison.

6.1. Implementation Overview
We have developed a prototype Python implementation using the Parma

Polyhedra Library [40] to build and operate over perception FCP representa-
tions of preimages of NNs, α-functions and reward structures. We recall that
both α-functions and reward functions are piecewise constant over the con-
tinuous environment. They can thus be represented by subdividing the entire
environment into regions, namely polyhedra over the continuous variables to
which we associate a value. We remark that, since our method crucially
depends on the states in a given region, and those in the subregions arising
from subsequent refinements, being mapped to the same percept, arbitrary
discretisation is not applicable. We use h-representations, which describe
polyhedra through linear constraints for intersecting finite half-spaces. Up-
per bound computation is performed by solving LPs with Gurobi [41]. To
sample points with polyhedra, we use the SMT solver Z3 [42].

We use the method of [30] to compute the (exact) preimage of piecewise
linear NNs, which iterates backwards through the layers. This method is only
applicable when the NN has piecewise linear decision boundaries, for which
the basic building blocks are polytopes. This includes NNs with ReLU or
linear layers, but can also be applied to approximations of NNs obtained
via, for example, linear relaxation. With this pre-image, we then construct

31

40

4

3

2

1

321

0

8

7

6

5

4

3

2

1

87654321

Figure 3: Car parking with obstacles.

a polyhedral representation of the environment space corresponding to the
perception FCP. Regarding boundary points, we order regions and then as-
sign boundary points to the region with the highest order, resolving ties via
a measurable rule.

6.2. Car Parking Case Study
The first case study is the dynamic vehicle parking problem from Exam-

ple 1, which we extend both with obstacles and to a larger environment. We
were able to compute optimal strategies that lead the vehicle to the parking
spot while avoiding obstacles (if present).

4×4 environment. To extend this example to the case when there is an
obstacle region RO = {(x, y) ∈ R2 | 1 ≤ x, y ≤ 2}, see Fig. 3 (left), the state
reward function changes such that for any (sA, (x, y)) ∈ S: rS(sA, (x, y)) =
1000 if (x, y) ∈ RP , −1000 if (x, y) ∈ RO and 0 otherwise, i.e., there is a
negative reward if the vehicle hits the obstacle. The accuracy ε is 10−3.

Strategy synthesis (4×4). Fig. 4 presents paths (π1, π2 and π3) for syn-
thesised strategies starting from three particles in a given initial belief in
two different scenarios, as well as the corresponding lower bound values for
different regions of the environment. It also shows (on the right) the lower
and upper bound values computed for the initial belief at each iteration. In
both cases, there is an obstacle highlighted with black border. We consider
strategies for when the reward associated to a collision is defined as in the
reward structure in the model’s description, i.e., (rS(sA, (x, y)) = −1000 if
(x, y) ∈ RO) (Fig. 4 top), and when that penalty is increased to −5000 (Fig. 4
bottom). We assume a uniform distribution over the points in the initial be-
lief. We see that, when the negative reward of a collision with the obstacle
is increased, Fig. 4 (bottom), all the generated paths avoid the cell with the
obstacle. We also see that, in the first step, the action chosen is to move left;
while this is possible for path π0 (red), taking that action from the other two

32

0 5 10 15 20
−5,000
−4,000
−3,000
−2,000
−1,000

0

1,000
2,000
3,000
4,000
5,000

k

value for the initial belief

lower bound
upper bound

0 4 8 12 16

5,000

0

−5,000

−10,000

−15,000

−20,000

−25,000

k

value for the initial belief

lower bound
upper bound

Figure 4: Paths and values for car parking (obstacle indicated with black border, β = 0.8,
collision rewards equal to −1000 (top) and −5000 (bottom)).

initial belief points would take the agent out of the environment, in which
case the agent would not move. For the scenario with the original reward
structure, Fig. 4 (top), since the negative reward associated with a collision
with the obstacle is lower, we see that such a reward can be compensated for
by the agent afterwards, i.e., it can choose to move upwards from all points
in the initial belief, resulting in a possibly unsafe strategy where a collision
could happen.

Similarly, Fig. 5 shows values and strategies computed for the same sce-
nario when considering a region-based belief. The regions reached from the
initial position until arriving at the parking spot are indicated in orange, with
the current state labelled by x. The lower and upper bound values at each it-
eration are shown on the right-hand side, and the convergence demonstrates
that the approximate upper bound for the region-based beliefs is tight if the
belief has a unique region (see Lemma 8). We notice that the synthesised
strategy avoids the obstacle while also reaching the parking spot with the
least number of possible steps, maximising the agent’s reward.

33

0 1 2 3 4 5 6
−5,000
−4,000
−3,000
−2,000
−1,000

0

1,000
2,000
3,000
4,000
5,000

k

value for the initial belief

lower bound
upper bound

Figure 5: Region-based paths and values for car parking with the obstacle, β = 0.8.

Fig. 6 illustrates how computation progresses for Algorithm 3. Initially,
we have an α-function for each local state whose underlying structure is the
same as the perception FCP (see Fig. 1 right), with all regions initialised
with the lower bound as described in Section 5.1. With each iteration, we
refine the representation for the regions containing visited points and update
their values. The figure shows the initial representation (left) and the max-
imum (over all local states) of the first 5, 25, and finally all the generated
α-functions, coinciding then with the values presented in Fig. 4 (bottom).
We can see how the values for the regions progressively increase as the com-
putation proceeds (top row, left to right), as well as how the subsequent
representations are refinements of the initial FCP (bottom row).

8×8 environment. We consider a larger 8×8 environment R = {(x, y) ∈
R2 | 0 ≤ x, y ≤ 8} with 4 obstacles RO (Fig. 3, right). In this model the
parking spot is given by RP = {(x, y) ∈ R2 | 6 ≤ x ≤ 8 ∧ 7 ≤ y ≤ 8}, and
the same reward structure is considered. To extend the NS-POMDP from
Example 1 to this setting, the following changes to the components SA, SE,
∆A and obsA need to be made:

• SA = Loc × Per with 5 trust levels Loc = {1, . . . , 5} and 64 abstract
grid points Per = {1, . . . , 64} (percepts), which are ordered in the same
way as Table 1;

• SE = R = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 8};

• ∆A(tr, per) = Act if per ∈ {63, 64} and ∆A(tr, per) = {up, down, left ,
right} otherwise for all tr ∈ Loc and per ∈ Per ;

34

Figure 6: Values (top) and region outlines (bottom) for the initial and the maximum (over
all local states) of the first 5, 25 and all the generated α-functions (respectively from left
to right) for the 4× 4 car parking example with obstacle, β = 0.8.

• obsA(tr, (x, y)) = argmax(f(x, y)), where f , which is implemented via
a feed-forward NN with one hidden ReLU layer with 15 neurons, takes
the coordinate vector of the vehicle as input and then outputs one of
the 64 abstract grid points.

Strategy synthesis (8×8). Fig. 8 (left) shows the perception FCP for the
8×8 environment. For this extended model, Fig. 7 (left) presents the paths
from the three particles in the initial belief for the synthesised strategy, as
well as lower bound values for the regions of the environment. As the figure
demonstrates, the vehicle is able to reach the parking spot while avoiding
the obstacles. As the full set of α-functions is large (see Table 4), to reduce
computational effort we show approximate values obtained by maximizing
over a set of sampled α-functions. Fig. 7 (right) shows how the lower and
upper bound values for the initial belief change as the number of iterations
of the NS-HSVI algorithm increases.

6.3. VCAS Case Study
In this case study there are two commercial aircraft: an ownship aircraft

equipped with an NN-controlled vertical collision avoidance system (VCAS)
and an intruder aircraft. Each second, the avoidance system gives a vertical
climb-acceleration advisory ad to the pilot of the ownship to avoid near mid-
air collisions (NMACs), which occur when the aircraft are separated by less
than 100 ft vertically and 500 ft horizontally. The avoidance system extends

35

0 50 100 150 175
−5,000

−3,750

−2,500

−1,250

0

1,250

2,500

3,750

5,000

k

lower bound
upper bound

Figure 7: Paths and values for car parking (8×8, β = 0.8, partially reconstructed).

0 2 4 6 8

2

4

6

8

t

hḣA

Figure 8: Perception FCP for car parking (8×8), and a slice of the perception FCP for
the COC advisory of the VCAS (h scaled 10:1).

the classical VCAS [29], both by adding trust to measure uncertainty and by
allowing for deviations from the advisories arising from the additional belief
information. Regarding the intruder, unlike in the VCAS model of [29],
we allow a non-zero constant climb-rate for the intruder. We were able to
compute optimal strategies that safely guide the ownship by avoiding the
collision zone.

VCAS as an NS-POMDP. The input to VCAS is a tuple (h, ḣA, t), where
h is the relative altitude of the two aircraft, ḣA the climb rate of ownship, and
t the time until the loss of horizontal separation between the aircraft. VCAS
is implemented via nine feed-forward NNs, each of which outputs the scores
of nine possible advisories, see Table 2. Each advisory will provide a set of
acceleration values and the ownship then either accelerates at one of these
values or does not accelerate. Each NN of VCAS has one hidden ReLU layer

36

with 16 neurons, and therefore the regions in its pre-image are polytopes.
If we had instead considered HorizontalCAS [43], the nonlinear environment
transition function twists polytopes into non-polytopes, and would destroy
our finite representations.

We model VCAS as an NS-POMDP in which the agent Ag is the ownship.
The agent has four trust levels {1, . . . , 4}, which represent the trust it has in
the previous advisory. These levels increase if the current advisory is com-
pliant with the executed action, and decrease with probability 0.5 otherwise.
A local state of the agent is of the form (adpre , tr) consisting of the previ-
ous advisory and the trust level and the percept of the agent is the current
VCAS advisory. An environment state is a tuple (h, ḣA, t) corresponding to
the input of VCAS. Formally, we have:

• SA = Loc×Per with Loc = {1, . . . , 9}×{1, . . . , 4} and Per = {1, . . . , 9};

• SE = [−2000, 2000]× [−50, 50]× [0, 20];

• Act = {0,±3.0,±7.33,±8.33,±9.33,±9.7,±10.7,±11.7};

• ∆A(loc, per) = Act for all loc ∈ Loc and per ∈ Per ;

• obsA((adpre , tr), sE) = argmax(fadpre (sE)), where fadpre is the NN as-
sociated with the previous advisory adpre and the boundary point is
resolved by assigning the advisory with the smallest label in Table 2;

• for sA = ((adpre , tr), ad) ∈ SA, (ad ′, tr ′) ∈ Loc and a ∈ Act , if a is
compliant with ad (see Table 2), then:

δA(sA, a)((tr
′, ad ′)) =

1 if (tr ≤ 3) ∧ (tr ′ = tr + 1) ∧ (ad ′ = ad)
1 if (tr = 4) ∧ (tr ′ = tr) ∧ (ad ′ = ad)
0 otherwise

if a is not compliant with ad , then:

δA(sA, a)((tr
′, ad ′)) =

0.5 if (tr ≥ 2) ∧ (tr ′ = tr − 1) ∧ (ad ′ = ad)
0.5 if (tr ≥ 2) ∧ (tr ′ = tr) ∧ (ad ′ = ad)
1 if (tr = 1) ∧ (tr ′ = tr) ∧ (ad ′ = ad)
0 otherwise;

37

Label Advisory Description Actions
(adi) ft/s2

1 COC Clear of Conflict −3, 0, +3
2 DNC Do Not Climb −9.33, −8.33, −7.33
3 DND Do Not Descend +7.33, +8.33, +9.33
4 DES1500 Descend at least 1500 ft/min −9.33, −8.33, −7.33
5 CL1500 Climb at least 1500 ft/min +7.33, +8.33, +9.33
6 SDES1500 Strengthen Descend to at least 1500 ft/min −11.7, −10.7, −9.7
7 SCL1500 Strengthen Climb to at least 1500 ft/min +9.7, +10.7, +11.7
8 SDES2500 Strengthen Descend to at least 2500 ft/min −11.7, −10.7, −9.7
9 SCL2500 Strengthen Climb to at least 2500 ft/min +9.7, +10.7, +11.7

Table 2: Available/suggested actions for each advisory of VCAS [4].

• for s = (h, ḣA, t), s
′ = (h′, ḣ′

A, t
′) ∈ S if

h′′ = h−∆t(ḣA − ḣint)− 0.5∆t2ḧA

ḣ′′
A = ḣA + ḧA∆t
t′′ = t−∆t

then

δE(s, a)(s
′) =

1 if (h′′, ḣ′′

A, t
′′) ∈ SE and s′ = (h′′, ḣ′′

A, t
′′)

1 if (h′′, ḣ′′
A, t

′′) ̸∈ SE and s′ = s
0 otherwise

where ∆t = 1.0 is the time step and the intruder is assumed to be a
constant climb-rate ḣint = 30.

In the reward structure we consider, all action rewards are zero and the state
reward function is such that for any s ∈ S: rS(s) = −1000 if t ∈ [0, 1] ∧ h ∈
[−100, 100] and 0 otherwise, i.e., there is a negative reward if altitudes of the
aircraft are within 100 ft at time 0 or 1. The accuracy ε is 10−1.

Strategy synthesis. To compute the perception FCP ΦP , i.e., the preim-
ages of the NNs for this case study, we first trained these NNs. This involved
computing an MDP table policy using local approximate value iteration, re-
formatting this into training data and training the NNs [44]. To generate
the pre-images, we adapted the method of [30], which was used to compute
exact pre-images for the NNs of HorizontalCAS [43]. For example, the pre-
image for the COC (Clear of Conflict) advisory is shown in Fig. 8 (right),
which shows VCAS next issuing the advisory DES1500 (Descend at least 1500
ft/min) for the environment states in the green region to avoid an NMAC
given the small values of h and t.

38

t

h

ḣA

Figure 9: Paths from synthesised safe strategies for VCAS (h scaled 5:1).

Model Belief type Initial Discount Pts./vol. Iter. Comput.
pts./regions factor updated time(s)

Car parking
(no obstacles, 4×4)

Particle-based 3 0.8 205 15 32.7
5 0.8 392 11 36.3

Region-based 1 0.8 7.6 15 99.1

Car parking
(w/ obstacle, 4×4)

Particle-based 3 0.8 210 17 46.2
5 0.8 390 15 41.9

Region-based 1 0.8 7.6 8 80.4

Car parking
(w/ obstacles, 8×8)

Particle-based 3 0.8 960 174 1820
5 0.8 1600 119 1337

Region-based 1 0.8 43.2 59 2075

VCAS
(3 actions)

Particle-based
4 0.75 441 40 228.2
5 0.75 649 43 475.6
6 0.75 476 23 1467

Region-based 1 0.75 4725 10 994.6

VCAS
(15 actions)

Particle-based
4 0.75 259 11 183.7
5 0.75 425 15 357.7
6 0.75 228 6 127.4

Region-based 1 0.75 4059 7 2419

Table 3: Statistics for a set of NS-POMDP solution instances.

Fig. 9 shows the paths from the four particles in the initial belief of a
synthesized strategy for the VCAS case study. For the particles that would
reach the collision zone at time 0 or 1 (coloured green in Fig. 9), there is a
course correction that enables the ownship to narrowly escape a collision.

6.4. Performance Analysis
To conclude the experimental analysis, we first discuss the performance of

the implementation based on the statistics for two case studies, and then com-
pare the performance of particle-based and region-based beliefs, and against
SARSOP.

Experimental results. The experimental results reported in this section
were generated on a 2.10GHz Intel Xeon Gold. Our NS-HSVI implementation
is able to compute values and strategies for particle-based and region-based
instances of the models we considered in less than 1 hour (Table 3). In the
table, we report the model we consider, the belief type, the number of initial

39

.5 .6 .7 .8 .9 .95
15

30

45

60

75

90

β

ti
m

e(
s)

4×4, no obstacles
4×4, with obstacle

.5 .6 .7 .8 .9 .95
1,000

1,100

1,200

1,300

1,400

1,500

β

8× 8, with obstacles

.5 .6 .7 .8 .9 .95
0

120

240

360

480

600

β

VCAS

Figure 10: Solution times for different discount factors (for particle-based beliefs).

points or regions, the discount factor (β), the number of updated points or
the volume of the updated regions (depending on the belief type), and the
overall number of iterations of Algorithm 3 as well as the time taken until
convergence. We found that the branching factor of the environment tran-
sition function, the number of agent states and actions, and the number of
polyhedra in the perception FCP ΦP can all have a significant impact on the
computation time. Table 3 shows that computation for region-based beliefs
normally takes longer because the number of regions of the perception FCP
ΦP over which the algorithm puts positive probabilities is usually larger, and
thus it requires more ISPP backups. Moreover, while the update for particle-
based beliefs only involves simple operations, updating region-based beliefs
is far more complex due to the need of the polyhedra image computations,
intersections and volume calculations.

Another crucial aspect is the choice of the discount factor (β). Fig. 10
shows how verification times vary for the different case studies as a function
of that parameter. As expected, the trend we are able to observe is that it
takes longer for the algorithm to converge as the value of β increases. The
small drop in the curve for the 8× 8 version of the car parking example for
the lower values of β can be explained by the inherent nondeterminism of
HSVI exploration, especially in the early stages of the computation when
many regions may have the same lower and upper bounds. This may lead to
the algorithm being indifferent with respect to the actions it takes, and thus
constructing paths that have lower impact on the values of the initial belief.
Finally, another element that impacts the running time is the choice of the
initial belief and the model’s dynamics. This can be especially noticed when
comparing the two instances of VCAS. The beliefs for the version with 15
actions have lower values for t and are thus much closer to the boundaries of

40

Model Belief type Total regions Lower Upper Strat. Following Avg.
#initial (α-functions) bound bound time (s) ratio trust

Car parking
(no obstacles, 4×4)

PB, 3 80,494 2389.3309 2389.3333 19.3 88% 3.6
PB, 5 42,224 2047.9989 2048.0000 14.0 100% 3.9
RB, 1 36,467 2047.9992 2048.0000 50.0 100% 3.9

Car parking
(w/ obstacle, 4×4)

PB, 3 99,513 2218.6653 2218.6666 24.5 78% 3.3
PB, 5 47,719 2047.9990 2048.0000 14.2 100% 3.9
RB, 1 35,751 2047.9988 2048.0000 39.4 100% 3.9

Car parking
(w/ obstacles, 8×8)

PB, 3 1,410,799 343.5969 343.5974 338.9 85% 4.3
PB, 5 547,753 343.5970 343.5974 158.4 97% 4.4
RB, 1 550,685 343.5964 343.5974 473.8 80% 4.3

VCAS
(3 actions)

PB, 4 154,009 -1.2281 0.0 75.3 - -
PB, 5 278,447 -1.2398 0.0 127.5 - -
PB, 6 868,257 -0.2498 0.0 400.8 - -
RB, 1 22,919 -0.0715 0.0 65.5 - -

VCAS
(15 actions)

PB, 4 32,387 -0.6718 0.0 18.7 33% 1.3
PB, 5 30,003 -0.9874 0.0 21.7 0% 1.0
PB, 6 19,218 -1.0789 0.0 13.0 33% 1.3
RB, 1 21,102 -0.6133 0.0 49.9 0% 1.0

Table 4: Further statistics for a set of NS-POMDP solution instances.

the environment, which considerably limits the number of reachable states
and makes it possible for the algorithm to converge more quickly despite the
higher number of actions.

Table 4 shows, for a number of instances of both case studies and for each
belief type, particle-based (PB) and region-based (RB): the total number of
polyhedra that make up the α-functions computed, the lower and upper
bounds on values for the initial belief and the time required for strategy
synthesis, i.e., reading α-functions, finding maximum actions and updating
beliefs. We also show the compliance ratio with respect to the suggested
actions as well as average trust values over 20 paths generated from the
synthesised strategies.

For the car parking case study (recall the accuracy is 10−3), in general, the
more iterations that are needed for convergence, the higher the number of α-
functions generated and consequently the total number of regions. Strategy
synthesis for region-based beliefs tends to be comparatively slower due to
the complexity of the mathematical operations involved. The following ratio
and average trust values are both high for this case study as the suggested
actions in Table 1 are close to the optimal strategies.

Regarding VCAS, the statistics in Table 4 are for the accuracy of 10−1.
The α-functions generally have a large number of regions, as the perception
FCP for each of the 9 NNs of VCAS has many regions, and hence many
intersections. In addition, we note that, for this model, the following ratio
and average trust values are low, and in fact have been omitted for the

41

0 0.05 0.1 0.15 0.2
−2,000

−1,500

−1,000

−500

0

500

1,000

1,500

2,000

disturbance size

va
lu

e
4× 4 with obstacle (β = 0.8)

particle-based
region-based

0 5 10 15 20

0

−500

−1,000

−1,500

−2,000

−2,500

−3,000

disturbance size

va
lu

e

VCAS (β = 0.75)

particle-based
region-based

Figure 11: Comparison between particle-based and region-based values.

model with 3 actions. This is because (see Table 2) the number of suggested
actions associated to each advisory is only a fraction of the 15 actions we
considered and, for a given belief, there are many strategies that can lead to
the optimal value. Recall also that it is assumed that the intruder aircraft
is always climbing and the beliefs we considered were all reasonably close to
the collision zone. We analysed the synthesised strategies and found that, in
many cases, the agent chose actions that would at first lead to a faster descent
than those suggested in Table 2, but then compensated by descending less,
or not at all, at later stages. While the values of the actions differed, all
strategies we observed led to the ownship lowering its altitude, which would
lead to an increase of the overall height difference so as to escape a potential
collision. Thus, the low following ratios do not reflect an inadequacy of the
advisories.

Performance comparison. Finally, we compare values obtained for particle-
based and region-based initial beliefs where the initial region covers the parti-
cles, after they have been disturbed by shifting their position along a sampled
direction. This models a realistic scenario, in which the actual initial belief
differs from the initial belief used to compute offline lower and upper bound
functions, for example due to measurement imprecision. For a range of dis-
turbance sizes (the distances by which the particles are shifted), the lower
bound values for the average of 100 sampled points are presented in Fig. 11.
The results show that, in all cases, the region-based belief values are greater
than or equal to the particle-based values, and therefore the region-based
approach is more robust to disturbance (i.e., generates lower bound values
closer to the optimum).

As the number of reachable states for a given number of transitions from

42

0 0.02 0.04 0.06 0.08 0.1

40

50

60

70

80

90

100

110

120

130

140

disturbance size

va
lu

e
4× 4 without obstacle (β = 0.5)

optimal
particle-based
SARSOP-6
SARSOP-4

0 0.02 0.04 0.06 0.08 0.1

100
700

1,660

1,700

1,750

1,800

1,825

disturbance size

va
lu

e

4× 4 without obstacle (β = 0.8)

optimal
particle-based
SARSOP-6
SARSOP-4

Figure 12: Comparison between particle-based and SARSOP values.

an initial particle-based belief is finite, we also compare the robustness of val-
ues obtained with our particle-based NS-HSVI and the finite-state POMDP
solver SARSOP, for the 4 × 4 dynamic vehicle parking without obstacles in
Fig. 12. For an initial particle-based belief, we build two finite-state POMDPs
by unrolling the model’s execution when considering 4 and 6 transitions, re-
spectively. Note that no new distinct states can be reached for paths whose
length exceeds 6 in this example, as any cell in the grid can be reached from
any other cell in 6 steps. Then, we compute the value function, represented
as a set of α-vectors, for each finite-state POMDP with SARSOP. Using the
value function, we approximate the values of beliefs disturbed by shifting
as above, in which each shifted particle takes the value of the closest point
in the finite-state space of the unrolled POMDP. The optimal value of each
shifted belief is computed by unrolling from the shifted belief for a maximum
of 6 transitions and solving the resulting finite-state POMDP with SARSOP.

SARSOP performs better with respect to the computational time taken,
which is understandable as SARSOP takes as input a discretised version of
the model and does not operate over a continuous abstraction, as NS-HSVI
does, requiring expensive operations over polyhedra. Nevertheless, the results
shown in Fig. 12 demonstrate that the values achieved by strategies generated
using SARSOP highly depend on how much of the model’s execution we are
able to construct beforehand, as the impact of missing reward-critical states
with a shorter horizon can be considerable. It also shows that particle-
based NS-HSVI obtains greater or equal lower bound values compared to
SARSOP within a small disturbance range. This is due to the fact that,
when performing the ISPP backup, we update not only the values for the

43

visited points but also for the regions that contain them. The optimal values
of the shifted beliefs indicate that the values of the particle-based NS-HSVI
and SARSOP are both valid lower bounds.

7. Conclusions

We have introduced NS-POMDPs, the first partially observable neuro-
symbolic model for an agent operating in continuous state space and perceiv-
ing the environment using NNs. Motivated by the need for safety guarantees
for such systems, we focus on optimal policy synthesis with discounting. By
placing mild assumptions on the structure of NS-POMDPs, we are able to
exploit their structure to approximate the value function from below and
above using a representation of PWC α-functions and belief-value induced
functions. Using NS-HSVI, a variant of the classical HSVI algorithm, we
synthesised optimal strategies for an agent parking a car and safe strate-
gies for an agent using an aircraft collision avoidance system, employing the
popular particle-based and novel region-based beliefs. Our main achieve-
ment is demonstrating the practicality of the methodology for small systems
with realistic neural network components. To make progress in this chal-
lenging problem domain, similarly to other POMDP approaches, we initially
focus on discounted objectives, and aim to later extend to the more complex
undiscounted case (which is already undecidable for finite-state POMDPs).
However, as the case studies demonstrate, we can use our approach to syn-
thesise strategies that can then be shown to be safe in terms of provably
avoiding “unsafe” parts of the state space. Further work includes efficiency
improvement by incorporating sampling, adapting NS-HSVI to more general
perception NNs and extending the approach to multi-agent systems.

Acknowledgements. This project was funded by the ERC under the Euro-
pean Union’s Horizon 2020 research and innovation programme (FUN2MODEL,
grant agreement No.834115).

Appendix A. Proofs from Section 4

Before we give the proofs of Section 4 we require the following definition.

Definition 9. For FCPs Φ1 and Φ2 of S, we denote by Φ1+Φ2 the smallest
FCP of S such that Φ1 +Φ2 is a refinement of both Φ1 and Φ2, which can be
computed by all combinations of intersections between regions in Φ1 and Φ2.

44

Lemma 1 (Perception FCP). There exists a smallest FCP of S, called
the perception FCP, denoted ΦP , such that all states in any ϕ ∈ ΦP are
observationally equivalent, i.e., if (sA, sE), (s

′
A, s

′
E) ∈ ϕ, then sA = s′A and

we let sϕA = sA.

Proof. Since obsA is PWC and SA is finite, using Definition 1 we have that
for any sA = (loc, per) ∈ SA the set SsA

E = {sE ∈ SE | obsA(loc, sE) = per}
can be expressed as a number of disjoint regions of SE and we let ΦsA

E be such
a representation that minimises the number of such regions. It then follows
that {{(sA, sE) | sE ∈ ϕE} | ϕE ∈ ΦsA

E ∧ sA ∈ SA} is a smallest FCP of S
such that all states in any region are observationally equivalent. □

Theorem 1 (P-PWLC closure and convergence). If V ∈ F(SB) and
P-PWLC, then so is [TV]. If V 0 ∈ F(SB) and P-PWLC, then the sequence
(V t)∞t=0, such that V t+1 = [TV t] are P-PWLC and converges to V ⋆.

Proof. Consider any V ∈ F(SB) that is P-PWLC, by Definition 6 there exists
a finite set Γ ⊆ FC(S) such that:

V (sA, bE) = maxα∈Γ⟨α, (sA, bE)⟩ for all (sA, bE) ∈ SB. (A.1)

Now consider any (sA, bE), (s
′
A, b

′
E) ∈ SB where s′A = (loc′, per ′) and action

a ∈ ∆A(sA), and letting P1 := P (s′A | (sA, bE), a), by (A.1) we have:

V (s′A, b
sA,a,s′A
E) = max

α∈Γ
⟨α, (s′A, b

sA,a,s′A
E)⟩

= max
α∈Γ

∫
s′E∈SE

α(s′A, s
′
E)b

sA,a,s′A
E (s′E)ds

′
E by (5)

= max
α∈Γ

∫
s′E∈SE

α(s′A, s
′
E)

P ((s′A, s
′
E) | (sA, bE), a)

P (s′A | (sA, bE), a)
ds′E by (1)

= max
α∈Γ

∫
s′E∈SE

α(s′A, s
′
E)

P ((s′A, s
′
E) | (sA, bE), a)
P1

ds′E by definition of P1

=
1

P1

max
α∈Γ

∫
s′E∈SE

α(s′A, s
′
E)P ((s′A, s

′
E) | (sA, bE), a)ds′E rearranging

=
1

P1

max
α∈Γ

∫
s′E∈SE

α(s′A, s
′
E)δA(sA, a)(loc

′)

(∫
s′E∈S

s′
A

E ∧sE∈SE

bE(sE)δE(sE, a)(s
′
E)dsE

)
ds′E

by (3)

45

=
1

P1

max
α∈Γ

∫
sE∈E

(
δA(sA, a)(loc

′)

∫
s′E∈S

s′
A

E

α(s′A, s
′
E)δE(sE, a)(s

′
E)ds

′
E

)
bE(sE)dsE

rearranging.
(A.2)

Next, for any α ∈ FC(S), s′A ∈ SA and a ∈ Act we let αa,s′A : S → R be the
function where for any (sA, sE) ∈ S if a ∈ ∆A(sA), then:

αa,s′A(sA, sE) = δA(sA, a)(loc
′)

(∫
s′E∈Ss′A

E

α(s′A, s
′
E)δE(sE, a)(s

′
E)ds

′
E

)

= δA(sA, a)(loc
′)

(∑
s′E∈Θa

sE
∩Ss′A

E

α(s′A, s
′
E)δE(sE, a)(s

′
E)

)
rearranging

(A.3)

and otherwise αa,s′A(sA, sE) = L. Now combining (A.2) and (A.3) we have:

V (s′A, b
sA,a,s′A
E) =

1

P (s′A | (sA, bE), a)
max
α∈Γ

∫
sE∈E

αa,s′A(sA, sE)bE(sE)dsE .

(A.4)
We next prove that αa,s′A is PWC, i.e., αa,s′A ∈ FC(S). Since α ∈ FC(S) there
exists an FCP Φ of S such that α is constant in each region of Φ. According
to Assumption 1, there exists a preimage FCP Φ′ of Φ + ΦP for action a,
where ΦP is the perception FCP from Lemma 1. Consider any region ϕ′ ∈ Φ′

and let ϕ be any region of Φ+ΦP such that Θa
s ∩ ϕ ̸= ∅ for all s ∈ ϕ′. Since

ΦP is the perception FCP, there exists s′A ∈ SA such that if s′ ∈ ϕ, then
s′ = (s′A, s

′
E) for some s′E ∈ SE and let ϕE = {sE ∈ SE | (s′A, sE) ∈ ϕ}. If

s, s̃ ∈ ϕ′ such that s = (sA, sE) and s̃ = (s̃A, s̃E), then using Assumption 1 we
have

∑
s′∈Θa

s∩ϕ
δ(s, a)(s′) =

∑
s̃′∈Θa

s̃∩ϕ
δ(s̃, a)(s̃′) and sA = s̃A. Now combining

this fact with Definition 2, it follows that:

δA(sA, a)(loc
′)
(∑

s′E∈Θa
sE

∩ϕE
δE(sE, a)(s

′
E)
)

= δA(s̃A, a)(loc
′)
(∑

s̃′E∈Θa
s̃E

∩ϕE
δE(s̃E, a)(s̃

′
E)
)
.

Furthermore, since α(s′A, s
′
E) = α(s′A, s̃

′
E) for any (s′A, s

′
E), (s

′
A, s̃

′
E) ∈ ϕ and

S
s′A
E = {sE ∈ SE | obsA(loc ′, sE) = per ′} is equal to {ϕE | ϕ ∈ Φs′A} for

some finite set of regions Φs′A ⊆ Φ + ΦP , it follows that αa,s′A(s) = αa,s′A(s̃),
implying that αa,s′A is constant in each region of Φ′.

46

Now substituting (A.4) into Definition 4 it follows that [TV](sA, bE)
equals:

max
a∈∆A(sA)

{
⟨Ra, (sA, bE)⟩+ β

∑
s′A∈SA

max
α∈Γ

∫
sE∈E

αa,s′A(sA, sE)bE(sE)dsE
}

= max
a∈∆A(sA)

{
⟨Ra, (sA, bE)⟩+ β

∑
s′A∈SA

max
α∈Γ
⟨αa,s′A , (sA, bE)⟩

}
by (5).

Therefore letting Γa,s′A = {αa,s′A | α ∈ Γ} and

α
a,s′A
bE
∈ argmax

αa,s′A∈Γa,s′A ⟨α
a,s′A , (sA, bE)⟩

where αa,s′A
bE

is independent of sA due to (A.3), it then follows from Definition 4
that:

[TV](sA, bE) = max
a∈∆A(sA)

{
⟨Ra, (sA, bE)⟩+ β

∑
s′A∈SA

⟨αa,s′A
bE

, (sA, bE)⟩
}

= max
a∈∆A(sA)

〈
Ra + β

∑
s′A∈SA

α
a,s′A
bE

, (sA, bE)
〉

by (5). (A.5)

Furthermore, we have that

Γ(sA,bE) =
{
Ra + β

∑
s′A∈SA

α
a,s′A
bE
| a ∈ ∆A(sA)

}
and from (A.5):

[TV](sA, bE) = maxα∈Γ(sA,bE)
⟨α, (sA, bE)⟩ .

Finally, since SA, Act and Γ are finite, Ra is PWC by Assumption 2 and
αa,s′A is PWC, defining Γ′ to be the set containing the PWC functions:

Ra + β
∑

s′A∈SA
αa,s′A ∈ FC(S)

for all a ∈ Act , s′A ∈ SA and αa,s′A ∈ Γa,s′A , we have for any (sA, bE) ∈ SB:

[TV](sA, bE) = maxα∈Γ′⟨α, (sA, bE)⟩.

Therefore, [TV] is P-PWLC. As can be seen |Γ′| = |Act ||Γ||SA|, and hence
the number of α-functions representing [TV] given grows exponentially in
the number of agent states for those representing V .

The remainder of the proof follows from Banach’s fixed point theorem
and the fact we have proved that if V ∈ F(SB) and P-PWLC, so is [TV]. □

47

Theorem 2 (Convexity and continuity). For any sA ∈ SA, the value
function V ⋆(sA, ·) : P(SE)→ R is convex and for any bE, b

′
E ∈ P(SE):

|V ⋆(sA, bE)− V ⋆(sA, b
′
E)| ≤ K(bE, b

′
E) (A.6)

where K(bE, b
′
E) = (U − L)

∫
sE∈SbE>b

′
E

E

(bE(sE) − b′E(sE))dsE and S
bE>b′E
E =

{sE ∈ SsA
E | bE(sE)− b′E(sE) > 0}.

Proof. According to Theorem 1 there exists a (possibly infinite) set Γ ⊆
FC(S) such that for any (sA, bE) ∈ SB:

V ⋆(sA, bE) = supα∈Γ⟨α, (sA, bE)⟩ . (A.7)

Given sA ∈ SA, consider any bE, b
′
E ∈ P(SE) and λ ∈ [0, 1], and we have:

λV ⋆(sA, bE) + (1− λ)V ⋆(sA, b
′
E)

= λ supα∈Γ⟨α, (sA, bE)⟩+ (1− λ) supα∈Γ⟨α, (sA, b′E)⟩ by (A.7)
= supα∈Γ⟨α, (sA, λbE)⟩+ supα∈Γ⟨α, (sA, (1− λ)b′E)⟩ by (5)
≥ supα∈Γ⟨α, (sA, λbE + (1− λ)b′E)⟩ rearranging
= V ⋆(sA, λbE + (1− λ)b′E) by (A.7)

which proves that V ⋆(sA, ·) is convex.
Next given α and sA, let Vα,sA(bE) := ⟨α, (sA, bE)⟩ for (sA, bE) ∈ SB. For

any (sA, bE), (sA, b
′
E) ∈ SB, without loss of generality, we can assume that

Vα,sA(bE) ≥ Vα,sA(b
′
E), and therefore:

|Vα,sA(bE)− Vα,sA(b
′
E)| = Vα,sA(bE)− Vα,sA(b

′
E)

= ⟨α, (sA, bE)⟩ − ⟨α(sA, b′E)⟩ by definition of Vα,sA

=

∫
sE∈SsA

E

α(sA, sE)bE(sE)dsE −
∫
sE∈SsA

E

α(sA, sE)b
′
E(sE)dsE by (5)

=

∫
sE∈SsA

E

α(sA, sE)(bE(sE)− b′E(sE))dsE rearranging.

(A.8)

Since bE, b
′
E ∈ P(SE) and (sA, bE), (sA, b

′
E) ∈ SB, we have:∫

sE∈SsA
E

bE(sE)dsE =

∫
sE∈SsA

E

b′E(sE)dsE = 1 . (A.9)

48

Now, letting S+
E = {sE ∈ SsA

E | bE(sE)− b′E(sE) > 0} and S−
E = {sE ∈ SsA

E |
bE(sE)− b′E(sE) ≤ 0}, rearranging (A.9) and using the fact that S+

E ∪ S−
E =

SsA
E it follows that:∫

sE∈S−
E

(bE(sE)− b′E(sE))dsE = −
∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE. (A.10)

Next, using (A.8), the definition of Vα,sA and (5), it follows that |Vα,sA(bE)−
Vα,sA(b

′
E)| equals:∫

sE∈S+
E

α(sA, sE)(bE(sE)− b′E(sE))dsE +

∫
sE∈S−

E

α(sA, sE)(bE(sE)− b′E(sE))dsE

≤
∫
sE∈S+

E

U(bE(sE)− b′E(sE))dsE +

∫
sE∈S−

E

L(bE(sE)− b′E(sE))dsE

by definition of S+
E , S−

E , U and L

= U

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE − L

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE

rearranging and using (A.10)

= k

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE rearranging and letting k = U − L.

(A.11)

We can now derive the following upper bound for V ⋆(sA, bE):

V ⋆(sA, bE) = supα∈Γ⟨α, (sA, bE)⟩ by (A.7)
= sup

α∈Γ
Vα,sA(bE) by definition of Vα,sA

= sup
α∈Γ

(Vα,sA(b
′
E) + Vα,sA(bE)− Vα,sA(b

′
E)) rearranging

= sup
α∈Γ

(Vα,sA(b
′
E) + |Vα,sA(bE)− Vα,sA(b

′
E)|) rearranging

≤ sup
α∈Γ

{
Vα,sA(b

′
E) + k

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE

}
by (A.11)

= sup
α∈Γ

(Vα,sA(b
′
E)) + k

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE rearranging

= sup
α∈Γ
⟨α, (sA, b′E)⟩+ k

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE by definition of Vα,sA

49

= V ⋆(sA, b
′
E) + k

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE by (A.7).

Using similar steps we can also show:

V ⋆(sA, b
′
E) ≤ V ⋆(sA, bE) + k

∫
sE∈S+

E

(bE(sE)− b′E(sE))dsE

and therefore the second part of the theorem follows. □

Appendix B. Proofs from Section 5

Lemma 2 (Lower bound). At belief (sA, bE) ∈ SB, the function α⋆ gener-
ated by Algorithm 1 is a PWC α-function satisfying (11), V Γ

LB ≤ V Γ′
LB ≤ V ⋆

and V Γ′
LB(sA, bE) ≥ [TV Γ

LB](sA, bE).

Proof. By following the proof of Theorem 1 and how ā and αs′A are con-
structed for all s′A ∈ SA, we can easily verify that α⋆ in Algorithm 1 is a
PWC α-functions that satisfies (11).

For any V1, V2 ∈ F(SB), we use the shorthand V1 ≤ V2 to denote that
V1(ŝA, b̂E) ≤ V2(ŝA, b̂E) for all (ŝA, b̂E) ∈ SB. Now, in the case of the lower
bound consider any V Γ

LB such that V Γ
LB ≤ V ⋆. Since Γ′ = Γ ∪ {α⋆} after

updating V Γ
LB at (sA, bE) through Algorithm 1, for any (ŝA, b̂E) ∈ SB:

maxα∈Γ⟨α, (ŝA, b̂E)⟩ ≤ maxα∈Γ′⟨α, (ŝA, b̂E)⟩ .

Therefore combining this with the fact that V Γ
LB is a P-PWLC function for

the finite set Γ, see Definition 6, we have V Γ
LB(ŝA, b̂E) ≤ V Γ′

LB(ŝA, b̂E) and since
(ŝA, b̂E) was arbitrary V Γ

LB ≤ V Γ′
LB .

Next, again using the fact V Γ
LB is a P-PWLC function for the finite set Γ

we have:

V Γ′

LB(sA, bE) = maxα∈Γ′⟨α, (sA, bE)⟩
≥ ⟨α⋆, (sA, bE)⟩ rearranging
= [TV Γ

LB](sA, bE) by (11).

In Algorithm 1, if the backup at line 6 is executed, then the Bellman operator
is applied for some states in ϕ which may result in non-optimal Bellman

50

backup for the other states in ϕ, and if the backup at line 7 is executed, α⋆

is assigned the lower bound L in ϕ. Therefore we have for any (ŝA, b̂E) ∈ SB:

⟨α⋆, (ŝA, b̂E)⟩ ≤ [TV Γ
LB](ŝA, b̂E)

≤ [TV ⋆](ŝA, b̂E) since V Γ
LB ≤ V ⋆

= V ⋆(ŝA, b̂E) by Theorem 1. (B.1)

Combining this inequality with V Γ
LB ≤ V ⋆, we have V Γ′

LB ≤ V ⋆ as required. □

Lemma 3 (ISPP backup). The FCP Φproduct returned by Algorithm 2 is
a constant-FCP of ϕ for α⋆ and the region-by-region backup for α∗ satisfies
(12).

Proof. For the PWC α-functions in the input of Algorithm 2, let Φ =∑
s′A∈S̄A

Φs′A
, where Φs′A

is an FCP of S for αs′A .
According to Assumption 1, there exists a preimage-FCP of Φ for action ā.

Through the image, split, preimage and product operations of Algorithm 2,
all the states in any region ϕ′ ∈ Φproduct have the same reward and reach the
same regions of Φ. Since each α-function αs′A is constant over each region
in Φ, all states in ϕ′ have the same backup value from αs′A for s′A ∈ S̄A.
This implies that Φproduct is a preimage FCP of Φ for action ā. Since the
value backup (12) is used for each region in Φproduct and the image is from
the region ϕ, then Φproduct is a constant-FCP of ϕ for α⋆, and thus the value
backup (12) for α⋆ is achieved by considering the regions of Φproduct. □

Lemma 4 (Upper bound). Given belief (sA, bE) ∈ SB, if p⋆ = [TV Υ
UB](sA, bE),

then p⋆ is an upper bound of V ⋆ at (sA, bE), i.e., p⋆ ≥ V ⋆(sA, bE), and
if Υ′ = Υ ∪ {((sA, bE), p⋆)}, then V Υ

UB ≥ V Υ′
UB ≥ V ⋆ and V Υ′

UB(sA, bE) ≤
[TV Υ

UB](sA, bE).

Proof. Consider an upper bound V Υ
UB such that V Υ

UB ≥ V ⋆. By construction,
each pair ((siA, b

i
E), yi) in Υ satisfies V ⋆(siA, b

i
E) ≤ yi.

Now suppose for belief (sA, bE) ∈ SB we let p⋆ = [TV Υ
UB](sA, bE) and

Υ′ = Υ ∪ {((sA, bE), p⋆)}. The new upper bound V Υ′
UB after updating V Υ

UB at
(sA, bE) through Algorithm 1, satisfies V Υ

UB ≥ V Υ′
UB by (9). By construction

of p⋆ we have:

p⋆ = [TV Υ
UB](sA, bE)

51

≥ [TV ⋆](sA, bE) since V Υ
UB ≥ V ⋆

= V ⋆(sA, bE) by Theorem 1.

Next we have:

V Υ′

UB(sA, bE) ≤ p⋆ since ((sA, bE), p
⋆) ∈ Υ′ and (9)

= [TV Υ
UB](sA, bE) by construction of p⋆.

It therefore remains to prove the last part, i.e. that V Υ′
UB ≥ V ⋆. Now for any

(s′A, b
′
E) ∈ SB, if s′A ̸= sA, then using the fact that Υ′ = Υ ∪ {((sA, bE), p⋆)}

and (9) we have:

V Υ′

UB(s
′
A, b

′
E) = V Υ

UB(s
′
A, b

′
E)

≥ V ⋆(s′A, b
′
E) since V Υ

UB ≥ V ⋆.

On the other hand, if s′A = sA, then using (9) there exists ⟨λ̂i⟩i∈IsA with
λ̂i ≥ 0 and

∑
i∈IsA

λ̂i = 1 such that:

V Υ′

UB(s
′
A, b

′
E) =

∑
i∈IsA

λ̂iyi +KUB

(
b′E,
∑

i∈IsA
λ̂ib

i
E

)
. (B.2)

Now using Theorem 2 we have:

V ⋆(s′A, b
′
E) ≤ V ⋆(sA,

∑
i∈IsA

λ̂ib
i
E) +K

(
b′E,
∑

i∈IsA
λ̂ib

i
E

)
≤
∑

i∈IsA
λ̂iV

⋆(sA, b
i
E) +K

(
b′E,
∑

i∈IsA
λ̂ib

i
E

)
since V ⋆ is convex in SB

≤
∑

i∈IsA
λ̂iV

⋆(sA, b
i
E) +KUB

(
b′E,
∑

i∈IsA
λ̂ib

i
E

)
by (10)

≤
∑

i∈IsA
λ̂iyi +KUB

(
b′E,
∑

i∈IsA
λ̂ib

i
E

)
since if i ∈ IsA

, then ((sA, b
i
E), yi) ∈ Υ

= V Υ′

UB(s
′
A, b

′
E) by (B.2).

Therefore since these are the only cases to consider for (s′A, b′E) ∈ SB we have
V Υ′
UB ≥ V ⋆ as required. □

Lemma 5 (LP for upper bound). The function KUB from (17) satisfies
(10), and for particle-based belief (sA, bE) represented by {(siE, wi)}Nb

i=1, we
have that V Υ

UB(sA, bE) is the optimal value of the LP:

minimize:
∑

k∈IsA
λkyk + (U − L)Nbc

subject to: c ≥ |wi −
∑

k∈IsA
λkP (siE; b

k
E)| for 1 ≤ i ≤ Nb

λk ≥ 0 for k ∈ IsA
and

∑
k∈IsA

λk = 1 .

52

Proof. Consider any particle-based beliefs (sA, bE) and (sA, b
′
E) where (sA, bE)

is represented by the weighted particle set {(siE, wi)}Nb
i=1. Recall that SbE>b′E

E =
{sE ∈ SsA

E | bE(sE)− b′E(sE) > 0}, now by definition of K(bE, b
′
E), see Theo-

rem 2, we have:

K(bE, b
′
E) = (U − L)

∫
sE∈SbE>b

′
E

E

(bE(sE)− b′E(sE))dsE

= (U − L)

∫
sE∈SbE>b

′
E

E

|bE(sE)− b′E(sE)|dsE by definition of SbE>b′E
E

≤ (U − L)
∑Nb

i=1

∣∣P (siE; bE)− P (siE; b
′
E)
∣∣ by Definition 7

≤ (U − L)Nbmax1≤i≤Nb

∣∣P (siE; bE)− P (siE; b
′
E)
∣∣ rearranging

= (U − L)NbmaxsE∈SE∧bE(sE)>0 |P (sE; bE)− P (sE; b
′
E)| rearranging

= KUB(bE, b
′
E) by (17).

Furthermore, (17) implies KUB(bE, bE) = 0, and therefore KUB satisfies (10).
Next suppose Υ = {((skA, bkE), yk) | k ∈ I}, letting b′E =

∑
k∈IsA

λkb
k
E and

c = maxsE∈SE∧bE(sE)>0 |P (sE; bE)−P (sE; b
′
E)|, by definition of KUB , see (17),

we have:

KUB(bE, b
′
E) = (U − L)Nb maxsE∈SE∧bE(sE)>0 |P (sE; bE)− P (sE; b

′
E)|

= (U − L)Nbc by definition of c

and therefore:∑
k∈IsA

λkyk +KUB(bE, b
′
E) =

∑
k∈IsA

λkyk + (U − L)Nbc .

Furthermore, for any 1 ≤ i ≤ Nb, by definition of c and since (sA, bE) is
represented by the weighted particle set {(siE, wi)}Nb

i=1 we have:

c ≥
∣∣P (siE; bE)− P (siE; b

′
E)
∣∣

=
∣∣wi − P (siE; b

′
E)
∣∣ since {(siE, wi)}Nb

i=1 represents bE

=
∣∣∣wi − P

(
siE;
∑

k∈IsA
λkb

k
E

)∣∣∣ by definition of b′E.

Therefore, the optimization problem (9) can be equivalently written as the
LP of Lemma 5, i.e., the optimal value is equal to V Υ

UB(sA, bE). □

53

Lemma 6 (Region-based belief closure). If δiE(·, a) : SE → δiE(SE, a) is
piecewise differentiable and invertible from SE to T ⊆ SE, and the Jacobian
determinant of the inverse function, i.e., for any s′E ∈ T :

Jac(s′E) := det

(
dδi,−1

E (s′E, a)

ds′E

)
is PWC for a ∈ Act and 1 ≤ i ≤ Ne, then region-based beliefs are closed
under belief updates.

Proof. Since δiE(·, a) is piecewise differentiable and piecewise invertible, let
ϕE ⊆ SE be a region over which δiE(·, a) is differentiable and invertible.
Suppose that XE is a random variable taking values in ϕE, and that XE

has a continuous uniform distribution with probability density function bE.
Due to the differentiability and thus continuity of δiE(·, a), the image ϕ′

E =
{s′E | s′E = δiE(sE, a) ∧ sE ∈ ϕE} is a region in SE. Furthermore, suppose
X ′

E = δiE(XE, a) is a new random variable taking values in ϕ′
E and let b′E be

the probability density function for X ′
E over ϕ′

E. We next prove that b′E is a
PWC uniform distribution under the given conditions.

Let δi,−1
E (·, a) be the inverse function of δiE(·, a) in ϕE. If ϕ′

1 ⊆ ϕ′
E, letting

ϕ1 be the preimage of ϕ′
1, then

P (X ′
E ∈ ϕ′

1) = P (δiE(XE, a) ∈ ϕ′
1) since X ′

E = δiE(XE, a)

=

∫
sE∈ϕ1

bE(sE)dsE by definition of bE. (B.3)

Using the change of variables sE = δi,−1
E (s′E, a) we have that:

dsE = det

(
dδi,−1

E (s′E, a)

ds′E

)
ds′E

= Jac(s′E)ds
′
E by definition of the Jacobian determinant

and substituting this into (B.3) we have:

P (X ′
E ∈ ϕ′

1) =

∫
s′E∈ϕ′

1

bE(δ
i,−1
E (s′E, a))Jac(s′E)ds

′
E .

Therefore we have that for any s′E ∈ ϕ′
1:

b′E(s
′
E) = bE(δ

i,−1
E (s′E, a))Jac(s′E)

54

and since bE(δ
i,−1
E (s′E, a)) = bE(sE) for sE ∈ ϕE is constant and by construc-

tion Jac(s′E) is PWC, we have that b′E is PWC over ϕ′
E as required.

We conclude that δiE(·, a) transforms a random variable which has a con-
tinuous uniform distribution in a region into a new random variable which
has a continuous uniform distribution over finitely many regions. Therefore,
region-based belief are closed under δiE(·, a). □

Lemma 7 (Region-based belief update). For region-based belief (sA, bE)
represented by {(ϕi

E, wi)}Nb
i=1, action a and observation s′A: (s′A, b

′
E) returned

by Algorithm 4 is region-based and b′E = b
sA,a,s′A
E . Furthermore, if h : S → R

is PWC and ΦE is a constant-FCP of SE for h at sA, then ⟨h, (sA, bE)⟩ =∑Nb

i=1

∑
ϕE∈ΦE

h(sA, sE)wivol(ϕi
E ∩ ϕE) where sE ∈ ϕE.

Proof. Consider a region-based belief (sA, bE) represented by {(ϕi
E, wi)}Nb

i=1,
action a and observation s′A and suppose that the belief (s′A, b′E) is returned
by Algorithm 4.

Since δiE(·, a) is piecewise continuous by Lemma 6, then for any region
ϕE ⊆ ΦE, the image {δiE(sE, a) | sE ∈ ϕE} can be represented as a union
of regions. Furthermore, due to the invertibility of δiE(·, a), these regions
are disjoint and the image is uniformly reached. Letting ϕij = {δjE(sE, a) |
sE ∈ ϕi

E}, according to the belief update (4) and the belief expression in
Definition 8, we have:∫

sE∈SE

bE(sE)δE(sE, a)(s
′
E)dsE =

∫
sE∈SE

(∑Nb

i=1χϕi
E
(sE)wi

)
δE(sE, a)(s

′
E)dsE

=
∑Nb

i=1

(∫
sE∈SE

χϕi
E
(sE)wiδE(sE, a)(s

′
E)dsE

)
rearranging

=
∑Nb

i=1

(∫
sE∈ϕi

E

wiδE(sE, a)(s
′
E)dsE

)
by definition of χϕi

E

=
∑Nb

i=1

(∫
sE∈ϕi

E

wi

(∑Ne

j=1χϕij
E
(s′E)

µj

vol(ϕij
E)

dsE
))

by definition of ϕij and since it is uniformly reached by Lemma 6

=
∑Nb

i=1

∑Ne

j=1

(∫
sE∈ϕi

E

wiχϕij
E
(s′E)

µj

vol(ϕij
E)

dsE

)
rearranging

=
∑Nb

i=1

∑Ne

j=1wiχϕij
E
(s′E)

µj

vol(ϕij
E)

(∫
sE∈ϕi

E

dsE

)
rearranging

55

=
∑Nb

i=1

∑Ne

j=1χϕij
E
(s′E)

wiµjvol(ϕi
E)

vol(ϕij
E)

by definition of vol.

Therefore, b′E can be constructed by normalizing
∫
sE∈SE

bE(sE)δE(sE, a)(s
′
E)dsE,

which is a region-based belief.
Next, consider any observation sA and PWC h : S → R where ΦE is a

constant-FCP of SE for h at sA. By (5) we have:

⟨h, (sA, bE)⟩ =
∫
sE∈SE

h(sA, sE)bE(sE)dsE

=

∫
sE∈SE

h(sA, sE)
∑Nb

i=1χϕi
E
(sE)widsE by Definition 8

=
∑Nb

i=1

(∫
sE∈SE

h(sA, sE)χϕi
E
(sE)widsE

)
rearranging

=
∑Nb

i=1

∑
ϕE∈ΦE

(∫
sE∈ϕE

h(sA, sE)χϕi
E
(sE)widsE

)
since ΦE is an FCP

=
∑Nb

i=1

∑
ϕE∈ΦE

h(sA, ϕE)

(∫
sE∈ϕE

χϕi
E
(sE)widsE

)
since ΦE is a constant-FCP of SE for h at sA

=
∑Nb

i=1

∑
ϕE∈ΦE

h(sA, ϕE)wivol(ϕi
E ∩ ϕE) by definition of vol

which completes the proof. □

Lemma 8 (Region-based upper bound). For region-based belief (sA, bE)
represented by {(ϕi

E, wi)}Nb
i=1 and Υ = {((skA, bkE), yk) | k ∈ I}, if KUB = K,

(ϕmax
E , p) is returned by Algorithm 5, b′E =

∑
k∈IsA

λ⋆
kb

k
E and ϕmax

E ⊆ S
bE>b′E
E

where λ⋆
k is a solution to the LP of Algorithm 5, then p is an upper bound of

V Υ
UB at (sA, bE). Furthermore, if Nb = 1, then p = V Υ

UB(sA, bE).

Proof. Suppose that (sA, bE) is a region-based belief represented by {(ϕi
E, wi)}Nb

i=1,
Υ = {((skA, bkE), yk) | k ∈ I} and suppose KUB = K and (ϕmax

E , p) is returned
by Algorithm 5, b′E =

∑
k∈IsA

λ⋆
kb

k
E where λ⋆

k is a solution to the LP of Al-

gorithm 5 and ϕmax
E ⊆ S

bE>b′E
E . Furthermore for each k ∈ I suppose that

(skA, b
k
E) is a region-based belief represented by {(ϕkj

E , wkj)}
Nk

b
j=1.

Since KUB = K, by definition of K (see Theorem 2) we have:

KUB(bE, b
′
E) = (U − L)

∫
sE∈SbE>b

′
E

E

(bE(sE)− b′E(sE))dsE

56

= (U − L)

(∫
sE∈SbE>b

′
E

E

bE(sE)−
∫
sE∈SbE>b

′
E

E

b′E(sE)dsE

)
rearranging

≤ (U − L)

(∫
sE∈SE

bE(sE)−
∫
sE∈SbE>b

′
E

E

b′E(sE)dsE

)
rearranging

= (U − L)

(
1−

∫
sE∈SbE>b

′
E

E

b′E(sE)dsE

)
since bE ∈ P(SE).

(B.4)

Now since ϕmax
E ⊆ S

bE>b′E
E we have:∫

sE∈SbE>b
′
E

E

b′E(sE)dsE ≥
∫
sE∈ϕmax

E

b′(sE)dsE

=

∫
sE∈ϕmax

E

(∑
k∈IsA

λ⋆
kb

k
E(sE)dsE

)
by definition of b′E

=
∑

k∈IsA

(∫
sE∈ϕmax

E

λ⋆
kb

k
E(sE)dsE

)
rearranging

=
∑

k∈IsA

(∫
sE∈ϕmax

E

λ⋆
k

∑Nk
b

j=1χϕkj
E
(sE)wkjdsE

)
since {(ϕkj

E , wkj)}
Nk

b
j=1 represents bkE

=
∑

k∈IsA

∑Nk
b

j=1λ
⋆
k

(∫
sE∈ϕmax

E

χϕkj
E
(sE)wkjdsE

)
rearranging

=
∑

k∈IsA

∑Nk
b

j=1λ
⋆
kwkjvol(ϕkj

E ∩ ϕmax
E) by definition of vol.

(B.5)

Thus, substituting (B.5) into (B.4) we have:

KUB(bE, b
′
E) ≤ (U − L)

(
1−

∑
k∈IsA

∑Nk
b

j=1λ
⋆
kwkjvol(ϕkj

E ∩ ϕmax
E)

)
and using (9), it follows that the optimal value p to the LP of Algorithm 5
is an upper bound of V Υ

UB at (sA, bE).
Finally, suppose that Nb = 1. Therefore ϕmax

E = ϕ1
E and since ϕ1

E is the
unique region with positive probabilities for bE, by definition of S

bE>b′E
E it

57

follows that S
bE>b′E
E ⊆ ϕ1

E. Combining these with ϕmax
E ⊆ S

bE>b′E
E , we have

that S
bE>b′E
E = ϕmax

E = ϕ1
E. Therefore, all the inequalities above become

equalities, and therefore p = V Υ
UB(sA, bE). □

References

[1] J. Gupta, M. Egorov, M. Kochenderfer, Cooperative multi-agent control
using deep reinforcement learning, in: Proc. AAMAS’17, Vol. 10643 of
LNCS, Springer, 2017, pp. 66–83.

[2] S. Amizadeh, H. Palangi, A. Polozov, Y. Huang, K. Koishida, Neuro-
symbolic visual reasoning: Disentangling, in: Proc. ICML’20, PMLR,
2020, pp. 279–290.

[3] S. Shalev-Shwartz, S. Shammah, A. Shashua, Safe, multi-agent, rein-
forcement learning for autonomous driving, arXiv:1610.03295 (2016).

[4] M. E. Akintunde, E. Botoeva, P. Kouvaros, A. Lomuscio, Verifying
Strategic Abilities of Neural-symbolic Multi-agent Systems, in: Proc.
KR’20, 2020, pp. 22–32.

[5] C. H. Papadimitriou, J. N. Tsitsiklis, The complexity of Markov decision
processes, Math. Oper. Res. 12 (3) (1987) 441–450.

[6] K. Chatterjee, M. Chmelík, R. Gupta, A. Kanodia, Optimal cost almost-
sure reachability in POMDPs, Artificial Intelligence 234 (2016) 26–48.

[7] G. Shani, J. Pineau, R. Kaplow, A survey of point-based POMDP
solvers, Auton. Agents Multi-Agent Syst. 27 (1) (2013) 1–51.

[8] J. M. Porta, N. Vlassis, M. T. Spaan, P. Poupart, Point-based value
iteration for continuous POMDPs, JMLR 7 (2006) 2329–2367.

[9] M. K. Sarker, L. Zhou, A. Eberhart, P. Hitzler, Neuro-symbolic artificial
intelligence, AI Comm. (2021) 1–13.

[10] T. Smith, R. Simmons, Heuristic search value iteration for POMDPs,
in: Proc. UAI’04, AUAI, 2004, p. 520–527.

[11] L. Burks, I. Loefgren, N. R. Ahmed, Optimal continuous state POMDP
planning with semantic observations: A variational approach, IEEE
Trans. Robotics 35 (6) (2019) 1488–1507.

58

https://arxiv.org/abs/1610.03295

[12] Z. Zamani, S. Sanner, P. Poupart, K. Kersting, Symbolic dynamic pro-
gramming for continuous state and observation POMDPs, Adv. Neural
Inf. Process. Syst. 25 (2012).

[13] X. Jiang, J. Yang, X. Tan, H. Xi, Observation-based optimization for
POMDPs with continuous state, observation, and action spaces, IEEE
Trans. Automatic Control 64 (5) (2018) 2045–2052.

[14] S. Brechtel, T. Gindele, R. Dillmann, Solving continuous POMDPs:
Value iteration with incremental learning of an efficient space repre-
sentation, in: Proc. ICML’13, PMLR, 2013, pp. 370–378.

[15] J. Van Den Berg, S. Patil, R. Alterovitz, Efficient approximate value
iteration for continuous gaussian POMDPs, in: Proc. AAAI’12, Vol.
26(1), 2012, pp. 1832–1838.

[16] M. H. Lim, C. J. Tomlin, Z. N. Sunberg, Voronoi progressive widen-
ing: Efficient online solvers for continuous state, action, and observation
POMDPs, in: Proc. CDC’21, 2021, pp. 4493–4500.

[17] T. Smith, R. Simmons, Point-based POMDP algorithms: Improved
analysis and implementation, in: Proc. UA’05, AUAI, 2005, p. 542–549.

[18] K. Horák, B. Bošanskỳ, V. Kovařík, C. Kiekintveld, Solving zero-sum
one-sided partially observable stochastic games, Artificial Intelligence
316 (2023) 103838.

[19] J. Pineau, G. Gordon, S. Thrun, et al., Point-based value iteration: An
anytime algorithm for POMDPs, in: Proc. IJCAI’13, Vol. 3, 2003, pp.
1025–1032.

[20] G. Shani, R. I. Brafman, S. E. Shimony, Forward search value iteration
for pomdps., in: Proc. IJCAI’07, 2007, pp. 2619–2624.

[21] H. Kurniawati, D. Hsu, W. S. Lee, SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces.,
in: Robotics: Science and Systems, Vol. 4, 2008, pp. 65–72.

[22] R. Yan, G. Santos, X. Duan, D. Parker, M. Kwiatkowska, Finite-horizon
equilibria for neuro-symbolic concurrent stochastic games, in: Proc.
UAI’22, Vol. 180, PMLR, 2022, pp. 2170–2180.

59

[23] R. Yan, G. Santos, G. Norman, D. Parker, M. Kwiatkowska, Strat-
egy synthesis for zero-sum neuro-symbolic concurrent stochastic games,
arXiv.2202.06255 (2022).

[24] M. Kwiatkowska, G. Norman, D. Parker, G. Santos, R. Yan, Proba-
bilistic Model Checking for Strategic Equilibria-Based Decision Making:
Advances and Challenges, in: 47th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2022), Vol. 241, 2022,
pp. 4:1–4:22.

[25] M. Cleaveland, L. Lindemann, R. Ivanov, G. J. Pappas, Risk verifi-
cation of stochastic systems with neural network controllers, Artificial
Intelligence 313 (2022) 103782.

[26] S. Carr, N. Jansen, U. Topcu, Verifiable RNN-based policies for
POMDPs under temporal logic constraints, in: Proc. IJCAI’20, 2020,
pp. 4121–4127.

[27] D. Bertsekas, Dynamic programming and optimal control: Volume I,
Athena scientific, 2012.

[28] L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and acting in
partially observable stochastic domains, Artificial intelligence 101 (1-2)
(1998) 99–134.

[29] K. D. Julian, M. J. Kochenderfer, A reachability method for verifying dy-
namical systems with deep neural network controllers, arXiv.1903.00520
(2019).

[30] K. Matoba, F. Fleuret, Computing preimages of deep neural networks
with applications to safety, openreview.netforum?id=FN7_BUOG78e
(2020).

[31] E. J. Sondik, The optimal control of partially observable Markov pro-
cesses over the infinite horizon: Discounted costs, Oper. Res. 26 (2)
(1978) 282–304.

[32] K. Horák, B. Bošanský, K. Chatterjee, Goal-HSVI: Heuristic search
value iteration for goal POMDPs, in: Proc. JCAI’18, 2018, pp. 4764–
4770.

60

http://arxiv.org/abs/2202.06255
http://arxiv.org/abs/1903.00520
https://openreview.net/forum?id=FN7_BUOG78e

[33] T. Smith, Probabilistic planning for robotic exploration, Carnegie Mel-
lon University, 2007.

[34] D. Crisan, A. Doucet, A survey of convergence results on particle filter-
ing methods for practitioners, IEEE Transactions on Signal Processing
50 (3) (2002) 736–746.

[35] A. Doucet, N. De Freitas, N. J. Gordon (Eds.), Sequential Monte Carlo
methods in practice, Vol. 1(2), Springer, 2001.

[36] M. Lauri, D. Hsu, J. Pajarinen, Partially observable Markov decision
processes in robotics: A survey, IEEE Transactions on Robotics (2022)
1–20.

[37] X. Ma, P. Karkus, D. Hsu, W. S. Lee, Particle filter recurrent neural
networks, in: Proc. AAAI’20, Vol. 34(4), 2020, pp. 5101–5108.

[38] A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo sampling
methods for Bayesian filtering, Statistics and computing 10 (3) (2000)
197–208.

[39] A. Papoulis, S. U. Pillai, Probability, random variables, and stochastic
processes, Tata McGraw-Hill Education, 2002.

[40] R. Bagnara, P. M. Hill, E. Zaffanella, The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems, Sci. Comput. Program.
72 (1) (2008) 3–21, bugseng.com/ppl.

[41] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual,
gurobi.com (2021).

[42] L. De Moura, N. Bjørner, Z3: An efficient SMT solver, in:
Proc. TACAS’08, Vol. 4963 of LNCS, Springer, 2008, pp. 337–340,
github.com/Z3Prover/z3.

[43] K. D. Julian, M. J. Kochenderfer, Guaranteeing safety for neural
network-based aircraft collision avoidance systems, in: Proc. DASC’19,
IEEE, 2019, pp. 1–10, the source code is available from openre-
view.net/forum?id=FN7_BUOG78e.

61

https://www.bugseng.com/ppl
https://www.gurobi.com
https://github.com/Z3Prover/z3
https://openreview.net/forum?id=FN7_BUOG78e
https://openreview.net/forum?id=FN7_BUOG78e

[44] K. D. Julian, S. Sharma, J.-B. Jeannin, M. J. Kochenderfer, Verifying
aircraft collision avoidance neural networks through linear approxima-
tions of safe regions, arXiv.1903.00762The source code is available from
github.com/sisl/VerticalCAS (2019).

62

http://arxiv.org/abs/1903.00762
https://github.com/sisl/VerticalCAS

	Introduction
	Background
	Neuro-Symbolic POMDPs
	Value Iteration
	PWC Representations
	PWC -Function Value Iteration
	Convexity and Continuity of the Value Function

	Heuristic Search Value Iteration
	Lower and Upper Bound Representations
	Point-Based Updates
	NS-HSVI Algorithm
	Two Belief Representations

	Implementation and Experimental Evaluation
	Implementation Overview
	Car Parking Case Study
	VCAS Case Study
	Performance Analysis

	Conclusions
	Proofs from Section 4
	Proofs from Section 5

