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Abstract— This work studies the planning problem for
robotic systems under both quantifiable and unquantifiable
uncertainty. The objective is to enable the robotic systems to
optimally fulfill high-level tasks specified by Linear Temporal
Logic (LTL) formulas. To capture both types of uncertainty
in a unified modelling framework, we utilise Markov Decision
Processes with Set-valued Transitions (MDPSTs). We introduce
a novel solution technique for the optimal robust strategy
synthesis of MDPSTs with LTL specifications. To improve effi-
ciency, our work leverages limit-deterministic Büchi automata
(LDBAs) as the automaton representation for LTL to take
advantage of their efficient constructions. To tackle the inherent
nondeterminism in MDPSTs, which complicates the reduction
of the LTL planning problem to a reachability problem, we
introduce the concept of a Winning Region (WR) for MDPSTs.
Additionally, we propose an algorithm for computing the WR
over the product of the MDPST and the LDBA. Finally, a robust
value iteration algorithm is invoked to solve the reachability
problem. We validate the effectiveness of our approach through
a case study involving a mobile robot operating in the hexagonal
world, demonstrating promising efficiency gains.

I. INTRODUCTION

Uncertainty in planning can be categorised into two types
based on the effects of actions: probabilistic and nondeter-
ministic. In probabilistic planning, uncertainty is quantified
using probabilities, with Markov Decision Processes (MDPs)
and their generalisations serving as the standard modelling
frameworks [1], [2]. Nondeterministic planning, on the other
hand, addresses unquantifiable uncertainty (such as am-
biguity and adversarial environments), typically exploiting
the fully observable nondeterministic domain (FOND) as a
modelling framework [3]–[5]. Both probabilistic and nonde-
terministic planning have been extensively studied, leading
to significant advances in the field.

Robotic systems are susceptible to many different types
of uncertainty, such as sensing and actuation noise, unpre-
dictability in a robot’s perception, and dynamic environments
[6], [7]. Some sources of uncertainty, such as sensing and
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actuation noise, can be quantified probabilistically using
statistical methods. However, ambiguous uncertainties, such
as unpredictable perception and dynamic environments, are
often more challenging to quantify. Existing works in robot
planning mainly focus on addressing either quantifiable or
unquantifiable uncertainty. However, in scenarios such as
human-robot collaboration [8], both quantifiable and unquan-
tifiable uncertainties are present. Quantifiable uncertainties
may arise from robotic actuation errors, while unquantifiable
uncertainties often stem from the unpredictable nature of
human behavior. To the best of our knowledge, approaches
that can effectively handle both types of uncertainty simul-
taneously have, however, been less explored. In light of
this, we propose to utilise MDPs with set-valued transi-
tions (MDPSTs) [9], [10] as our unified modelling frame-
work. They are attractive because they admit a simplified
Bellman equation compared to (more general) MDPs with
imprecise probabilities (MDPIPs) [11]–[13] and Uncertain
MDPs (UMDPs) [14]–[16], and thus stochastic games [17].

Recently, MDPSTs have been employed to formalise the
trembling-hand problem in nondeterministic domains [18],
where the term “trembling-hand” refers to the phenomenon
in which an agent, due to faults or imprecision in its action
selection mechanism, may mistakenly perform unintended
actions with a certain probability, potentially leading to goal
failures. Specifically, this approach demonstrates that the
human-robot co-assembly problem can be modelled using
MDPSTs, yielding more efficient solution techniques com-
pared to the stochastic game formulation. In this work, Linear
Temporal Logic on finite traces (LTLf ) [19] was used as the
task specification language. LTLf shares the same syntax as
Linear Temporal Logic (LTL) [20] but is interpreted over fi-
nite rather than infinite traces [19]. However, in many robotic
applications, such as persistent surveillance and repetitive
supply delivery, it is necessary to define the robot’s tasks over
infinite trajectories. Indeed, LTL has been widely applied in
robotics research for specifying complex temporal objectives
over infinite traces, such as [21]–[26], including MDPs with
LTL objectives, e.g., [27]–[29]. A typical approach involves
converting the LTL specification into a Deterministic Rabin
Automaton (DRA) and then taking the product of the MDP
and the DRA [30]. This reduces the problem to a planning
problem with a reachability goal over the product space.

In this paper, we propose to formalise the planning
problem for robotic systems under both quantifiable and
unquantifiable uncertainty with temporal objectives as the
strategy synthesis problem for MDPSTs with (full) LTL
objectives. We highlight that MDPSTs with LTL objectives



are studied for the first time in this paper. Due to the presence
of unquantifiable uncertainty in MDPSTs, computing the
end components [31] of an MDPST becomes nontrivial. As
a result, the conventional procedure for MDPs with LTL
objectives based on conversion to DRAs does not apply,
necessitating new solution techniques developed in this work.

The main contributions are summarised as follows. (i)
We propose using MDPSTs as the modelling framework for
robot planning under both quantifiable and unquantifiable
uncertainty. Although the model has been relatively little
studied since it was initially proposed in 2007 [9], recent
findings highlight its advantages, particularly in terms of
computational efficiency [18]. (ii) A novel solution technique
is proposed for the optimal robust strategy synthesis for
MDPSTs with LTL specifications. This technique addresses
the inherent nondeterminism in MDPSTs, which complicates
the reduction of the LTL planning problem to a reachability
problem, by introducing the concept of a Winning Region
(WR). To further improve efficiency, we leverage limit-
deterministic Büchi automata (LDBAs) [32]–[34], which are
typically smaller than conventional DRAs thanks to their
efficient construction from LTL. We devise an algorithm for
computing WR over the product of the MDPST and the
LDBA, and its correctness is demonstrated formally.

II. PRELIMINARIES

This section provides preliminaries for LTL [20] and its
equivalent LDBA [34] representation.

LTL [20] extends propositional logic with temporal op-
erators. The syntax of an LTL formula over a finite set of
propositions Prop is defined inductively as:

φ ::= true|p ∈ Prop|¬φ|φ ∧ φ|φ ∨ φ| ⃝ φ|φUφ, (1)

where ⃝ (Next) and U (Until) are temporal operators. As
usual, additional Boolean and temporal operators are derived
as follows: φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2 (Implies), ♢φ ≡ trueUφ
(Eventually), and □φ = ¬(♢¬φ) (Always). The detailed
semantics of LTL can be found in [20], [30].

A trace π = π0π1 . . . is a finite or infinite sequence of
propositional interpretations (sets), where for every i ≥ 0,
πi ∈ 2Prop is the i-th interpretation in π. Intuitively, πi is
interpreted as the set of propositions that are true at instant i.
For a finite trace π ∈ (2Prop)∗, we denote the interpretation
at the last instant (i.e., index) by lst(π), and we write π |= φ
when an infinite trace π ∈ (2Prop)ω satisfies LTL formula φ.
The language of φ, denoted by L(φ), is the set of infinite
traces over 2Prop that satisfy φ.

Every LTL formula φ over Prop can be translated into a
nondeterministic Büchi automaton (NBA) A [35] over the
alphabet Σ = 2Prop that recognises the language L(φ).

Definition 1. An NBA A is defined as a tuple A =
(Q,Σ, q0, δ, Acc), where Q is the set of states, q0 is the
initial state, Acc ⊆ Q is the set of accepting states, and
δ : Q× Σ 7→ 2Q is the nondeterministic transition function.

A run ρ of A over an infinite trace w0w1 · · · ∈ Σω is an
infinite sequence r0r1 · · · ∈ Qω of states such that r0 = q0

and, for all i ≥ 0, we have ri+1 ∈ δ(ri, wi). We denote by
Inf(ρ) the set of states that appear infinitely often in the run
ρ. A run ρ of A is called accepting if Inf(r) ∩ Acc ̸= ∅.
The language of A, denoted L(A), is the set of all traces that
have an accepting run in A.

NBAs, in general, cannot be used for quantitative analysis
of probabilistic systems. Recently, a class of NBAs called
limit-deterministic Büchi automata (LDBAs), under mild
constraints, have been applied for the quantitative analysis of
MDPs [32]–[34]. We will also use the LDBAs constructed
by [34] for our planning problem.

Definition 2 (LDBA [34]). An LDBA A is defined as a tuple
A = (Q,Σ, q0, δ, Acc) where

• Q = Qi ∪Qacc is the set of states partitioned into two
disjoint sets Qi and Qacc,

• q0 ∈ Qi is the initial state,
• Acc ⊆ Qacc is the set of accepting states, and
• δ = δi ∪ δj ∪ δAcc where δi : Qi × Σ 7→ Qi, δacc :

Qacc × Σ 7→ Qacc and δj : Qi × {ϵ} 7→ 2Qacc .

By Definition 2, the LDBAs considered here are deter-
ministic within Qi and Qacc components; the only non-
determinism lies in the ϵ-transition jumps from Qi-states
to Qacc-states via δj function. Note that the ϵ-transitions
do not consume a letter from Σ: they are just explicit
representations of the nondeterministic jumps in the runs of
A. To be accepting in A, a run has to eventually make a
nondeterministic jump through δj since all accepting states
reside only in Qacc. It is easy to translate an LTL formula φ
to an LDBA A such that L(A) = L(φ) using state-of-the-art
tools such as Owl [34] and Rabinizer 4 [36].

III. MARKOV DECISION PROCESSES WITH SET-VALUED
TRANSITIONS

This section introduces Markov Decision Processes with
Set-valued Transitions (MDPSTs) [9], [10] as the modelling
framework for robot planning under quantifiable and unquan-
tifiable uncertainty. Compared to the definition in [9], we
further introduce a labelling function that associates the states
of the MDPST with the propositions of an LTL formula.

Definition 3 (MDPSTs). A MDPST M is a tuple
(S, s0, A,F , T ,L), where

• S is a finite set of states;
• s0 ∈ S is the initial state;
• A is a finite set of actions;
• F : S × A Z⇒ 22

S

is the set-valued nondeterministic
state transition (partial) function;

• T : S×A×2S 7→ (0, 1] is the transition probability (or
mass assignment) function, i.e., given a set Θ ∈ F(s, a),
T (s, a,Θ) = Pr(Θ|s, a),

• L : S → 2Prop is the proposition labelling function,
where Prop is a finite set of propositions.

Traditional MDPs are, in fact, a special type of MDPSTs,
where T only maps a state and an action to a probabilistic
distribution over S instead of the powerset 2S . As usual,
we use A(s) ⊆ A to denote the set of actions applicable



at state s. Note that, in MDPSTs, the transition function
F(s, a) returns a set of state sets, i.e., F(s, a) ⊆ 2S , and the
transition probability function T expresses the probability of
transitioning to such sets via a given action.

A path ξ ofM is a finite or infinite sequence of alternating
states and actions ξ = s0a0s1a1 · · · , ending with a state if
finite, such that for all i ≥ 0, ai ∈ A(si) and si+1 ∈ Θi for
some set Θi ∈ F(si, ai). We denote by FPaths (FPathss)
and IPaths (IPathss) the set of all finite and infinite paths
of M (starting from state s), respectively. For a path ξ =
s0a0s1a1 · · · of M, the sequence L(ξ) = L(s0)L(s1), · · ·
over Prop is called the trace induced by ξ over M.

A strategy σ of M is a function σ : FPaths→ Distr(A)
such that, for each ξ ∈ FPaths, σ(ξ) ∈ Distr(A(lst(ξ))),
where lst(ξ) is the last state of the finite path ξ and Distr(A)
denotes the set of all possible distributions over A. Let
ΩM

σ (s) denote the subset of (in)finite paths of M that
correspond to strategy σ and initial state s. Let ΠM be the
set of all strategies.

Let us now motivate MDPSTs for robot planning under
uncertainty with a running example.

Fig. 1: Hexagonal world.

Example 1 (Hexagonal world). We consider a hexago-
nal grid map, as shown in Fig. 1. Hexagonal grid map
representations offer several advantages over quadrangular
grid maps, including lower quantisation error [37] and
enhanced performance in cooperative robot exploration [38].
The yellow regions, labelled as b1, b2, · · · , b5, are base
stations, and the grey regions, labelled as obs, are obstacle
regions. The state of the robot is defined as (qi, w), where qi
represents the specific region where the robot is located and
w ∈ {N,S,E,W} represents the orientation of the robot.
There are 4 action primitives {FR, BK, TR, TL}, which
stand for move forward, move backward, turn right, and turn
left, respectively. The robot’s motion is subject to uncertainty
due to actuation noise and drifting. It is known that the
probabilities of the 4 actions being executed correctly are
0.8, 0.7, 0.9, and 0.9, respectively. Moreover, it should be
noted that, depending on the precise location (which is not
available due to imprecise sensing/perception) within each
region and the orientation of the robot, there may be several
potential target states when the action is correctly executed.
For instance, as depicted in Fig. 1, when the robot is at state
(q17, E) and wants to take an action FR, with probability

0.8 it ends up in state (q12, E) or (q22, E).
In this example, it is convenient to abstract the robot

dynamics as an MDPST since one can combine the moves of
all potential target regions as a set-valued transition for each
correctly executed motion. For instance, when the robot’s
state is (q17, E) and it takes an action FR, then there are
three possible transitions: i) with probability 0.8 it moves to
the set {(q12, E), (q22, E)}, ii) with probability 0.1 it moves
to the singleton set {(q27, E)}, and iii) with probability 0.1
it moves to the singleton set {(q7, E)}.

Previously, MDPSTs were used to formulate the
trembling-hand problem in nondeterministic domains [18],
where LTLf was utilised as the specification language. Note
that, for LTLf objectives, one can translate the formula into
a deterministic finite automaton. For LTL goals, however,
this is more involved because DFAs are not sufficient, and
one has to resort to automata over infinite traces. This
complicates the strategy synthesis procedure and requires us
to develop new solution techniques based on the Winning
Region (see Def. 10) to capture acceptance conditions.

Let us first recap the definitions of a feasible distribution
and nature for MDPSTs originally introduced in [18].

Given a MDPST M, define the set of reachable
states of (s, a) as PostM(s, a) = {s′ | ∃Θ ∈
F(s, a) s.t. T (s, a,Θ) > 0∧s′ ∈ Θ}. A feasible distribution
ofM guarantees that, given a state-action pair (s, a), (i) the
sum of probabilities of selecting a state from PostM(s, a)
equals 1; (ii) the sum of probabilities of selecting a state from
a set Θ ∈ F(s, a) equals T (s, a,Θ); and (iii) the probability
of selecting a state outside PostM(s, a) is 0. In the following
definition, ιΘs′ indicates whether s′ is in Θ. Hence ιΘs′ = 1 if
s′ ∈ Θ and ιΘs′ = 0 otherwise. Furthermore, αΘ

s′ represents
the probability of s′ being selected from Θ if s′ ∈ Θ. Note
that Definition 5 in [18] only allows deterministic choice
within Θ (i.e., αΘ

s′ = 1 if s′ is selected, and 0 otherwise). In
this work, we also permit probabilistic choice within Θ.

Definition 4 (Feasible distribution in MDPSTs). Let M =
(S, s0, A,F , T ,L) be an MDPST and (s, a) a state-action
pair, where a ∈ A(s). has ∈ Distr(S) is a feasible distribution
of (s, a), denoted by s

a−→ has , if

(i)
∑

s′∈Θ αΘ
s′ = 1, for Θ ∈ F(s, a);

(ii) hax(s
′)=

∑
Θ∈F(s,a)

ιΘs′α
Θ
s′T (s, a,Θ), for s′∈PostM(s, a);

(iii) has(s
′) = 0, for s′ ∈ S \ PostM(s, a).

A nature is defined to characterize the unquantifiable
uncertainty in MDPSTs, motivated by the definition of nature
in robust MDPs [14]. One can think of nature as the strategy
controlled by the adversarial environment.

Definition 5 (Nature for MDPSTs [18]). A nature of an
MDPST is a function γ : FPaths × A → Distr(S) such
that γ(ξ, a) ∈ Ha

s for ξ ∈ FPaths and a ∈ A(lst(ξ)), where
Ha

s is the set of feasible distributions of (s, a).

Suppose we fix a nature γ. The probability of an agent



strategy σ satisfying an LTL specification φ is denoted by

Prσ,γM (φ) := PrM({ξ ∈ ΩM
σ,γ(s0) | L(ξ) |= φ}),

where ΩM
σ,γ(s0) is the set of all probable paths generated by

the agent strategy σ and nature γ from initial state s0.
Similarly to Definitions 7-8 in [18], we now define (opti-

mal) robust strategies for MDPSTs with LTL specifications,
rather than LTLf , which account for all possible natures. Of
course, given a fixed strategy σ and a nature γ, one can
deduce a Markov chain Mσ,γ from M.

Definition 6 (Robust strategy). Let M be an MDPST, φ
an LTL formula, and β ∈ [0, 1] a threshold. An agent
strategy σ robustly enforces φ in M wrt β if, for every
nature γ, the probability of generating paths satisfying φ
in M is no less than β, that is, Pσ

M(φ) ≥ β, where
Pσ
M(φ) := minγ{Prσ,γM (φ)}. Such a strategy σ is referred

to as a robust strategy for M (with respect to β).

Definition 7 (Optimal robust strategy). An optimal strategy
σ∗ that robustly enforces an LTL formula φ in an MDPST
M is given by σ∗ = argmaxσ{PrσM(φ)}. In this case, σ∗

is referred to as an optimal robust strategy for M.

The optimal robust strategy synthesis problem considered
in this paper is formulated as follows.

Problem 1 (Optimal Robust Strategy Synthesis). Given an
MDPST M and an LTL formula φ, synthesise an optimal
robust strategy σ∗.

IV. SOLUTION TECHNIQUE

We now introduce our solution to Problem 1 for a given
MDPSTM and LTL formula φ. Our approach is based on a
reduction to the reachability problem, but is more challenging
than for MDPs because of unquantifiable uncertainty, and
than for LTLf because of the need to consider infinite paths.
It contains 3 steps.

1) Construct the product M× of the MDPST M and the
LDBA A derived from the LTL specification φ.

2) Reduce Problem 1 to a reachability problem over the
product MDPST M×. This step presents a significant
challenge; we address it by introducing the concept of
a Winning Region for MDPSTs, along with a novel
algorithm for computing it.

3) Synthesise the strategy of the reachability problem over
the product M×.

We will introduce each step in detail below.

A. Product MDPST

As mentioned before, we first obtain an LDBA A =
(Q, q0,Σ, δ = δi ⊎ δj ⊎ δacc, Acc) from the LTL formula
φ using state-of-the-art tools such as Rabinizer 4 [36].
We prefer LDBAs over DRAs because nondeterministic
LDBAs are usually smaller than DRAs [34]. This thus yields
smaller product MDPSTs and smaller strategies. Then, we
construct the product MDPST M× of the MDPST M =
(S, s0, A,F , T ,L) and the LDBA A as follows.

Definition 8 (Product MDPST). A product MDPST is a tuple
M× = (S×, s×0 , A

×,F×, T ×,L×, Acc×), where S× = S×
Q is the set of states, s×0 = (s0, q0) is the initial state, and

• A× = A ∪Aϵ where Aϵ := {ϵq | q ∈ Q};
• F× : S× ×A× Z⇒ 22

S×

is the set-valued nondetermin-
istic transition function. For every a ∈ A×, (s, q) ∈ S×,
we define Θ× ∈ F×((s, q), a) as follows:

i) if a ∈ A, let q′ = δ(q,L(s)), and define Θ× =
{(s′, q′) | s′ ∈ Θ}, for every Θ ∈ F(s, a);

ii) otherwise a = ϵq′ ∈ Aϵ, then for every q′ ∈
δj(q, ϵ), define Θ× = {(s, q′)}.

• T × : S× ×A× × 2S
× 7→ [0, 1], where

– T ×((s, q), a,Θ×) = T (s, a,Θ), if a ∈
A(s),Θ× = Θ × {q′} for Θ ∈ F(s, a) where
q′ = δ(q,L(s));

– T ×((s, q), a,Θ×) = 1 if a ∈ Aϵ,Θ× = {(s, q′)}
for some q′ ∈ δj(q, ϵ) with a = ϵq′ ,

– T ×((s, q), a,Θ×) = 0, otherwise.
• L× : S× → 2Prop, where L×((s, q)) = L(s);
• Acc× = {(s, q) ∈ S× | q ∈ Acc}.
An infinite path ξ× ofM× satisfies the Büchi condition if

Inf(ξ×) ∩Acc× ̸= ∅. Such a path is said to be accepting.

When an MDPST action a ∈ A is taken in the product
MDPST M×, the alphabet used to transition the LDBA
is deduced by applying the proposition labelling function
to the current MDP state: L(s) ∈ 2Prop. In this case, the
LDBA transition δ(q,L(s)) is deterministic. Otherwise, if an
ϵ-transition ϵq̂ ∈ {ϵq | q ∈ Q} is taken, the LDBA selects an
ϵ-transition, and the nondeterminism of δj(q, ϵ) is resolved
by transitioning the automaton state to q̂.

B. Reduction to a reachability problem

Conventional planning approaches for MDPs against LTL
specification require computing maximal end components
(MECs) in the product and determining which MECs are
accepting. These MECs are then regarded as the goal states in
the reachability planning problems. For MDPSTs, however,
this approach is not applicable. To better understand this,
let’s first review the definition of (maximal) end-components
((M)EC) for MDPs.

Definition 9 (EC for MDPs [30], [31]). An end component
(EC) of an MDP M is a sub-MDP M′ of M such that
its underlying graph is strongly connected. A maximal EC
(MEC) is maximal under set inclusion.

Lemma 1 (EC properties for MDPs. Theorems 3.1 and 4.2 of
[31]). Once an end component E of an MDPM is entered,
there is a strategy that i) visits every state-action pair in E
infinitely often with probability 1, and ii) stays in E forever.

Lemma 1 makes it possible to reduce a planning problem
over MDPs with LTL objectives to a reachability problem
over the product MDP. This is due to the fact that, whenever
a state s× of an accepting MEC E of the product MDP
M× is reached, there exists a strategy of M× starting from
s× that ensures every state in E (including the accepting



Algorithm 1 Compute winning region for MDPST

Require: Product MDPST M×.
Ensure: Winning region W×.

1: Compute Sp and construct sub-MDPST M×
sub =

(Sp, s
×
0 , A

×,Fp, Tp,Lp, Acc
×);

2: flag = 1;
3: while flag = 1 and Acc× ̸= ∅ do
4: Split Acc× into two virtual copies Iin = {sin :

sin is a virtual copy of s,∀s ∈ Acc×} and Iout{sin :
sout is a virtual copy of s,∀s ∈ Acc×};

5: Ŝ = (Sp \ Acc×) ∪ Iin ∪ Iout;
6: Construct the MDPST M̂×

sub (cf. (2)) over Ŝ;
7: Compute the optimal value function Vsat for M̂×

sub

with the robust dynamic programming operator T in (3);
8: if ∃sout ∈ Iout s.t. Vsat(s

out) ̸= 1 then
9: flag ← 1;

10: Update Sp and Acc×;
11: else
12: flag ← 0;
13: end if
14: end while
15: W× = Sp.

states) will be visited infinitely often (according to Lemma
1), thereby satisfying the LTL objective.

For EC decomposition, MDPs can be seen as directed
graphs where each state corresponds to a node and each
action-labelled (probabilistic) transition corresponds to an
edge. However, this approach cannot be directly applied
to MDPSTs where transitions lead to set-valued successors
rather than individual states. For instance, consider a set-
valued transition Θ× = {s′, s′′, s′′′} ∈ F×(s×, a) in a
product MDPST M×. Here it is not sufficient to add edges
for all pairs (s×, s′), (s×, s′′), (s×, s′′′), as the adversarial
nature may prevent reaching some states in Θ× from s×.
This poses a significant challenge in identifying the set of
states in the product MDPST M× that are guaranteed to
visit the set of accepting states Acc× infinitely often with
probability 1, an essential step in reducing the LTL planning
problem to a reachability problem. To address this challenge,
we propose a procedure for identifying a set of states, called
the Winning Region, in an MDPST that are guaranteed to
visit a set of accepting states infinitely often with probability
1, defined formally below.

Definition 10 (Winning Region for MDPSTs). Given an
MDPST M = (S, s0, A,F , T ,L) with a set of accepting
states Acc ⊆ S, we say a set of states W ⊆ S is a
Winning Region (WR) for the MDPST M if, for every state
s ∈W , there exists a strategy σ(s) starting from s such that
Pr

σ(s)
M (□♢Acc) = 1.

Next, we propose an algorithm for computing the WR W×

of the product MDPSTM×, which is outlined in Algorithm
1. The algorithm consists of the following steps.

First, we introduce an optimisation that computes a sub-

MDPST M×
sub of M×, which includes only states that

are (forward) reachable from the initial state s×0 and (back-
ward) reachable from the set of accepting states Acc× (line
1). Denote by i) Sp ⊆ S× the set of states that can be reached
from both the initial and accepting states and ii) M×

sub =
(Sp, s

×
0 , A

×,Fp, Tp,L×) the sub-MDPST constructed from
M× with respect to Sp (an algorithm for computing Sp and
M×

sub can be found in [18]).
Second, we iteratively remove states in Sp that cannot

visit Acc× infinitely often with probability 1 (lines 2-20).
Before starting the iteration, a flag is set to 1 (line 2),
indicating that the iteration should proceed. Each iteration
begins by splitting the set of accepting states Acc× into two
virtual copies: i) Iin, which only has incoming transitions
into Acc×, and ii) Iout, which only has outgoing transitions
from Acc× (line 4). Then a new state space can be defined
as Ŝ := (Sp \ Acc×) ∪ Iin ∪ Iout (line 5).

Over Ŝ, we can construct a new product MDPST

M̂×
sub = (Ŝ, s×0 , Â

×, F̂×, T̂ ×, L̂×) (2)

which is equivalent toM×
sub (line 6). For each copy sin ∈ Iin

of an accepting state s ∈ Acc×, we assign only a self-loop
transition. As a result, each time sin is visited, it will be
visited infinitely often. Due to space limitations, we refer to
[39] for the detailed construction of M̂×

sub.
We now give a robust value iteration algorithm [14] for

computing the robust maximal probability of reaching Iin
from each state s× ∈ Ŝ (line 7). Define a value function
Vsat : Ŝ → R≥0, where

Vsat(s
×) = max

σ×(s×)
min
γ×

{
PrM̂×

sub
({ξ× ∈ Ω

M̂×
sub

σ×(s×),γ×(s
×) | L̂×(ξ×) |= ♢Iin})

}
,

which represents the robust maximal probability of reaching
Iin from s×. Then one can get that Vsat(s

×) = 1,∀s× ∈ Iin.
It was shown in [9], [18] that a simplified Bellman

equation exists for MDPSTs. Therefore, for s× ∈ Ŝ\Iin, the
robust dynamic programming operator T can be designed as

T (Vsat)(s
×) = max

a∈Â×(s×)

{ ∑
Θ∈F̂×(s×,a)

T̂ ×(s×, a,Θ)

min
s′∈Θ
{Vsat(s

′)}
}
.

(3)

Once the robust value iteration converges and thus the op-
timal value function Vsat is obtained, we first check whether
there exists a state sout ∈ Iout such that Vsat(s

out) ̸= 1.
If such a state exists, we set flag to 1, and then remove
the corresponding state s from both Sp and Acc× (lines 8-
10). Otherwise, the flag is set to 0 (11-12). The iteration
continues if the flag is 1 and terminates once flag becomes
0 or Acc× = ∅. Once the iteration terminates, the algorithm
returns the WR W× (line 15). Our main result then follows.

Theorem 1. Given an MDPST M and an LTL formula φ,
the maximal probability of satisfying φ is given by

max
σ∈ΠM

{PrσM(φ)} = max
σ×∈ΠM×

{Prσ
×

M×(♢W×)}, (4)



where W× is the WR computed by Algorithm 1.

Proof Sketch. We prove Theorem 1 in two steps. First, we
show the correctness of Algorithm 1, i.e., that the output W×

of Algorithm 1 is indeed the WR of the product MDPST
M×. Then, we show that (4) holds by verifying both sides
of the inequality and subsequently constructing the induced
policy on M.

An example illustrating the steps of Algorithm 1 and the
full proof of Theorem 1 are provided in an extended version
[39].

C. Optimal robust strategy synthesis

We have thus reduced Problem 1 to the reachability
problem over M×

sub, where the goal set is given by the WR
W×. For states s× ∈ W×, it holds that Vsat(s

×) = 1. For
states s× ∈ Sp \W×, the optimal value function Vsat can
be determined by conducting another run of the robust value
iteration algorithm (3). The optimal robust strategy σ× can
be derived from Vsat using standard methods.

V. EXPERIMENTS

In this section, a case study is provided to demonstrate
the effectiveness of our method. We implemented the so-
lution technique proposed in Section IV in Python, and
use Rabinizer 4 [36] for the LTL-to-LDBA construction.
For the robust value iteration, we set the convergence
threshold to 10−3, i.e., the value iteration stops when
maxs∈Sl

{|V k+1
sat (s)−V k

sat(s)|} < 10−3. All simulations are
carried out on a Macbook Pro (2.6 GHz 6-Core Intel Core
i7 and 16 GB of RAM) and the implementation code can be
found at: https://github.com/piany/MDPST-full-LTL.

We consider a mobile robot moving in the hexagonal world
described in Example 1, where the size of the workspace
is denoted by (Nx, Ny). As explained, the robot dynamics
can be abstracted as an MDPST. The robot is required
to persistently survey three goal regions while avoiding
obstacles at all times. This task is expressed as the LTL
formula

φpersistavoid =

(□♢b1 ∨ b2) ∧ (□♢b3) ∧ (□♢b4 ∨ b5) ∧ (□¬obs).

The corresponding LDBA derived using Rabinizer 4 has
4 states. For the scenario (Nx, Ny) = (10, 5), the con-
structed product MDPST M× has 800 states and 5440
(single and set-valued) edges. The WR W× is computed
using Algorithm 1, which has 509 states. The initial
state of the robot is (q1, N) and one can compute that
max{PrM×(φpersistavoid)} = 0.85. The (MDPST, LDBA,
and product MDPST) model construction took in total 0.467s
and the strategy synthesis took 9.144s.

To highlight the computational advantage of LDBA over
DRA, we also consider DRA as representations for the
LTL task φpersistavoid. The resulting DRA has 8 states,
whereas the LDBA has only 4 states. We compare the
performance of both representations in three scenarios:
(Nx, Ny) = (10, 5), (Nx, Ny) = (16, 8), and (Nx, Ny) =

TABLE I: The number of states and transitions (|S×|, |T ×|)
of the product MDPST M×, the model construction time
Tmdl, and the strategy synthesis time Tsys for different
automation choices A and different scenarios (Nx, Ny).

(Nx, Ny) A (|S×|, |T ×|) Tmdl(s) Tsys(s)

(10, 5) LDBA (800, 5440) 0.888 10.745
DRA (1600, 10880) 0.986 17.363

(16, 8) LDBA (2048, 14344) 0.975 88.529
DRA (4098, 28688) 1.696 231.343

(20, 10) LDBA (3200, 22728) 2.058 288.662
DRA (6400, 45456) 1.962 748.126

Fig. 2: Simulated trajectory of 2000 time steps for the LTL task
φpersistavoid, where the color bar denotes the time steps.

(20, 10). TABLE I shows the number of states and transitions
(|S×|, |T ×|) of the product MDPST M×, along with the
model construction time Tmdl, and the strategy synthesis
time Tsys for each scenario (Nx, Ny). The results clearly
show that strategy synthesis with LDBA is significantly faster
than with DRA, particularly as the workspace size increases.

To verify robustness, we perform 1000 Monte Carlo
simulations of 2000 time steps for scenario (Nx, Ny) =
(10, 5). For each simulation, we randomly choose the set
of parameters {αθ

s′ : θ ∈ F×(s, a), s′ ∈ θ} for each state-
action pair (s, a), to resolve the uncertainty for the set-
valued transitions. We adopt the optimal robust strategy for
the strategy prefix and the Round-Robin strategy once the
system enters the WR. The task φpersistavoid is satisfied
868 times out of the 1000 simulations, which verifies the
probabilistic satisfaction guarantee. Fig. 2 depicts one of the
simulated trajectories. One can see that the LTL specification
φpersistavoid is satisfied.

VI. CONCLUSION

This work studied the robot planning problem under both
quantifiable and unquantifiable uncertainty, and subject to
high-level LTL task specifications. MDPSTs were proposed
as a unified modelling framework for handling both types of
uncertainties. Additionally, a sound solution technique was
introduced for synthesising the optimal robust strategy for
MDPSTs with LTL specifications. For future work, we plan
to explore the plan synthesis problem for MDPSTs, subject
to both temporal logic specifications and cost constraints.

https://github.com/piany/MDPST-full-LTL
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