Finite-horizon Equilibria for Neuro-symbolic Concurrent Stochastic Games

Rui Yan *! Gabriel Santos *!

Xiaoming Duan?

David Parker? Marta Kwiatkowska'

'Department of Computer Science, University of Oxford, Oxford, UK
’Department of Automation, Shanghai Jiao Tong University, Shanghai, China
3School of Computer Science, University of Birmingham, Birmingham, UK

Abstract

We present novel techniques for neuro-symbolic
concurrent stochastic games, a recently proposed
modelling formalism to represent a set of prob-
abilistic agents operating in a continuous-space
environment using a combination of neural net-
work based perception mechanisms and traditional
symbolic methods. To date, only zero-sum variants
of the model were studied, which is too restrictive
when agents have distinct objectives. We formalise
notions of equilibria for these models and present
algorithms to synthesise them. Focusing on the
finite-horizon setting, and (global) social welfare
subgame-perfect optimality, we consider two dis-
tinct types: Nash equilibria and correlated equi-
libria. We first show that an exact solution based
on backward induction may yield arbitrarily bad
equilibria. We then propose an approximation algo-
rithm called frozen subgame improvement, which
proceeds through iterative solution of nonlinear
programs. We develop a prototype implementation
and demonstrate the benefits of our approach on
two case studies: an automated car-parking system
and an aircraft collision avoidance system.

1 INTRODUCTION

Stochastic games [Shapley, [1953]] are a well established
model for the formal design and analysis of probabilistic
multi-agent systems. In particular, concurrent stochastic
games (CSGs) provide a natural framework for modelling
a set of interactive, rational agents operating concurrently
within an uncertain or probabilistic environment. For finite-
state CSGs, algorithms for their solution are known [[Chatter;
jee et al., 2013} |de Alfaro and Majumdar, 2004, De Alfaro
et al., 2007|] and, more recently, techniques and tools for

“Equal Contributions.

their formal modelling, analysis and verification have been
developed [Kwiatkowska et al.| [2020, [2021]] and applied to
examples across robotics, computer security and networks.

In more complex scenarios, for example sequential decision
making in continuous-state or mixed discrete-continuous
state environments, CSGs are again a natural formalism for
problems such as multi-agent reinforcement learning [Pa4
poudakis et al.,[2021] [Yan et al.,[2022a]]. A recent trend in
this setting is the use of neural networks (NNs), to represent
learnt approximations to value functions [Omidshafiei et al.,
2017 or strategies [Lowe et al.,|2017]] for CSGs. However,
the scalability and efficiency of such approaches are limited
when NN are used to manage multiple, complex aspects of
the system. To overcome this, a further promising direction
is the use of neuro-symbolic approaches. These deploy NNs
within certain data-driven components of the control prob-
lem, e.g., for perception modules, and traditional symbolic
methods for others, e.g., nonlinear controllers.

In this paper, we work with the recently proposed formal-
ism of neuro-symbolic concurrent stochastic games (NS-
CSGs) [Yan et al.| [2022b], designed to model probabilis-
tic multi-agent systems comprising neuro-symbolic agents
operating concurrently within a shared, continuous-state
environment. In [[Yan et al.l 2022b]], the zero-sum control
problem is considered, namely to synthesise strategies for
one set of agents who are aiming to maximise their (dis-
counted, infinite-horizon) expected reward, while the other
agents aim to minimise this value. However, in practice, this
is limiting: even for the case of just two coalitions of agents,
they will often have distinct, but not directly opposing goals,
which cannot be modelled in a zero-sum fashion.

To tackle this problem, we work with equilibria, defined by
a separate, independent objective for each agent. These are
particularly attractive since they ensure stability against de-
viations by individual agents, improving the overall system
outcomes. We formalise the equilibrium synthesis prob-
lem for NS-CSGs, considering two distinct variants: Nash
equilibria (NEs), which aim to ensure that no agent has

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

an incentive to deviate unilaterally from their strategy, and
correlated equilibria (CEs), which allow agent coordination,
e.g., through public signals, and where agents have no in-
centive to deviate from the resulting actions. The latter can
both simplify strategy synthesis and improve performance.

Our focus is on (undiscounted) finite-horizon objectives,
which simplifies the analysis (note that the existence of
infinite-horizon NE for CSGs is an open problem [Bouyer|
et al.,[2014], and the verification of non-probabilistic infinite-
horizon reachability properties for neuro-symbolic games is
undecidable [Akintunde et al.,[2020a]]), but also has a num-
ber of useful applications, e.g. in receding horizon control.
Since multiple equilibria may exist, we target social welfare
(SW) optimal equilibria, which maximise the sum of the
individual agent objectives.

We also work with subgame-perfect equilibria (SPE), which
are equilibria in every state of the game, ensuring that opti-
mality remains as later states of the game are reached [Abreu
et al., [2020, [Fudenberg and Levine, |2009, [Littman et al.}
2006, |Osborne et al.,[2004]). Crucially, we consider globally
optimal equilibria which, from a fixed initial state, are op-
timal over the chosen time horizon. This is in contrast to
techniques for equilibria in finite-state CSGs [Kwiatkowska
et al.| 2021} 2022]], which consider only local optimality at
each time step in the finite-horizon setting.

We first adapt (classical) backward induction to NS-CSGs
based on local optimality, but show that it may find an arbi-
trarily bad SPE. Then, for a fixed initial state, we show how
to compute optimal equilibria by unfolding the game tree
(including invocation of the NN perception function) and
solving a nonlinear program. However, this suffers from
limited scalability. So we then propose frozen subgame im-
provement (FSI), an approximation algorithm which itera-
tively solves nonlinear programs to monotonically improve
the social welfare. Our approach is wholly different from
the zero-sum (discounted, infinite-horizon) solution of NS-
CSGs in [Yan et al., 2022b|], which applies value/policy
iteration to finite model abstractions that rely on assump-
tions about the functions used to specify the model.

Finally, we implement our algorithms and evaluate them on
two case studies, a car-parking example and the Vertical CAS
(VCAS) aircraft system for collision avoidance, showing
that they are capable of automatically generating equilibria
that can improve over zero-sum strategies.

Related Work. Several papers have considered verification
and synthesis of equilibria for stochastic games [Fernando
et al., 2018, |[Horak and Bosansky, 2019, Kwiatkowska et al.,
2021l Mari et al.,|2009], aiming to prove that a game satisfies
a given equilibrium-related requirement specification and
also to find such an equilibrium. However, none of these
support CSGs whose agents are partly realized via NNs.
The PRISM-games tool [Kwiatkowska et al.,[2020] provides

modelling, verification and equilibria synthesis for (discrete-
state) CSGs, including finite-horizon analysis via backward
induction, but for the simpler case of local optimality, as
discussed abvove. [Kwiatkowska et al., 2020] also includes
infinite-horizon e-optimal social welfare Nash equilibria,
and [[Kwiatkowska et al., [2022] correlated equilibria with
two types of optimality conditions, computed using value
iteration, but again only for discrete models.

Numerous methods have been proposed to compute SPEs
since their introduction in the 1970s [Selten, [1975]]. Most
of these address the infinite horizon, for which fixed-point
algorithms are the most common methods, from operator
design for SPE payoff correspondence [|Abreu et al., 2020,
Brihaye et al., 2020, [Burkov and Chaib-draal 2010} [Kitti,
2016/ Yeltekin et al.,|2017]], to homotopy methods [[Li and
Dang,, 2020]. For the finite horizon, which we consider
here for reasons of decidability, backward induction is a
simple and common bottom-up algorithm for finding an SPE
efficiently. However, all these approaches fail to identify
SW-SPEs over a finite horizon. In [Littman et al.,[2006], a
polynomial algorithm is proposed for computing optimal
SPE:s for turn-based games played over trees, which cannot
deal with the concurrency in CSGs.

Neuro-symbolic computing has been attracting attention
recently, see [Kahneman, |2011]] and the surveys [De Raedt
et al., 2020, Lamb et al., 2020]]. The works of [Akintunde
et al.| |2020alb] consider neuro-symbolic multi-agent sys-
tems represented as neural interpreted systems and study the
finite-horizon verification problem for Alternating Temporal
Logic, solved through reduction to an MILP problem, but
no equilibria properties. The agents are endowed with per-
ception similarly to what we do here, but are not stochastic.

2 NEURO-SYMBOLIC CSGS

We begin by describing neuro-symbolic concurrent stochas-
tic games (NS-CSGs) [[Yan et al., [2022b]], the modelling
formalism that we use in this paper, for which we then
define our notions of equilibria.

An NS-CSG comprises a number of interacting neuro-
symbolic agents acting in a shared environment. Each agent
has finitely many local states and actions, and is addition-
ally endowed with a perception mechanism implemented
as a neural network (NN), through which it can observe the
state of the environment, storing the observations locally in
percepts. For the purposes of this paper it suffices to assume
that an NN is a function f : R™' — R™2 over finite real
vector spaces. Formally, an NS-CSG is defined as follows.

Definition 1 (NS-CSG). A neuro-symbolic concurrent
stochastic game (NS-CSG) C comprises agents (Ag;)ien,
for N ={1,...,n}, and an environment E where:

Ag; = (Si; Ai, Ai, 0bsi, 6;) fori € N, E = (Sg,0E)

and we have:

* S; = Loc; x Per; is a set of states for Ag;, where
Loc; C RY and Per; C R% are finite sets of local
states and percepts, respectively;

SE C R€ is a finite or infinite set of environment states;

» A; is a nonempty finite action set for Ag,, and A =
(A;U{L})x--x(A,U{L}) is the set of joint actions,
where L is an idle action disjoint from U}*_; A;;

A; : S; — 24 is an available action function, defining
the actions Ag,; can take in each state;

e obs; : (S1x+-+-x S, xSg) — Per; is an observation
Sfunction for Ag;, mapping the state of all agents and
the environment to a percept of the agent, implemented
via an NN classifier;

0; + S;i x A — P(Loc;) is a probabilistic transition
function for Ag,, where P(X) denotes the set of proba-
bility distributions over a set X, determining the prob-
ability of moving to local states given its current state
and joint action,

0 : Sg x A — Sg is a deterministic environment
transition function determining the environment’s next
State given its current state and joint action.

Each (global) state s of NS-CSG C comprises the state s; =
(loci, per;) € S; of each agent Ag; and the state s € Sg of
the environment. Starting from some initial state, the game
evolves as follows. First, each agent Ag, observes the state
of the agents and the environment to generate a new percept
per’, according to its observation function obs; implemented
via an NN. Then, each agent Ag, synchronously chooses one
of the actions from the set A;(s;), which are available in its
state s;. This results in a joint action @ = (a1, ...,a,) € A.
Each agent Ag; then updates its local state to loc; € Loc;
according to the probabilistic local transition function J;,
applied to the state of agent (loc;, per’) and joint action .
The environment updates the environment state to s%; € Sg
according to the environment transition function d g, applied
to its state sp and joint action «. Thus, the game reaches
the state s’ = (s},...,s),s%), where s; = (loc;, per’)
for « € N. For simplicity, we consider here deterministic
environments, but the results can be directly extended to
discrete probabilistic environments with finite branching.

For brevity, we omit the formal semantics of an NS-CSG,
which can be found in [[Yan et al., 2022b]. In fact, in this
paper we consider a slight variant, differing in the point at
which observations are made during each transition.

NS-CSGs are a subclass of continuous-state CSGs, which
assume a particular structure for the transition function,
distinguishing between agent and environment states and
using an NN-based observation function to characterise
which environment states have the same characteristics. This
provides a trade-off between exploiting the full generality

(trinh adim)
: T hint
(trowna adown) :

hown T)* **************** o

Figure 1: Geometry for the VCAS[2] example with trust
level ¢r; and advisory adj, for i« € {own, int}.

of a continuous-state CSG model and allowing for tractable
computational methods for its analysis.

Our use of NNs as perception functions to yield observa-
tions is in line with a recent trend in autonomous systems,
where agents make decisions based on the output of NN,
for instance, probabilistic observation functions extracted
from NN by abstracting them with the help of robustness
verification tools [[Calinescu et al., 2022].

To illustrate NS-CSGs, we model the Vertical CAS Collision
Avoidance Scenario [Julian and Kochenderfer, 2019, Julian
et al.,2019] presented as a two-agent neurosymbolic system
(VCAS]J2])) in [Akintunde et al.,2020a]. Our model differs in
that we separate the states of the agents and the environment
state by adding to the agents’ states a variable that measures
their trust in the advisory’s output, whereas [Akintunde et al.|
2020a] replicates the climb rates in both agents’ local states
and the environment state. We update the agents’ trust level
probabilistically to account for possible uncertainty.

Example 1. In the VCAS[2] system (Figure[I)) there are
two aircraft (ownship and intruder: Ag; for i € {own, int}),
each of which is equipped with an NN-controlled collision
avoidance system called VCAS. Each second, VCAS issues
an advisory (ad;) from which, together with the current trust
level (tr;) in the previous advisory, the pilot needs to make
a decision about accelerations, aiming at avoiding a near
mid-air collision (NMAC) [Akintunde et al.| 2020b|].

The input of the VCAS is (h, hown, Rines t) recording the rel-
ative altitude h of two aircraft, the climb rate hoy, of the
ownship, the climb rate izim of the intruder, and the time t un-
til loss of their horizontal separation. VCAS is implemented
via nine feed-forward NNs F = {f; : R* = R |i € [9]},
each of which corresponds to an advisory and outputs the
scores of nine possible advisories, where (k] is the set
{1,...,k}. Each advisory will provide a set of accelera-
tions for the agent to select from. There are four trust levels
{4, 3, 2, 1} indicating the trust scores. The trust level is
increased probabilistically if the current advisory is compli-
ant with the executed action, and decreased otherwise. We
Sformulate VCAS[2] as an NS-CSG with the agents Ag; for
i € {own, int} and the environment defined as follows:

o s; = (tr;,ad;) is a state of the agent Ag, with local
state tr;€[4] and percept ad;€[9)];

o sg = (h, hown, Pint, t) is an environment state;

» A, is a finite set of accelerations (}.Lj,),'
o A,(s;) returns a set of available accelerations;
* observation function obs; is implemented via F';

* the local transition function §; updates its trust level
according to its current trust level, its updated advisory
and its executed action;

* the environment transition function 0g(sg,) is de-
fined as: h' = hfét(hown—_him)fO:E)At2 (hown=hint),
Rlan = hown + hownlt, iy = hin + hinAt and

t' =t — At, where At = 1 is the time step.

Game Tree Unfolding. The finite-horizon evolution of an
NS-CSG C from a given global state s can be unfolded into
a finite tree in the usual way by applying strategies to select
actions. We distinguish between (past) histories of a given
state and its (future) paths.

We assume that the duration of the game is finite with K
stages. A history h of C in stage ¢ € [0, K| is a sequence
ho=s0 2 gt 22T here s B A=
A and §(s*, a¥)(s**1) > 0. The prefix of h ending in
stage / is denoted by h_; for any / < /. The set of all
histories in stage ¢ for all initial states (for an initial state s)
is denoted by H* (H?), the set of all histories before stage
Kis H<K = U()§4<KHZ (HS<K = U()§[<KH£) and the
set of all histories from s is Hy = H=% U HX. We denote
by last(h) the last state of the history h € H,. If h € H<K,
we denote by Succ(h) the set of one-stage successors of h.

Forastate s = (s, ..., Sn, Sg), the available actions of Ag;
are denoted by A;(s), i.e., A;(s) equals A;(s;) if A;(s;) #
@ and equals {_L } otherwise, and we denote by A(s) the pos-
sible joint actions in a state, i.e. A(s) = A1(s) x - A, (s).

We can now define strategies, strategy profiles and corre-
lated profiles. In each case, we follow [Yan et al.,[2022b] in
assuming a fully observable setting as a baseline, i.e., where
decisions are made based on the full state of the NS-CSG,
not just the parts of it revealed by the agents’ observation
functions. An extension to partial observability (i.e., where
the NS-CSG represents a continuous-state partially observ-
able stochastic game) is left for future work.

Definition 2 (Strategy). A strategy for Ag, is a function
o; + H<K — P(A; U {L1}) such that, if o;(h)(a;) > 0,
then a; € A;(last(h)). A strategy profile 0 = (o1, ...,0,,)
comprises a strategy for each agent. We denote by Y the
set of all strategies for Ag; and by ¥N = ¥ x ... x XN
the set of all strategy profiles.

Alternatively, we can use a correlated profile, in which agent
choices are correlated. For brevity, we refrain from formally
defining a correlation mechanism (such as public signals)
and map directly to joint actions.

Definition 3 (Correlated profile). A correlated profile is a
function T : H<X — P(A) such that if 7(h)(«) > 0, then
a=(a1,...,ayn) and a; € A;(last(h)) foralli € N. We
denote by X° the set of correlated profiles.

A (future) path 7 of C starting from a history h € H*
in stage ¢ until the game ends in stage K is a sequence
£

r= st 2 K Ghere of = last(h), s* € S,
a* € Aand §(s*,ak)(sk1) > 0. For path 7, 7(k) is the
(k + 1)th state, 7[k] the action associated with the (k + 1)th
transition from 7 (k) to w(k + 1), and last () the final state.

Rewards. We endow NS-CSGs with rewards that define
agents’ objectives. We use r = (7;);cn Where each agent
Ag; has a reward structure r; = (r{, r?) comprising action
reward function 7! : S x A — R and state reward function
79 S — R. An objective profile is Y = (Y1,...,Yy),
where Y; () is the accumulated reward of Ag; until the final

stage K, along a path 7 that starts in some stage ¢ € [0, K|:

K—(—-1

Vi)=Y (rd k), wlk]) 4 (x(k))) +75 Qast(m)).

k=0

Given a strategy profile ¢ € XN, we denote by E? wlYi]
the expected value of Y; when starting from h € H* at the
lth stage until the game ends. Given a correlated profile
T € X, we denote by E] [Y;, aj|a;, h] the expected value of
Y; when starting from h € H* at the /th stage until the game
ends, under the strategy that Ag, takes the actual action a,
instead of the recommended action a; at h, and otherwise
the recommendation by 7 is followed by all agents.

An NS-CSG is zero-sum if 3" | (ri(s,0) + 17 (s)) =0
for all s € S and all a € A; otherwise, it is nonzero-sum.

Social Welfare Subgame-Perfect Equilibria. A Nash equi-
librium (NE) ensures that no agent has an incentive to de-
viate unilaterally from their strategy. Here we work with
subgame-perfect Nash equilibria (SPNEs) [[Osborne et al.,
2004], which are NEs in every state of the game. Since an
SPNE is therefore an NE of every subgame of the original
game, the agents’ behaviour from any point in the game
onward forms an NE of the continuation game, regard-
less of what happened before. We also consider the less
well studied notion of subgame-perfect correlated equilib-
ria (SPCEs) [Murray and Gordonl, |2007]]. For an SPCE, no
agent can expect to gain by disobeying the recommendation
of the correlated profile after any history of play.

The formal definitions of both types of subgame-perfect
equilibria (SPE) follow, where we denote by u = p—;[;] =
(41, ..., pn) (i € N) the strategy profile, where u_; refers
to the strategy profile except p,;. For SPCEs, we again omit
a correlation mechanism and abuse notation by expressing
it as individual deviations from the recommended actions
associated to a correlated profile 7.

Definition 4 (Subgame-perfect equilibrium). For an initial
state s € S, a strategy profile o* = (0f,...,0%) € ¥Nis
a subgame-perfect Nash equilibrium (SPNE) if EZ; [Y:] >

o o]

E,n "[Yilforallo; € ¥, alli € N andall h € HsK A
correlated profile T* € YC is a subgame-perfect correlated
equilibrium (SPCE) if E] " [Y;, ailai, h] > E} [Yi, al|a;, h]
forall a;,a, € A;(last(h)), alli € N and all h € HZE.

We emphasize that the SPE is defined here for a given initial
state. Since multiple SPEs can exist, we introduce additional
optimality constraints. First, we define the social welfare
Wg, (W[, resp.) of a history h € H® (¢ < K) under
a sirategy’ profile o (a correlated profile 7, resp.) as the
sum of expected values of objective profiles Y; starting in
h for all agents, that is, W7, = E7,[>>1", Vi] (W[, =
E7 ,[>_i—, Yil, resp.). Social-welfare optimal SPNE and
and SPCE are then defined as follows.

Definition 5 (Social welfare SPE). For an initial state s € S,
an SPNE ¢* is a social welfare optimal SPNE (SW-SPNE)
of Cif W§, > W¢, for all SPNEs o of C. An SPCE T* is
a social welfare optimal SPCE (SW-SPCE) of C lfWOTb >
Wy, for all SPCEs T of C.

Notice that, starting from a fixed initial state, SW-SPNE and
SW-SPCE are globally optimal, i.e. over the social welfare
achieved over a finite horizon from that start state.

Our approach of defining optimality in terms of the value
from a fixed initial state is further motivated by the following
result, which reveals that SW-SPNEs and SW-SPCEs do
not possess the property of subgame perfection on social
welfare, i.e., an SPNE or SPCE with optimal social welfare
at one state might induce a non-optimal social welfare at
another state as the game moves forward.

Lemma 6 (No optimal subgame perfection). For an initial
state s € S, an NS-CSG may have no SPNE (resp., SPCE)
that is an SW-SPNE (resp., SW-SPCE) for all its subgames.

A proof of this, and all other results in the paper can be
found in the appendix. Note also that this and the following
results are stated in the context of NS-CSGs, but they also
apply to general CSGs with discrete states and actions.

3 GENERALIZED BI

We now consider how to compute equilibria for NS-CSGs.
For a fixed initial state, finite-horizon NS-CSGs are finite
games, obtained by unfolding the game tree while invoking
the NN perception function. In principle, this allows us to
employ established game-theoretic solution such as back-
ward induction. We next prove that the classical generalized
backward induction (GBI) [Shoham and Leyton-Brown,
2009]] can be used to find a finite-horizon SPNE or SPCE

Algorithm 1 Generalized b/w induction (GBI) via SWE
Input: NS-CSG C, rewards 7, equ. type T, initial state s
Output: an equilibrium g, equilibrium payoff vector V'
. H! «+ HISTORY(C, s, /) forall ¢ < K
for{ =K, K —1,...,0;h € H do
if / = K then
Vh (r{(last(h)),. ..
else
Succ(h) + SUCCESSOR(C, H L h)
(uh, V) SWE_SOLVER(C, r, T, h,
(VM| e Succ(h)})
8 p {1 Y pepzr. V= {V"}nen,
9: return pu, V'

;5 (last(h)))

AN A ol e

through local optimisation, but that this equilibrium might
have an arbitrarily bad social welfare.

Algorithm [I{shows a version of the classical GBI method,
for concurrent extensive-form games over a finite horizon,
which aims to find an SPNE or SPCE that maximises so-
cial welfare, by computing an NE or CE which is locally
social welfare maximal at each history. In Algorithm [T}
HISTORY(C, s, £) computes a set of all histories in stage
¢ given an initial state s € S. SUCCESSOR(C, H:1 h)
extracts a set of all successors of a history h in stage ¢ from
H ' SWE_SOLVER(C, 7, T,,h, {V" | W' € Succ(h)})
computes an SWNE or SWCE 1 (depending on the equi-
librium type T € {CE,NE}) of an induced normal-form
game with actions available at last(h) and utilities from the
equilibrium payoffs V" of all successors h’ of h, and then
assigns the equilibrium payoff associated with this equilib-
rium to V", This procedure is iterated from the bottom up
until £ = 0, i.e., h = s, where the equilibrium payoffs of
histories at stage K (i.e., where the game ends) are equal
to final states’ rewards. For this algorithm, we have the
following proposition.

Proposition 7. Given an initial state s € S, GBI finds
an SPNE o (SPCE 7, resp.) with social welfare W, =

Doien Vil (W3 o =31en V37 resp.).

Although GBI can find an SPNE or SPCE, unfortunately it
may return one with an arbitrarily bad social welfare with
respect to the optimum.

Lemma 8 (Bad social welfare). The SPNE (SPCE, resp.)
obtained by GBI SWE can be arbitrarily bad on social wel-
fare with respect to an SW-SPNE ¢* (SW-SPCE 7%, resp.)
for some state s € S, i.e., Wé’s -Wgs (Wi, — W resp.)
is positive and unbounded. l

4 FROZEN SUBGAME IMPROVEMENT

Lemma [§] indicates that a GBI-based approach does not
guarantee optimal social welfare. Motivated by this, we now

consider further techniques to synthesize SW-SPNE and
SW-SPCE for NS-CSGs. We first present an exact approach
based on an unfolding of the game tree and the solution
of a nonlinear program. However, this does not scale to
large games. So we then propose an iterative approximation
method called frozen subgame improvement. This works
by first finding an arbitrary initial SPNE or SPCE and then
iteratively freezing a set of variables and computing a new
SPNE or SPCE with an increasing social welfare.

In this section, we focus initially on the case of two-agent
NS-CSGs and then later discuss how to generalise this.

Exact Computation of SW-SPNE and SW-SPCE. Given
an initial state s € .S, the game unfolds by considering
all paths, thus generating a game tree which can be fully
characterized by Hg. During the game tree construction,
last(h) can be computed for any h € Hy, and if A’ is a
successor of h, the joint action(s) that leads to i’ from h
can be determined. In contrast to [Akintunde et al., 2020a]],
where perception functions are assumed to be piecewise
linear and encoded as constraints, unfolding the game tree
allows us to treat NNs outside the optimisation problem.

We encode subgame perfection as a nonlinear program. An
SPNE of the original game is an NE of every subgame, i.e.,
for each history h € H S<K , it can be encoded as follows [1_]:

h, a;,a;
Vih*Z(ai,aJ)EAiXAj’u?(ai) 'N;’L(aj) -Z; (aisaj) _ 0

‘/ih_ZajeAjN?(aj) -z @) > 0, va, € A, (D)

Sasea (@) =1, pl(a;) >0
fori,j € {1,2},i # j, where u?* € P(A;(last(h))), V" =
(V' V") € R? denotes the expected accumulated reward
vector from £ to the end of the game, and Z?’“ denotes the
expected accumulated reward to be received by Ag; after
executing the joint action « at k. In an SPCE, no agent can

gain by deviating from the recommendation in any given
history, and thus we have:

h,«
Vih_ZaeA/iZ 277 =0
Z“J'EAJ (2?7(%7%)72?’(%,%)) ’ H?(lhnrj) >0 @
Yocalh =1, ul>0

where i,j € {1,2}, i # j, a;,a; € Ai ph = {ul}aea
and u! represents the probability of the joint action a being
recommended at h.

The SPNE and SPCE imply that, for each h € HZ¥ and
a € A(last(h)), the reward for Ag; satisfies:

Zi = rMlast(h), o) + r? (last(h))
+ 2 hresuce(nydlast(h), a)(last(h)) V"

ITo simplify notation, a; € A; refers to a; € A;(last(h)) in
(1) and (), and similarly for a; and a;.

3

where, for each history h € HE, we take the re-
ward vector V* = (7 (last(h)),r5 (last(h))). For each
h e Hs<K’ let CN7h(:u’]11’ 1“'}21’ th {Vh/}h/GSucc(h)) be the
union of constraints (I)) and (3) (for Nash equilibria), and
CCh(yh, v (v }hvesuce(n)) be the union of constraints
@) and @) (for correlated). The union of CN"* for all
such histories is denoted by CN(uN, V') and the union
of CO" by CC(uS, V), where pN = {ul, ph},cp=r,
u = {'U/h}heH;K and V' := {Vh}hest. Note that
CN(uN, V) (CC(u€, V), resp.) is polynomial in pN (uS,
resp.) and V, and is nonlinear as Zf”’ is related to variables
V¥ for h' € Succ(h).

Theorem 9 (Computation of SW-SPNE and SW-SPCE).
For a two-agent NS-CSG C with an initial state s € S,

(i) a strategy profile o is an SPNE iff there is a solution of
the constraints ON(uN, V) such that o1 (h) = p? and
oa(h) = ub for each h € HZX;

(ii) a correlated profile T is an SPCE iff there is a solution
of the constraints C°(uC, V') such that T(h) = u" for
each h € HIK;

(iii) a strategy profile o is an SW-SPNE iff there is an opti-
mal solution (p*, V*) of the nonlinear program:

max GV
},LN,V ZzGN 7

subjectto CN(uN, V) %)
such that o1(h) = p" and o3(h) = p" for each
h € HSE, and the social welfare W s is equal to the
optimal value ZieN Vs

(iv) a correlated profile T is an SW-SPCE iff there is an
optimal solution (1*, V*) of the nonlinear program:

max o VE
1S,V ZzGN 7

subjectto C(uS, V) 5)
such that T(h) = p*" for each h € HZX, and
the social welfare W ; is equal to the optimal value

dien Vi

Although our goal here is to work with NNs, the computa-
tion of SW-SPNE and SW-SPCE in Theorem J]also applies
to conventional stochastic games, because the game tree
construction can work for general transition functions with
finite branching. The fact that our approach is not limited to
NN (or NNs of a certain class) is an advantage, and allows
us to avoid the scalability issues suffered by the method of
[Akintunde et al.,[2020a], which represents a ReLU neural
network as a set of constraints.

Frozen Subgame Improvement. Nonlinear programs in
Theorem 9] can be used to find an SW-SPNE or SW-SPCE
efficiently for a small joint action profile and a short hori-
zon. For larger problems, scalability is an issue because the
numbers of variables and constraints are both exponential.

To deal with this, we propose an approximation algorithm
called Frozen Subgame Improvement (FSI) (Algorithm E])
that trades optimality for scalability.

Algorithm 2 Frozen Subgame Improvement (FSI)
Input: NS-CSG C, reward r, equ. type T, init. state s, mmax
QOutput: an equilibrium , equilibrium payoff vector V'
1: (u,V) < GENERALIZED_BI(C,r,T,,s)
m <0
repeat

h < A_HISTORY (HIE 1, V)

P + (@) or (B) (depending on T) after freezing
ph V" for each history &/ € HK that is not a prefix
of h (say h € HY for some ¢ < K);

{prh<t v*h<iy; , < NP_SOLVER(P)

4 {p*"<t} s, U {the frozen p/*'}

V {V*h<id;, U {the frozen V"'}

méem+1
until m = myax
return p, V'

29 e 3D

Ju—

The main idea of FSI is as follows. First, GBI is used to
find a feasible solution to {@) or (3 depending on the equi-
librium type T € {CE,NE}, i.e., an SPNE or SPCE. Then,
a history h € H¥ is selected, for example by sampling
uniformly. We freeze the distributions over (joint) actions
and equilibrium payoffs corresponding to the histories that
are not prefixes of h. Thus, @), and similarly (5), can be
simplified into a nonlinear program with a smaller number
of variables and constraints. Finally, a new solution is com-
puted by merging the frozen part of the current solution and
an optimal solution of the simpler nonlinear program. The
process performs a predefined number mp,x of iterations.

In Algorithm 2] GENERALIZED_BI(-) computes an SPNE
or SPCE p and the associated equilibrium payoff vector V/
by adopting a simpler version of Algorithm (I} in which an
NE or CE is computed at step 7 instead of an SWNE or
SWCE. A_HISTORY/(-) returns a history. Here, we sample
a history from HX~1 uniformly; an alternative is presented
in Appendix. NP_SOLVER(-) computes an optimal solution
to a given nonlinear program.

For FSI, we have the following results:

Theorem 10 (FSI). If FSI is adopted to solve @) ((3), resp.)
approximately, then:

(i) the pair (1, V) is a feasible solution to @) (@), resp.)
at the end of each iteration m, that is, p is an SPNE
(SPCE, resp.) and V is the equilibrium payoff vector;

(ii) the social welfare), V;® is monotonically increas-
ing in m, and also monotonically increasing in M,qy.

FSI over Regions. If each agent has a limited memory and
takes actions conditioned on the current state and stage, we

=0
(=1
=2
=3

Figure 2: FSI over regions. Sampled history (left) and the
corresponding region (right).

can unfold the game into a graph where each node in a
stage represents one reachable state exactly in that stage,
as in Fig. [2] With respect to the game tree, the number of
nodes in this graph is greatly decreased if many states are
frequently visited in a stage. The FSI can be directly adapted
to this graph by first sampling a history (Fig. [2} left) and
then optimising over a region of states, which contain all
histories that reach its last state (Fig. |2} right).

Multi-agent. SW-SPNE and SW-SPCE computation for
multi-agent (n>2) NS-CSGs can be performed by replacing
(@ or (@) with the encoding of NE/CE computation for the
induced multi-agent normal-form game at each h € H=X.

Complexity. We focus here on practical methods to compute
equilibria, which depend on the horizon K and the size of
the model (specifically the number of actions and agent
states), as well as the underlying solution method used to
solve either normal form games (at each state, for SWNE or
SWCE) or nonlinear optimisation problems (for SW-SPNE
or SW-SPCE). Computing NEs of a normal form game with
two players is known to be PPAD-complete [[Chen et al.
2009]. For extensive games, it has been proved that finding
SPNEs for quantitative reachability objectives of a two-
player game is PSPACE-complete [Brihaye et al., 2019].
Computing SWCEs of a normal form game can be done in
polynomial time [Gilboa and Zemel, |1989].

From a practical perspective, any method that relies on find-
ing all NEs in the worst case cannot be expected to achieve
a running time that is polynomial with respect to the size
of the game, as there can be exponentially many equilibria.
GBI requires us to compute an SWNE or SWCE for all
states that could be reached from a given initial state in K
steps. FSI relies on GBI as an initialisation step (Algorithm
line 1). Furthermore, the optimisation problem defined for
computing SW-SPNE in (@) has at most (| 4| + |Aa| 4+ 2)v
variables and (2| A1|| 42| + 2| A1 | + 2| A2| +4)v constraints,
and for computing SW-SPCE defined in (5) has at most
(|A1HA2| + 2)1} variables and (|A1HA2| + |A1|2 + |A2|2 —
|A1| — |A2] + 3)v constraints, where v is the number
of non-leaf nodes in the generated game tree and v =
(1AL |1A2]|S1][S2)® — 1)/(|Ar][A2]181]ISs| — 1) in the

worst case.

S EXPERIMENTAL EVALUATION

We have implemented a prototype version of our FSI method
(Algorithm 2. This uses components from PRISM-games
3.0 [Kwiatkowska et al.l [2020], which supports discrete
CSGs without perception. In particular, we use its SMT-
based/linear programming method for synthesising CSG
SWNE/SWCE to initialise the vector of equilibria values
in line 1 of Algorithm 2] Its support for two-player finite-
horizon equilibria [Kwiatkowska et al.| [2019] also gives an
equivalent version of the GBI algorithm (Algorithm [T]).

The optimisation problems for computing SW-SPNE and
SW-SPCE values for states are solved using Gurobi. In or-
der to improve the scalability of FSI, our implementation
considers a reduced set of histories by: (i) limiting the in-
formation that the players have access to at each state to be
the values of the variables in that state plus time, i.e., how
many transitions have been made up until that point; and (ii)
constructing histories not over states, but regions of states
which are independent from a decision-making standpoint.

Our evaluation employs two case studies: the first is used
to show the applicability of our equilibria improvement
algorithm, and the second to demonstrate the usefulness of
equilibria properties for analysing NS-CSGs. An overview
is provided below, with more detail given in the appendix.

Automated Parking. We first formulate a dynamic vehicle
parking problem as an NS-CSG (a static assignment game is
considered in, e.g., [[Ayala et al., [2011]]). There are 2 players
(vehicles) targeting 2 parking slots in a 5 x 4 grid, shown
in Fig. [3] (target cells are green, forbidden cells are red,
black arrows show traffic rules). We consider two reward
structures. One minimises time, while the other extends the
first by giving a bonus to player 2 for visiting a designated
cell (in yellow). This is a discrete-state model in which
percepts identify agent locations precisely. We use it to
compare the equilibria algorithms for two different time
horizons K = 8 and K = 6. For this model, both vehicles
get a reward of -1 for each move, vehicle 2 gets a reward of
5.5 when visiting the bonus cell and the speeds of vehicle 1
and 2 are of two and one grid cell per move, respectively.

We first consider Nash equilibria. For the first reward struc-
ture, our FSI algorithm and the GBI algorithm, which only
considers local SWNE values, both return the SW-SPNE
strategy with reward sum —5.0 in Fig. [3 (top-left). For the
second reward structure, FSI finds a new SW-SPNE strategy
with reward sum —4.5 in Fig. 3] (top-right) giving a higher
social welfare, while GBI still returns the strategy on the
left, which is not an SW-SPNE in this case.

With correlated equilibria, for K = 8 both algorithms pro-
duce the same strategy as in Fig. 3] (bottom-right), for which
the reward sum is -1.5. We then reduce the time horizon
to K = 6. For this case, in the strategy constructed by the

NE (K = 8) NE-FSI (K = 8)

4 A 4
L R R
24——.——--————-——— R S P
1 1 1 1 \
1 2 3 4 5 1 2 3 4 5
CE (K = 6) CE-FSI (K = 6)
4 * 4 A
3p--1-kd-7-F K-> %——:—-—:———————- 1
R R EEE PEE BRI R SR R
1 1 1 1
1 2 3 4 5 12 3 4 5

Figure 3: Strategies for the automated parking example.

Constr GBI Region FSI

K | States | Trans. time (q') time (s) size time (s)
’ NEJCE[NE [CE |NEJCE

24.0% | 22.5% | 0.4 | 1.5

6 | 258 1080 0.01 0.6 | 2.1|194% | 202% | 0.4 | 1.0
17.8% | 16.3% | 0.2 | 0.3

373% | 32.4% | 3.8 | 2.5

8 386 1689 0.2 1.4 149 |324% | 27.5% | 1.8 | 2.6
259% | 259% | 1.1 | 1.8

Table 1: Statistics for the automated parking example.

GBI algorithm in Fig.[3] (bottom-left), vehicle 2 is instructed
to move left in order to get the bonus, while vehicle 1 is
instructed to park in the closest spot. However, given the
shorter horizon, vehicle 2 does not have enough time to park
in the remaining spot and the overall reward sum is -2.5. The
possible final positions for vehicle 2 are indicated by the
blue stars. In the strategy synthesised by the FSI algorithm,
however, both cars park and the sum of rewards is higher.
Table [[shows statistics for the models constructed and the
time for equilibria computation.

Two-Agent Aircraft Collision Avoidance Scenario. Sec-
ondly, we consider an NS-CSG model of the VCAS[2]
system, as described earlier in Example [T} We study its equi-
libria strategies, in contrast to the zero-sum (reachability)
properties analysed in [Akintunde et al},[2020a]. Fig. @] plots
the altitude h for equilibria and zero-sum strategies when
maximising h for a given instant k. It can be seen that, with
respect to the safety criterion established by [Akintunde
et al., |2020al Julian and Kochenderfer, [2019], i.e., avoid-
ing a near mid-air collision, equilibria strategies allow the
two aircraft to reach a safe configuration within a shorter
horizon, which would be missed by a zero-sum analysis.

We also consider a second reward structure that incorporates
the trust level and fuel consumption, and we vary the agent

initial values: how“ = —35, h;m =—-5t=4

250 [- ‘ ‘ &
[—i— equilibria -
338 [—@— Zero-sum B j
~ 175} - —~
S 150 = |
< 125 - —e safery 1

1 = safety
£ 100 ===-== i il =4
< 75 |- = -
504 — o =
25 |- — — » -
P -

—30 ! ‘
0 1 2 3 4
k

Figure 4: Altitude (h) for the VCAS[2] example.

uncertainty parameters ¢; (see the appendix for details). We
also fix a different safety limit of h = 200. Table 2] shows
the altitude and number of violations (times that no advisory
is taken) for the generated equilibria. To give an indication
of scalability and performance, we also include the total
number of states in the game unfolding and the time for
model construction and algorithm execution for both NE
and CE. For this example, both types of equilibria yield the
same values for the properties considered.

Finally, we discuss equilibria strategies for different values
of the uncertainty parameter €,y,. We find that the agents
always comply with the advisory system for smaller initial
values of ¢ (time until loss of horizontal separation), given
that reaching safety would be of higher priority. Fig. [5] (left)
illustrates that following the advisories is the best strategy
when safety and trust are the priority, as the trust levels t7gyn
and trj, of the two agents never decrease from the initial
score of 4. This changes, however, when both aircraft have
a larger horizon to consider. The strategy in Fig. [5 (right)
shows a deviation from the advisory (denoted by value O for
Gown N state s2), resulting in t7qy, dropping to 3 in 5% with
probability 0.9, reduced fuel consumption and the safety
limit of 200 being approached.

Efficiency and scalability. For equilibria computation us-
ing GBI, which computes locally optimal equilibria, CE are
generally considerably faster to compute than NE. This is
due to the fact that finding an optimal CE in a state can be
reduced to solving a linear program, while computing an
optimal NE requires finding all solutions of a linear com-
plementarity problem. The same, however, is not observed
when comparing the performance of FSI on the two types of
equilibria. This is because a path-based encoding requires a
greater number of constraints and variables for CE, and we
need to solve nonlinear programs.

6 CONCLUSIONS

We have considered finite-horizon equilibria computation
for CSGs whose agents are equipped with NN-based percep-
tion mechanisms. We developed an approximate algorithm

Constr. GBI
Eowns Eint t States time (s) time (s) h Viol.
NE [CE

2 100 0.06 0.1 0.05 82 0

0,0 3 836 0.6 0.7 0.3 123 0
4 6997 36.6 8.0 1.8 199 25%

2 157 0.1 0.2 0.1 82 0

0.1,0 3 1622 1.4 1.0 0.3 123 0
4 16028 273.8 14.2 33 199 20%

2 251 0.1 0.2 0.07 82 0

0.1,0.2 3 3174 44 1.5 0.6 123 0
4 36639 1497.2 26.7 5.8 199 20%

Table 2: Statistics for the VCAS[2] example.

State
(t'rowm adown) (47 1)
(trimyadim) sk (4, 1) s9
(hqhowny ilinnt) (507 _57574)
Y (Gown, @int) (-9.33,7.33)
ﬁiﬁ
(4, 1) 4,4
(4,1) s0 (4,5) st
(50, —5, 5, 3) 68,—14,12,3
(—9.33,3) i(—nj, 11.7)
1y 1
(4,4) (4,6)
(4,1) st (4,7) s?
(66, —14,8,2) (107, —26, 24, 2)
(—3,3) (0,-3)
1 0.9 0.1
(4+1) (3.8) / \ (4,8)
(47 1) 52 (47 1) 53 (41 1) 54
(91,—17,11,1) (155, —26,21,1) (155, —26,21,1)
(—3,3) (3,-3) (3,-3)
1 0.1 0.9 1
(4+1> (r'il)\A <4+1>
(4,1) s2 (4,1) s° (4,1) s6
(123, —20, 14, 0) (199, —23,18,0) (199, —23,18,0)
(@) (b)

Figure 5: Strategies for the VCAS[2] example: (a) €own = 0,
€int = 0 and ¢ initially 3; (b) €gwn = 0.1, €y = O and ¢
initially 4.

that improves on social welfare equilibria values and strate-
gies, for both SPNE and SPCE, compared to backward
induction, which can only reason about local optimality. A
prototype implementation showcased its applicability and
advantages on two case studies. Future work will focus
on infinite-horizon properties (incorporating finite-horizon
equilibria with receding horizon synthesis [Raman et al.|
2015]]) and temporal logic specifications.

Acknowledgements

This project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme
(FUN2MODEL, grant agreement No. 834115).

http://www.fun2model.org

References

Dilip Abreu, Benjamin Brooks, and Yuliy Sannikov. Al-
gorithms for stochastic games with perfect monitoring.
Econometrica, 88(4):1661-1695, 2020.

Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros,
and Alessio Lomuscio. Verifying Strategic Abilities of
Neural-symbolic Multi-agent Systems. In Proceedings
of the 17th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2020),
pages 22-32. IJCAI Organization, 9 2020a.

Michael E Akintunde, Elena Botoeva, Panagiotis Kouvaros,
and Alessio Lomuscio. Formal verification of neural
agents in non-deterministic environments. In Proceed-
ings of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), pages
25-33. Springer, 2020b.

Robert J] Aumann. Subjectivity and correlation in random-
ized strategies. Journal of mathematical Economics, 1(1):
67-96, 1974.

Daniel Ayala, Ouri Wolfson, Bo Xu, Bhaskar Dasgupta, and
Jie Lin. Parking slot assignment games. In Proceedings
of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, page
299-308. Association for Computing Machinery, 2011.

Patricia Bouyer, Nicolas Markey, and Daniel Stan. Mixed
Nash equilibria in concurrent terminal-reward games. In
FSTTCS 2014, pages 1-12, 2014.

T. Brihaye, V. Bruyere, A. Goeminne, J.-F. Raskin, and
M. van den Bogaard. The complexity of subgame per-
fect equilibria in quantitative reachability games. In
Wan Fokkink and Rob van Glabbeek, editors, Proc.
CONCUR’19, volume 140 of LIPIcs, pages 13:1-13:16.
Leibniz-Zentrum fiir Informatik, 2019.

Thomas Brihaye, Véronique Bruyere, Aline Goeminne,
Jean-Frangois Raskin, and Marie van den Bogaard. The
complexity of subgame perfect equilibria in quantitative
reachability games. Logical Methods in Computer Sci-
ence, 16(4):1-43, 2020.

Andriy Burkov and Brahim Chaib-draa. An approximate
subgame-perfect equilibrium computation technique for
repeated games. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 10),
page 729-736. AAAI Press, 2010.

Radu Calinescu, Calum Imrie, Ravi Mangal, Corina Pasdre-
anu, Misael Alpizar Santana, and Gricel Vazquez.
Discrete-event controller synthesis for autonomous
systems with deep-learning perception components.
arXiv:2202.03360, 2022.

Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Hen-
zinger. Strategy improvement for concurrent reachability
and turn-based stochastic safety games. Journal of Com-
puter and System Sciences, 79(5):640-657, 2013.

X. Chen, X. Deng, and S-H. Teng. Settling the complexity
of computing two-player Nash equilibria. J. ACM, 56(3),
2009.

Luca de Alfaro and Rupak Majumdar. Quantitative solu-
tion of omega-regular games. Journal of Computer and
System Sciences, 68(2):374-397, 2004.

Luca De Alfaro, Thomas A Henzinger, and Orna Kupferman.
Concurrent reachability games. Theoretical Computer
Science, 386(3):188-217, 2007.

Luc De Raedt, Sebastijan Dumancié, Robin Manhaeve, and
Giuseppe Marra. From statistical relational to neural-
symbolic artificial intelligence. In Proceedings of the
Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence (IJCAI-20), pages 4943-4950. IICAI
Organization, 07 2020.

Dileepa Fernando, Naipeng Dong, Cyrille Jegourel, and
Jin Song Dong. Verification of strong Nash-equilibrium
for probabilistic bar systems. In International Conference
on Formal Engineering Methods (ICFEM 2018), pages
106-123. Springer, 2018.

Drew Fudenberg and David Levine. Subgame—perfect equi-
libria of finite—and infinite-horizon games. In A Long-
Run Collaboration On Long-Run Games, pages 3-20.
World Scientific, 2009.

I. Gilboa and E. Zemel. Nash and correlated equilibria:
Some complexity considerations. Games and Economic
Behavior, 1(1):80-93, 1989.

Karel Hordk and Branislav BoSansky. Solving partially ob-
servable stochastic games with public observations. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI 19), volume 33, pages 2029-2036. AAAI
Press, 2019.

Kyle D. Julian and Mykel J. Kochenderfer. A reachability
method for verifying dynamical systems with deep neural
network controllers. CoRR, abs/1903.00520, 2019.

Kyle D. Julian, Shivam Sharma, Jean-Baptiste Jeannin, and
Mykel J. Kochenderfer. Verifying aircraft collision avoid-
ance neural networks through linear approximations of
safe regions. CoRR, abs/1903.00762, 2019.

Daniel Kahneman. Thinking, fast and slow. Macmillan,
2011.

Mitri Kitti. Subgame perfect equilibria in discounted
stochastic games. Journal of Mathematical Analysis and
Applications, 435(1):253-266, 2016. ISSN 0022-247X.

Marta Kwiatkowska, Gethin Norman, David Parker, and
Gabriel Santos. Equilibria-based probabilistic model
checking for concurrent stochastic games. In Proc. 23rd
International Symposium on Formal Methods (FM’19),
volume 11800 of LNCS, pages 298-315. Springer, 2019.

Marta Kwiatkowska, Gethin Norman, David Parker, and
Gabriel Santos. Prism-games 3.0: Stochastic game verifi-
cation with concurrency, equilibria and time. In Interna-
tional Conference on Computer Aided Verification (CAV
2020), pages 475-487. Springer, 2020.

Marta Kwiatkowska, Gethin Norman, David Parker, and
Gabriel Santos. Automatic verification of concurrent
stochastic systems. Formal Methods in System Design,
pages 1-63, 2021.

Marta Kwiatkowska, Gethin Norman, David Parker, and
Gabriel Santos. Correlated equilibria and fairness in
concurrent stochastic games. In Proc. 28th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’22), LNCS. Springer,
2022.

Luis Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pe-
dro Avelar, and Moshe Vardi. Graph neural networks
meet neural-symbolic computing: A survey and perspec-
tive. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence (IJCAI-20),
pages 4810-4817. IICAI Organization, 07 2020.

Peixuan Li and Chuangyin Dang. An arbitrary starting trac-
ing procedure for computing subgame perfect equilibria.
J. Optim. Theory Appl., 186(2):667-687, 2020.

Michael L. Littman, Nishkam Ravi, Arjun Talwar, and Mar-
tin Zinkevich. An efficient optimal-equilibrium algo-
rithm for two-player game trees. In Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial
Intelligence (UAI 06), page 298-305. AUAI Press, 2006.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel,
and Igor Mordatch. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems (NIPS 17), page 6382—-6393. Curran
Associates Inc., 2017.

Federico Mari, Igor Melatti, Ivano Salvo, Enrico Tronci,
Lorenzo Alvisi, Allen Clement, and Harry Li. Model
checking coalition Nash equilibria in MAD distributed
systems. In Symposium on Self-Stabilizing Systems (SSS
2009), pages 531-546. Springer, 2009.

Panagiotis Kouvaros Michael E Akintunde, Elena Boto-
eva and Alessio Lomuscio. Venmas: Verifica-
tion of neural-symbolic multi-agent systems, 2020.
https://vas.doc.ic.ac.uk/software/neural/.

Chris Murray and Geoff Gordon. Finding correlated equi-
libria in general sum stochastic games. Carnegie Mellon
University, School of Computer Science, Machine Learn-
ing, 2007.

John Nash. Non-cooperative games. Annals of mathematics,
pages 286-295, 1951.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato,
Jonathan P How, and John Vian. Deep decentral-
ized multi-task multi-agent reinforcement learning un-
der partial observability. In International Conference
on Machine Learning (ICML 2017), pages 2681-2690.
JMLR.org, 2017.

Martin J Osborne et al. An introduction to game theory,
volume 3. Oxford university press, New York, 2004.

Georgios Papoudakis, Filippos Christianos, and Stefano V.
Albrecht. Agent modelling under partial observability for
deep reinforcement learning. In proc. 35th Conference
on Neural Information Processing Systems (NeurlPS’21),
2021.

Vasumathi Raman, Mattias Filt, Tichakorn Wongpirom-
sarn, and Richard M. Murray. Online horizon selection
in receding horizon temporal logic planning. In 2015
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3493-3499, 2015.

R. Selten. Reexamination of the perfectness concept for
equilibrium points in extensive games. International
Journal of Game Theory, 4:25-55, 1975.

Lloyd S Shapley. Stochastic games. Proc. National
Academy of Sciences, 39(10):1095-1100, 1953.

Y. Shoham and K. Leyton-Brown. Multiagent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations.
Cambridge University Press, 2009.

Stephen J Wright. Coordinate descent algorithms. Mathe-
matical Programming, 151(1):3-34, 2015.

Rui Yan, Xiaoming Duan, Zongying Shi, Yisheng Zhong,
Jason R. Marden, and Francesco Bullo. Policy evaluation
and seeking for multiagent reinforcement learning via
best response. IEEE Transactions on Automatic Control,
67(4):1898-1913, 2022a.

Rui Yan, Gabriel Santos, Gethin Norman, David Parker,
and Marta Kwiatkowska. Strategy synthesis for
zero-sum neuro-symbolic concurrent stochastic games.
arXiv:2202.06255), 2022b.

Sevin Yeltekin, Yongyang Cai, and Kenneth L. Judd. Com-
puting equilibria of dynamic games. Operations Research,
65(2):337-356, 2017.

https://arxiv.org/abs/2202.06255

A PROOFS OF MAIN RESULTS

To prove Lemmas 6 and 8, we introduce the following ex-
ample.

Example 2. Consider a two-stage two-agent game with
deterministic transitions in Fig.[6] in which each agent has
two actions: {U, D} for agent 1 and {L, R} for agent 2.
Non-leaf and leaf nodes, containing the node numbers, are
marked with circles and rectangles, respectively. For clarity,
several histories reaching stage 2 are not displayed here.
Edges are labelled with the associated joint actions. The
payoff vectors below leaf nodes are the terminal rewards,
while the payoff vectors below non-leaf nodes denote the
unique equilibrium payoffs (expected accumulated rewards)
from these nodes to the leaf nodes, where ¢ is negative. The
immediate rewards along the edges are assumed to be zero.

By GBI, there are three NEs at node 4: p*) =
{(1,0),(1,0)}, p*® = {(1/5,4/5),(1,0)} and p*®) =
{(0,1),(0,1)}, and the respective equilibrium payoffs are
VA = (0,8), V42 = (0,8/5) and V*®) = (5,2). The
NE and the equilibrium payoff at the initial node 1 de-
pend on which NE is considered at node 4. If V*(1)
V42 g selected, then there is a unique NE at node 1:
(1) = {(1,0), (1,0)} with equilibrium payoff (1,1 +).
If VA®) s chosen, then there is a unique NE at node 1:
p' @) ={(0,1),(1,0)} with equilibrium payoff (5, 2).

(U.L) (UR / \D L (D,R)
5

(11+¢

Figure 6: A two-stage game tree with two agents with ¢ < 0.

Proof of Lemma 6. We consider the game in Example[2]
Given ¢ < 0, the SW-SPNE and SW-SPCE starting at node
1 are the same and unique with social welfare 5 + 2 = 7,
in which the strategy at node 4 is *(®). However, the SW-
SPNE and SW-SPCE for the subgame starting at node 4 are
both 1*(1) instead of 1*(3), which completes the proof.

Proof of Proposition 7. It is well known in game theory
that, for a normal-formal game, (mixed-strategy) NEs al-
ways exist [Nash,|1951]] and all NEs are fully characterized
by the set of feasible solutions of a nonlinear program with
compact constraints [Osborne et al., |2004]. This implies
that the SWNESs, which are NEs maximising social welfare,
always exist as well. Since every NE is a CE and all CEs
are fully characterized by the set of feasible solutions of a

linear program with compact constraints [Aumann| [1974]],
then SWCEs always exist, which completes the proof.

Proof of Lemma 8. We consider Example [2| again. Since
u4(1) has the maximum social welfare, then Generalized
BI via SWE feeds V*(!) to node 1 for both the case of
SWNE and SWCE, thus leading to node 1’s social welfare
W{ s = 2+ ¢. However, node 1’s social welfare W' . under
both SW-SPNE and SW-SPCE p* is 7. Thus, if ¢ is negative
enough, the difference W' - Wg's = 5— ¢ is positive and
unbounded.

Proof of Theorem 9. The conclusions (i) and (ii) are
straightforward by the encoding procedure. The sets of feasi-
ble solutions to (4) and (5) are not empty, as (mixed-strategy)
NEs of a normal-form game always exist [Nash, [1951]], and
thus so do CEs. Additionally, they are compact by noting
the constraints (1), (2) and (3). Then, the conclusions (iii)
and (iv) follow from the continuity of the objective function.

Proof of Theorem 10. In Algorithm 2, step 1 returns a
feasible solution to the nonlinear program (4) or (5) (de-
pending on the equilibrium type T). Since the variables of
the nonlinear program P (step 5) are independent of the
frozen variables due to the game tree structure and the his-
tory selection (or region construction), the pair (i, V) in
steps 7 and 8 is still a feasible solution to (4) or (5). The con-
clusions follow from the coordinate descent optimization
with constraints [Wrightl 2015]].

B FURTHER DETAILS FOR
ALGORITHMS

B.1 APPROXIMATION ALGORITHMS

FSI is described in Sec. 4 and is summarised as Algorithm 2.
In Fig.[7} we give an illustration of the approach: FSI freezes
all variables related to the red histories and optimizes over
the blue history, where each node contains the current equi-
librium payoff.

//\\
M\ ﬂ\ ﬂ\ M\

Figure 7: An example for Frozen Subgame Improvement.

We also suggest an alternative approach for the selection of
histories in FSI, shown in Algorithm 3] It returns a history
by starting from the initial state s, moving to the successor
with the maximum social welfare indicated by the current
equilibrium payoff V' and perturbed by e (if there are multi-
ple such successors, we select one randomly), and iterating

until the stage K — 1, where UNIFORM(+) is a uniform
sampling function.

Algorithm 3 Finding a History by Maximum Social Welfare

Input: histories H, distribution p, equilibrium payoff V,
exploration rate € € [0, 1]
Output: a history h € HE~1
1: h< s
2: repeat
3: h! arg maxp/eSucc(h) ZiEN V;h
if UNIFORM([0, 1]) > € then
h <«

"

4
5

6: else
7: h < UNIFORM(Succ(h))
8: end if
9: until h € HE-!
10: return h

C FURTHER DETAILS FOR CASE
STUDIES

C.1 AUTOMATED PARKING

The formal details of the NS-CSG model for the automated
parking case study are as follows. There are two players
(vehicles) {Ag; }ien for N = {1, 2} and two parking slots
M = {1,2}ina 5 x 4 grid C. The coordinate of the cell
in the ith row and jth column is denoted by (i, j). Thus,
C = {(i,j)|i € [5],5 € [4]}. The coordinates of two
parking slots are y; = (2,4) and y» = (5, 1). Fig. 3 shows
the grid. Vehicles are forbidden to enter the red cells and
have to follow the traffic rules indicated by black arrows.

The environment state is sg = (x1, x2), where z; € C'is
vehicle 7’s coordinate. Each agent ¢ € N is as follows:

* astate of agent Ag, is s; = (loc;, (1, x2)), where the
local state loc; is dummy, and the coordinates x, € C'
(k € N) of two vehicles constitute the percept;

* actions include four directions U = (0,1), D =
(0,-1),L = (-1,0), and R = (1,0). We assume that
Ag, is twice as fast as Ag,, i.e., Ao = {U,D,L,R}
and A; = Ay x Ay \ {UD,DU,LR,RL};

* the available action function is such that a; € A;(s;)

iff taking action a; at s; does not break the traffic rules
or enter a red cell;

* observation function obs; computes the cells where
two vehicles are, i.e., 0bs;(s1, $2,8g) = (21, 22);

* the local transition function §; is dummy.
For o = (a1,a2) € Ay X Ag, dg(sg,a) = (a), z}) where

x, = x; + a; for all i € N. The two vehicles start from
29 = (3,1) and 2§ = (2,2).

There are two reward structures. The first one is plain time
minimizing: (s, @) = 0; if 21 = 3, then 77 (s) = —20;
if x1 # x2 and x; = y; for some j € M, then r;g(s) =0;
77 (s) = —1 otherwise. The second one is time minimizing
with bonus, in which we add a bonus of 5.5 to agent 2 at
a designated cell (in yellow): 75 (s) = 5.5 — 1 = 4.5 if

x9 = (1,2) when k < 1.

This example was modelled using the PRISM-games mod-
elling language, since the simplicity of the perception mech-
anism lets it be reduced to a discrete-state CSG.

C.2 TWO-AGENT AIRCRAFT COLLISION
AVOIDANCE SCENARIO

In the VCASJ2] system (Figure 1) there are two aircraft
(ownship and intruder, denoted by Ag; for i € {own, int}),
each of which is equipped with an NN-controlled collision
avoidance system called VCAS. Each second, VCAS issues
an advisory (ad;) from which, together with the current trust
in the previous advisory (tr;), the pilot needs to make a de-
cision about accelerations, aiming at avoiding a near mid-air
collision (NMAC), a region where two aircraft are separated
by less than 100 ft vertically and 500 ft horizontally.

The environment state sy = (h, hown, hint,t) records the
altitude h of the intruder relative to the ownship (ft), the
vertical climb rate hown of the ownship (ft/sec), the vertical
climb rate him of the intruder (ft/sec), and the time ¢ until
loss of horizontal separation of the two aircraft (sec).

Each aircraft is endowed with a perception function imple-
mented via a feed-forward NN f,4. : R* — R? with four
inputs, seven hidden layers of 45 nodes and nine outputs
representing the score of each possible advisory. There are
nine NNs F' = {f; : R* — R%|i € [9]}, each of which
corresponds to an advisory.

Each advisory will provide two non-zero acceleration ac-
tions for the agent to select from, except that the agent is
also allowed to adopt zero acceleration. The trust in the pre-
vious advisory and previous advisory (percept) are stored
in a state of the agent s; = (¢r;, ad;). There are four trust
levels {4, 3,2, 1} and nine possible advisories [Akintunde
et al.,|2020b]. The current advisory is computed from the
previous advisory ad; and environment state sp using the
observation function obs;. The trust level is increased prob-
abilistically if the current advisory is compliant with the
executed action, and decreased otherwise.

Formally, each agent Ag; for ¢ € {own, int} and the envi-
ronment E are defined as follows:

o s; = (tr;,ad;) is a state of the agent Ag; with local
state tr;€[4] and percept ad; €[9];

* the set of environment states is S = [—3000, 3000] x
[—2500, 2500] x [~2500, 2500] x [0,40], with sp =
(h, hown, hint,) as above;

Label (ad;) | Advisory | Description (N\[]iir,tlcl\/?iyg?tl/iein Avallak;:/esﬁ ctions

1 CoC Clear of Conflict (=00, +00) 3,43

2 DNC Do Not Climb (=00, 0] -9.33,-7.33

3 DND Do Not Descend [0, +00) +7.33,+9.33

4 DES1500 | Descend at least 1500 ft/min (—o0, —1500] -9.33,-7.33

5 CL1500 Climb at least 1500 ft/min [+1500 +00) +7.33,+9.33

6 SDES1500 | Strengthen Descend to at least 1500 ft/min (=00, —1500] -11.7,-9.7

7 SCL1500 | Strengthen Climb to at least 1500 ft/min [+1500 +00) +9.7,+11.7

8 SDES2500 | Strengthen Descend to at least 2500 ft/min (—o0, —2500] -11.7,-9.7

9 SCL2500 | Strengthen Climb to at least 2500 ft/min [+2500 +00) +9.7, +11.7

Table 3: Two non-zero available actions given an advisory.

e A; = {0,43.0,+7.33,£9.33, +9.7, £11.7}, where
a; € A; is an acceleration h;;

« the available action function A; returns two non-zero
acceleration actions [[Akintunde et al., [2020a]] shown
in Table[3| given a state of the agent, plus zero accelera-
tion;

* observation function obs;, implemented via F, is given
by ad, = obsi(ac{i, sE), where 0bSown(adown, SE) =
argmax (fody., (7s Pown, Pint, t)) o and
Obsint(adinta SE) == argmax(fadim(fha hinta hownv t)),

* the local transition function §; computes a trust level
according to the current trust level tr;, the updated
advisory ad} and the executed action a;: if a; is com-
pliant with ad (i.e., a; is non-zero), when tr; < 3,
then ¢r} = tr; 4+ 1 with probability 1 —¢; and tr = tr;
with probability ¢;, and when tr; = 4, then trg =tr;;
otherwise, when tr; > 2, then trg = tr; — 1 with prob-
ability 1 — ¢; and ¢r; = t¢r; with probability ¢;, and
when tr; = 1, then tr} = tr;, where ¢; € [0, 1].

* the environment transition function ¢ e(sp,a) is de-
fined as: b/ = h—@t(own hmt) O5At2(own hmt),
héwn = hown + hownAt, hl’m = hyy + higAt and

t' =t — At, where At = 1 is the time step.

When computing the equilibria presented in Fig. 4, we use
two reward structures, with the first given by 75, (s) =
rﬁ[() = hif k = t;i — t, and O otherwise. For the zero-
sum case, the reward for the intruder is negated. In both
cases, action rewards are set to O for all state-action pairs, i.

e, ma(s,a) = Tfﬁx(,a)=0,Vs e S,a € A.

This case study was developed by extending the implemen-
tation available in [Michael E Akintunde and Lomuscio,
2020]]. We first modified the original code in order to con-
sider all actions recommended by the advisory system plus
the action corresponding to zero acceleration. We later de-
velop this model further by adding trust values to the states
of the agents and the corresponding probabilistic updates as
described in Section 2. In both cases, we build a game tree
by considering all states the system could be in and translate

that into a PRISM-games model.

We also consider another reward structure with additional
preferences: (i) not only safety but also trust matters; and (ii)
reducing fuel consumption is desired in addition to maintain-
ing safety. More specifically, if || < 200, then 7 (s, o) =

0 and r(s) = |h|/hmax + trl/4 if |h| > 200 then
ri(s, o) = —|h; |/Pmax and 75 (s) = 0 for i € {own, int},
where hyax and Ay, are the maximal absolute values of
all altitudes and accelerations in the generated game tree,
respectively. The initial values are h = 50, hown = -5,
tTown = 4, hing = 5 and trip = 4.

	Introduction
	Neuro-symbolic CSGs
	Generalized BI
	Frozen Subgame Improvement
	Experimental Evaluation
	Conclusions
	Proofs of Main Results
	Further Details for Algorithms
	Approximation Algorithms

	Further Details for Case Studies
	Automated Parking
	Two-Agent Aircraft Collision Avoidance Scenario

