
Strategy Synthesis for Zero-Sum Neuro-Symbolic

Concurrent Stochastic Games

Rui Yana, Gabriel Santosa, Gethin Normanb, David Parkera,
Marta Kwiatkowskaa

aDepartment of Computer Science, University of Oxford, Oxford, OX1 2JD, UK
bSchool of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK

Abstract

Neuro-symbolic approaches to artificial intelligence, which combine neural
networks with classical symbolic techniques, are growing in prominence, ne-
cessitating formal approaches to reason about their correctness. We pro-
pose a novel modelling formalism called neuro-symbolic concurrent stochastic
games (NS-CSGs), which comprise probabilistic finite-state agents interact-
ing in a shared continuous-state environment observed through perception
mechanisms implemented as neural networks (NNs). We focus on the class
of NS-CSGs with Borel state spaces and prove the existence and measurabil-
ity of the value function for zero-sum discounted cumulative rewards under
piecewise-constant restrictions on the components of this class of models. To
compute values and synthesise strategies, we present, for the first time, im-
plementable value iteration (VI) and policy iteration (PI) algorithms to solve
a class of continuous-state CSGs. These require a finite representation of the
pre-image of the environment’s NN perception mechanism and rely on finite
abstract representations of value functions and strategies closed under VI
or PI. First, we introduce a Borel measurable piecewise-constant (B-PWC)
representation of value functions, extend minimax backups to this represen-
tation and propose B-PWC VI. Second, we introduce two novel representa-
tions for the value functions and strategies, constant-piecewise-linear (CON-
PWL) and constant-piecewise-constant (CON-PWC) respectively, and pro-

Email addresses: rui.yan@cs.ox.ac.uk (Rui Yan), gabriel.santos@cs.ox.ac.uk
(Gabriel Santos), gethin.norman@glasgow.ac.uk (Gethin Norman),
david.parker@cs.ox.ac.uk (David Parker), marta.kwiatkowska@cs.ox.ac.uk
(Marta Kwiatkowska)

Preprint submitted to Information and Computation May 17, 2023

pose Minimax-action-free PI by extending a recent PI method based on al-
ternating player choices for finite state spaces to Borel state spaces, which
does not require normal-form games to be solved. We illustrate our approach
with a dynamic vehicle parking example by generating approximately optimal
strategies using a prototype implementation of the B-PWC VI algorithm.

Keywords: Stochastic games, neuro-symbolic systems, value iteration,
policy iteration, Borel state spaces

1. Introduction

Game theory offers an attractive framework for analysing strategic inter-
actions among agents in machine learning, with application to, for instance,
the game of Go [1], autonomous driving [2] and robotics [3]. An important
class of dynamic games is stochastic games [4], which move between states ac-
cording to transition probabilities controlled jointly by multiple agents (also
called players). Extending both strategic-form games to dynamic environ-
ments and Markov decision processes (MDPs) to multiple players, stochastic
games have long been used to model sequential decision-making problems
with more than one agent, ranging from multi-agent reinforcement learn-
ing [5], to quantitative verification and synthesis for equilibria [6].

Recent years have witnessed encouraging advances in the use of neural
networks (NNs) to approximate either value functions or strategies [7] for
stochastic games that model large, complex environments. Such end-to-end
NNs directly map environment states to Q-values or actions. This means
that they have a relatively complex structure and a large number of weights
and biases, since they interweave multiple tasks (e.g., object detection and
recognition, decision making) within a single NN. An emerging trend in au-
tonomous and robotic systems is neuro-symbolic approaches, where some
components that are synthesized from data (e.g., perception modules) are
implemented as NNs, while others (e.g., nonlinear controllers) are formulated
using traditional symbolic methods. This can greatly simplify the design and
training process, and yield smaller NNs.

Even with the above advances, there remains a lack of modelling and
verification frameworks which can reason formally about the correctness of
neuro-symbolic systems. Progress has been made on techniques for both
multi-agent verification [8, 9] and safe reinforcement learning [10] in this
context, but without the ability to reason formally about stochasticity, which

2

is crucial for modelling uncertainty. Elsewhere, concurrent stochastic games
(CSGs) have been widely studied [11, 12, 13, 14, 15], and also integrated into
formal modelling and verification frameworks [6], but primarily in the context
of finite state spaces, which are insufficient for many real-life systems.

We propose a new modelling formalism called neuro-symbolic concur-
rent stochastic games (NS-CSGs), which comprise two finite-state agents
endowed with perception mechanisms implemented via NN classifiers and
conventional, symbolic decision-making mechanisms. NN perception mecha-
nisms assume real-valued inputs, which naturally result in continuous-state
spaces that are partitioned according to the observations made by the NNs.
Under the assumption that agents have full state observability and working
with Borel state spaces, we establish restrictions on the modelling formalism
which ensure that the NS-CSGs belong to a class of uncountable state-space
CSGs [16] that are determined for zero-sum discounted cumulative objectives,
and therefore prove the existence and measurablity of the value function for
such objectives.

Next, we propose a new Borel measurable piecewise-constant (B-PWC)
representation for the value function and show its closure under the minimax
operator. Using this (finite) representation, we develop an implementable
B-PWC VI algorithm for NS-CSGs that approximates the value of the game
and prove the algorithm’s convergence.

Then, we present a Minimax-action-free PI algorithm for NS-CSGs in-
spired by recent work for finite state spaces [17], which we generalise by
using novel representations for the value functions and strategies, constant-
piecewise-linear (CON-PWL) and constant-piecewise-constant (CON-PWC),
to ensure finite representability and measurability. This allows us to over-
come the main issue that arises when solving Borel state space CSGs with PI,
namely that the value function may change from a Borel measurable function
to a non-Borel measurable function across iterations.

The PI algorithm adopts the alternating player choices proposed in [17]
and removes the need to solve normal-form games and MDPs at each itera-
tion. To the best of our knowledge, these are the first implementable algo-
rithms for solving zero-sum CSGs over Borel state spaces with convergence
guarantees. Finally, we illustrate our approach by modelling a dynamic vehi-
cle parking as an NS-CSG and synthesizing (approximately optimal) strate-
gies using a prototype implementation of our B-PWC VI algorithm.

We note that we assume a fully observable game setting. While it is
relatively straightforward to generalise NS-CSGs with partial observability,

3

since NS-CSGs already include perception functions that generate obser-
vations, there are no general algorithmic methods for value and strategy
computation in the partially observable game setting. We believe that an
approach similar to [18, 19], which converts imperfect-information games to
perfect-information, can potentially be used to enable the solution of par-
tially observable NS-CSGs.

1.1. Related work

Stochastic games were introduced by Shapley [4], who assumed a finite
state space. Since then, many researchers, have considered CSGs with un-
countable state spaces, e.g., [16, 20, 21]. Maitra and Parthasarathy [20] were
the first to study discounted zero-sum CSGs in this setting, assuming that the
state space is a compact metric space. Following this, more general results
for discounted zero-sum CSGs with Borel state spaces have been derived,
e.g., [16, 22, 21, 23]. These aim at providing sufficient conditions for the
existence of either values or optimal strategies for players.

Another important and practical problem for zero-sum CSGs with un-
countable state spaces is the computation of values and optimal strategies.
Since the seminal policy iteration (PI) methods were introduced by Hoffman
and Karp [24] and Pollatschek and Avi-Itzhak [25], a wide range of fixed-point
algorithms have been developed for zero-sum CSGs with finite state spaces
[11, 12, 13, 14]. Recent work by Bertsekas [17] proposed a distributed opti-
mistic abstract PI algorithm, which inherits the attractive structure of the
Pollatschek and Avi-Itzhak algorithm while resolving its convergence difficul-
ties. Value iteration (VI) and PI algorithms have been improved for simple
stochastic games [26, 27]. However, all of the above approaches assume fi-
nite state spaces and, to the best of our knowledge, there are no existing
VI or PI algorithms for CSGs with uncountable, or more specifically Borel,
state spaces. VI and PI algorithms for stochastic control (i.e., the one player
case) with Borel state spaces can be found in [28, 29]. Other problems for
zero-sum CSGs with uncountable state spaces have been studied and include
information structure [30], specialized strategy spaces [31], continuous time
setup [32] and payoff criteria [23].

A variety of other objectives, for instance, mean-payoff [33, 34], ratio [34]
and reachability [35, 36] objectives, have also been studied for CSGs [11, 12,
13, 14]. But these are primarily in the context of finite/countable state spaces
which, as argued above, are insufficient for our setting where uncountable
real vector spaces are usually supplied as inputs to NNs. We remark that,

4

building on an earlier version of this work [37], there has been recent progress
on solving NS-CSGs [38], but focusing on finite-horizon objectives and using
equilibria-based (nonzero-sum) properties.

Finally, we note that this paper assumes a fully observable game setting;
a natural extension would be partially observable stochastic games (POSGs),
for which there are no general VI and PI computation algorithms. A vari-
ant of POSGs, called factored-observation stochastic games (FOSGs), was
recently proposed [19] that distinguishes between private and public obser-
vations in a similar fashion to our model, but for finite-state models without
NNs. Partial observability in FOSGs is dealt with via a mechanism that con-
verts imperfect-information games into continuous-state (public belief state)
perfect-information games [18, 19], such that many techniques for perfect-
information games can also be applied. Our fully observable model can ar-
guably serve as a vehicle to later solve the more complex case with imperfect
information.

2. Background

In this section we summarise the background notation, definition and
concepts used in this paper.

2.1. Borel measurable spaces and functions

Given a non-empty set X, we denote its Borel σ-algebra by B(X), and the
sets in B(X) are called Borel sets of X. The pair (X,B(X)) is a (standard)
Borel space if there exists a metric on X that makes it a complete separable
metric space (unless required for clarity, B(X) will be omitted). For con-
venience we will work with real vector spaces; however, this is not essential
and any complete separable metric spaces could be used. For Borel spaces
X and Y , a function f : X → Y is Borel measurable if f−1(B) ∈ B(X) for
all B ∈ B(Y) and bimeasurable if it is Borel measurable and f(B) ∈ B(Y)
for all B ∈ B(X).

We denote by F(X) the space of all bounded, Borel measurable real-
valued functions on a Borel space X, with respect to the unweighted sup-
norm ∥J∥ = supx∈X |J(x)| for J ∈ F(X). For functions J,K ∈ F(X), we use
max[J,K] and min[J,K] to denote the respective pointwise maximum and
minimum functions of J and K, i.e., we have opt[J,K](x) := opt{J(x), K(x)}
for opt ∈ {min,max} and x ∈ X.

5

We now introduce notation and definitions for concepts that are fun-
damental to the abstraction on which our algorithms are performed. The
abstraction is based on a decomposition of the uncountable state space into
finitely many abstract regions. In the definitions below, let X ⊆ Rn1 and
Y ⊆ Rn2 for n1, n2 ∈ N.

Definition 1 (FCP and Borel FCP). A finite connected partition (FCP)
of X, denoted Φ, is a finite collection of disjoint connected subsets (regions)
that cover X. Furthermore, Φ is a Borel FCP (BFCP) if each region ϕ ∈ Φ
is a Borel set of X.

Definition 2 (PWC Borel measurable). A function f : X → Y is piece-
wise constant Borel measurable (B-PWC) if there exists a BFCP Φ of X such
that f : ϕ→ Y is constant for all ϕ ∈ Φ and Φ is called a constant-BFCP of
X for f .

Definition 3 (PWL Borel measurable). A function f : X → Y is piece-
wise linear Borel measurable (B-PWL) if there exists a BFCP Φ of X such
that f : ϕ→ Y is linear and bounded for all ϕ ∈ Φ.

Definition 4 (BFCP invertible). A function f : X → Y is BFCP in-
vertible if, for any BFCP ΦY of Y , there exists a BFCP ΦX of X, called a
pre-image BFCP of ΦY for f , such that for any ϕX ∈ ΦX we have {f(x) |
x ∈ ϕX} ⊆ ϕY for some ϕY ∈ ΦY .

For BFCPs Φ1 and Φ2 of X, we denote by Φ1 + Φ2 the smallest BFCP of X
such that Φ1 + Φ2 is a refinement of both Φ1 and Φ2, which can be obtained
by taking all the intersections between regions of Φ1 and Φ2.

2.2. Probability measures

Let X be a Borel space. A function f : B(X) → [0, 1] is a probability
measure on X if f(X) = 1 and

∑
i∈I f(Bi) = f(∪i∈IBi) for any countable

disjoint family of Borel sets (Bi)i∈I . We denote the space of all probability
measures on a Borel space X by P(X). For Borel spaces X and Y , a Borel
measurable function σ : Y → P(X) is called a stochastic kernel on X given Y
(also known as a transition probability function from Y to X), and we denote
by P(X | Y) the set of all stochastic kernels on X given Y . If σ ∈ P(X | Y),
y ∈ Y and B ∈ B(X), then we write σ(B | y) for σ(y)(B). It follows that
σ ∈ P(X | Y) if and only if σ(· | y) ∈ P(X) for all y ∈ Y and σ(B | ·) is
Borel measurable for all B ∈ B(X).

6

2.3. Neural networks

A neural network (NN) is a real vector-valued function f : Rm → Rc,
where m, c ∈ N, composed of a sequence of layers h1, . . . , hk, where hi :
Rmi → Rci for 1 ≤ i ≤ k, m1 = m, ci = mi+1 for 1 ≤ i ≤ k − 1 and
ck = c. Each layer hi is a data-processing module explicitly formulated as
hi(xi) = acti(Wixi + bi), where xi is the input to the ith layer given by the
output hi−1(xi−1) of the (i − 1)th layer, acti is an activation function, and
Wixi + bi is a weighted sum of xi for a weight matrix Wi and a bias vector
bi. An NN f is continuous for all popular activation functions, e.g., Rectified
Linear Unit (ReLU), Sigmoid and Softmax [39]. An NN f is said to be a
classifier for a set of classes C of size c if, for any input x ∈ Rm, the output
f(x) ∈ Rc is a probability vector where the ith element of f(x) represents
the confidence probability of the ith class of C, i.e., a classifier is a function
f : Rm → P(C).

2.4. Concurrent stochastic games

Finally, in this section, we recall the model of two-player concurrent
stochastic games.

Definition 5. A (two-player) concurrent stochastic game (CSG) is a tuple
G = (N,S,A,∆, δ) where:

• N = {1, 2} is a set of two players;

• S is a finite set of states;

• A = (A1∪{⊥})×(A2∪{⊥}) where Ai is a finite set of actions available
to player i ∈ N and ⊥ is an idle action disjoint from the set A1 ∪ A2;

• ∆: S → 2(A1∪A2) is an action available function;

• δ : (S×A)→ P(S) is a probabilistic transition function.

In a state s of a CSG G, each player i ∈ N selects an action from its available
actions, i.e., from the set ∆(s) ∩ Ai, if this set is non-empty, and selects
the idle action ⊥ otherwise. We denote the action choices for each player
i in state s by Ai(s), i.e., Ai(s) equals ∆(s) ∩ Ai if ∆(s) ∩ Ai ̸= ∅ and
equals {⊥} otherwise and by A(s) the possible joint actions in a state, i.e.,
A(s) = A1(s)× A2(s). Supposing each player i chooses action ai, then with

7

probability δ(s, (a1, a2))(s
′) there is a transition to state s′ ∈ S. A path π

of G is a sequence π = s0
α0−→ s1

α1−→ · · · such that sk ∈ S, αk ∈ A(sk) and
δ(sk, αk)(sk+1) > 0 for all k ≥ 0. We let FPathsG and IPathsG denote the
sets of finite and infinite paths of G, respectively. For a path π, we denote
by π(k) the (k + 1)th state, and π[k] the action for the transition from π(k)
to π(k + 1).

A strategy for a player of a CSG G resolves its action choices in each state.
These choices can depend on the history of the CSG’s execution and can be
randomised. Formally, a strategy for player i is a function σi : FPathsG →
P(Ai∪{⊥}) mapping finite paths to distributions over available actions, such
that, if σi(π)(ai)>0, then ai ∈ Ai(last(π)) where last(π) is the final state of
π. A strategy is said to be stationary if it makes the same choices for paths
that end in the same state. Furthermore, a strategy profile of G is a pair
σ = (σ1, σ2) of strategies for each player. Given a strategy profile σ and
state s, letting IPathsσs denote the set of infinite paths from s under the
choices of σ, we can define a probability measure Probσs ∈ P(IPathsσs) [40].

3. Zero-sum neuro-symbolic concurrent stochastic games

This section introduces our model of neuro-symbolic concurrent stochastic
games (NS-CSGs). We restrict attention to two-agent (which we also refer to
as two-player) games as we are concerned with zero-sum games in which there
are two agents with directly opposing objectives. However, the approach ex-
tends to multi-agent games, by allowing the agents to form two coalitions
with directly opposing objectives. An (two-agent) NS-CSG comprises two
interacting neuro-symbolic agents acting in a shared, continuous-state envi-
ronment. Each agent has finitely many local states and actions, and is en-
dowed with a perception mechanism implemented as an NN through which
it can observe the state of the environment, storing the observations locally
in percepts.

Definition 6. A (two-agent) neuro-symbolic concurrent stochastic game (NS-
CSG) C comprises agents (Agi)i∈N for N = {1, 2} and environment E where:
Agi = (Si, Ai,∆i, obs i, δi), E = (SE, δE) and we have:

• Si = Loci×Per i is a set of states for Agi, and Loci ⊆ Rbi and Per i ⊆ Rdi

for bi, di ∈ N are finite sets of local states and percepts, respectively;

• SE ⊆ Re for e ∈ N is a closed infinite set of environment states;

8

• Ai is a nonempty finite set of actions for Agi, and A := (A1 ∪ {⊥})×
(A2∪{⊥}) is the set of joint actions, where ⊥ is an idle action disjoint
from A1 ∪ A2;

• ∆i : Si → 2Ai is an available action function for Agi, defining the
actions the agent can take in each of its states;

• obs i : (Loc1 × Loc2 × SE) → Per i is a perception function for Agi,
mapping the local states of the agents and environment state to a percept
of the agent, implemented via an NN classifier for the set Per i;

• δi : (Si×A)→ P(Loci) is a probabilistic transition function for Agi de-
termining the distribution over the agent’s local states given its current
state and joint action;

• δE : (SE × A) → SE is a deterministic transition function for the
environment determining its next state given its current state and joint
action.

In an NS-CSG C the agents and environment execute concurrently and agents
move between their local states probabilistically. For simplicity, we consider
deterministic environments, but all the results extend directly to probabilistic
environments with finite branching.

A (global) state of an NS-CSG comprises a state si = (loci, per i) for
each agent Agi (a local-state-percept pair) and an environment state sE.
A state s = ((loc1, per 1), (loc2, per 2), sE) is percept compatible if per i =
obs i(loc1, loc2, sE) for 1 ≤ i ≤ 2. In state s = (s1, s2, sE), each Agi si-
multaneously chooses one of the actions available in its state si (if no action
is available, i.e., ∆i(si) = ∅, then Agi chooses the idle action ⊥), resulting
in a joint action α = (a1, a2) ∈ A. Next, each Agi updates its local state to
some loc′i ∈ Loci, according to the distribution δi(si, α). At the same time,
the environment updates its state to some s′E ∈ SE according to the transi-
tion δE(sE, α). Finally, each Agi, based on its new local state, observes the
new local state of the other agent and the new environment state to generate
a new percept per ′i = obs i(loc

′
1, loc

′
2, s

′
E). Thus, the game reaches the state

s′ = (s′1, s
′
2, s

′
E), where s′i = (loc ′i, per

′
i) for 1 ≤ i ≤ 2.

Example 1. As an illustration, we present an NS-CSG model of a dynamic
vehicle parking problem (a static version is presented in [41]). Fig. 1 (left)

9

40

4

40

4

3

2

1

321

d1

d2 1
2

1
2

40

4

3

2

1

321 40

4

3

2

1

321

40

4

3

2

1

321

Figure 1: Dynamic vehicle parking: continuous environment [0, 4]2 (left); discrete percepts
corresponding the 4×4 abstract grid points (middle) and probabilistic transitions following
joint action (up, left) (right). Red vehicle’s parking preference is also indicated in red.

shows two agents, Ag1 (the red vehicle) and Ag2 (the blue vehicle), in a
(continuous) environment R = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 4} and two parking
spots ps1, ps2 ∈ R (the green circles), which are known to the agents. The
perception function of the agents uses an NN classifier f : R → Per , where
Per = {1, 2, 3, 4}2 (we assume N ⊆ R), which takes the coordinates of a
vehicle or parking spot as input and outputs one of the 16 abstract grid
points, thus partitioning the environment, see Fig. 1 (centre).

The actions of the agents are to move either up, down, left or right, or
park. The vehicles of the agents start from different positions in R and have
the same speed. The red agent initially chooses one parking spot and changes
its parking spot with probability 0.5 when the blue agent is observed to be
closer to its chosen parking spot and both agents move towards this spot,
see Fig. 1 (centre and right). Formally, the agents and the environment are
defined as follows.

• Loc1 = {ps1, ps2} and Loc2 = {⊥}, i.e., the local state of Ag1 is its
current chosen parking spot and the local state of Ag2 is a dummy state.
For 1 ≤ i ≤ 2, the set of percepts of Agi is given by Per i = Per ×Per ,
representing the abstract grid points that each agent perceives as the

10

positions of the two vehicles.

• SE = R×R, i.e., the environment is in state sE = (w1, w2) if wi is the
continuous coordinate of Agi’s vehicle for 1 ≤ i ≤ 2.

• Ai = {up, down, left , right , park} for 1 ≤ i ≤ 2.

• For any 1 ≤ i ≤ 2, loci ∈ Loci and (per 1i , per
2
i) ∈ Per i, we let

∆i(loci, (per
1
i , per

2
i)) = Ai if per ii ∈ {f(ps1), f(ps2)} and equal to

Ai \ {park} otherwise, i.e., an agent’s available actions are to move
up, down, left and right, and additionally park when the agent is per-
ceived to have reached a parking spot.

• For any 1 ≤ i ≤ 2, loc1 ∈ Loc1, loc2 ∈ Loc2 and (w1, w2) ∈ SE we let
obs i(loc1, loc2, (w1, w2)) = (f(w1), f(w2)).

• For any s1 = (loc1, (per
1
1, per

2
1)) ∈ S1 and α ∈ A, to define δ1 we have

the following two cases to consider:

– if ∥f(loc1)−per 11∥2 > ∥f(loc1)−per 21∥2, where ∥·∥2 is the Euclidean
norm, i.e. Ag1 observes Ag2 is to be closer to its parking spot, and
the joint action α indicates both agents are approaching loc1, then
δ1(s1, α)(psj) = 0.5 for 1 ≤ j ≤ 2, i.e., Ag1 changes its parking
spot with probability 0.5;

– otherwise δ1(s1, α)(loc1) = 1, i.e. Ag1 sticks with its parking spot.

Considering δ2, since Loc2 = {⊥}, we have δ2(s2, α)(⊥) = 1 for any
s2 = (⊥, (per 12, per 22)) ∈ S2 and α ∈ A.

• For any (w1, w2) ∈ SE and (a1, a2) ∈ A, we let δE((w1, w2), (a1, a2)) =
(w′

1, w
′
2) where, for 1 ≤ i ≤ 2, we have w′

i = wi +dai∆t if (wi +dai∆t) ∈
R and w′

i = wi otherwise, and dai is the direction of movement of the
action ai, e.g., dup = (0, 1), and ∆t = 0.5 is the time step. ■

3.1. Semantics of an NS-CSG

The semantics of an NS-CSG C is a CSG JCK over the product of the
states of the agents and the environment formally defined as follows.

Definition 7 (Semantics of an NS-CSG). Given an NS-CSG C consist-
ing of two agents and an environment, its semantics is the CSG JCK =
(N,S,A,∆, δ) where:

11

• S ⊆ S1 × S2 × SE is the set of percept compatible states;

• A = (A1 ∪ {⊥})× (A2 ∪ {⊥});

• ∆(s1, s2, sE) = ∆1(s1) ∪∆2(s2);

• δ : (S×((A1∪{⊥})×(A2∪{⊥})))→ P(S) is the probabilistic transition
function, where for states s = (s1, s2, sE), s′ = (s′1, s

′
2, s

′
E) ∈ S and joint

action α = (a1, a2) ∈ A, if ai ∈ ∆i(si) when ∆i(si) ̸= ∅ and ai = ⊥
otherwise for 1 ≤ i ≤ 2, then δ(s, α) is defined and, if s′i = (loc ′i, per

′
i),

per ′i = obs i(loc
′
1, loc

′
2, s

′
E) for 1 ≤ i ≤ 2 and s′E = δE(sE, α), then

δ(s, α)(s′) = δ1(s1, α)(loc′1)δ2(s2, α)(loc ′2)

and otherwise δ(s, α)(s′) = 0.

Notice that the CSG JCK is over percept compatible states and that, by
definition of obs i for each agent Agi, the underlying transition relation δ is
closed with respect to percept compatible states. Since δE is deterministic
and Loci is a finite set, the set of successors of s under α, denoted Θα

s =
{s′ | δ(s, α)(s′) > 0}, is finite for all s ∈ S and α ∈ A(s). While the
semantics of an NS-CSG is an instance of the general class of uncountable
state space CSGs, its particular structure induced by perception functions
(see Definition 6) will be important in order to establish measurability and
finite representability to allow us to derive our algorithms.

3.2. Zero-sum NS-CSGs

For an NS-CSG C, the objectives we consider are discounted accumulated
rewards, and we assume the first agent tries to maximise the expected value
of this objective and the second tries to minimise it. More precisely, for a
reward structure r = (rA, rS), where rA : (S × A) → R is an action reward
function and rS : S → R is a state reward function, and discount factor
β ∈ (0, 1), the accumulated discounted reward for a path π of JCK over the
infinite-horizon is defined by:

Y (π) =
∑∞

k=0 β
k
(
rA(π(k), π[k]) + rS(π(k))

)
. (1)

Example 2. Returning to the dynamic vehicle parking model of Example 1,
we suppose the objective for Ag1 is to try and park at its current parking
spot without crashing into Ag2 and, since we consider zero-sum NS-CSGs

12

whose objectives must be directly opposing, the objective of Ag2 is to try to
crash into Ag1 and prevent it from parking. We can represent this scenario
using a discounted reward structure, where all action rewards are zero and
for the state rewards we set: there is a negative reward if it is perceived that
Ag1 has yet to reach its current parking spot and the agents have crashed; a
positive reward if it is observed that Ag1 has reached its parking spot which
is higher if the agents are not perceived to have crashed; and 0 otherwise.

Formally, for s = (s1, s2, (w1, w2)) where si = (loci, (per
1
i , per

2
i))) and

1 ≤ i ≤ 2, we define the state reward function as follows:

rS(s) =


−1000 if per 11 ̸= f(loc1) and per 11 = per 21

500 if per 11 = f(loc1) and per 11 = per 21
1000 if per 11 = f(loc1) and per 11 ̸= per 21

0 otherwise.

For the discount factor, we let β = 0.6. ■

3.3. Strategies of NS-CSGs

Since the state space S is uncountable due to the continuous environment
state space, we follow the approach of [16] and require Borel measurable con-
ditions on the choices that the strategies can make to ensure the measurability
of the induced sets of paths.

The semantics of any NS-CSG will turn out to be an instance of the class
of CSGs from [16], for which stationary strategies achieve optimal values [16,
Theorem 2(ii), Theorem 3], and therefore, to simplify the presentation, we
restrict our attention to stationary strategies and refer to them simply as
strategies. Before we give their formal definition, since we work with real
vector spaces we require the following lemma.

Lemma 1 (Borel spaces). The sets S, Si, SE and Ai for 1 ≤ i ≤ 2 are
Borel spaces.

Proof. By Theorem 27 [42, Chapter 9.6] and Theorem 12 [42, Chapter 9.4],
S1, S2 and SE are complete separable metric spaces, and hence are Borel
spaces. Furthermore, we have that S1 × S2 × SE is the Cartesian product
of Borel spaces, and therefore, using Theorem 1.10 [43, Chapter 1], is also
a Borel space. Since we assume obs i is Borel measurable for 1 ≤ i ≤ 2 (see
Assumption 1), for (loci, per i) ∈ Si and 1 ≤ i ≤ 2, the set:

{((loc1, per 1), (loc2, per 2), sE) ∈ S | obs i(loc1, loc2, sE) = per i for 1 ≤ i ≤ 2}

13

is a Borel subset of S1×S2×SE. Hence, since S1 and S2 are finite, it follows
that S is a Borel space. Finally, for 1 ≤ i ≤ 2, since Ai is finite it is a Borel
space. □

Definition 8 (Strategy). A (stationary) strategy for Agi of an NS-CSG
C is a stochastic kernel σi : S → P(Ai), i.e., σi ∈ P(Ai | S), such that
σi(Ai(s) | s) = 1 for all s ∈ S. A (strategy) profile σ = (σ1, σ2) is a pair of
strategies for each agent. We denote by Σi the set of all strategies of Agi and
by Σ = Σ1 × Σ2 the set of profiles.

For s ∈ S and 1 ≤ i ≤ 2, we let P(Ai(s)) = {ui ∈ P(Ai) | ui(Ai(s)) = 1}.

3.4. Assumptions on NS-CSGs

Finally, in this section we list the assumptions over NS-CSGs that are
required for the results presented in the remainder of the paper. First, NS-
CSGs are designed to model neuro-symbolic agents, whose operation depends
on particular perception functions, which may result in imperfect informa-
tion. However, we assume full observability, i.e., where agents’ decisions can
depend on the full state space. It is straightforward to extend the semantics
above to partially observable CSGs (POSGs) [44, 45] where, for any state,
each agent’s observation function returns the agent’s observable component
of the state, by restricting to observationally-equivalent strategies, but this
comes at a significant increase in complexity. Instead, we focus on full ob-
servability, which can serve as a vehicle to solve the more complex imperfect
information game via an appropriate adaptation of the belief-space construc-
tion.

Regarding the structure of NS-CSGs, we make the following assumptions
to ensure determinacy and that our finite abstract representations of value
functions and strategies are closed under VI and PI.

Assumption 1. For any NS-CSG C and reward structure r = (rA, rS):

(i) δE(· , α) : SE → SE is bimeasurable and BFCP invertible for α ∈ A;

(ii) obs i(loc1, loc2, ·) : SE → Per i is B-PWC for loci ∈ Loci and 1 ≤ i ≤ 2;

(iii) rA(· , α), rS : S → R are B-PWC for α ∈ A.

For simplicity, in our formalisation we assume that percepts (and local states)
of agents are drawn from finite sets of real-valued vectors; however, any finite
sets could be used.

14

The above assumptions for NS-CSGs differ from existing stochastic games
with Borel state spaces [16, 22, 23] in that the states have both discrete and
continuous elements, while the perception and reward functions are required
to be B-PWC. The B-PWC requirements in Assumption 1(ii) and (iii) and
BFCP invertibility in Assumption 1(i) are needed to achieve B-PWC clo-
sure, and hence ensure finitely many abstract state regions (and are used in
Lemmas 2, 3, 4 and Theorem 2 below). Bimeasurability in Assumption 1(i)
ensures the existence of the value of an NS-CSG with respect to a reward
structure (and is used in Proposition 1).

In the case that the perception function obs i of each agent Agi is imple-
mented via an NN classifier fi : Rm → P(Peri) (see Section 2.3), we have
that, since fi is continuous, it is also Borel measurable. However, to ensure
that the corresponding perception function obs i satisfies Assumption 1(ii),
we need to consider situations where the class with the highest probability
returned by fi is not unique. To resolve such cases we use a tie-breaking rule
defined by a function κi : 2Per i → Per i which, given a set of percepts, i.e.,
those with the highest probability, returns the selected percept. Then requir-
ing κi to be a Borel measurable function is sufficient for Assumption 1(ii) to
hold.

Example 3. Returning to Example 1, we now give two potential observation
functions for the agents meeting the above assumptions.

The first is via the linear regression model for multi-class classification
with boundaries given by⋃

ℓ∈{1,2,3}
(
{(x, y) ∈ R | x = ℓ} ∪ {(x, y) ∈ R | y = ℓ}

)
where the environment boundaries are excluded as they do not split two dif-
ferent classes. The Borel measurable tie-breaking rule used here is assigning
boundary points to the left and lower discrete coordinate, e.g., the class of
environment state (2, 3, 3.1, 1.7) is (2, 3, 4, 2).

The second is implemented via the product of a feed-forward NN classifier
f : R2 → P(Per) with itself, i.e., f × f , where Per is the set of 16 abstract
grid points, see Fig. 1 (right). This NN f has one hidden ReLU layer with
10 neurons. We break ties using a total order over the abstract grid points,
which is Borel measurable. ■.

We discuss the case when perception functions are implemented using ReLU
networks in more detail in Section 6, but we remark that Assumption 1(ii)

15

allows a wider range of observation functions than just NNs for implementing
perception mechanisms.

4. Game structures for NS-CSGs

In this section, we present three finite representations for the continuous
state space of an NS-CSG. These take the form of BFCPs with respect to
the perception, reward and transition functions of the NS-CSG. Recall, from
Section 2, that a BFCP of a set is a finite family of disjoint Borel sets (re-
gions) that cover the set. Using Assumption 1, we construct these BFCP
over the state space such that the states in each region are equivalent with
respect to either the perception, reward or transition function, e.g., for any
region of the perception BFCP all states in the region yield the same percept.
These BFCPs allow us to abstract an uncountable state space into a finite
set of regions when performing our VI and PI algorithms. In particular, Sec-
tions 6 and 7 demonstrate how these different BFCPs can be used together
with intersection, image and pre-image operations, to iteratively refine the
abstract representations of the environment while maintaining the necessary
conditions for correctness and convergence of value functions.

For the remainder of this section we fix an NS-CSG C and reward struc-
ture r.

Lemma 2 (Perception BFCP). There exists a smallest BFCP of S, called
the perception BFCP, denoted ΦP , such that, for any ϕ ∈ ΦP , all states in ϕ
have the same agents’ states, i.e., if (s1, s2, sE), (s′1, s

′
2, s

′
E) ∈ ϕ, then si = s′i

for 1 ≤ i ≤ 2.

Proof. For 1 ≤ i ≤ 2, since obs i is PWC and Si is finite, using Definition 6
we have that, for any si = (loci, per i) ∈ Si, the set Ss1,s2

E = {sE ∈ SE |
obs i(loc1, loc2, sE) = per i ∧ 1 ≤ i ≤ 2} can be expressed as a number of
disjoint regions of SE and we let Φs1,s2

E be such a representation that minimises
the number of the regions. It then follows that ΦP := {{(s1, s2, sE) | sE ∈
ϕE} | ϕE ∈ Φs1,s2

E ∧ s1 ∈ S1 ∧ s2 ∈ S2} is a smallest FCP of S such that all
states in any region have the same agents’ states.

Next we prove that ΦP is a BFCP of S. We consider a region ϕ ∈ ΦP .
Thus all states in ϕ have the same agents’ states, say s1 = (loc1, per 1) and
s2 = (loc2, per 2). According to Assumption 1, obs i(loc1, loc2, ·) : SE → Per i
for 1 ≤ i ≤ 2 is B-PWC. The pre-image of (per1, per2) under obs1 and obs2

16

over S given s1 = (loc1, per 1) and s2 = (loc2, per 2), denoted obs−1(per1, per2 |
s1, s2), equals:

{(s1, s2, sE) ∈ S | obs1(loc1, loc2, sE) = per 1 ∧ obs2(loc1, loc2, sE) = per 2}

and therefore is a Borel set of S. Since ΦP is the smallest such partition of
S, the regions in ΦP , which lead to the percept (per 1, per 2) given s1 and s2,
have no common boundary. Thus, obs−1(per1, per2 | s1, s2) is a finite union
of disjoint regions in ΦP which include the agents’ states s1 and s2. Thus,
each such region is a Borel set of S, meaning that ϕ ∈ B(S). Thus, ΦP is a
BFCP of S. □

Lemma 3 (Reward BFCP). For each α ∈ A, there exists a smallest BFCP
of S, called the reward BFCP of S under α and denoted Φα

R, such that for any
ϕ ∈ Φα

R all states in ϕ have the same state reward and action reward when α
is chosen, i.e., if s, s′ ∈ ϕ, then rA(s, α) = rA(s′, α) and rS(s) = rS(s′).

Proof. For any α ∈ A, since rA(· , α) + rS(·) : S → R is B-PWC by
Assumption 1, we can show that Φα

R is a BFCP of S by a similar argument
to that in the proof of Lemma 2. □

Using Assumption 1, we show that, given any joint action α, the perception
BFCP ΦP can be refined into a new BFCP, such that the states in each
region of this BFCP all reach, under the transition function of JCK, the same
regions of the image of ΦP under the transition function. This result will be
used for the existence of the value of C and in our algorithms.

Lemma 4 (Pre-image BFCP). For each α ∈ A, there exists a refinement
BFCP of ΦP , denoted Φα

P such that, for each ϕ ∈ Φα
P and ϕ′ ∈ ΦP , if δ(s, α)

is defined for s ∈ ϕ, then there exists pα(ϕ, ϕ′) ∈ [0, 1] such that:

1. either δ(s, α)(s′) = pα(ϕ, ϕ′) = 0 for all s ∈ ϕ and s′ ∈ ϕ′;

2. or (i) if s, s̃ ∈ ϕ, then there exist unique states s′, s̃′ ∈ S such that
{s′} = Θα

s ∩ϕ′, {s̃′} = Θα
s̃ ∩ϕ′ and δ(s, α)(s′) = δ(s̃, α)(s̃′) = pα(ϕ, ϕ′) >

0, and (ii) there exists a bimeasurable, BFCP invertible function qα :
ϕ → ϕ′ such that {qα(s)} = Θα

s ∩ ϕ′ and δ(s, α)(qα(s)) = pα(ϕ, ϕ′) for
all s ∈ ϕ.

17

Proof. We compute the refinement Φα
P of ΦP by dividing each ϕ of ΦP such

that the required property (called reachability consistency) holds. Now, for
any α ∈ A and ϕ ∈ ΦP , by Lemma 2, all states in ϕ have the same agents’
states, say s1 and s2. To aid the proof, for each ϕ′ ∈ ΦP , we will construct
a BFCP of ϕ based on ϕ′, denoted Φ′(ϕ, ϕ′), such that the reachability con-
sistency to the region ϕ′ holds in each region of Φ′(ϕ, ϕ′). If δ(s, α) is not
defined for s ∈ ϕ, we do not divide ϕ and let Φ′(ϕ, ϕ′) = {ϕ} for all ϕ′ ∈ ΦP

and the reachability consistency to ϕ′ is preserved.
It remains to consider the case when δ(s, α) is defined. Considering any

ϕ′ ∈ ΦP , by Lemma 2 there exists agent states s′1 = (loc′1, per
′
1) and s′2 =

(loc ′2, per
′
2) such that if (s′′1, s

′′
2, s

′′
E) ∈ ϕ′ then s′′1 = s′1 and s′′2 = s′2. We have

the following two cases.

• If {(s′1, s′2, δE(sE, α)) ∈ S | (s1, s2, sE) ∈ ϕ}∩ϕ′ = ∅, δ1(s1, α)(loc′1) = 0
or δ2(s2, α)(loc ′2) = 0, then we do not divide ϕ and let Φ′(ϕ, ϕ′) = {ϕ}
and we have δ(s, α)(s′) = pα(ϕ, ϕ′) = 0 for all s ∈ ϕ and s′ ∈ ϕ′.

• If (∪s∈ϕΘα
s)∩ ϕ′ is non-empty, then since δE(· , α) : SE → SE is BFCP

invertible using Assumption 1 and ϕ′ is a Borel measurable region, there
exists a BFCP Φ′(ϕ, ϕ′) of ϕ such that for each ϕ1 ∈ Φ′(ϕ, ϕ′):

– either δ(s, α)(s′) = pα(ϕ1, ϕ
′) = 0 for all s ∈ ϕ1 and s′ ∈ ϕ′;

– or for s, s̃ ∈ ϕ1 there exist unique states s′, s̃′ ∈ S such that s′ =
Θα

s ∩ϕ′, s̃′ = Θα
s̃ ∩ϕ′ and δ(s, α)(s′) = δ(s̃, α)(s̃′) = pα(ϕ1, ϕ

′) > 0.

It remains to show that the bimeasurable, BFCP invertible function qα
of 2.(ii) exists, which follows from the the fact that δE(· , α) : SE → SE

is bimeasurable and BFCP invertible.

Finally, we divide ϕ into a BFCP
∑

ϕ′∈ΦP
Φ′(ϕ, ϕ′), and therefore each region

of this BFCP has the required reachability consistency. □

Example 4. Returning to Example 1, we now give the perception BFCPs for
the observation functions proposed in Example 3. In each case the perception
BFCP is of the form ΦP = Loc1 × Loc2 × ΦE, where ΦE is a BFCP for the
environment state space and the perception BFCP is also the reward BCFP
Φα

R for α ∈ A.
For the first observation function, which uses a linear regression model,

the BFCP ΦE for the environment state space is given by:

{{(x, y) ∈ R | i < x < i + 1 ∧ j < y < j + 1} | i, j ∈ {0, 1, 2, 3}}2

18

× ×

Figure 2: Perception BFCP of the environment states ΦE : linear regression model (left)
and feed-forward NN model (right).

as shown in Fig. 2 (left), where the Borel measurable tie-breaking rule is used
for the boundary points. For the second observation function, the BFCP
ΦE can be found by computing the pre-images of each feed-forward NN
classifier [46], and is shown in Fig. 2 (right). ■

5. Values of zero-sum NS-CSGs

We now proceed by establishing the value of an NS-CSG C with respect
to an objective Y , i.e., for a reward structure r and discount factor β. We
prove the existence of this value, which is a fixed point of a minimax op-
erator. Using Banach’s fixed-point theorem, a sequence of bounded, Borel
measurable functions converging to this value is constructed.

Given a state s and (strategy) profile σ = (σ1, σ2) of JCK, we denote by
Eσ
s [Y] the expected value of the objective Y when starting from state s, given

by (1). The functions V , V : S → R, where s ∈ S:

V (s) := supσ1∈Σ1
infσ2∈Σ2 Eσ1,σ2

s [Y]

V (s) := infσ2∈Σ2 supσ1∈Σ1
Eσ1,σ2
s [Y]

are called the lower value and upper value of Y , respectively.

Definition 9 (Value function). If V (s) = V (s) for all s ∈ S, then JCK is
determined with respect to the objective Y and the common function is called
the value of JCK, denoted by V ⋆, with respect to Y .

We next introduce the spaces of feasible state-action pairs and state-action-
distribution tuples, and present properties of these spaces. More precisely,
for 1 ≤ i ≤ 2, we let:

Ξi := {(s, ai) ∈ S×Ai | ai ∈ Ai(s)}

19

Λi := {(s, ui) ∈ S×P(Ai) | ui ∈ P(Ai(s))}
Ξ12 := {(s, (a1, a2)) ∈ S×(A1×A2) | a1 ∈ A1(s) ∧ a2 ∈ A2(s)}
Λ12 := {(s, (u1, u2)) ∈ S×(P(A1)×P(A2)) | u1 ∈ P(A1(s)) ∧ u2 ∈ P(A2(s))} .

Lemma 5 (Borel sets). For 1 ≤ i ≤ 2, the sets Ξi and Λi are Borel sets
of S×Ai and S×P(Ai), respectively. Furthermore, the sets Ξ12 and Λ12 are
Borel sets of S × (A1 × A2) and S × (P(A1)× P(A2)), respectively.

Proof. We first consider Ξi and Λi for i = 1 (the case for i = 2 follows
similarly). Since A1 is finite, the sets Ξ1 and Λ1 can be rearranged as:

Ξ1 =
⋃

Â1⊆A1

(
{s1 | ∆1(s1) = Â1} × S2 × SE × Â1

)
∩ (S × A1)

Λ1 =
⋃

Â1⊆A1

(
{s1 | ∆1(s1) = Â1} × S2 × SE × P(Â1)

)
∩ (S × P(A1)) .

Since Â1 is a subset of the finite set A1, the sets Â1 and P(Â1) are Borel
sets of A1 and P(A1), respectively. Since S1 is a finite set, for any Â1 ⊆ A1,
the set {s1 | ∆1(s1) = Â1} is a Borel set of S1. Since S2 and SE are both
Borel sets by Lemma 1, the result follows by Theorem 1.10 [43, Chapter 1].
Using similar reasoning, it follows that Ξ12 and Λ12 are also Borel sets of the
respective spaces. □

Proposition 1 (Stochastic kernel transition function). The probabilis-
tic transition function δ of JCK is a stochastic kernel.

Proof. From Definition 7, it follows that, for any (s, α) ∈ Ξ12, we have
δ(s, α)(·) ∈ P(S). We show that, if B ∈ B(S), then δ(· , ·)(B) : (S×A)→ R
is Borel measurable on Ξ12. More precisely, we prove that, for any c ∈ R, the
pre-image of the Borel set [c,∞) of R under δ(· , ·)(B) which is given by:

δ−1([c,∞))(B) = {(s, α) ∈ Ξ12 | δ(s, α)(B) ≥ c}

is an element of B(Ξ12). If c > 1, then δ−1([c,∞))(B) = ∅ ∈ B(Ξ12), and if
c ≤ 0, then δ−1([c,∞))(B) = Ξ12 ∈ B(Ξ12).

Therefore, it remains to consider the case when 0 < c ≤ 1. Consider any
α ∈ A and let Φα

P be the refinement of ΦP of Lemma 4. For each ϕ ∈ Φα
P

and ϕ′ ∈ ΦP such that pα(ϕ, ϕ′) > 0, let qα : ϕ → ϕ′ be the associated
bimeasurable, BFCP invertible function from Lemma 4. The image of ϕ
under qα into ϕ′ is given by:

q̂α(ϕ, ϕ′) = {s′ ∈ ϕ′ | s′ = qα(s) ∧ s ∈ ϕ} .

20

By Lemmas 2 and 4, both ϕ and ϕ′ are Borel sets and qα is bimeasurable,
and therefore q̂α(ϕ, ϕ′) is a Borel set. Next, since qα is Borel measurable, the
pre-image of the Borel set q̂α(ϕ, ϕ′) ∩B under qα over the region ϕ, which is
given by:

q̂−1
α (ϕ, q̂α(ϕ, ϕ′) ∩B) = {s ∈ ϕ | qα(s) ∈ q̂α(ϕ, ϕ′) ∩B}

is a Borel set. By combining this result with Lemma 4, each state in
q̂−1
α (ϕ, q̂α(ϕ, ϕ′)∩B) under α transitions to B with probability pα(ϕ, ϕ′). We

denote the set of all transition probabilities from ϕ under α by Pα(ϕ) =
{pα(ϕ, ϕ′) > 0 | ϕ′ ∈ ΦP}. Then, the collection of the subsets of Pα(ϕ) for
which the sum of their elements is greater or equal to c is given by:

P≥c
α (ϕ) :=

{
P ′ ⊆ Pα(ϕ) |

∑
p′∈P ′p

′ ≥ c
}

and is finite. Now for each set P ′ ∈ P≥c
α (ϕ), the states in the set:

Oα(ϕ, P ′) =
⋂

pα(ϕ,ϕ′)∈P ′ q̂
−1
α (ϕ, q̂α(ϕ, ϕ′) ∩B)

transition to B under α with probability greater or equal to c and Oα(ϕ, P ′)
is a Borel set as P ′ is a finite set. Thus, the states in ϕ reaching B under α
with probability greater or equal to c are given by:

Oα(ϕ) =
⋃

P ′∈P≥c
α (ϕ)

Oα(ϕ, P ′)

which is a Borel set since P≥c
α (ϕ) is a finite set. Finally, we have:

δ−1([c,∞))(B) =
⋃

α∈A
⋃

ϕ∈Φα
P
{(s, α) ∈ Ξ12 | s ∈ Oα(ϕ)}

and therefore, combining Lemmas 4 and 5, it follows that δ−1([c,∞))(B) ∈
B(Ξ12) as required. □

Before presenting properties of the value function, we introduce the following
operator based on the classical Bellman equation.

Definition 10 (Minimax operator). Given a bounded, Borel measurable
real-valued function V ∈ F(S), the minimax operator T : F(S) → F(S) is
defined, for any s ∈ S, by:

[TV](s) := max
u1∈P(A1(s))

min
u2∈P(A2(s))

∑
a1∈A1(s)

∑
a2∈A2(s)

Q(s, (a1, a2), V)u1(a1)u2(a2)

where for any α ∈ A(s):

Q(s, α, V) := rA(s, α) + rS(s) + β
∑

s′∈Θα
s
δ(s, α)(s′)V (s′) .

21

Theorem 1 (Value function). If C is an NS-CSG and Y is a discounted
zero-sum objective, then

(i) JCK is determined with respected to Y , i.e., V ⋆ exists;

(ii) V ⋆ is the unique fixed point of the operator T ;

(iii) V ⋆ is a bounded, Borel measurable function.

Proof. The proof is through showing that JCK is an instance of a zero-sum
stochastic game that satisfies the conditions of the Borel model presented in
[16].

From Lemma 1, we have that A1, A2 and S are complete and separable
metric spaces. By Lemma 5, the spaces Ξi and Λi are Borel sets of S×Ai and
S×P(Ai) for 1 ≤ i ≤ 2, respectively. By Proposition 1, δ is a Borel stochastic
kernel. Furthermore, from Assumption 1 we have that rA + rS : (S×A)→ R
is bounded, and therefore it follows that JCK with respect to the zero-sum
objective Y is an instance of a zero-sum stochastic game with Borel model and
discounted payoffs introduced in [16]. Hence, (i) follows from [16, Theorems
2 and 3], and (ii) from the discounted case of [16, Theorem 1]. Finally, for
(iii), since β ∈ (0, 1), we have that V ⋆ is bounded, and therefore V ⋆ is Borel
measurable using [16, Lemma 3]. □

The following guarantees that value iteration (VI) converges to the value
function.

Proposition 2 (Convergence sequence). For any V 0 ∈ F(S), the se-
quence (V t)t∈N, where V t+1 = TV t, converges to V ⋆. Moreover, each V t

is bounded, Borel measurable.

Proof. Since rA + rS : (S×A)→ R is bounded, using [16, Lemma 2] we have
that, if V t is bounded, Borel measurable, then TV t is also bounded. The
result then follows from the fact that V ⋆(s) = limt→∞ V t(s) for all s ∈ S if
V t+1 = TV t for all t ∈ N [16]. □

6. Value iteration

Despite the convergence result of Proposition 2, in practice there may
not exist finite representations of general bounded Borel measurable functions
(V t)t∈N due to the uncountable state space. We now show how VI can be used
to approximate the values of JCK, based on a sequence of B-PWC functions.

22

6.1. B-PWC closure and convergence

For NS-CSGs, we demonstrate that, under Assumption 1, a B-PWC rep-
resentation of value functions is closed under the minimax operator and en-
sures the convergence of VI.

Theorem 2 (B-PWC closure and convergence). If V ∈ F(S) and B-
PWC, then so is Q(· , α, V) and [TV] for α ∈ A. If V 0 ∈ F(S) and B-PWC,
the sequence (V t)t∈N such that V t+1 = TV t converges to V ⋆, and each V t is
B-PWC.

Proof. Considering any B-PWC function V ∈ F(S) and joint action α ∈ A,
since rA(· , α)+rS(·) is B-PWC by Assumption 1, the fact that Q(· , α, V) is
B-PWC follows if, by Definition 10, we can show that the function Q(· , α, V)
where:

Q(· , α, V) :=
∑

s′∈Θα
·
δ(· , α)(s′)V (s′)

is B-PWC. Boundedness follows because V is bounded. The indicator func-
tion of a subset S ′ ⊆ S is the function χS′ : S → R such that χS′(s) = 1 if
s ∈ S ′ and 0 otherwise. Now χS′ is Borel measurable if and only if S ′ is a
Borel set of S [42]. For clarity, we use qα(s;ϕ, ϕ′) to refer to qα from Lemma 4
for α ∈ A, s ∈ ϕ, ϕ ∈ Φα

P and ϕ′ ∈ ΦP (where again Φα
P is from Lemma 4).

For any s ∈ S such that δ(s, α) is defined, we have:

Q(s, α, V) =
∑

ϕ∈Φα
P
χϕ(s)

∑
s′∈Θα

s
δ(s, α)(s′)V (s′)

=
∑

ϕ∈Φα
P
χϕ(s)

∑
ϕ′∈ΦP

pα(ϕ, ϕ′)V (qα(s;ϕ, ϕ′)) by Lemma 4

=
∑

ϕ∈Φα
P

∑
ϕ′∈ΦP

pα(ϕ, ϕ′)χϕ(s)V (qα(s;ϕ, ϕ′)) rearranging.

Since ϕ is a Borel set of S, we have that χϕ is Borel measurable. Next, we
show that V (qα(· ;ϕ, ϕ′)) is Borel measurable on ϕ. Let ΦV be a constant-
BFCP of S for V . Given c ∈ R, we denote by Φ≥c

V the set of regions in ΦV

on which V ≥ c holds. The pre-image of [c,∞) under V (qα(· ;ϕ, ϕ′)) defined
on ϕ is given by:

V −1(qα([c,∞);ϕ, ϕ′)) = {s ∈ ϕ | V (qα(s;ϕ, ϕ′)) ≥ c}
=

⋃
ϕV ∈Φ≥c

V
{s ∈ ϕ | qα(s;ϕ, ϕ′) ∈ ϕV } .

Since qα(s;ϕ, ϕ′) is Borel measurable in s ∈ ϕ (see Lemma 4) and ϕV is a
Borel set of S, then {s ∈ ϕ | qα(s;ϕ, ϕ′) ∈ ϕV } is a Borel set of ϕ. Since

23

(ΦV t , V t) ΦV t+1 (ΦV t+1 , V t+1)

(a) (b)

Figure 3: B-PWC VI in Algorithm 1. (a) Find new BFCP ΦV t+1 : refine ΦP +
∑

α∈A Φα
R

to be a pre-image BFCP of ΦV t for δ; (b) compute a value for each ϕ ∈ ΦV t+1 : take one
state s ∈ ϕ and compute V t+1 by assigning to each region ϕ the value [TV t](s).

V −1(qα([c,∞);ϕ, ϕ′)) is also a Borel set of ϕ by noting that Φ≥c
V is finite, it

follows that V (qα(· ;ϕ, ϕ′)) is Borel measurable on ϕ. Therefore Q(· , α, V)
is Borel measurable.

Next, since qα(· ;ϕ, ϕ′) is BFCP invertible on ϕ by Lemma 4, there exists
a BFCP Φq of ϕ such that all states in each region of Φq are mapped into
the same region of ΦV under qα(· ;ϕ, ϕ′). Following this, V (qα(· ;ϕ, ϕ′)) is
constant on each region of Φq. Therefore, using the fact that χϕ is PWC, it
follows that Q(· , α, V) is PWC, which completes the proof that Q(· , α, V)
is B-PWC.

From Proposition 2 we have that [TV] is bounded, Borel measurable.
Since Q(· , α, V) is PWC for any joint action α ∈ A, A(s) is PWC and
A is finite, it follows that [TV] is PWC using the fact that the value of a
zero-sum normal-formal game induced at every s ∈ S is unique. Thus, [TV]
is B-PWC. The remainder of the proof follows directly from Banach’s fixed
point theorem and the fact we have proved that, if V ∈ F(S) and B-PWC,
so is [TV]. □

6.2. B-PWC VI

We use the closure property of B-PWC value functions under the minimax
operator from Theorem 2 to iteratively construct a sequence (V t)t∈N of such
functions to approximate V ⋆ to within a convergence guarantee. Algorithm 1
presents our B-PWC VI scheme, where the BCFP of the B-PWC value func-
tion at each iteration is refined (line 6) and subsequently the B-PWC value
function is updated via minimax computations (line 8) for a state sampled
from each of its regions.

Initialization. The function V 0 is initialised as a 0-valued B-PWC function
defined over the BFCP ΦV 0 = ΦP +

∑
α∈A Φα

R of S, i.e., V 0
ϕ = 0 for ϕ ∈ ΦV 0 .

24

Algorithm 1 B-PWC VI
1: Input: NS-CSG C, perception FCP ΦP , reward FCPs (Φα

R)α∈A, error ε
2: Output: Approximate value function V
3: Initialize (ΦV 0 , V 0)
4: ε̄← 2ε, t← 0
5: while ε̄ > ε do
6: ΦV t+1 ← Preimage BFCP(ΦV t ,ΦP , (Φ

α
R)α∈A) (Algorithm 2)

7: for ϕ ∈ ΦV t+1 do
8: Take one state s ∈ ϕ, V t+1

ϕ ← [TV t](s)

9: ε̄← Dist(V t+1, V t)
10: t← t + 1

11: return V ← V t

Algorithm 2 BFCP iteration for B-PWC VI
1: procedure Preimage BFCP(Φ, ΦP , (Φα

R)α∈A)
2: Φpre ← ∅
3: for ϕ ∈ ΦP +

∑
α∈A Φα

R do
4: Φϕ

pre ← ∅
5: for α ∈ A, ϕ′ ∈ {ϕ′ ∈ Φ | (∪s∈ϕΘα

s) ∩ ϕ′ ̸= ∅} do
6: Φϕ

pre ← Φϕ
pre ∪

{
{s ∈ ϕ | Θα

s ∩ ϕ′ ̸= ∅}
}

7: Φpre ← Φpre ∪ {ϕ1 ∈ Intersect(ϕ,Φϕ
pre)}

8: return Φpre

The algorithm. The steps of our B-PWC VI algorithm are illustrated in
Fig. 3. These steps use Preimage BFCP(ΦV t ,ΦP , (Φ

α
R)α∈A), see Algorithm 2,

to compute a refinement of ΦP +
∑

α∈A Φα
R that is a pre-image BFCP of ΦV t

for δ. Then, in order to compute the value V t+1
ϕ over each region ϕ ∈ Φ,

we take one state s ∈ ϕ and then find the value of a zero-sum normal form
game [47] at s induced by Definition 10.

As a convergence criterion for B-PWC VI in Algorithm 1, we detect when
the difference between successive value approximations falls below a threshold
ε (as usual for VI, this does not guarantee an ε-optimal solution). The
function Dist(V t+1, V t) computes the difference between V t+1 and V t, which
may have different regions due to the possible inconsistency between ΦV t+1

and ΦV t . An intuitive method is to evaluate V t+1 and V t at a finite set of
points, and then compute the maximum difference. In the usual manner for

25

VI, an approximately optimal strategy can be extracted from the final step
of the computation.

Algorithm 2 requires region-wise computations involving the image and
pre-image of a region, region intersection and the sum of BFCPs. In par-
ticular, Intersect(ϕ,Φϕ

pre) is the refinement of ϕ obtained by computing all
pairwise intersections of ϕ with regions in Φϕ

pre and, by construction, is a
pre-image BFCP of Φ for δ over ϕ. The following corollary then follows from
Lemma 4 and Theorem 2.

Corollary 1 (BFCP iteration for B-PWC VI). In Algorithm 2, Φpre is
a refinement of ΦP +

∑
α∈A Φα

R and is a pre-image BFCP of Φ for δ.

Polytope regions. Our B-PWC VI algorithm assumes that each region
in a BFCP is finitely representable. We now briefly discuss the use of
BFCPs defined by polytopes, which suffice for perception BCFPs of ReLU
NNs (discussed below). The focus is the region-based computations required
by Algorithm 2. A polytope ϕ ⊆ Rm is an intersection of ℓ halfspaces
{x ∈ Rm | gk(x) ≥ 0 for 1 ≤ k ≤ ℓ}, where gk(x) = W⊤

k x + bk is a lin-
ear function, i.e., Wk ∈ Rm and bk ∈ R, for 1 ≤ k ≤ ℓ. If ϕ1 and ϕ2 are
polytopes, represented by {(Wk, bk)}ℓ′k=1 and {(Wk, bk)}ℓk=ℓ′+1, respectively,
then the intersection ϕ1 ∩ ϕ2, is the intersection of ℓ halfspaces and can be
represented as {(Wk, bk)}ℓk=1. Therefore, the sum Φ1 + Φ2 of two BFCPs Φ1

and Φ2 can be computed by considering the intersection ϕ1∩ϕ2 of all pairwise
combinations of regions ϕ1 ∈ Φ1 and ϕ2 ∈ Φ2.

The image of a polytope ϕ = {x ∈ Rm | gk(x) ≥ 0 for 1 ≤ k ≤ ℓ} under a
linear function f : Rm → Rm, where f(x) = Dx+b, D ∈ Rm×m is non-singular
and b ∈ Rm, is the polytope f(ϕ) = {x ∈ Rm | W⊤

k D−1x + bk −W⊤
k D−1b ≥

0 for 1 ≤ k ≤ ℓ} with the representation {(D−⊤Wk, bk−W⊤
k D−1b)}ℓk=1. The

pre-image of ϕ under f is the polytope f−1(ϕ) = {x ∈ Rm | W⊤
k Dx + bk +

W⊤
k b ≥ 0 for 1 ≤ k ≤ ℓ} with the representation {(D⊤Wk, bk + W⊤

k b)}ℓk=1.
Checking the feasibility of a set constrained by a set of linear inequalities can
be solved by a linear program solver [48].

ReLU networks. If each perception function obsi is implemented via a
ReLU NN working as a classifier, where the activation function is B-PWL,
then the pre-images of the ReLU NN for each percept [46] have linear bound-
aries, and therefore all regions in the corresponding perception BFCP ΦP

can be represented by polytopes (see Example 4). If there exist polytope

26

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−1500 −1000 −500 0 500 1000 1500 2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Strategy synthesis for Example 5. Value function (left) and optimal strategy
(right) over different coordinates of Ag1 for a fixed local state of Ag1 (red square) and a
fixed coordinate of Ag2 (purple triangle).

constant-BFCPs for B-PWC rA(· , α) and rS for all α ∈ A, then all regions
in Φα

R for α ∈ A are polytopes. If δE(· , α) is piecewise linear and invertible
and ϕ′ is a polytope (line 5 in Algorithm 2), then {s ∈ ϕ | Θα

s ∩ ϕ′ ̸= ∅}
is a polytope. Therefore, each region in Φpre is a polytope after every iter-
ation and the operations over polytopes, including intersections, image and
preimage computations, directly follow from the computation above.

Example 5. We now return to the NS-CSG model, presented in Example 1
of a dynamic vehicle parking problem with the perception functions imple-
mented via the linear regression model given in Example 3. To demonstrate
implementability of our approach we synthesise strategies using a prototype
Python implementation of the B-PWC VI algorithm.

The implementation uses a polyhedral representation of regions and the
values of the zero-sum normal-form games involved in the minimax operator
at step 8 of Algorithm 1 are found by solving the corresponding linear pro-
gram [47] using the SciPy library [48]. We have partitioned the state space of
the game into two sets corresponding to the two possible local states of Ag1.
The B-PWC VI algorithm converges after 46 iterations when ε = 10−6 and
takes 3, 825s to complete. For each set in the partition of the state space, the
BFCP of this set converges to the product of two 8 × 8 grids. For the cur-
rent chosen parking spot of Ag1 (red square) and coordinate of Ag2 (purple

27

triangle), the value function with respect to the coordinate of Ag1 is pre-
sented in Fig. 4 (left) and shows that, the closer Ag1 is to its chosen parking
spot, the higher the (approximate) optimal value. The lightest-colour class is
caused by an immediate crash, and its position follows from the observation
function.

An (approximate) optimal strategy for Ag1 is presented in Fig. 4 (right),
where the colour of an arrow is proportional to the probability of moving in
that direction and the rotating arrow represents the parking action. There are
several choices which are not intuitive. For example, although a crash cannot
be avoided before reaching its current parking spot, Ag1 moves left when in
[1.0, 1.5]× [3.5, 4.0] (top left) as it is better to crash later in this discounted
setting and Ag1 moves right when in [1.5, 2.0] × [0.5, 1.0] (down right) since
by moving in this direction it will meet the conditions to (randomly) update
its chosen parking spot required by Ag1’s local transition function. ■

7. Policy iteration

It is known that, for MDPs, PI algorithms generally converge faster than
VI algorithms, since policy improvement can jump over policies directly [49].
Motived by this fact, in this section we show how PI can be used to approx-
imate the values and optimal strategies of an NS-CSG C with respect to a
discounted accumulated reward objective Y . Our algorithm takes ideas from
recent work [17], which proposed a new PI method to solve zero-sum stochas-
tic games with finite state spaces, and is the first PI algorithm for CSGs with
Borel state spaces and with a convergence guarantee. Our PI algorithm en-
sures that the strategies and value functions generated during each iteration
never leave a finitely representable class of functions. In addition, when com-
puting values of CSGs, efficiencies are gained over alternative algorithms as
there is no need to solve normal-form games, which is required by our B-
PWC VI and Pollatschek-Avi-Itzhak’s PI algorithm [25], nor to solve MDPs,
which adds complexity to Hoffman-Karp’s PI algorithm [24]. This results in
cheaper computations and faster convergence over these alternatives, as for
PI over VI for MDPs.

7.1. Operators, functions and solutions

Before presenting the algorithm, the following operators, functions and
solutions are proposed. Let γ ∈ R be a constant such that γ > 1 and

28

γβ < 1, which will be used to distribute the discount factor β between policy
evaluation and policy improvement of the two agents.

Operators for Max-Min and Min-Max. Before introducing operators for
Max-Min and Min-Max, we require the notion of a stationary Stackelberg
(follower) strategy for Ag2, which is a stochastic kernel σ2 : Λ1 → P(A2),
i.e., σ2 ∈ P(A2 | Λ1) such that σ2(A2(s) | (s, u1)) = 1 for (s, u1) ∈ Λ1.
This strategy is introduced only for the PI algorithm and implies that Ag2
makes decisions conditioned on the current state s and the current choice
of Ag1, i.e. action distribution u1, and thus allows us to split the maximum
and minimum operations of the two agents. We denote by Σ2 the set of all
stationary Stackelberg strategies for Ag2.

Definition 11 (Operator for the Max-Min value). For strategy σ1 ∈
Σ1 of Ag1 and function V2 ∈ F(Λ1), we define the operator H1

σ1,V2
: F(Λ1)→

F(S) such that for J2 ∈ F(Λ1) and s ∈ S:

[H1
σ1,V2

J2](s) = γ−1 min{J2(s, σ1(s)), V2(s, σ1(s))}
= γ−1 min{J2(s, u1), V2(s, u1)}

where σ1(s) = u1 ∈ P(A1(s)).

Definition 12 (Operator for the Min-Max value). For Stackelberg (fol-
lower) strategy σ2 ∈ Σ2 of Ag2 and function V1 ∈ F(S), we define the operator
H2

σ2,V1
: F(S)→ F(Λ1) such that for J1 ∈ F(S) and (s, u1) ∈ Λ1:

[H2
σ2,V1

J1](s, u1) =
∑

(a1,a2)∈A(s)Q(s, (a1, a2), γ max[J1, V1])u1(a1)σ2(a2|(s, u1))

=
∑

(a1,a2)∈A(s)Q(s, (a1, a2), γ max[J1, V1])u1(a1)u2(a2)

where σ2(· | (s, u1)) = u2 ∈ P(A2(s)).

Unlike the classical PI algorithms by Hoffman and Karp [24] and Pollatschek
and Avi-Itzhak [25], following [17], our PI algorithm separates the policy
evaluation and policy improvement of the maximiser (Ag1) and the minimiser
(Ag2) through the use of the operators of Definition 11 and Definition 12,
respectively. To track the value functions after performing policy evaluation
of Ag1 and Ag2, our PI algorithm introduces value functions J1 and J2. In
addition, the value functions V1 and V2 are introduced to avoid the oscillatory
behavior of the Pollatschek and Avi-Itzhak PI algorithm [25], thus ensuring

29

u1

s

f1(s, u1)

u1

s

f2(s, u1)

Figure 5: Two functions over one region of a BFCP of Λ1. Constant-piecewise-linear
(CON-PWL) Borel measurable function (left): given u1, f1(s, u1) is constant in s, and
given s, f1(s, u1) is B-PWL in u1. Constant-piecewise-constant (CON-PWC) stochastic
kernel (right): given u1, f2(s, u1) is constant in s, and given s, f2(s, u1) is B-PWC in u1.

convergence, and are updated only during policy improvement. The role of γ
is to split the discount factor β such that all the operators corresponding to
policy evaluation and policy improvement of the two agents are contraction
mappings, which then ensures convergence.

Two function representations. We next define two classes of functions,
which play a key role in characterizing the functions and strategies generated
during each iteration of our PI algorithm.

Definition 13 (CON-PWL Borel measurable function). A function f ∈
F(Λ1) is a constant-piecewise-linear (CON-PWL) Borel measurable function
if there exists a BFCP Φ of S such that, for each ϕ ∈ Φ, A1(s) = A1(s

′) for
s, s′ ∈ ϕ, and Φ generates Θ = {θ(ϕ) | ϕ ∈ Φ} where θ(ϕ) = {(s, u1) ∈ Λ1 |
s ∈ ϕ}, a BFCP of Λ1, such that for θ(ϕ) ∈ Θ:

(i) f(· , u1) : ϕ→ R is constant for u1 ∈ P(A1(s)) where s ∈ ϕ;

(ii) f(s, ·) : P(A1(s))→ R is B-PWL for s ∈ ϕ.

Definition 14 (CON-PWC stochastic kernel). A function f ∈ Σ2 is a
constant-piecewise-constant (CON-PWC) stochastic kernel if there exists a
BFCP Φ of S such that, for each ϕ ∈ Φ, A(s) = A(s′) for s, s′ ∈ ϕ, and Φ
generates Θ = {θ(ϕ) | ϕ ∈ Φ} where θ(ϕ) = {(s, u1) ∈ Λ1 | s ∈ ϕ}, a BFCP
of Λ1, such that for θ(ϕ) ∈ Θ:

(i) f(· , u1) : ϕ→ P(A2(s)) is constant for u1 ∈ P(A1(s)) where s ∈ ϕ;

(ii) f(s, ·) : P(A1(s))→ P(A2(s)) is B-PWC for s ∈ ϕ.

30

Fig. 5 presents an example of a CON-PWL Borel measurable function and
CON-PWC stochastic kernel over a region. We now show that these two func-
tions can be represented by finite sets of vectors. Each CON-PWL Borel mea-
surable function f can be represented by a finite set of vectors {(Dϕ,ϕ′ , bϕ,ϕ′) ∈
R|A1| × R | ϕ ∈ Φ ∧ ϕ′ ∈ Φ′(ϕ)} such that f(s, u1) = D⊤

ϕ,ϕ′u1 + bϕ,ϕ′ for s ∈ ϕ
and u1 ∈ ϕ′, where Φ is a BFCP of S for f using Definition 13 and Φ′(ϕ) is
a BFCP of {u1 ∈ P(A1) | (s, u1) ∈ θ(ϕ)}, and θ(ϕ) ∈ Θ again using Defini-
tion 13 is such that, over each region ϕ′ ∈ Φ′(ϕ), f(s, u1) is linear in u1 given
s ∈ ϕ. Similarly using Definition 14, each CON-PWC stochastic kernel f can
be represented by a finite set of vectors {Dϕ,ϕ′ ∈ P(A2) | ϕ ∈ Φ∧ϕ′ ∈ Φ′(ϕ)}
such that f(s, u1) = Dϕ,ϕ′ for s ∈ ϕ and u1 ∈ ϕ′, where Φ is a BFCP of S
for f using Definition 14, Φ′(ϕ) is a BFCP of {u1 ∈ P(A1) | (s, u1) ∈ θ(ϕ)},
θ(ϕ) ∈ Θ using Definition 14 is such that, over each region ϕ′ ∈ Φ′(ϕ), f(s, u1)
is constant in u1 given s ∈ ϕ.

Maximum or minimum solutions. We introduce a criterion for selecting
the maximum or minimum solution over a region, by which the strategies
from policy improvement are finitely representable.

Definition 15 (CON-1 solution). Let f ∈ F(Λ1) be a CON-PWL Borel
measurable function. Using Definition 13 there exists a BFCP Φ of S for f .
Now, for each ϕ ∈ Φ, if there exists uϕ

1 ∈ P(A1(s)) such that:

f(s, uϕ
1) = maxu1∈P(A1(s)) f(s, u1)

for s ∈ ϕ, and σ1 is a strategy of Ag1 such that σ1(s) = uϕ
1 for s ∈ ϕ, then

σ1 is a constant-1 (CON-1) solution of f over ϕ.

Definition 16 (CON-2 solution). Let f ∈ F(Λ12) be a Borel measurable
function. If there exists a BFCP Θ of Λ1 where, for each θ ∈ Θ, A2(s) is
constant for (s, u1) ∈ θ and there exists uθ

2 ∈ P(A2(s)) such that:

f(s, u1, u
θ
2) = minu2∈P(A2(s)) f(s, u1, u2)

for (s, u1) ∈ θ, and σ2 is a Stackelberg strategy for Ag2 such that σ2(s, u1) =
uθ
2 for (s, u1) ∈ θ, then σ2 is a constant-2 (CON-2) solution of f over θ.

7.2. Minimax-action-free PI

We now use the operators of Definitions 11 and 12, together with the
functions and solutions from Definitions 13, 14, 15 and 16 to derive a PI

31

Algorithm 3 Iteration t of Minimax-action-free PI
1: Input: NS-CSG C, PWC σt

1 ∈ Σ1, CON-PWC σt
2 ∈ Σ2, PWC J t

1, V
t
1 ∈

F(S), CON-PWL J t
2, V

t
2 ∈ F(Λ1)

2: Perform one of the following four iterations.
3: Policy evaluation of Ag1:
4: J t+1

1 ← [H1
σt
1,V

t
2
J t
2] via PE1 , σt+1

1 ← σt
1,

5: V t+1
1 ← V t

1 , σt+1
2 ← σt

2, J
t+1
2 ← J t

2, V
t+1
2 ← V t

2

6: Policy improvement of Ag1 by CON-1 solution:
7: σt+1

1 (s) ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s),

8: V t+1
1 ← [H1

σt+1
1 ,V t

2

J t
2] via PI1 ,

9: J t+1
1 ← J t

1, σ
t+1
2 ← σt

2, J
t+1
2 ← J t

2, V
t+1
2 ← V t

2

10: Policy evaluation of Ag2:
11: J t+1

2 ← [H2
σt
2,V

t
1
J t
1] via PE2 , σt+1

1 ← σt
1,

12: J t+1
1 ← J t

1, V
t+1
1 ← V t

1 , σt+1
2 ← σt

2, V
t+1
2 ← V t

2

13: Policy improvement of Ag2 by CON-2 solution:
14: σt+1

2 (s, u1) ∈ argminu2∈P(A2(s))[H
2
u2,V t

1
J t
1](s, u1),

15: V t+1
2 ← [H2

σt+1
2 ,V t

1

J t
1] via PI2 ,

16: σt+1
1 ← σt

1, J
t+1
1 ← J t

1, V
t+1
1 ← V t

1 , J t+1
2 ← J t

2

17: t← t + 1

algorithm called Minimax-action-free PI (Algorithm 3) for strategy synthesis
for NS-CSGs with Borel state spaces. Our algorithm closely follows the PI ⋆
method of [17] for finite state spaces, but has to resolve a number of issues
due to the uncountability of the underlying state space and the need to
ensure Borel measurability at each iteration. To overcome these issues we
(i) introduce CON-PWL Borel measurable functions and CON-PWC Borel
measurable strategies to ensure measurability and finite representability; (ii)
work with CON-1 and CON-2 solutions for policy improvement to ensure
that the strategies generated are finitely representable and consistent; and
(iii) propose a BFCP iteration algorithm (Algorithm 4) and a BFCP-based
computation algorithm (Algorithm 5) to compute a new BFCP of the state
space and the values or strategies over this BFCP. We also provide a simpler
proof than that presented in [17], which does not require the introduction of
any new concepts except those used in the algorithm.

32

Algorithm 4 BFCP iteration t for Minimax-action-free PI
1: Input: Perception FCP ΦP , reward FCPs (Φα

R)α∈A
2: Output: BFCPs ⟨ΦJt

1
,ΦV t

1
,Φσt

1
,ΘJt

2
,ΘV t

2
,Θσt

2
⟩t∈N

for ⟨J t
1, V

t
1 , σ

t
1, J

t
2, V

t
2 , σ

t
2⟩t∈N

3: ΦJ0
1
,ΦV 0

1
,Φσ0

1
← {S}, ΘJ0

2
,ΘV 0

2
,Θσ0

2
← {Λ1}

4: while Algorithm 3 performs iteration t do
5: if policy evaluation of Ag1 is chosen then
6: Preprocess maximiser(),
7: ΦJt+1

1
← Φσt

1
+ ΦJt

2
+ ΦV t

2
, ΦV t+1

1
← ΦV t

1
, Φσt+1

1
← Φσt

1

8: if policy improvement of Ag1 is chosen then
9: Preprocess maximiser(),

10: Φσt+1
1
← ΦJt

2
+ ΦV t

2
, ΦV t+1

1
← Φσt+1

1
, ΦJt+1

1
← ΦJt

1

11: if policy evaluation of Ag2 is chosen then
12: Preprocess minimiser(),
13: Φσt

2
←

{
{s | (s, u1) ∈ θ} | θ ∈ Θσt

2

}
,

14: ΘJt+1
2
←

{
{(s, u1) ∈ Λ1 | s ∈ ϕ} | ϕ ∈ ΦQ̂t+1 + Φσt

2

}
,

15: ΘV t+1
2
← ΘV t

2
, Θσt+1

2
← Θσt

2

16: if policy improvement of Ag2 is chosen then
17: Preprocess minimiser(),
18: Θσt+1

2
←

{
{(s, u1) ∈ Λ1 | s ∈ ϕ} | ϕ ∈ ΦQ̂t+1

}
,

19: ΘV t+1
2
← Θσt+1

2
, ΘJt+1

2
← ΘJt

2

20: return ⟨ΦJt
1
,ΦV t

1
,Φσt

1
,ΘJt

2
,ΘV t

2
,Θσt

2
⟩t∈N

21:

22: procedure Preprocess maximiser()
23: ΘJt+1

2
← ΘJt

2
, ΘV t+1

2
← ΘV t

2
, ΦJt

2
←

{
{s | (s, u1) ∈ θ} | θ ∈ ΘJt

2

}
,

24: ΦV t
2
←

{
{s | (s, u1) ∈ θ} | θ ∈ ΘV t

2

}
, Θσt+1

2
← Θσt

2

25: procedure Preprocess minimiser()
26: ΦJt+1

1
← ΦJt

1
, ΦV t+1

1
← ΦV t

1
, Φσt+1

1
← Φσt

1
,

27: ΦQ̂t+1 ← Preimage BFCP(ΦJt
1

+ ΦV t
1
,ΦP , (Φ

α
R)α∈A)

33

Algorithm 5 BFCP based computation for Minimax-action-free PI

1: Input: J t
1, V

t
1 , σ

t
1, J

t
2, V

t
2 , σ

t
2,ΦJt+1

1
,Φσt+1

1
,ΘJt+1

2
,Θσt+1

2

2: procedure PE1
3: for ϕ ∈ ΦJt+1

1
do

4: Take one state s ∈ ϕ, and then J t+1
1,ϕ ← [H1

σt
1,V

t
2
J t
2](s)

5: return J t+1
1 ← (J t+1

1,ϕ)ϕ∈ΦJt+1
1

6: procedure PI1
7: for ϕ ∈ Φσt+1

1
do

8: Take s ∈ ϕ, and then u1 ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s)

9: σt+1
1,ϕ ← u1, V t+1

1,ϕ ← maxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s)

10: return σt+1
1 ← (σt+1

1,ϕ)ϕ∈Φσt+1
1

, V t+1
1 ← (V t+1

1,ϕ)ϕ∈Φσt+1
1

11: procedure PE2
12: for θ ∈ ΘJt+1

2
do

13: ϕ← {s | (s, u1) ∈ θ}
14: Take s ∈ ϕ, and then compute a BFCP Φu of P(A1(s)) such that

over ϕu ∈ Φu, [H2
σt
2,V

t
1
J t
1](s, u1) is linear in u1

15: J t+1
2,θ ← [H2

σt
2,V

t
1
J t
1](s, u1) is linear in u1

16: return J t+1
2 ← (J t+1

2,θ)θ∈ΘJt+1
2

17: procedure PI2
18: for θ ∈ Θσt+1

2
do

19: ϕ← {s | (s, u1) ∈ θ}
20: Take s′ ∈ ϕ, and then compute a BFCP Φu of P(A1(s

′)) such that
over ϕu ∈ Φu, min

u2∈P(A2(s′))
[H2

u2,V t
1
J t
1](s

′, u1) is constant for u1 ∈ ϕu

21: Take u′
1 ∈ ϕu and u′

2 ∈ argmin
u2∈P(A2(s′))

[H2
u2,V t

1
J t
1](s

′, u′
1) for ϕu ∈ Φu

22: σt+1
2,θ ← u′

2, V t+1
2,θ ← [H2

u′
2,V

t
1
J t
1](s

′, u1) is linear in u1

23: return σt+1
2 ← (σt+1

2,θ)θ∈Θσt+1
2

, V t+1
2 ← (V t+1

2,θ)θ∈Θσt+1
2

34

Initialization. The Minimax-action-free PI algorithm is initialized with
strategies σ0

1 and σ0
2 for each player, which are uniform distributions over

available actions/state-action pairs, i.e., σ0
1(s) = 1

|A1(s)| for all s ∈ S and

σ0
2(s, u1) = 1

|A2(s)| for all (s, u1) ∈ Λ1, and four 0-valued functions, J0
1 , V 0

1 ,

J0
2 V 0

2 , i.e., J0
1 (s) = V 0

1 (s) = 0 for all s ∈ S and J0
2 (s, u1) = V 0

2 (s, u1) = 0
for all (s, u1) ∈ Λ1, and Algorithm 4 gives one BFCP for each strategy and
function,

The algorithm. An iteration of the Minimax-action-free PI is given in Al-
gorithm 3. As shown later, the order and frequency by which the possible
four iterations of Algorithm 3 are run do not affect the convergence, as long
as each is performed infinitely often. This permits an asynchronous imple-
mentation of the Minimax-action-free PI algorithm, as discussed in [17] and
for its single-agent counterparts in [50].

For each of the four iterations, Algorithm 4 provides a way to compute
new BFCPs and the results below demonstrate that, over each region of
these BFCPs, the corresponding computed strategies and value functions are
either constant, PWC or PWL. Therefore, we can follow similar steps to our
VI algorithm (see Algorithm 1) to compute the value functions of these new
strategies and value functions (see Algorithm 5). The idea is to first compute
the BFCPs ΦJt+1

1
, ΦV t+1

1
, Φσt+1

1
, ΘJt+1

2
, ΘV t+1

2
and Θσt+1

2
via Algorithm 4 and

then use them to compute strategies and value functions using Algorithm 5.
For instance, if policy improvement of Ag2 is chosen at iteration t ∈ N then
we proceed as follows. First, new BFCPs are computed via Algorithm 4.
Second, procedure PI2 of Algorithm 5 is performed. In this step we take each
region θ ∈ Θσt+1

2
, let ϕ = {s | (s, u1) ∈ θ}, then take one state s′ ∈ ϕ, and

compute a BFCP Φu of P(A1(s
′)) such that minu2∈P(A2(s′))[H

2
u2,V t

1
J t
1](s

′, u1) is

constant over ϕu ∈ Φu and for u1 ∈ ϕu. Third, take one u′
1 ∈ ϕu and find

u′
2 ∈ P(A2(s

′)) that minimises [H2
u2,V t

1
J t
1](s

′, u′
1). Fourth, we let σt+1

2 (s, u1) =

u′
2 for s ∈ ϕ and u1 ∈ ϕu, which is a CON-2 solution of [H2

u2,V t
1
J t
1](s, u1) over

{(s, u1) | s ∈ ϕ ∧ u1 ∈ ϕu} by Lemma 9 and V t+1
2 (s, u1) is CON-linear in

s ∈ ϕ and u1 ∈ ϕu. Finally, we copy the other strategies and value functions
for the next iteration.

Representation closures. The following lemmas show the strategies and
value functions generated during each iteration of the Minimax-action-free PI
algorithm are closed under B-PWC, CON-PWL and CON-PWC functions,
and are thus finitely representable.

35

Lemma 6 (Evaluation closure for Ag1). If σt
1 ∈ Σ1 is a PWC stochastic

kernel, J t
2, V

t
2 ∈ F(Λ1) are CON-PWL Borel measurable and policy evaluation

of Ag1 is performed (procedure PE1), then J t+1
1 = [H1

σt
1,V

t
2
J t
2] is B-PWC.

Proof. Suppose σt
1 ∈ Σ1 is a PWC stochastic kernel and J t

2, V
t
2 ∈ F(Λ1) are

CON-PWL Borel measurable. Since σt
1 is a PWC stochastic kernel, there

exists a constant-BFCP Φσt
1

of S for σt
1. Since J t

2 is a CON-PWL Borel
measurable function, there exists a BFCP ΦJt

2
of S satisfying the properties

of Definition 13 for J t
2. Therefore J t

2(s, σ
t
1(s)) is constant on each region of

the BFCP Φσt
1

+ ΦJt
2
. We can similarly show that V t

2 (s, σt
1(s)) is constant

on each region of the BFCP Φσt
1

+ ΦV t
2
, where ΦV t

2
is a BFCP of S from

Definition 13 for V t
2 . Consider the policy evaluation of Ag1 (procedure PE1).

Using Definition 11 we have that J t+1
1 = [H1

σt
1,V

t
2
J t
2] is constant on each region

of the BFCP Φσt
1
+ΦJt

2
+ΦV t

2
, which also implies that J t+1

1 is Borel measurable.

Since J t
2 and V t

2 are bounded, then J t+1
1 is also bounded as required. □

Lemma 7 (Improvement closure for Ag1). If J t
2, V

t
2 ∈ F(Λ1) are CON-

PWL Borel measurable and policy improvement of Ag1 is performed (proce-
dure PI1), then σt+1

1 (s) ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s) is a PWC stochastic

kernel, and V t+1
1 = [H1

σt+1
1 ,V t

2

J t
2] is B-PWC.

Proof. Suppose J t
2, V

t
2 ∈ F(Λ1) are CON-PWL Borel measurable functions.

Using [42, Chapter 18.1] and Definition 13 it follows that the function Kt :=
min[J t

2, V
t
2] is Borel measurable. Note that, over each region of ΦJt

2
+ ΦV t

2
,

Kt(s, u1) is constant in s given u1, and PWL in u1 given s (where ΦJt
2

and
ΦV t

2
are from Lemma 6), and therefore Kt is CON-PWL.

Let ΦKt = ΦJt
2

+ ΦV t
2

and ΘKt be a BFCP of Λ1 satisfying the properties ⋆
of Definition 13 for Kt. Every state in each region of the BFCP ΦKt has
the same set of available actions for Ag1 and same strategy u1 that max-
imises Kt(s, u1) on a region of ΘKt . Therefore, using the CON-1 solution in
Definition 15, the strategy of Ag1:

σt+1
1 (s) ∈ argmaxu1∈P(A1(s))[H

1
u1,V t

2
J t
2](s)

is constant on each region of ΦKt , which also implies that σt+1
1 is Borel

measurable. Since σt+1
1 is a PWC stochastic kernel, then Lemma 6 implies

that V t+1
1 is B-PWC as required. □

36

Lemma 8 (Evaluation closure for Ag2). If J t
1, V

t
1 ∈ F(S) are B-PWC

and σt
2 ∈ Σ2 is a CON-PWC stochastic kernel and policy evaluation of Ag2

is performed (procedure PE2), then J t+1
2 = [H2

σt
2,V

t
1
J t
1] is CON-PWL Borel

measurable.

Proof. Suppose J t
1 and V t

1 are B-PWC and σt
2 ∈ Σ2 is a CON-PWC stochastic

kernel. Using [42, Chapter 18.1] it follows that γ max[J t
1, V

t
1] is B-PWC. In

view of the B-PWC function Q(· , α, V) in Theorem 2, for each α ∈ A the
function:

Q̂t
α(s) := Q(s, α, γ max[J t

1, V
t
1])

is B-PWC. Let ΦQ̂t be a BFCP of S such that Q̂t
α is constant on each region

of ΦQ̂t for α ∈ A. It follows that A(s) is constant on each region of ΦQ̂t .
Next, let Φσt

2
be a BFCP of S satisfying the properties of Definition 14

for the CON-PWC stochastic kernel σt
2. For the BFCP ΦQ̂t + Φσt

2
of S,

we generate a BFCP Θt
1 of Λ1 such that each region θt1(ϕ) ∈ Θt

1, induced
by a region ϕ ∈ ΦQ̂t + Φσt

2
, is given by θt1(ϕ) = {(s, u1) ∈ Λ1 | s ∈ ϕ}.

Finally, consider the policy evaluation of Ag2. According to Definition 12,
for (s, u1) ∈ θt1(ϕ), J t+1

2 (s, u1) = [H2
σt
2,V

t
1
J t
1](s, u1) is constant in s for a fixed

u1, and PWL in u1 for a fixed s ∈ S. Thus, J t+1
2 is CON-PWL. Since Q̂t

α

and σt
2 are bounded, Borel measurable, then so is J t+1

2 by Definition 12 as
required. □

Lemma 9 (Improvement closure for Ag2). If J t
1, V

t
1 ∈ F(S) are B-PWC

and policy improvement of Ag2 is performed (procedure PI2), then σt+1
2 (s, u1) ∈

argminu2∈P(A2(s))[H
2
u2,V t

1
J t
1](s, u1) is a CON-PWC stochastic kernel, and V t+1

2 =

[H2
σt+1
2 ,V t

1

J t
1] is CON-PWL Borel measurable.

Proof. Suppose J t
1, V

t
1 ∈ F(S) are B-PWC. For the BFCP ΦQ̂t of S, we

generate a BFCP Θt
2 of Λ1 such that each region θt2(ϕ) in Θt

2 induced by
a region ϕ ∈ ΦQ̂t is given by θt2(ϕ) = {(s, u1) ∈ Λ1 | s ∈ ϕ}, where ΦQ̂t

is from the proof of Lemma 8. Consider the policy improvement of Ag2
(procedure PI2). According to Definition 12, by using the CON-2 solution
in Definition 16, for (s, u1) ∈ θt2(ϕ), the Stackelberg strategy of Ag2:

σt+1
2 (s, u1) ∈ argminu2∈P(A2(s))[H

2
u2,V t

1
J t
1](s, u1)

is constant in s for a fixed u1, and PWC in u1 for a fixed s. Thus, σt+1
2

is CON-PWC. Since σt+1
2 is a CON-PWC stochastic kernel, then Lemma 8

implies that V t+1
2 is CON-PWL Borel measurable as required. □

37

By fusing Lemmas 6, 7, 8 and 9 we can prove that the strategies and value
functions generated during each iteration of Algorithm 3 never leave a finitely
representable class of functions, and Algorithm 4 constructs new BFCPs such
that the strategies and value functions after one iteration of the Minimax-
action-free PI algorithm remain constant, PWC, or PWL on each region of
the constructed BFCPs.

Theorem 3 (Representation closure). In any iteration of the Minimax-
action-free PI algorithm (see Algorithm 3), if

(i) J t
1, V

t
1 ∈ F(S) are B-PWC and σt

1 ∈ Σ1 is a PWC stochastic kernel;

(ii) J t
2, V

t
2 ∈ F(Λ1) are CON-PWL Borel measurable and σt

2 ∈ Σ2 is a
CON-PWC stochastic kernel;

then so are J t+1
1 , V t+1

1 , σt+1
1 , J t+1

2 , V t+1
2 and σt+1

2 , respectively, regardless of
which one of the four iterations is performed.

Proof. The conclusion follows from one of Lemmas 6, 7, 8 and 9, depending
on which one of the four iterations is executed. □

Corollary 2 (BFCP iteration for Minimax-action-free PI). After per-
forming Algorithm 4:

(i) ΦJt+1
1

, ΦV t+1
1

and Φσt+1
1

are constant-BFCPs of S for J t+1
1 = [H1

σt
1,V

t
2
J t
2],

V t+1
1 = [H1

σt+1
1 ,V t

2

J t
2] and σt+1

1 (s) ∈ argmaxu1∈P(A1(s))[H
1
u1,V t

2
J t
2](s);

(ii) ΘJt+1
2

and ΘV t+1
2

are BFCPs of Λ1 for J t+1
2 = [H2

σt
2,V

t
1
J t
1] and V t+1

2 =

[H2
σt+1
2 ,V t

1

J t
1] meeting the conditions of Definition 13, and Θσt+1

2
is a

BFCP of Λ1 for σt+1
2 (s, u1) ∈ argminu2∈P(A2(s))[H

2
u2,V t

1
J t
1](s, u1) meeting

the conditions of Definition 14.

7.3. Convergence analysis and strategy computation

We next prove the convergence of the Minimax-action-free PI algorithm
by showing that there exists an operator from the product space of the func-
tion spaces over which J1, V1, J2 and V2 are defined to itself, which is a
contraction mapping with a unique fixed point, one of whose components is
the value function multiplied by a known constant. The proof closely follows
the steps for finite state spaces given in [17], but is more complex due to

38

the underlying infinite state space and the need to deal with the require-
ment of Borel measurability and finite representation of strategies and value
functions.

Convergence analysis. Given PWC σ1 ∈ Σ1 and CON-PWC σ2 ∈ Σ2, we
define the operator Gσ1,σ2

: (F(S)×F(S)×F(Λ1)×F(Λ1))→ (F(S)×F(S)×
F(Λ1)× F(Λ1)) such that:

Gσ1,σ2(J1, V1, J2, V2) := (M1
σ1

(J2, V2), K
1(J2, V2),M

2
σ2

(J1, V1), K
2(J1, V1)) (2)

where we assume J1, V1 ∈ F(S) are B-PWC, J2, V2 ∈ F(Λ1) are CON-PWL,
and the four operators M1

σ1
, K1, M2

σ2
and K2 represent the four iterations of

the Minimax-action-free PI algorithm from lines 3 to 16, and are defined as
follows.

• M1
σ1

: F(Λ1) × F(Λ1) → F(S) corresponds to the policy evaluation of
Ag1 (procedure PE1) where for any s ∈ S:

M1
σ1

(J2, V2)(s) := [H1
σ1,V2

J2](s) (3)

and is B-PWC using Lemma 6.

• K1 : F(Λ1)× F(Λ1)→ F(S) corresponds to the policy improvement of
Ag1 (procedure PI1) where for any s ∈ S:

K1(J2, V2)(s) := maxu1∈P(A1(s))[H
1
u1,V2

J2](s) (4)

and is B-PWC using Lemma 7.

• M2
σ2

: F(S)×F(S)→ F(Λ1) corresponds to the policy evaluation of Ag2
(procedure PE2) where for any (s, u1) ∈ Λ1:

M2
σ2

(J1, V1)(s, u1) := [H2
σ2,V1

J1](s, u1) (5)

and is CON-PWL Borel measurable using Lemma 8.

• K2 : F(S) × F(S) → F(Λ1) corresponds to the policy improvement of
Ag2 (procedure PI2) where any (s, u1) ∈ Λ1:

K2(J1, V1)(s, u1) := minu2∈P(A2(s))[H
2
u2,V1

J1](s, u1) (6)

and is CON-PWL Borel measurable using Lemma 9.

39

For the spaces F(S)×F(S) and F(Λ1)×F(Λ1), we consider the norm ∥(J, V)∥ =
max{∥J∥, ∥V ∥}, and for the space F(S) × F(S) × F(Λ1) × F(Λ1) the norm
∥(J1, V1, J2, V2)∥ = max{∥J1∥, ∥V1∥, ∥J2∥, ∥V2∥}. We next require the follow-
ing properties of these norms, which follow from [17].

Lemma 10. For any J1, V1, J
′
1, V

′
1 ∈ F(S) and J2, V2, J

′
2, V

′
2 ∈ F(Λ1):

∥max[J1, V1]−max[J ′
1, V

′
1]∥ ≤ max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥}

∥min[J2, V2]−min[J ′
2, V

′
2]∥ ≤ max{∥J2 − J ′

2∥, ∥V2 − V ′
2∥} .

Proof. Consider any J1, V1, J
′
1, V

′
1 ∈ F(S). The norm for the space F(S)

implies that for any s ∈ S:

J1(s) ≤ J ′
1(s) + max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} (7)

V1(s) ≤ V ′
1(s) + max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} (8)

from which we have:

max{J1(s), V1(s)} ≤ max{J ′
1(s), V

′
1(s)}+ max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} . (9)

Exchanging (J1, V1) with (J ′
1, V

′
1) in (7) and (8) derives an inequality similar

to (9), and combining it with (9) leads to the inequality:

|max{J1(s), V1(s)}−max{J ′
1(s), V

′
1(s)}| ≤ max{∥J1−J ′

1∥, ∥V1−V ′
1∥} (10)

for any s ∈ S. Since J1, V1, J
′
1 and V ′

1 are bounded, Borel measurable,
so is max[J1, V1] − max[J ′

1, V
′
1] by [42, Chapter 18.1], i.e., max[J1, V1] −

max[J ′
1, V

′
1] ∈ F(S). Thus, since (10) holds for any s ∈ S:

∥max[J1, V1]−max[J ′
1, V

′
1]∥ ≤ max{∥J1 − J ′

1∥, ∥V1 − V ′
1∥} .

The second inequality of the lemma can be proved following the same steps
for J2, V2, J

′
2, V

′
2 ∈ F(Λ1). □

Using the above operators and results, we are now in a position to prove the
convergence of the Minimax-action-free PI algorithm.

Theorem 4 (Convergence guarantee). If each of the four iterations of
the Minimax-action-free PI algorithm (Algorithm 3) from lines 3 to 16 is
performed infinitely often, then the sequence (γV t

1)t∈N generated by the algo-
rithm converges to V ⋆.

40

Proof. We prove each component Gσ1,σ2 satisfies a contraction property. Sup-
pose that J1, V1, J

′
1, V

′
1 ∈ F(S) are B-PWC and J2, V2, J

′
2, V

′
2 ∈ F(Λ1) are

CON-PWL Borel measurable.

• For M1
σ1

, since M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2) ∈ F(S) by [42, Chapter 18.1].

By Definition 11, the sup-norm for F(S) and rearranging we have:

∥M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2)∥

= γ−1 sups∈S |min{J2(s, σ1(s)), V2(s, σ1(s))}
−min{J ′

2(s, σ1(s)), V
′
2(s, σ1(s))}|

≤ γ−1 sup(s,u1)∈Λ1

∣∣min{J2(s, u1), V2(s, u1)} −min{J ′
2(s, u1), V

′
2(s, u1)}

∣∣
since {(s, σ1(s)) | s ∈ S} ⊆ Λ1

= γ−1
∥∥min[J2, V2]−min[J ′

2, V
′
2]
∥∥

since min[J2, V2]−min[J ′
2, V

′
2] ∈ F(Λ1) using [42, Chapter 18.1]

≤ γ−1 max{∥J2 − J ′
2∥, ∥V2 − V ′

2∥} by Lemma 10

≤ γ−1 max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥} . (11)

• For K1, since K1(J2, V2)−K1(J ′
2, V

′
2) ∈ F(S) by Definition 11 and the

sup-norm for F(S):

∥K1(J2, V2)−K1(J ′
2, V

′
2)∥

= sups∈S
∣∣maxu1∈P(A1(s)) γ

−1 min{J2(s, u1), V2(s, u1)}
−maxu1∈P(A1(s)) γ

−1 min{J ′
2(s, u1), V

′
2(s, u1)}

∣∣
≤ γ−1 sup(s,u1)∈Λ1

∣∣min{J2(s, u1), V2(s, u1)} −min{J ′
2(s, u1), V

′
2(s, u1)}

∣∣
rearranging and since {(s, u1) | u1 ∈ P(A1(s))} ⊆ Λ1

≤ γ−1 max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥} (12)

where the final inequality follows from similar arguments used in (11).

• For M2
σ2

, since M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1) ∈ F(Λ1) by Definition 12 and

the sup-norm for F(Λ1) we have:

∥M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1)∥

= sup
(s,u1)∈Λ1

∣∣∣∣∣ ∑
(a1,a2)∈A(s)

(
Q(s, (a1, a2), γ max[J1, V1])

41

−Q(s, (a1, a2), γ max[J ′
1, V

′
1])

)
u1(a1)σ2(a2 | (s, u1))

∣∣∣∣∣
= sup

(s,u1)∈Λ1

∣∣∣∣∣ ∑
(a1,a2)∈A(s)

γβ
∑

s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)

(
max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)})u1(a1)σ2(a2 | (s, u1)

) ∣∣∣∣∣
rearranging, by Definition 10 and the sup-norm for F(Λ1)

≤ γβ sup
(s,u1)∈Λ1

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)∣∣max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)}

∣∣u1(a1)σ2(a2 | (s, u1))

rearranging and since δ, u1 and σ2 are non-negative

≤ γβ sup
(s,u1)∈Λ1

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2)

δ(s, (a1, a2))(s
′)

sup
s′′∈S

∣∣max{J1(s′′), V1(s
′′)} −max{J ′

1(s
′′), V ′

1(s′′)}
∣∣u1(a1)σ2(a2 | (s, u1))

since f(s′) ≤ sups′′∈S f(s′′) for any f ∈ F(S)

= γβ sup
s′′∈S

∣∣max{J1(s′′), V1(s
′′)} −max{J ′

1(s
′′), V ′

1(s′′)}
∣∣

sup
(s,u1)∈Λ1

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)u1(a1)σ2(a2 | (s, u1))

rearranging

= γβ sup
s′′∈S

∣∣max{J1(s′′), V1(s
′′)} −max{J ′

1(s
′′), V ′

1(s′′)}
∣∣

since δ ∈ P(S × A), u1 ∈ P(A1) and σ̄2 ∈ P(A2 | Λ1)

= γβ
∥∥max[J1, V1]−max[J ′

1, V
′
1]
∥∥

since max[J1, V1]−max[J ′
1, V

′
1] ∈ F(S)

≤ γβ max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥} by Lemma 10

≤ γβ max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥}. (13)

• For K2, since K2(J1, V1) − K2(J ′
1, V

′
1) ∈ F(Λ1), by the sup-norm for

F(Λ1):

∥K2(J1, V1)−K2(J ′
1, V

′
1)∥

42

= sup
(s,u1)∈Λ1

∣∣∣∣∣ min
u2∈P(A2(s))

∑
(a1,a2)∈A(s)

γβ
∑

s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)

(
max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)}

)
u1(a1)u2(a2)

∣∣∣∣∣
≤ γβ sup

(s,u1)∈Λ1

min
u2∈P(A2(s))

∑
(a1,a2)∈A(s)

∑
s′∈Θ(s,(a1,a2))

δ(s, (a1, a2))(s
′)∣∣max{J1(s′), V1(s

′)} −max{J ′
1(s

′), V ′
1(s′)}

∣∣u1(a1)u2(a2) rearranging

≤ γβ max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥} (14)

where the final inequality follows from similar arguments used in (13).

Next we prove that Gσ1,σ2 is a contraction mapping using the above inequal-
ities. More precisely, by definition, see (2), we have:

∥Gσ1,σ2(J1, V1, J2, V2)−Gσ1,σ2(J
′
1, V

′
1 , J

′
2, V

′
2)∥

= ∥(M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2), K1(J2, V2)−K1(J ′

2, V
′
2),

M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1), K2(J1, V1)−K2(J ′

1, V
′
1))∥

= max{∥M1
σ1

(J2, V2)−M1
σ1

(J ′
2, V

′
2)∥, ∥K1(J2, V2)−K1(J ′

2, V
′
2)∥,

∥M2
σ2

(J1, V1)−M2
σ2

(J ′
1, V

′
1)∥, ∥K2(J1, V1)−K2(J ′

1, V
′
1)∥} rearranging

≤ max{γ−1, γβ}max{∥J1 − J ′
1∥, ∥V1 − V ′

1∥, ∥J2 − J ′
2∥, ∥V2 − V ′

2∥}

where the final inequality follows from (11), (13), (12) and (14).
Therefore, since max{γ−1, γβ} < 1 and assuming σ1 is PWC and σ2

is CON-PWC, we have that Gσ1,σ2 is a contraction mapping for (σ1, σ2) ∈
Σ1×Σ2. Now since F(S)× F(S)× F(Λ1)× F(Λ1) is a complete metric space
with respect to the sup norm, we conclude that Gσ1,σ2 has a unique fixed
point (J⋆

1 , V
⋆
1 , J

⋆
2 , V

⋆
2). In view of (3)–(6), this fixed point satisfies for each

(s, u1) ∈ Λ1:

J⋆
1 (s) = γ−1 min{J⋆

2 (s, σ1(s)), V
⋆
2 (s, σ1(s))} (15)

V ⋆
1 (s) = γ−1 maxu1∈P(A1(s)) min{J⋆

2 (s, u1), V
⋆
2 (s, u1)} (16)

J⋆
2 (s, u1) =

∑
(a1,a2)∈A(s)

Q(s, (a1, a2)γ max[J⋆
1 , V

⋆
1])u1(a1)σ2(a2 | (s, u1)) (17)

V ⋆
2 (s, u1) = min

u2∈P(A2(s))

∑
(a1,a2)∈A(s)

Q(s, (a1, a2), γ max[J⋆
1 , V

⋆
1])u1(a1)u2(a2) . (18)

By combining (15)–(18), we have for each (s, u1) ∈ Λ1:

J⋆
1 (s) ≤ V ⋆

1 (s) and J⋆
2 (s, u1) ≥ V ⋆

2 (s, u1)

43

from which (16) and (18) can be simplified to:

V ⋆
1 (s) = maxu1∈P(A1(s)) γ

−1V ⋆
2 (s, u1)

V ⋆
2 (s, u1) = minu2∈P(A2(s))

∑
(a1,a2)∈A(s)Q(s, (a1, a2), γV

⋆
1)u1(a1)u2(a2)

implying that γV ⋆
1 (s) equals:

max
u1∈P(A1(s))

min
u2∈P(A2(s))

∑
(a1,a2)∈A(s)Q(s, (a1, a2), γV

⋆
1)u1(a1)u2(a2) = [T (γV ⋆

1)] .

Thus, we have γV ⋆
1 = V ⋆, which completes the proof. □

Strategy computation. Next, introducing a criterion for selecting the
minimax solution over a region, we compute the strategies for the agents
based on the function returned by the Minimax-action-free PI algorithm.

Definition 17 (CON-3 solution). Let f ∈ F(Λ12). If there exists a BFCP
Φ of S where, for each ϕ ∈ Φ: A(s) = A(s′) for s, s′ ∈ ϕ there exists a pair
of probability measures uϕ

1 ∈ P(A1(s)) and uϕ
2 ∈ P(A2(s)) for s ∈ ϕ such that

f(s, uϕ
1 , u

ϕ
2) = maxu1∈P(A1(s)) minu2∈P(A2(s)) f(s, u1, u2) for s ∈ ϕ, and σ1 ∈ Σ1,

σ2 ∈ Σ2 are such that σ1(s) = uϕ
1 and σ2(s) = uϕ

2 for s ∈ ϕ, then (σ1, σ2) is
a constant-3 (CON-3) solution of f over ϕ.

Lemma 11 (PWC strategies). If V = γV t
1 , where V t

1 is from iteration
t ∈ N of the Minimax-action-free PI algorithm, and (σ1, σ2) ∈ Σ achieves
the maximum and the minimum in Definition 10 for V and all s ∈ S via a
CON-3 solution, then σ1 and σ2 are PWC stochastic kernels.

Proof. By Theorems 3 and 4, V is B-PWC. For any α ∈ A, the function
Q(· , α, V) : S → R is B-PWC by Theorem 2. Let ΦQ be a BFCP of S
such that Q(· , α, V) is constant on each region of ΦQ for α ∈ A, and ΦA

be a BFCP of S such that A(s) is constant on each region of ΦA. Then, for
u1 ∈ P(A1(s)) and u2 ∈ P(A2(s)), the function Q′(· , u1, u2) : S → R, where:

Q′(s, u1, u2) =
∑

(a1,a2)∈A(s)Q(s, (a1, a2), V)u1(a1)u2(a2)

for s ∈ S, is constant in each region of ΦQ + ΦA. Therefore, there exists a
CON-3 solution (σ1, σ2) of Q′(s, u1, u2) and, since ΦQ + ΦA is a BFCP, the
result follows. □

44

8. Conclusions

We have proposed a novel modelling formalism called neuro-symbolic con-
current stochastic games (NS-CSGs) for representing probabilistic finite-state
agents with NN perception mechanisms interacting in a shared, continuous-
state environment. NS-CSGs have the advantage of allowing for the percep-
tion of a complex environment to be synthesised from data and implemented
via NNs, while the safety-critical decision-making module is symbolic, ex-
plainable and knowledge-based.

For zero-sum discounted cumulative reward problems, we proved the ex-
istence and measurability of the value function of NS-CSGs under Borel
measurability and piecewise constant restrictions. We then presented the
first implementable B-PWC VI and Minimax-action-free PI algorithms with
finite representations for computing the values and optimal strategies of NS-
CSGs, assuming a fully observable setting, by proposing B-PWC, CON-PWL
and CON-PWC functions. The B-PWC VI algorithm is, at the region level,
the same as VI for finite state spaces, but involves, at each iteration, a
division of the uncountable state space into a finite set of regions (i.e., a
BFCP). The Minimax-action-free PI algorithm requires multiple divisions of
the uncountable state space into BFCPs at each iteration; following [17], it
ensures convergence and, by not requiring the solution of normal-form games
or MDPs at each iteration, reduces computational complexity. However, im-
plementation of the Minimax-action-free PI algorithm is more challenging,
requiring a distributed, asynchronous framework.

We illustrated our approach by modelling a dynamic vehicle parking
problem as an NS-CSG and synthesising approximately optimal values and
strategies using B-PWC VI. Future work will involve improving efficiency
and generalising to other observation functions by working with abstrac-
tions, extending our methods to allow for partial observability, and moving
to equilibria-based (nonzero-sum) properties, where initial progress has been
made by building on our NS-CSG model [38].

Acknowledgements. This project was funded by the ERC under the Euro-
pean Union’s Horizon 2020 research and innovation programme (FUN2MODEL,
grant agreement No. 834115).

45

http://www.fun2model.org

References

[1] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
et al., Mastering the game of Go with deep neural networks and tree
search, Nature 529 (7587) (2016) 484–489.

[2] S. Shalev-Shwartz, S. Shammah, A. Shashua, Safe, multi-agent, rein-
forcement learning for autonomous driving, arXiv:1610.03295 (2016).

[3] J. Gupta, M. Egorov, M. Kochenderfer, Cooperative multi-agent control
using deep reinforcement learning, in: Proc. 16th Int. Conf. Autonomous
Agents and Multiagent Systems (AAMAS’17), Springer, 2017, pp. 66–
83.

[4] L. S. Shapley, Stochastic games, PNAS 39 (10) (1953) 1095–1100.

[5] R. Yan, X. Duan, Z. Shi, Y. Zhong, J. Marden, F. Bullo, Policy eval-
uation and seeking for multi-agent reinforcement learning via best re-
sponse, IEEE Trans. Automat. Contr. 67 (4) (2022) 1898–1913.

[6] M. Kwiatkowska, G. Norman, D. Parker, G. Santos, Automatic verifica-
tion of concurrent stochastic systems, Form. Methods Syst. Des. (2021)
1–63.

[7] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mordatch, Multi-
agent actor-critic for mixed cooperative-competitive environments, in:
Proc. 31st Int. Conf. Neural Information Processing Systems (NIPS’17),
Curran Associates Inc., 2017, p. 6382–6393.

[8] M. E. Akintunde, E. Botoeva, P. Kouvaros, A. Lomuscio, Verifying
strategic abilities of neural-symbolic multi-agent systems, in: Proc.
17th Int. Conf. Principles of Knowledge Representation and Reasoning
(KR’20), IJCAI Organization, 2020, pp. 22–32.

[9] L. D. Raedt, S. Dumancic, R. Manhaeve, G. Marra, From statistical
relational to neural-symbolic artificial intelligence, in: Proc. 29th Int.
Conf. Artificial Intelligence (IJCAI’20), IJCAI Organization, 2020, pp.
4943–4950.

46

https://arxiv.org/abs/1610.03295

[10] G. Anderson, A. Verma, I. Dillig, S. Chaudhuri, Neurosymbolic re-
inforcement learning with formally verified exploration, in: Proc.
34th Int. Conf. Advances in Neural Information Processing Systems
(NeurIPS’20), Curran Associates, Inc., 2020, pp. 6172–6183.

[11] J. Van Der Wal, Discounted Markov games: Generalized policy iteration
method, J. Optim. Theory Appl. 25 (1) (1978) 125–138.

[12] B. Tolwinski, Newton-type methods for stochastic games, in: Differen-
tial games and applications, Springer, 1989, pp. 128–144.

[13] J. Filar, K. Vrieze, Competitive Markov decision processes, Springer,
1997.

[14] J. Perolat, B. Scherrer, B. Piot, O. Pietquin, Approximate dynamic
programming for two-player zero-sum Markov games, in: Proc. 32nd
Int. Conf. Machine Learning (ICML’15), Vol. 37, PMLR, 2015, pp. 1321–
1329.

[15] D. Bertsekas, Abstract dynamic programming, Athena Scientific, 2018.

[16] P. Kumar, T.-H. Shiau, Existence of value and randomized strategies
in zero-sum discrete-time stochastic dynamic games, SIAM. J. Control.
Optim. 19 (5) (1981) 617–634.

[17] D. Bertsekas, Distributed asynchronous policy iteration for sequential
zero-sum games and minimax control, arXiv:2107.10406 (2021).

[18] N. Brown, A. Bakhtin, A. Lerer, Q. Gong, Combining deep reinforce-
ment learning and search for imperfect-information games, in: Proc.
34th Int. Conf. Advances in Neural Information Processing Systems
(NeurIPS’20), Curran Associates, Inc., 2020, pp. 17057–17069.

[19] V. Kovař́ık, M. Schmid, N. Burch, M. Bowling, V. Lisý, Rethinking
formal models of partially observable multiagent decision making, Artif.
Intell. 303 (2022) 103645.

[20] A. Maitra, T. Parthasarathy, On stochastic games, J. Optim. Theory
Appl. 5 (4) (1970) 289–300.

[21] A. Nowak, Optimal strategies in a class of zero-sum ergodic stochastic
games, Math. Methods. Oper. Res. 50 (3) (1999) 399–419.

47

https://arxiv.org/abs/2107.10406

[22] A. Nowak, Universally measurable strategies in zero-sum stochastic
games, Ann. Probab. 13 (1) (1985) 269–287.

[23] O. Hernández-Lerma, J. Lasserre, Zero-sum stochastic games in borel
spaces: average payoff criteria, SIAM. J. Control. Optim. 39 (5) (2000)
1520–1539.

[24] A. Hoffman, R. Karp, On non-terminating stochastic games, Manage
Sci. 12 (5) (1966) 359–370.

[25] M. A. Pollatschek, B. Avi-Itzhak, Algorithms for stochastic games with
geometrical interpretation, Manage. Sci. 15 (7) (1969) 399–415.

[26] J. Křet́ınskỳ, E. Ramneantu, A. Slivinskiy, M. Weininger, Comparison
of algorithms for simple stochastic games, Information and Computation
289 (2022) 104885.

[27] J. Eisentraut, E. Kelmendi, J. Křet́ınskỳ, M. Weininger, Value iteration
for simple stochastic games: Stopping criterion and learning algorithm,
Information and Computation 285 (2022) 104886.

[28] H. Yu, D. Bertsekas, A mixed value and policy iteration method for
stochastic control with universally measurable policies, Math. Oper. Res.
40 (4) (2015) 926–968.

[29] H. Yu, On convergence of value iteration for a class of total cost Markov
decision processes, SIAM. J. Control. Optim. 53 (4) (2015) 1982–2016.

[30] I. Hogeboom-Burr, S. Yuksel, Comparison of information structures for
zero-sum games and a partial converse to Blackwell ordering in standard
borel spaces, SIAM. J. Control. Optim. 59 (3) (2021) 1781–1803.

[31] A. Basu, L. Stettner, Zero-sum Markov games with impulse controls,
SIAM. J. Control. Optim. 58 (1) (2020) 580–604.

[32] A. Cosso, Stochastic differential games involving impulse controls and
double-obstacle quasi-variational inequalities, SIAM. J. Control. Optim.
51 (3) (2013) 2102–2131.

[33] K. Chatterjee, R. Ibsen-Jensen, Qualitative analysis of concurrent mean-
payoff games, Information and Computation 242 (2015) 2–24.

48

[34] N. Basset, M. Kwiatkowska, C. Wiltsche, Compositional strategy syn-
thesis for stochastic games with multiple objectives, Information and
Computation 261 (2018) 536–587.

[35] T. Brázdil, V. Forejt, J. Krčál, J. Křet́ınskỳ, A. Kučera, Continuous-
time stochastic games with time-bounded reachability, Information and
Computation 224 (2013) 46–70.

[36] J. Fearnley, M. N. Rabe, S. Schewe, L. Zhang, Efficient approximation
of optimal control for continuous-time markov games, Information and
Computation 247 (2016) 106–129.

[37] R. Yan, G. Santos, G. Norman, D. Parker, M. Kwiatkowska, Strat-
egy synthesis for zero-sum neuro-symbolic concurrent stochastic games,
arXiv:2202.06255 (2022).

[38] R. Yan, G. Santos, X. Duan, D. Parker, M. Kwiatkowska, Finite-horizon
equilibria for neuro-symbolic concurrent stochastic games, in: Proc. 38th
Conf. Uncertainty in Artificial Intelligence (UAI’22), AUAI Press, 2022,
pp. 2170–2180.

[39] S. Sharma, S. Sharma, A. Athaiya, Activation functions in neural net-
works, Towards Data Sci 6 (12) (2017) 310–316.

[40] J. Kemeny, J. Snell, A. Knapp, Denumerable Markov Chains, Springer,
1976.

[41] D. Ayala, O. Wolfson, B. Xu, B. Dasgupta, J. Lin, Parking slot assign-
ment games, in: Proc. 19th ACM SIGSPATIAL Int. Conf. Advances in
Geographic Information Systems (GIS’11), ACM, 2011, p. 299–308.

[42] H. L. Royden, P. Fitzpatrick, Real analysis (fourth edition), Macmillan
New York, 2010.

[43] K. Parthasarathy, Probability measures on metric spaces, AMS., 1967.

[44] J. Reif, Universal games of incomplete information, in: Proc. 11th ACM
Symp. Theory of Computing (STOC’79), ACM, 1979, pp. 288–308.

[45] J. Reif, The complexity of two-player games of incomplete information,
J. Comput. Syst. Sci. 29 (1984) 274–301.

49

https://arxiv.org/abs/2202.06255

[46] K. Matoba, F. Fleuret, Computing preimages of deep neural networks
with applications to safety, openreview.netforum?id=FN7 BUOG78e
(2020).

[47] J. von Neumann, O. Morgenstern, H. Kuhn, A. Rubinstein, Theory of
Games and Economic Behavior, Princeton University Press, 1944.

[48] P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. van der Walt, M. Brett, J. Wilson, K. Millman, N. Mayorov, A. Nel-
son, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. Moore,
J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. Quintero, C. Harris, A. Archibald, A. Ribeiro, F. Pedregosa, P. van
Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python, Nature Methods 17 (2020) 261–272.

[49] D. Bertsekas, Abstract dynamic programming, Athena Scientific, 2022.

[50] D. Bertsekas, H. Yu, Q-learning and enhanced policy iteration in dis-
counted dynamic programming, Math. Oper. Res. 37 (1) (2012) 66–94.

50

https://openreview.net/forum?id=FN7_BUOG78e

	Introduction
	Related work

	Background
	Borel measurable spaces and functions
	Probability measures
	Neural networks
	Concurrent stochastic games

	Zero-sum neuro-symbolic concurrent stochastic games
	Semantics of an NS-CSG
	Zero-sum NS-CSGs
	Strategies of NS-CSGs
	Assumptions on NS-CSGs

	Game structures for NS-CSGs
	Values of zero-sum NS-CSGs
	Value iteration
	B-PWC closure and convergence
	B-PWC VI

	Policy iteration
	Operators, functions and solutions
	Minimax-action-free PI
	Convergence analysis and strategy computation

	Conclusions

