
Online Control Synthesis for Uncertain
Systems under Signal Temporal Logic
Specifications

The International Journal of Robotics
Research
XX(X):1–24
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Pian Yu1,∗, Yulong Gao1,∗, Frank J. Jiang2,3, Karl H. Johansson2,3, and Dimos V.
Dimarogonas2,3

Abstract
Signal temporal logic (STL) formulas have been widely used as a formal language to express complex robotic
specifications, thanks to their rich expressiveness and explicit time semantics. Existing approaches for STL control
synthesis suffer from limited scalability with respect to the task complexity and lack of robustness against the
uncertainty, e.g., external disturbances. In this paper, we study the online control synthesis problem for uncertain
discrete-time systems subject to STL specifications. Different from existing techniques, we propose an approach based
on STL, reachability analysis, and temporal logic trees. First, based on a real-time version of STL semantics, we develop
the notion of tube-based temporal logic tree (tTLT) and its recursive (offline) construction algorithm. We show that the
tTLT is an under-approximation of the STL formula, in the sense that a trajectory satisfying a tTLT also satisfies the
corresponding STL formula. Then, an online control synthesis algorithm is designed using the constructed tTLT. It is
shown that when the STL formula is robustly satisfiable and the initial state of the system belongs to the initial root node
of the tTLT, it is guaranteed that the trajectory generated by the control synthesis algorithm satisfies the STL formula.
We validate the effectiveness of the proposed approach by several simulation examples and further demonstrate its
practical usability on a hardware experiment. These results show that our approach is able to handle complex STL
formulas with long horizons and ensure the robustness against the disturbances, which is beyond the scope of the
state-of-the-art STL control synthesis approaches.

Keywords
Signal temporal logic, uncertain systems, online control synthesis, tube-based temporal logic tree, and reachability
analysis

1 Introduction

1.1 Motivation

The rapid growth of robotic applications, such as
autonomous vehicles and service robots, has stimulated
the need for new control synthesis approaches to
safely accomplish more complex objectives such as
nondeterministic, periodic, or sequential tasks (Kress-Gazit
et al., 2018). Temporal logics, such as linear temporal logic
(LTL) (Baier and Katoen, 2008), metric interval temporal
logic (MITL) (Koymans, 1990), and signal temporal logic
(STL) (Maler and Nickovic, 2004), have shown capability in
expressing such objectives for dynamical systems. However,
traditional control methods (e.g., linear quadratic regulator,
model predictive control, and adaptive control) are originally
developed for simple control objectives such as stability
and set invariance (Baillieul and Samad, 2021), and these
methods are restrictive to handle complex temporal logic
tasks. Thus, advanced control methods must be developed to
fill this gap.

As a more recently developed temporal logic, STL
allows the specification of properties over dense-time. This
makes it suitable for expressing complex specifications
that may involve specific timing requirements or deadlines.
Such specifications include time-constrained reachability
(e.g., F[0,60]G[0,20]A: visit region A within 60 seconds and

stay there for another 20 seconds) and time-constrained
surveillance (e.g., GF[10,50]A ∧ GF[10,50]B: visit regions A
and B every 10 – 50 seconds). STL was originally evaluated
over continuous-time signals in Maler and Nickovic (2004),
and then extended to discrete-time signals in Raman et al.
(2015). STL contains predicates as the atomic elements and
the truth value of each predicate is evaluated through a
predicate function. Due to a number of advantages, such as
explicitly treating real-valued signals (Maler and Nickovic,
2004), and admitting robustness semantics (Fainekos and
Pappas, 2009), control synthesis under STL specifications
has gained popularity and many efforts have been devoted
for STL control synthesis in the last few years. Nevertheless,
existing approaches usually suffer from limited scalability

1Department of Computer Science, University of Oxford, UK
2Division of Decision and Control Systems, KTH Royal Institute of
Technology, Stockholm, Sweden
3Digital Futures, Stockholm, Sweden

∗ Pian Yu and Yulong Gao were at the KTH Royal Institute of
Technology when this work was conducted.

Corresponding author:
Pian Yu, Department of Computer Science, University of Oxford, UK.
Email: pian.yu@cs.ox.ac.uk

2 The International Journal of Robotics Research XX(X)

with respect to the task complexity and lack of robustness
to the uncertainties from the robotic systems.

The complexity of STL formulas (e.g., the time
horizon or nestedness) is in general crucial in deciding
the complexity of control synthesis approaches, e.g.,
optimization-based methods. For example, the number of
integer variables in mixed-integer program based approaches
grows exponentially with respect to the time horizon. Other
popular approaches, e.g., barrier function-based methods,
only handle a fragment of STL formulas with non-nested
temporal operators. On the other hand, robotic systems are
usually corrupted by external disturbances and accompanied
by modeling errors. These uncertainties make it challenging
to reason about STL specifications due to the encoded
time semantics. To the best of our knowledge, few control
approaches can efficiently handle system uncertainties with
robustness guarantees for STL specifications.

1.2 Related work
1.2.1 LTL or MITL control synthesis LTL focuses on
the Boolean satisfaction of properties by given signals
while MITL is a continuous-time extension that allows to
express temporal constraints. Existing control approaches
that use LTL or MITL mainly rely on a finite abstraction
of the system dynamics and a language equivalent automata
(Gastin and Oddoux, 2001) or timed-automata (Alur et al.,
1996) representation of the LTL or MITL specification. The
controller is synthesized by solving a game over the product
automata (Belta et al., 2007, 2017; Zhou et al., 2016). Other
control approaches include optimization-based (Wolff and
Murray, 2016; Fu and Topcu, 2015) and sampling-based
methods (Vasile and Belta, 2013; Kantaros and Zavlanos,
2018).

One of the most relevant works is Gao et al. (2022). In this
paper, the notion of temporal logic tree (TLT) is proposed for
LTL specifications and the corresponding TLT-based control
synthesis algorithm is developed. Despite some relevance,
it is far from straightforward to extend these results to
general STL formulas. Some significant differences between
our paper and Gao et al. (2022) are highlighted as follows.
First, the definitions and semantics of TLT and tTLT are
largely different. In particular, the time constraints encoded
in STL formulas require a new notion of real-time STL
semantics for connecting tTLT and STL. Second, the control
synthesis algorithms in this paper are largely different from
that in Gao et al. (2022). In order to carefully monitor the
time constraint satisfaction in the STL formulas, the online
synthesis algorithm needs in an appropriate way to track the
set node (Algorithm 7), update the tTLT (Algorithm 8), and
update the post set (Algorithm 11).

1.2.2 STL control synthesis Given the extensive literature
studying STL, we restrict our attention to the following STL
synthesis approaches.

Optimization-based methods Optimization methods
leverage on the fact that STL formulas can be encoded
as mixed-integer constraints. Based on this, STL control
synthesis can be obtained by solving a series of optimiza-
tion problems (Raman et al., 2015, 2014). To avoid the
complexity of integer-based optimization, smooth approxi-
mations have been proposed by using sequential quadratic

programming (SQP) (Gilpin et al., 2020) or convex-concave
programming (Takayama et al., 2023). Recent work studies
how to reduce the integer variables using the property of
logic operators (Kurtz and Lin, 2022). However, these results
are restricted to deterministic systems.

An extension of the mixed-integer formulation is
investigated for linear systems with additive bounded
disturbances in Sadraddini and Belta (2015), where the
model predictive controller is obtained by solving the
optimization problem at each time step in a receding
horizon fashion. In Farahani et al. (2018), a model
predictive controller in the form of shrinking horizon is
developed for linear systems with stochastic disturbances
under STL constraints. One drawback of these approaches
is the exponential computational complexity which makes
it difficult to be applied to STL formulas with long time
horizons. In addition, a stochastic gradient decent-based
method is developed to optimize the probability that the
stochastic system satisfies an STL specification (Scher et al.,
2022).

Barrier function methods Barrier function methods
are mainly used for continuous-time systems. The idea is
to transfer the STL formula into one or several (time-
varying) control barrier functions, and then obtain feedback
control laws by solving quadratic programs (Lindemann
and Dimarogonas, 2018). This method is computationally
efficient. However, as the existence and design of barrier
functions are still open problems, it currently mainly applies
to deterministic affine systems. In Yang et al. (2020),
the authors consider linear cyber-physical systems with
continuous-time dynamics and discrete-time controllers.
The proposed offline trajectory planner is based on a
mixed integer quadratic program that utilizes control barrier
functions to generate satisfying trajectories in continuous-
time. Other control synthesis approaches include sampling-
based (Vasile et al., 2017a; Karlsson et al., 2020) and
learning-based methods (Venkataraman et al., 2020; Kapoor
et al., 2020). In addition, control synthesis for multi-agent
systems and STL specifications is recently considered in
Lindemann and Dimarogonas (2019); Buyukkocak et al.
(2021); Sun et al. (2022).

Reachability-based methods Reachability is a funda-
mental notion in systems and control and reachability analy-
sis has been widely used for simple control objectives, e.g.,
stability and safety (Bertsekas, 1972). In Roehm et al. (2016),
a reachability-based method is proposed for STL model
checking by converting an STL formula to reachset temporal
logic. This method is refined in (Kochdumper and Bak, 2023)
for linear deterministic systems by adequately tuning param-
eters to enforce over-approximation error to zero. Chen
et al. (2018b) recognizes the connection between temporal
logic operators and reachability, and then exploits Hamilton-
Jacobi reachability for STL control synthesis, which has
served as an inspiration to our work. Although there exists
close relevance between Chen et al. (2018b) and our paper,
some remarkable differences should be highlighted.

First, we find that the connection between temporal logic
operators and reachability in Chen et al. (2018b) may not
hold for nested STL formulas. We improve and extend this
point by introduce the new real-time STL semantics, which
is beyond Chen et al. (2018b) and motivates the proposal

Yu et al. 3

Figure 1. The tTLT-based STL control synthesis framework.

of the tTLTs. Second, while the control design in Chen
et al. (2018b) is restricted to non-nested STL formulas,
we propose a systemic way to online synthesize the robust
controller for more general STL formulas. In our paper,
thanks to the semantic relation between the STL formulas
and their corresponding tTLTs, we are able to perform
control synthesis over the tTLT, instead of the STL formulas,
with a correct-by-construction guarantee.

Sampling-based/data-driven/learning-based methods
Motivated by the success of sampling-based methods in
motion planning, some recent works consider the extension
to the STL planing. In Vasile et al. (2017b), an RRT*
approach is developed to incrementally construct a tree such
that an STL specification is maximally satisfied. Barbosa
et al. (2019) uses a cost function to guide exploration for
satisfying a restricted fragment of STL formulas. More
recent work Ho et al. (2022) integrates automaton theory
and sampling-based methods for STL control synthesis of
nonlinear deterministic system. When the system model
is unknown, a direct data-driven STL synthesis method is
studied using behavioral characterization of linear models
(van Huijgevoort et al., 2023).

In addition, learning-based methods have been becoming
popular for STL verification and synthesis. For example,
neural network-based methods are investigated in Liu
et al. (2021); Leung and Pavone (2022); Hashimoto et al.
(2022). By generating rewards in proper ways from STL
specifications, reinforcement learning-based approaches
have been proposed in Venkataraman et al. (2020); Kapoor
et al. (2020); Singh and Saha (2023); Hamilton et al. (2022).

1.2.3 Other related work Beyond the above literature
review, the properties of STL formulas have been studied
in different contexts or for different purposes. In Leung
et al. (2023), a mechanism is proposed to infuse the logical
structure of STL specifications into gradient-based methods
by translating STL robustness formulas into computation
graphs. In Lindemann et al. (2021a), the STL formulas are
interpreted over discrete-time stochastic processes using the
the induced risk. Based on this, risk-aware STL control is
studied in Lindemann et al. (2021b).

1.3 Contributions
In this paper, we aim at developing an efficient, robust,
and sound control synthesis algorithm for uncertain robotic
systems under STL specifications. Different from existing
STL synthesis techniques, we propose an approach based

on STL, reachability analysis, and temporal logic trees. The
new framework is shown in Figure 1. It consists of two
phases. In the offline phase, we propose to transform an
STL formula into a tube-based temporal logic tree (tTLT)
by performing reachability analysis on the dynamic system
under consideration. As a fundamental notion in systems
and control, reachability captures the evolution of dynamic
systems under inputs (e.g., control inputs and uncertainties).
In the online phase, the constructed tTLT is further used
to guide the control synthesis. The contributions of our
paper are as follows: (i) We propose a real-time version
of STL semantics and establish a correspondence between
STL formulas and tTLTs via reachability analysis. (ii) We
develop an algorithm that can automatically and recursively
construct the tTLT from the corresponding STL formula.
We show that the tTLT is an under-approximation for a
broad fragment of STL formulas, i.e., all the trajectories that
satisfy the tTLT also satisfy the corresponding STL formula.
(iii) We develop an online control synthesis algorithm based
on the constructed tTLT. We show that the algorithm is
robust and sound. (iv) We validate the effectiveness of
the proposed approach by several simulation examples and
further demonstrate its practical usability on a hardware
experiment.

It is worth mentioning that reachability analysis is the core
to ensure the robustness of the proposed algorithm, since the
uncertainties in the system can be explicitly addressed when
performing reachability analysis. Over the past decades,
there have been remarkable progresses in the computation of
reachable sets for different systems. New software tools on
reachability analysis facilitate the usability of the approach
proposed in our paper.

We further remark that the robustness here refers to the
control ability against system uncertainties. That is, we
are interested in synthesizing a controller under which the
signals satisfy an STL specification despite the underlying
uncertainties. This is different from the notion of quantitative
robustness which measures how much a signal satisfies or
violates an STL specification.

1.4 Organization and notations
The remainder of the paper is organized as follows. In
Section 2, preliminaries and the problem under consideration
are formulated. In Section 3, definitions of real-time STL
semantics and tTLTs are introduced. Section 4 establishes a
semantic connection between STL and tTLT. Section 5 deals
with the online control synthesis problem. The results are

4 The International Journal of Robotics Research XX(X)

Table 1. Notations

R set of real numbers
R≥0 set of nonnegative real numbers
N set of natural numbers
Rn Euclidean space of dimension n

Rn×m space of n-by-m real matrices
∥x∥ Euclidean norm of vector x
xT transpose of real vector x
∅ empty set
S complement of a set S
2S set of all subsets of S
|S| cardinality of a set S
∪ set union
∩ set intersection
¬ negation operator
∧ logical operator AND
∨ logical operator OR
⊂ (⊆) subset (subset or equivalent to)
⊃ (⊇) super-set (super-set or equivalent to)
[a, b] closed interval with end points a and b

S1 \ S2 set difference of two sets S1 and S2

validated by simulations and experiments in Sections 6 and
7. Conclusions are given in Section 8. The notations used in
this work are defined in Table 1.

2 Preliminaries and Problem Formulation

2.1 Systems dynamics
Consider an uncertain discrete-time control system of the
form

xk+1 = f(xk, uk, wk), (1)

where xk := x(tk) ∈ Rn, uk := u(tk) ∈ U,wk := w(tk) ∈
W,k ∈ N are the state, control input, and disturbance at
time tk, respectively. The time sequence {tk} can be seen
as a sequence of sampling instants, which satisfy 0 = t0 <
t1 < · · · . The control input is constrained to a compact set
U ⊂ Rm and the disturbance is constrained to a compact set
W ⊂ Rl. In the following, let us define the control policy.

Definition 2.1. A control policy ν = ν0ν1 . . . νk . . . is a
sequence of maps νk : Rn → U , ∀k ∈ N. Denote by U≥k the
set of all control policies that start from time tk.

One can see from Definition 2.1 that a control policy ν is
a sequence of time-dependent functions νk, each of which
is a map from Rn (i.e., the state space) to the control set
U . Given the control policy ν, one can select control input
uk = νk(xk) for implementation at time instant tk.

Definition 2.2. A disturbance signal w = w0w1 . . . wk . . .
is called admissible if wk ∈W, ∀k ∈ N. Denote byW≥k the
set of all admissible disturbance signals that start from time
tk.

The solution of (1) is defined as a discrete-time signal
x := x0x1 We call x a trajectory of (1) if there exists
a control policy ν ∈ U≥0 and a disturbance signal w ∈ W≥0

satisfying (1), i.e.,

xk+1 = f(xk, νk(xk), wk),∀k ∈ N.

We use xν,w
x0

(tk) to denote the trajectory point reached at
time tk under the control policy ν and the disturbance w
from initial state x0.

The deterministic system is defined by

xk+1 = fd(xk, uk) (2)

and xν
x0
(tk) denotes the solution at time tk of the

deterministic system when the control policy is ν and the
initial state is x0.

2.2 Signal temporal logic
We use STL to concisely specify the desired system behavior.
STL (Maler and Nickovic, 2004) is a predicate logic
consisting of predicates µ, which are defined through a
predicate function gµ : Rn → R as

µ :=

{
⊤, if gµ(x) ≥ 0,

⊥, if gµ(x) < 0.

The syntax of STL is given by

φ ::= ⊤ | µ | ¬φ | φ1 ∧ φ2 | φ1UIφ2, (3)

where φ,φ1, φ2 are STL formulas and I is a closed interval
of R of the form [a, b] with a, b ∈ R≥0 and a ≤ b.

The validity of an STL formula φ is originally defined with
respect to a continuous-time signal (Maler and Nickovic,
2004). Later in Raman et al. (2015), the STL semantics with
respect to a discrete-time signal has also been proposed. In
this work, we study discrete-time control systems. Therefore,
we adopt the STL semantics defined in (Raman et al., 2015).

The validity of an STL formula φ with respect to a
discrete-time signal x at time tk, is defined inductively as
follows (Raman et al., 2015):

(x, tk) ⊨ µ ⇔ gµ(x(tk)) ≥ 0,

(x, tk) ⊨ ¬φ ⇔ ¬((x, tk) ⊨ φ),

(x, tk) ⊨ φ1 ∧ φ2 ⇔ (x, tk) ⊨ φ1 ∧ (x, tk) ⊨ φ2,

(x, tk) ⊨ φ1U[a,b]φ2 ⇔ ∃tk′ ∈ [tk + a, tk + b] s.t.
(x, tk′) ⊨ φ2 ∧ ∀tk′′ ∈ [tk, tk′],

(x, tk′′) ⊨ φ1.

The signal x = x0x1 . . . satisfies φ, denoted by x ⊨ φ
if (x, t0) ⊨ φ. By using the “negation” operator ¬ and the
“conjunction” operator ∧, we can define “disjunction” φ1 ∨
φ2 = ¬(¬φ1 ∧ ¬φ2). And by employing the until operator
UI, we can define “eventually” FIφ = ⊤UIφ and “always”
GIφ = ¬FI¬φ.

Definition 2.3. (Dokhanchi et al., 2014) The time horizon
∥φ∥ of an STL formula φ is inductively defined as

∥φ∥ =

0, if φ = µ,

∥φ1∥, if φ = ¬φ1,

max{∥φ1∥, ∥φ2∥}, if φ = φ1 ∧ φ2,

b+max{∥φ1∥, ∥φ2∥}, if φ = φ1U[a,b]φ2.

Definition 2.4. (Robust satisfiability) Consider the uncer-
tain system (1) and the STL formula φ. We say φ is robustly
satisfiable from the initial state x0 if there exists a control
policy ν such that

xν,w
x0

⊨ φ,∀w ∈ W≥0.

Yu et al. 5

Definition 2.5. (Satisfiability) Consider the deterministic
system (2) and the STL formula φ. We say φ is satisfiable
from the initial state x0 if there exists a control policy ν such
that

xν
x0

⊨ φ.

Given an STL formula φ, the set of initial states from
which φ is (robustly) satisfiable is denoted by

Sφ = {x0 ∈ Rn | φ is (robustly) satisfiable from x0}. (4)

We remark that the computation of the set Sφ is tailored to
the dynamic system under consideration. Here we omit it for
notation simplicity.

2.3 Reachability operators
In this section, we define two reachability operators.
The natural connection between reachability and temporal
operators plays an important role in the approach proposed in
this paper. The definitions of maximal and minimal reachable
tube are given as follows.

Definition 2.6. Consider system (1), three sets Ω1,Ω2, C ⊆
Rn, and a time interval [a, b]. The maximal reachable tube
from Ω1 to Ω2 is defined as

RM (Ω1,Ω2, C, [a, b], k)

=

xk ∈ Ω1

∣∣∣∣∣∣
∃ν ∈ U≥k,∀w ∈ W≥k,
∃tk′ ∈ [max{a, tk}, b],xν,w

xk
(tk′) ∈ Ω2,

∀tk′′ ∈ [tk, tk′],xν,w
xk

(tk′′) ∈ C

and tk ∈ [0, b].

The set RM (Ω1,Ω2, C, [a, b], k) collects all states in Ω1

at time tk from which there exists a control policy ν ∈ U≥k

that, despite the worst disturbance signals, drives the system
to the target set Ω2 at some time instant tk′ ∈ [max{a, tk}, b]
while satisfying constraints defined by C prior to reaching the
target.

Definition 2.7. Consider system (1), two sets Ω1,Ω2 ⊆ Rn,
and a time interval [a, b]. The minimal reachable tube from
Ω1 to Ω2 is defined as

Rm(Ω1,Ω2, [a, b], k)

=

{
xk ∈ Ω1

∣∣∣∣ ∀ν ∈ U≥k,∃w ∈ W≥k,
∃tk′ ∈ [max{a, tk}, b],xν,w

xk
(tk′) ∈ Ω2

}
,

and tk ∈ [0, b].

The set Rm(Ω1,Ω2, [a, b], k) collects all states in Ω1 at
time tk from which no matter what control policy ν is
applied, there exists a disturbance signal that drives the
system to the target set Ω2 at some time instant tk′ ∈
[max{a, tk}, b]. In this definition, the constraint set C is
redundant. The reason is that the minimal reachable tube is
used to build a connection with “always” operator G[a,b], for
which the constraint set is not needed.

2.4 Problem formulation
Consider the following fragment of STL formulas, which is
inductively defined as

φ ::= ⊤ | µ | ¬µ | φ1 ∧ φ2 | φ1 ∨ φ2 | ϕUIφ | FIφ | GIϕ,
(5)

where ϕ ::= ⊤ | µ | ¬µ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2. Here, ϕ1, ϕ2

are formulas of class ϕ and φ1, φ2 are formulas of class φ
given in (5).

Remark 2.1. The STL fragment defined in (5) includes
nested STL formulas of the form F[a1,b1]G[a2,b2]ϕ and
ϕ1U[a1,b1](G[a2,b2]ϕ2), while excluding nested STL formulas
of the form G[a1,b1]F[a2,b2]ϕ, (G[a1,b1]ϕ1)U[a2,b2]ϕ2. The
reason is that according to the semantics of STL, nested STL
formulas like G[a1,b1]F[a2,b2]ϕ and (G[a1,b1]ϕ1)U[a2,b2]ϕ2

require parallel monitoring of their arguments F[a2,b2]ϕ and
G[a1,b1]ϕ1 within the encoded time intervals of the temporal
operators G[a1,b1] and U[a2,b2], respectively. Nevertheless,
we note that the fragment (5) is more general than most of
the fragments considered in the literature studying online
control synthesis, e.g., Lindemann and Dimarogonas (2018);
Buyukkocak et al. (2022). Such a fragment (5) is expressive
enough to specify a large number of robotic tasks, e.g., time-
constrained reachability, supply-delivery, and safety.

Remark 2.2. It is possible to handle nested
STL formulas of the form G[a1,b1]F[a2,b2]ϕ and
(G[a1,b1]ϕ1)U[a2,b2]ϕ2 using the framework proposed in
this work. For the formula G[a1,b1]F[a2,b2]ϕ, one can
rewrite it as F[a1+a2,b1+b2]G[0,b1−a1]ϕ. For the formula
(G[a1,b1]ϕ1)U[a2,b2]ϕ2, one can rewrite it as G[a1,b1+b2]ϕ1 ∧
F[a2,b2]ϕ2. Since x ⊨ F[a1+a2,b1+b2]G[0,b1−a1]ϕ implies
x ⊨ G[a1,b1]F[a2,b2]ϕ and x ⊨ G[a1,b1+b2]ϕ1 ∧ F[a2,b2]ϕ2

implies x ⊨ (G[a1,b1]ϕ1)U[a2,b2]ϕ2, the soundness of
the proposed online control synthesis algorithm preserves.
However, we note that this approach introduces conservatism
due to the fact that the rewritten formula is not equivalent to
the original formula.

The problem under consideration is formulated as follows.

Problem 2.1. Online control synthesis. Consider system
(1) and an STL task φ in (5). For an initial state
x0, find, if it exists, a sequence of control inputs ν =
ν0(x0)ν1(x1) . . . νk(xk) . . . such that the resulting trajectory
x = x0x1 . . . xk . . . satisfies φ.

Remark 2.3. Note that the objective of Problem 2.1 is
not to synthesize a closed-form control policy ν, which
is in general computationally intractable for systems with
continuous spaces. Instead, we aim at finding online a
sequence of feedback control inputs in a way that is similar
to receding horizon control.

The key idea to solve Problem 2.1 is as follows. We
first transform the STL formula to an alternative tree-based
representation, which we call a tube-based temporal logic
tree (tTLT), by leveraging reachability analysis as detailed
in Section 3. There exists a semantic connection between
the STL formula and the corresponding tTLT, thanks to the
reachability analysis, which is explained in Section 4. Based
on this fact, we can perform control synthesis over the tTLT,
instead of the STL formula. An online control synthesis
algorithm is provided in Section 5.

3 Real-time STL semantics and tube-based
temporal logic tree

In this section, a real-time version of STL semantics and a
notion of tTLT are proposed. The real-time STL semantics

6 The International Journal of Robotics Research XX(X)

(s, tk, tl) |≍ µ ⇔ gµ(s(tk)) ≥ 0, tl = tk; (6a)
(s, tk, tl) |≍ ¬φ ⇔ ¬((s, tk, tl) |≍ φ), tl ∈ tk + [0, ||φ||]; (6b)

(s, tk, tl) |≍ φ1 ∧ φ2 ⇔ (s, tk, tl) |≍ φ1 ∧ (s, tk, tl) |≍ φ2, tl ∈ tk + [0, ||φ1 ∧ φ2||]; (6c)
(s, tk, tl) |≍ φ1U[a,b]φ2 ⇔{

∃tk′ ∈ [max{tk + a, tl}, tk + b] s.t. (s, tk′ , tl) |≍ φ2, if ∥φ2∥ = 0,

∃tk′ ∈ [tk + a, tk + b] s.t. (s, tk′ , tl) |≍ φ2, otherwise,

∧ if tl ≤ tk′ ,∀tk′′ ∈ [tl, tk′], (s, tk′′ , tl) |≍ φ1, tl ∈ tk + [0, ∥φ1U[a,b]φ2∥]. (6d)

establish the satisfaction relation between a real-time signal
and the STL formula. Based on these real-time semantics, we
propose the tTLT using the close connection between STL
and reachability analysis.

3.1 Real-time STL semantics
The real-time STL semantics is defined to capture the
satisfaction relation between a real-time signal and an
STL formula, which is different from the traditional STL
semantics defined in Section 2.2. Before proceeding, the
following definition is required.

Definition 3.1. Suffix and Completions. Given a discrete-
time signal x = x0x1 . . ., we say that a partial signal s =
slsl+1 . . . , l ∈ N, is a suffix of the signal x if ∀k′ ≥ l, sk′ =
xk′ . The set of completions of a partial signal s, denoted by
C(s), is given by

C(s) := {x : s is a suffix of x}.

Given a time instant tk and a time interval [a, b], define
tk + [a, b] := [tk + a, tk + b]. The real-time STL semantics
is defined as follows.

Definition 3.2. Let tk be the starting time of any STL
formula φ to be evaluated. Let tl ≥ tk be the starting time
of a partial signal s = slsl+1 The real-time satisfaction
of φ with respect to the partial signal s, denoted by
(s, tk, tl) |≍ φ, is recursively defined by Eq. (6).

The real-time satisfaction relation (s, tk, tl) |≍ φ suggests
that the partial signal s is the suffix of a satisfying trajectory
that starts from tk, i.e.,

(s, tk, tl) |≍ φ⇐ ∃x ∈ C(s), (x, tk) ⊨ φ.

Using the induction rule, one can define the real-time STL
semantics for “disjunction” φ1 ∨ φ2, “eventually” F[a,b]φ,
and “always” G[a,b]φ.

In parallel with Definitions 2.4 and 2.5, we define the STL
satisfiability given a partial signal as follows.

Definition 3.3. Consider uncertain system (1) and the STL
formula φ. We say φ is robustly satisfiable from the state xk

at time tk if there exists a control policy ν ∈ U≥k such that

(xν,w
xk

, t0, tk) |≍ φ,∀w ∈ W≥k.

Definition 3.4. Consider the deterministic system (2) and
the STL formula φ. We say φ is satisfiable from the state xk

at time tk if there exists a control policy ν ∈ U≥k such that

(xν
xk
, t0, tk) |≍ φ.

Note that when tk = t0, Definitions 3.3 and 3.4 reduce to
Definitions 2.4 and 2.5, respectively. Given an STL formula
φ, the set of states from which φ is robustly satisfiable at tk
is denoted by

Sφ(tk) := {xk ∈ Rn | φ is (robustly) satisfiable
from xk at tk}. (7)

Then, we have the following results.

Proposition 3.1. Consider system (1) and predicates
µ1, µ2. Then, one has

i) Sµ1U[a,b]µ2
(tk) = RM (Rn,Sµ2

,Sµ1
, [a, b], k);

ii) SF[a,b]µ1
(tk) = RM (Rn,Sµ1

,Rn, [a, b], k);

iii) SG[a,b]µ1
(tk) = Rm(Rn,Sµ1 , [a, b], k),

where Sµ1
and Sµ2

are defined in (4).

Proof. First, we prove item i). Assume that xk ∈
Sµ1U[a,b]µ2(tk). According to the real-time STL semantics,
one has that ∃ν ∈ U≥k,∀w ∈ W≥k such that

• ∃tk′ ∈ [max{a, tk}, b],

(xν,w
xk

, tk′ , tk) |≍ µ2 ⇒ xν,w
xk

(tk′) ∈ Sµ2 ,

• ∀tk′′ ∈ [tk, tk′],

(xν,w
xk

, tk′′ , tk) |≍ µ1 ⇒ xν,w
xk

(tk′′) ∈ Sµ1
.

That is, xk ∈ RM (Rn,Sµ2
,Sφ1

, [a, b], k).
Now we assume that xk ∈ RM (Rn,Sµ2

,Sµ1
, [a, b], k).

According to Definition 2.6, one has that ∃ν ∈ U≥k,∀w ∈
W≥k such that ∃tk′ ∈ [max{a, tk}, b],xν,w

xk
(tk′) ∈ Sµ2 and

∀tk′′ ∈ [tk, tk′],xν,w
xk

(tk′′) ∈ Sµ1 . According to (7), one can
further get that

xν,w
xk

(tk′) ∈ Sµ1
⇒ (xν,w

xk
, tk′ , tk) |≍ µ1,

xν,w
x0

(tk′′) ∈ Sµ2
⇒ (xν,w

xk
, tk′′ , tk) |≍ µ2.

Therefore, xk ∈ Sµ1U[a,b]µ2
(tk).

The proof of item ii) is similar and hence omitted. Next,
let us prove item iii).

Assume that xk ∈ SG[a,b]µ1(tk). According to the real-
time STL semantics, one has that ∃ν ∈ U≥k,∀w ∈ W≥k

such that ∀tk′ ∈ [max{a, tk}, b],

(xν,w
xk

, tk′ , tk) |≍ µ1 ⇒ xν,w
xk

(tk′′) ∈ Sµ1
.

According to Definition 2.7, Rm(Rn, Sµ1
, [a, b], k) collects

all states in Rn at time tk from which no matter

Yu et al. 7

what control policy ν ∈ U≥k is applied, there exists a
disturbance signal w ∈ W≥k that drives the system to the
set Sµ1 at some time instant tk′ ∈ [max{a, tk}, b]. Therefore,
xk ∈ Rm(Rn,Sµ1

, [a, b], k). The other side can be proved
similarly.

In item iii) of Proposition 3.1, the use of the
complementary set is motivated by the fact that G[a,b]µ =

¬F[a,b](¬µ) and S¬µ = Sµ.

Proposition 3.2. Consider system (1) and STL formulas
φ1, φ2. If φ1 and φ2 contain no logical operators ∧ and ∨,
then one has

i) Sφ1∧φ2(tk) ⊆ Sφ1(tk) ∩ Sφ2(tk);
ii) Sφ1∨φ2(tk) ⊇ Sφ1(tk) ∪ Sφ2(tk);

where Sφ1
(tk) and Sφ2

(tk) are defined in (7).

Proof. Assume that xk ∈ Sφ1∧φ2
(tk). According to Defini-

tion 3.2 and (7), one has that there exists a control policy
ν ∈ U≥k such that

(xν,w
xk

, t0, tk) |≍ φ1,∀w ∈ W≥k

∧ (xν,w
xk

, t0, tk) |≍ φ2,∀w ∈ W≥k.

That is, xk ∈ Sφ1
(tk), xk ∈ Sφ2

(tk). Thus, xk ∈
Sφ1∧φ2

(tk)⇒ xk ∈ Sφ1
(tk) ∩ Sφ2

(tk). The other direction
may not hold because it could happen that for a state xk,
there exist two control policies ν1,ν2 ∈ U≥k such that
(xν1,w

xk
, t0, tk) |≍ φ1, (x

ν2,w
xk

, t0, tk) |≍ φ2,∀w ∈ W≥k

(i.e., xk ∈ Sφ1
(tk) ∩ Sφ2

(tk)). However, there is no control
policy which ensures the robust satisfaction of φ1 ∧ φ2 at
tk.

Assume now that xk ∈ Sφ1
(tk), then one has that there

exists a control policy ν ∈ U≥k such that (xν,w
xk

, t0, tk) |≍
φ1,∀w ∈ W≥k. Moreover, according to STL syntax, one
further has (xν,w

xk
, t0, tk) |≍ φ1 ∨ φ2,∀w ∈ W≥k. That

is, xk ∈ Sφ1
(tk)⇒ xk ∈ Sφ1∨φ2

(tk). Similarly, one can
also get xk ∈ Sφ2

(tk)⇒ xk ∈ Sφ1∨φ2
(tk). Therefore, xk ∈

Sφ1
(tk) ∪ Sφ2

(tk)⇒ xk ∈ Sφ1∨φ2
(tk). The other direction

may not hold because it could happen that there exists no
state such that either φ1 or φ2 is robustly satisfiable from
at tk, i.e., Sφ1(tk) = ∅, Sφ2(tk) = ∅ and thus Sφ1(tk) ∪
Sφ2

(tk) = ∅. However, there exists a state x∗
k from which

there exists a control policy ν ∈ U≥k such that

(xν,w1

x∗
k

, t0, tk) |≍ φ1,∀w1 ∈ W1

∧ (xν,w2

x∗
k

, t0, tk) |≍ φ2,∀w2 ∈ W≥k \W1,

where W1 ⊂ W≥k. In this case, one has x∗
k ∈ Sφ1∨φ2

(tk).

Propositions 3.1 and 3.2 imply that the real-time satisfiable
set of the STL formula can be inferred by set operations and
reachability analysis, which makes it reasonable to develop
the tTLT, a tree structure consisting of reachable tubes
and operators. In the following section, we will detail the
definition of tTLT and how to construct a tTLT from a given
STL formula using reachability analysis.

3.2 Tube-based temporal logic tree and its
construction

In this section, we formally introduce the notion of tTLT and
provide its construction algorithm. A tTLT is a variant of
the TLT proposed in the recent work (Gao et al., 2022) for
LTL formulas. Due to the time-dependent essence of STL
formulas, the reachable sets in the TLT are replaced with the
reachable tubes in the tTLT, which can explicitly incorporate
the time constraints in STL formulas. The intuition of the
tTLT is that it indicates how a state trajectory should evolve
in order to satisfy the time constraints embedded in an STL
formula. In the following, a formal definition of the tTLT is
introduced.

Definition 3.5. A tTLT is a tree for which the following
holds:

• each node is either a tube node that maps from the
nonnegative time axis, i.e., R≥0, to a subset of Rn, or
an operator node that belongs to {∧,∨,UI,FI,GI};

• the root node and the leaf nodes are tube nodes;
• if a tube node is not a leaf node, its unique child is an

operator node;
• the children of any operator node are tube nodes.

Definition 3.6. A complete path p of a tTLT is a path that
starts from the root node and ends at a leaf node.

The following result shows how to construct a tTLT for
any given STL formula using reachability analysis.

Theorem 3.1. For system (1) and every STL formula φ
in (3), a tTLT, denoted by Tφ, can be constructed from φ
through the reachability operatorsRM andRm.

Proof. We follow three steps to construct a tTLT.
Step 1: Rewrite the STL formula φ into the equivalent

positive normal form (PNF). It has been proven in Sadraddini
and Belta (2015) that each STL formula has an equivalent
STL formula in PNF (i.e., negations only occur adjacent to
predicates), which can be inductively defined as

φ ::= ⊤ | µ | ¬µ | φ1 ∧ φ2 | φ1 ∨ φ2

| φ1UIφ2 | FIφ1 | GIφ1.

Step 2: For each predicate µ or its negation ¬µ, construct
the tTLT with only one tube node Sµ = {x : gµ(x) ≥ 0} or
Sµ. The tTLT of⊤ or⊥ has only one tube node, which is Rn

or ∅.
Step 3: Following the induction rule to construct the tTLT

Tφ. More specifically, we will show that given STL formulas
φ1 and φ2, if the tTLTs can be constructed from φ1 and φ2,
then the tTLTs can be constructed from φ1 ∧ φ2, φ1 ∨ φ2,
φ1U[a,b]φ2, F[a,b]φ1, and G[a,b]φ1.

Case 1: Boolean operators ∧ and ∨. Consider two STL
formulas φ1, φ2 and their corresponding tTLTs Tφ1

, Tφ2
.

The root nodes of Tφ1
and Tφ2

are denoted by Xφ1
(tk) and

Xφ2(tk), respectively. The tTLT Tφ1∧φ2 (Tφ1∨φ2) can be
constructed by connecting Xφ1(tk) and Xφ2(tk) through the
operator node ∧ (∨) and taking the intersection (or union)
of the two root nodes, i.e., Xφ1

(tk) ∩ Xφ2
(tk) (Xφ1

(tk) ∪
Xφ2

(tk)), to be the root node. An illustrative diagram for
φ1 ∧ φ2 is given in Figure 2.

8 The International Journal of Robotics Research XX(X)

Xϕ1(tk)

· · ·
∧

Xϕ2(tk)

· · ·
⇒

Xϕ1(tk) ∩ Xϕ2(tk)

∧

Xϕ1(tk) Xϕ2(tk)

· · · · · ·

Figure 2. Illustrative diagram of construction tTLT for φ1 ∧ φ2.

Case 2: Until operator U[a,b]. Consider two STL formulas
φ1, φ2 and their corresponding tTLTs Tφ1

, Tφ2
. The root

nodes of Tφ1 and Tφ2 are denoted by Xφ1(tk) and Xφ2(tk),
respectively. In addition, the leaf nodes of Tφ1 are denoted
by Y1

φ1
(tk), · · · ,YN

φ1
(tk), where N is the total number of

leaf nodes of Tφ1
. The tTLT Tφ1U[a,b]φ2

can be constructed
by the following steps: 1) replace each leaf node Yi

φ1
(tk)

by RM (Rn,Xφ2
(t0),Yi

φ1
(t0), [a, b], k); 2) update Tφ1

from
the leaf nodes to the root node with the new leaf nodes; and
3) connect each leaf node of the updated Tφ1

and the root
node of Tφ2 , i.e., Xφ2(tk), with the operator node U[a,b]. One
illustrative diagram for U[a,b] is given in Figure 3.

Case 3: Eventually and always operators F[a,b] and
G[a,b]. Consider an STL formula φ1 and its corre-
sponding tTLT Tφ1

. The root node of Tφ1
is given

by Xφ1
(tk). The tTLT TF[a,b]φ1

(TG[a,b]φ1
) can be con-

structed by connecting Xφ1(tk) through the operator F[a,b]

(G[a,b]) and making the tube RM (Rn,Xφ1(t0),Rn, [a, b], k)

(Rm(Rn,Xφ1
(t0), [a, b], k)) the root node. An illustrative

diagram for G[a,b] is given in Figure 4.

Based on Theorem 3.1, Algorithm 1 is designed for the
construction of tTLT Tφ. It takes the syntax tree of the
STL formula φ as input. For an STL formula, the nodes of
its syntax tree are either predicate or operator nodes. More
specifically, all the leaf nodes are predicates and all other
nodes are operators.

Algorithm 1 tTLTConstruction

Input: the syntax tree of STL formula φ.
Return: the tTLT Tφ.

1: for each leaf node µ (or ¬µ) of the syntax tree do,
2: Replace µ (or ¬µ) by Sµ (or S¬µ),
3: end for
4: for each operator node of the syntax tree through a

bottom-up traversal, do
5: Construct Tφ according to Theorem 3.1,
6: end for

Let us use the following example to show how to construct
the tTLT.

Example 3.1. Consider the formula φ =
F[a1,b1]G[a2,b2]µ1 ∧ µ2U[a3,b3]µ3, where µi, i = {1, 2, 3}
are predicates. The syntax tree of φ is shown on the left-hand
side of Figure 5. The corresponding tTLT for φ (constructed
using Algorithm 1) is shown on the right-hand side of Figure
5, where

X4(tk) = Rm(Rn,Sµ1
, [a2, b2], k),

X3(tk) = RM (Rn,Sµ3
,Sµ2

, [a3, b3], k),

X2(tk) = RM (Rn,X4(t0),Rn, [a1, b1], k),

X1(tk) = X2(tk) ∩ X3(tk).

Remark 3.1. Given an STL formula φ in PNF, let K
denote the number of Boolean operators and L the number
of temporal operators contained in φ. Let Tφ be the tTLT
corresponding to φ. Then, Tφ has at most 2K complete
paths. In addition, each complete path has at most 2(K +
L) + 1 nodes, out of which at most K + L are non-root
tube nodes. Thus, one can conclude that Tφ contains at most
4K(K + L) + 1 nodes, out of which at most 2K(K + L) +
1 are tube nodes.

4 Semantic Connection between STL and
tTLT

In this section, the semantic connection between an STL
formula and its corresponding tTLT is derived. We define
how a given state trajectory satisfies a tTLT and then show
that the tTLT is a semantic under-approximation of the STL
formula. Before that, let us first define the segment of the
complete path.

Definition 4.1. A complete path of a tTLT can be
encoded in the form of p = X0Θ1X1Θ2 . . .ΘNf

XNf
,

where Nf is the number of operator nodes contained
in the complete path, Xi : R≥0 → 2R

n

,∀i ∈ {0, 1, . . . , Nf}
represent tube nodes, and Θj ∈ {∧,∨,UI,FI,GI},∀j ∈
{1, . . . , Nf} represent operator nodes. Any subsequence of
a complete path is called a segment of the complete path.

Now, we define the maximal temporal segment for a tTLT,
which plays an important role when simplifying the tTLT.

Definition 4.2. A maximal temporal segment (MTS) of a
complete path of the tTLT is one of the following types of
segment:

1) a segment from the root node to the parent of the first
Boolean operator node (∧ or ∨);

2) a segment from one child of one Boolean operator
node to the parent of the next Boolean operator node;

3) a segment from one child of the last Boolean operator
node to the leaf node.

One can conclude from Definition 4.2 that any MTS starts
and ends with a tube node and contains no Boolean operator
nodes.

Definition 4.3. A time coding of (a complete path of) the
tTLT is an assignment of each tube node Xi of (the complete
path of) the tTLT an activation time instant tκi

, κi ∈ N.

Now, we further define the satisfaction relation between a
trajectory x and a complete path of the tTLT.

Definition 4.4. Consider a trajectory x := x0x1 . . . and
a complete path p = X0Θ1X1Θ2 . . .ΘNf

XNf
. We say x

satisfies p, denoted by x ⊨ p, if there exists a time coding
for p such that

i) if Θi ∈ {∧,∨}, then tκi
= tκi−1

;
ii) if Θi = UI, then tκi

∈ tκi−1
+ I;

iii) if Θi = GI, then tκi
= argmaxtk{tk ∈ tκi−1

+ I};
and

Yu et al. 9

Xϕ1(tk)

· · ·

...

Y1
ϕ1
(tk) YN

ϕ1
(tk)· · ·

U[a,b]

Xϕ2(tk)

· · ·
⇒

X̂ϕ1(tk)

· · ·

...

RM(Rn,Xϕ2(t0),Y1
ϕ1
(t0), [a, b], k) RM(Rn,Xϕ2(t0),YN

ϕ1
(t0), [a, b], k)· · ·

U[a,b] U[a,b]

Xϕ2(tk) Xϕ2(tk)

· · · · · ·

Figure 3. Illustrative diagram of construction tTLT for φ1U[a,b]φ2.

G[a,b]

Xϕ1(tk)

· · ·
⇒

Rm(Rn,Xϕ1(t0), [a, b], k)

G[a,b]

Xϕ1(tk)

· · ·

Figure 4. Illustrative diagram of construction tTLT for G[a,b]φ1.

∧

F[a1,b1]

G[a2,b2]

µ1

U[a3,b3]

µ2 µ3
⇒

X1(tk)

∧

X2(tk)

U[a1,b1]

X4(tk)

G[a2,b2]

Sµ1

X3(tk)

U[a3,b3]

Sµ3

Figure 5. Example 3.1: syntax tree (left) and tTLT (right) for
φ = F[a1,b1]G[a2,b2]µ1 ∧ µ2U[a3,b3]µ3. Recall that
F[a,b]φ = ⊤U[a,b]φ.

iv) xk ∈ Xi(tk−κi
),∀k ∈ [κi, κi+1], i = 0, . . . , Nf − 1;

v) xκNf
∈ XNf

(t0).

Remark 4.1. From items i)-iii) of Definition 4.4, one has
that tκ0 ≤ tκ1 ≤ · · · ≤ tκNf

. This means that if a trajectory
x ⊨ p, it must visit each tube node Xi of the complete path p
sequentially. In addition, we can further conclude from items
iv)-v) that the trajectory x has to stay in each tube node Xi

for sufficiently long time steps.

With Definition 4.4, the satisfaction relation between a
trajectory x and a tTLT Tφ can be defined as follows.

Definition 4.5. Consider a trajectory x and a tTLT Tφ. We
say x satisfies Tφ, denoted by x ⊨ Tφ, if there exists a time

coding {tκi} for Tφ such that the output of Algorithm 2 is
true.

The central idea of Algorithm 2 is to check the Boolean
relation among sub-formulas of a given STL formula φ.
For instance, assume φ = ∧ni=1φi, where each φi,∀i =
1, · · · , n contains no Boolean operators. Then one can get
from Algorithm 1 that Tφ has n complete paths pi, i =
1, · · · , n, and each pi corresponds to a sub-formula φi. Then
Algorithm 2 dictates that x ⊨ Tφ if and only if x satisfies
every complete path of Tφ. Assume now that φ = ∨ni=1φi,
then Algorithm 2 dictates that x ⊨ Tφ if and only if x
satisfies at least one complete path of Tφ.

Algorithm 2 tTLTSatisfaction

Input: a trajectory x, a tTLT Tφ, and a time coding {tκi
}.

Return: true or false.
1: T c

φ ← Compression(Tφ),
2: for each complete path p of Tφ, do
3: if x |= p then
4: set the corresponding leaf node of p in

T c
φ with true,

5: else
6: set the corresponding leaf node of p in

T c
φ with false,

7: end if
8: end for
9: set all the non-leaf tube nodes in T c

φ with false,
10: Backtracking(T c

φ),
11: return the root node of T c

φ .

Algorithm 2 takes as inputs a trajectory x, a tTLT Tφ, and
a time coding {tκi

}, and outputs true or false. It works as
follows. Given a tTLT Tφ, we first compress it via Algorithm
3 (line 1), in this way the resulting compressed tree T c

φ

contains only Boolean operator nodes and tube nodes. Then
for each complete path p of Tφ, if x |= p, one sets the
corresponding leaf node of p in T c

φ (note that T c
φ and Tφ

have the same set of leaf nodes) with true. Otherwise, one
sets the corresponding leaf node of p in T c

φ with false (lines
2-8). After that, we set all the non-leaf tube nodes of T c

φ with
false (line 9) and the resulting tree becomes a Boolean tree
(a tree with Boolean operator and Boolean variable nodes).
Finally, we backtrack the Boolean tree T c

φ using Algorithm
4, and return the root node (lines 10-11).

10 The International Journal of Robotics Research XX(X)

We further detail the Compression algorithm (Algorithm
3) and the Backtracking algorithm (Algorithm 4) in the
following. Algorithm 3 aims at obtaining a simplified
tree with Boolean operator nodes and tube nodes only.
To do so, we first encode each MTS in the form of
X1Θ1 . . .ΘNf−1XNf

(line 3), and then replace it with one
tube node (line 4). Algorithm 4 takes the compressed tree
T c
φ as an input, and then update the parent of each Boolean

operator node through a bottom-up traversal. In Algorithm 4,
PA(Θ) and CH1(Θ),CH2(Θ) represent the parent node and
the two children of the Boolean operator node Θ ∈ {∧,∨},
respectively.

Algorithm 3 Compression

Input: a tTLT Tφ.
Return: the compressed tree T c

φ .
1: for each complete path of Tφ, do
2: for each MTS, do
3: encode the MTS in the form

of X1(tk)Θ1 . . .ΘNf−1XNf
(tk),

4: replace the MTS with one tube node ∪Nf

i=1Xi,
5: end for
6: end for

Algorithm 4 Backtracking

Input: a compressed tree T c
φ .

Return: the root node of T c
φ .

1: for each Boolean operator node Θ of T c
φ through a

bottom-up traversal, do
2: if Θ = ∧, then
3: PA(Θ)← PA(Θ) ∨ (CH1(Θ) ∧ CH2(Θ)),
4: else
5: PA(Θ)← PA(Θ) ∨ (CH1(Θ) ∨ CH2(Θ)),
6: end if
7: end for

Example 4.1. Let us continue with Example 3.1. The tTLT
Tφ (right of Figure 5) contains 2 complete paths, i.e.,

p1 := X1 ∧ X2U[a1,b1]X4G[a2,b2]Sµ1

and
p2 := X1 ∧ X3U[a3,b3]Sµ3

.

Let
{tκ1

, tκ2
, tκ4

, tκ5
}

be the time coding of the complete path p1, where
tκ1 , tκ2 , tκ4 , and tκ5 are the activation time instants of the
tube nodes X1,X2,X4, and X5 := Sµ1 , respectively. Then,
we have according to Definition 4.4 that a trajectory
x ⊨ p1 if i) tκ1

= tκ2
; ii) tκ4

∈ tκ2
+ [a1, b1]; iii)

tκ5
= argmaxtk{tk ∈ tκ4

+ [a2, b2]}; iv) x0 ∈ X1(t0),
xk ∈ X2(tk−κ2),∀k ∈ [κ2, κ4], xk ∈ X4(tk−κ4),∀k ∈
[κ4, κ5], and v) xκ5 ∈ X5.

In addition, the tTLT Tφ contains 3 MTSs, i.e., X1,
X2U[a1,b1]X4G[a2,b2]Sµ1

, and X3U[a3,b3]Sµ3
. The com-

pressed tree T c
φ is shown in Figure 6. If a trajectory x

satisfies both of the complete paths p1 and p2, the output
of Algorithm 2 is true, otherwise, the output is false.

X1(tk)

∧

X2(tk) ∪ X4(tk) ∪ Sµ1 X3(tk) ∪ Sµ3

Figure 6. Example 4.1: compressed tree T c
φ , where Tφ is

plotted in Figure 5.

Definition 4.6. (Robustly satisfiable tTLT) A tTLT Tφ is
called robustly satisfiable for system (1) with initial state
x0 if there exists a control policy ν ∈ U≥0 such that xν,w

x0
⊨

Tφ,∀w ∈ W≥0.

The following theorem provides a formally semantic
relation between the STL formula fragment in (5) and the
corresponding tTLTs.

Theorem 4.1. Consider the uncertain system (1) with initial
state x0 and an STL formula φ in (5). Let Tφ be the tTLT
corresponding to φ. Then, φ is robustly satisfiable for (1) if
Tφ is robustly satisfiable for (1).

Proof. From Definitions 2.4 and 4.6, one has that to prove
Theorem 4.1, it is equivalent to prove xν,w

x0
⊨ Tφ,∀w ∈

W≥0 ⇒ xν,w
x0

⊨ φ,∀w ∈ W≥0. Given one instance of
disturbance signal w, if one has xν,w

x0
⊨ Tφ ⇒ xν,w

x0
⊨ φ,

then it implies xν
x0

⊨ Tφ,∀w ∈ W≥0 ⇒ xν,w
x0

⊨ φ,∀w ∈
W≥0. Therefore, it is sufficient to prove xν,w

x0
⊨ Tφ ⇒

xν,w
x0

⊨ φ.
In the following, we will first prove xν,w

x0
⊨ Tφ ⇔ xν,w

x0
⊨

φ for

i) ⊤, predicates µ,¬µ, and µ1 ∧ µ2, µ1 ∨ µ2,
ii) µ1U[a,b]µ2, F[a,b]µ1, and G[a,b]µ1;

iii) µ1U[a1,b1]G[a2,b2]µ2 and F[a1,b1]G[a2,b2]µ1;
iv) φ1 ∧ φ2;

where φ1 and φ2 in item iv) are STL formulas belong to
items ii) or iii).

Case i): For ⊤, predicates µ,¬µ, and µ1 ∧ µ2, µ1 ∨ µ2, it
is trivial to verify that xν,w

x0
⊨ Tφ ⇔ xν,w

x0
⊨ φ.

Case ii): We note that the proofs of the three are similar,
therefore, in the following, we only consider the case φ =
µ1U[a,b]µ2. The tTLT Tφ can be constructed via Algorithm
1, which is shown in Figure 7.

Sµ1
U[a,b] Sµ2

⇒

RM(Rn, Sµ2 , Sµ1 , [a, b], k)

U[a,b]

Sµ2

Figure 7. tTLTs Tφ for φ = µ1U[a,b]µ2.

Assume that xν,w
x0

⊨ Tφ, then one has from
Definition 4.4 that ∃tκ1 ∈ t0 + [a, b], xκ1 ∈ Sµ2 and
∀k ∈ [0, κ1], xk ∈ RM (Rn,Sµ2

,Sµ1
, [a, b], k) ⊆ Sµ1

,
which implies xν,w

x0
⊨ φ. That is, xν,w

x0
⊨ Tφ ⇒ xν,w

x0
⊨ φ.

Assume now that xν,w
x0

⊨ φ. Then, one has from
STL semantics that i) ∃tk′ ∈ t0 + [a, b], xk′ ∈ Sφ2

Yu et al. 11

and ii) ∀tk′′ ∈ [t0, tk′], xk′′ ∈ Sφ1
. Moreover, from

Definition 2.6, one has that i) and ii) together implies
∀tk′′ ∈ [t0, tk′], xk′′ ∈ RM (Rn,Sµ2

,Sµ1
, [a, b], k′′).

Therefore, xν,w
x0

⊨ φ⇒ xν
x0

⊨ Tφ.
Case iii): We note that the proofs of the two are similar. In

the following, we consider the case φ = F[a1,b1]G[a2,b2]µ1.
The tTLT Tφ can be constructed via Algorithm 1, which is
shown in Figure 8.

F[a1,b1] G[a2,b2] Sµ1
⇒

RM(Rn,Rm(Rn, Sµ1 , [a2, b2], 0),Rn, [a1, b1], k)

F[a1,b1]

Rm(Rn, Sµ1 , [a2, b2], k)

G[a2,b2]

Sµ1

Figure 8. tTLTs Tφ for φ = F[a1,b1]G[a2,b2]µ1.

Assume that xν,w
x0

⊨ Tφ, then one has from
Definition 4.4 that tκ1

∈ t0 + [a1, b1], tκ2
=

argmaxtk{tκ1
+ [a2, b2]}. In addition, ∀k ∈ [κ1, κ2], xk ∈

Rm(Rn,Sµ1
, [a2, b2], k − κ1), which implies xk ∈

Sµ1
,∀k ∈ [κ1, κ2]. That is, xν,w

x0
⊨ Tφ ⇒ xν,w

x0
⊨ φ.

Assume now that xν,w
x0

⊨ φ. Then, one has from
STL semantics that ∃tk′ ∈ t0 + [a1, b1] such that
xk′′ ∈ Sµ1

,∀tk′′ ∈ tk′ + [a2, b2], which implies ∀tk′′ ∈
tk′ + [a2, b2], xk′′ ∈ Rm(Rn,Sµ1 , [a2, b2], k

′′ − k′).
Therefore, xν,w

x0
⊨ φ⇒ xν

x0
⊨ Tφ.

Case iv): φ = φ1 ∧ φ2. Assume that xν,w
x0

⊨ Tφ, then one
has from Definition 4.4 that xν,w

x0
⊨ Tφ1 and xν,w

x0
⊨ Tφ2 .

Moreover, since φ1 and φ2 belong to items ii) or iii), then one
can conclude from Case ii) and Case iii) that xν,w

x0
⊨ Tφi

⇒
xν,w
x0

⊨ φi, i = {1, 2}, which implies xν,w
x0

⊨ φ1 ∧ φ2. That
is, xν,w

x0
⊨ Tφ ⇒ xν,w

x0
⊨ φ. The proof of the other direction

is similar and hence omitted.
Then, we prove xν,w

x0
⊨ Tφ ⇒ xν,w

x0
⊨ φ for

v) φ1 ∨ φ2,

where φ1 and φ2 are STL formulas belong to items ii) or iii).
Case v): φ = φ1 ∨ φ2. The proof of xν,w

x0
⊨ Tφ ⇒

xν,w
x0

⊨ φ is similar to Case iv). The other direction does
not hold because for an uncertain system, it is possible that
there exists a trajectory xν,w

x0
such that xν,w

x0
⊨ φ, however,

the initial state x0 /∈ Xφ
root(t0) (due to Proposition 3.2), where

Xφ
root denotes the root node of Tφ. In this case, xν,w

x0
does not

satisfy Tφ.
The proof of xν,w

x0
⊨ Tφ ⇒ xν,w

x0
⊨ φ for other STL

formulas φ in (5) can be completed inductively by combining
Cases i)-v). Therefore, the conclusion follows.

Thanks to the semantic relation between the STL formulas
in (5) and their corresponding tTLTs, we are able to perform
control synthesis over the tTLT, instead of the STL formulas,
with correct-by-construction guarantees. The details of this
control synthesis are provided in the next section.

5 Online Control Synthesis
In this section, we study the STL control synthesis problem
in Problem 2.1. In the following, an online control synthesis
algorithm and its sub-algorithms are designed over the
tTLT such that the tTLT Tφ is satisfied (in the sense of
Definitions 4.4 and 4.5). From Theorem 4.1, one can see that
to guarantee the satisfaction of the STL formula φ in (5),
it is sufficient to find a control policy ν that guarantees the
(robust) satisfaction of the corresponding tTLT Tφ. To this
end, the tTLT-based control synthesis approach is sound.

5.1 Definitions and notations
Before proceeding, the following definitions and notations
are needed.

Definition 5.1. The time horizon |Θ| of an STL operator
Θ ∈ {∧,∨,U[a,b],F[a,b],G[a,b]} is defined as

|Θ| =
{

0, if Θ = {∧,∨},
b̂, if Θ ∈ {U[a,b],F[a,b],G[a,b]},

where b̂ = argmaxtk{a ≤ tk ≤ b}.
Definition 5.2. A segment of a complete path of a tTLT is
called a Boolean segment if it starts and ends with a tube
node and contains only Boolean operator nodes. We say a
tube node Xj is reachable from Xi by a Boolean segment if
there exists a Boolean segment that starts with Xi and ends
with Xj .

Definition 5.3. If each node of a tree is either a set node
that is a subset of U or an operator node that belongs to
{∧,∨,UI,FI,GI}, then the tree is called a control tree.

Each tube node Xi of the tTLT Tφ is characterized by the
following two parameters:

• ta(Xi): the activation time of Xi,
• th(Xi): the time horizon of Xi, i.e., the time that Xi is

deactivated.

Denote by Tφ(tk) the resulting tree of Tφ at time instant
tk. It is obtained by fixing the value of each tube node Xi

according to the activation time ta(Xi) (i.e., Tφ(tk) contains
either set nodes or operator nodes). Let Si(tk) be the i-th set
node of Tφ(tk), where Si(tk) corresponds to the tube node
Xi. The relationship between Si(tk) and Xi can be described
as follows:

Si(tk) =

{
Xi(t0), if tk ≤ ta(Xi),

Xi(tk − ta(Xi)), if tk > ta(Xi).
(8)

Moreover, one has that

ta(Si(tk)) = ta(Xi), th(Si(tk)) = th(Xi),∀k ≥ 0.

At each time instant tk, Tφ(tk) is characterized by

• P (tk): the set which collects all the set nodes of
Tφ(tk), i.e., P (tk) = ∪iSi(tk),

• Θ: the set which collects all the operator nodes of
Tφ(tk), which is time invariant.

For a node Ni(tk) ∈ P (tk) ∪Θ, define

12 The International Journal of Robotics Research XX(X)

• CH(Ni(tk)): the set of children of node Ni(tk),
• PA(Ni(tk)): the set of parents of node Ni(tk),
• Post(Ni(tk)) := CH(CH(Ni(tk))),
• Pre(Ni(tk)) := PA(PA(Ni(tk))).

Given a state-time pair (xk, tk), define L : Rn × R≥0 →
2P (tk) as the labelling function, given by

L(xk, tk) = {Si(tk) ∈ P (tk) : xk ∈ Si(tk), tk ≤ th(Si(tk))},
(9)

which maps (xk, tk) to a subset of P (tk). Moreover, define
the function B : Rn × R≥0 → 2P (tk), which maps (xk, tk)
to a set of valid set nodes in P (tk). The function L(xk, tk)
computes the subset of set nodes of P (tk) that contains xk

at time tk (without the consideration of history trajectory)
while the function B(xk, tk) is further introduced to capture
the fact that given the history trajectory, not all set nodes
in L(xk, tk) are valid at time tk. A rule for determining
B(xk, tk) given L(xk, tk) is detailed in Algorithm 7 in the
next subsection.

5.2 Online control synthesis
In the following, we present the online control synthesis
algorithm (and its sub-algorithms), and then present an
example to further explain how each sub-algorithm works.

Algorithm 5 onlineControlSynthesis

Input: The tTLT Tφ and (x0, t0).
Return: NExis or (ν,x) with ν = ν0ν1 . . . νk . . . and x =

x0x1 . . . xk
1: (ta, th,Post(B(x−1, t−1)))← initialization(Tφ),
2: B(xk, tk)← trackingSetNode(Post(B(xk−1, tk−1))),
3: for each Si(tk) ∈ B(xk, tk), do
4: if ta(Si(tk)) =▷◁, then
5: ta(Xi)← tk,
6: end if
7: end for
8: Tφ(tk+1)← updatetTLT(Tφ(tk), ta, B(xk, tk)),
9: Tu(tk)← buildControlTree(Tφ(tk), B(xk, tk), Tφ(tk+1)),

10: T c
u (tk)← Compression(Tu(tk)),

11: U(xk, tk)← Backtracking*(T c
u),

12: if U(xk, tk) = ∅, then
13: stop and return NExis,
14: else
15: choose νk ∈ U(xk, tk),
16: implement νk and measure xk+1,
17: Post(B(xk, tk))←

postSet(B(xk, tk), ta, Tφ(tk+1)),
18: update k = k + 1 and go to line 2.
19: end if

The online control synthesis algorithm is outlined
in Algorithm 5. Before implementation, an initialization
process (line 1) is required, which is outlined in Algorithm
6. Here, ta and th are two functions that map each tube node
Xi to its activation time and time horizon, respectively. If
ta(Xi) or th(Xi) is unknown for Xi, its value will be set
as ▷◁. Then, at each time instant tk, a feasible control set
U(xk, tk) is synthesized (lines 2-11). This process contains
the following steps: 1) find the subset of set nodes in P (tk)
that are valid at time tk, i.e., B(xk, tk), via Algorithm 7

Algorithm 6 initialization

Input: The tTLT Tφ.
Return: ta, th,Post(B(x−1, t−1)).

1: ta(Xφ
root)← t0, th(Xφ

root)← t0 + |CH(Xφ
root)|,

2: for each non-root and non-leaf tube node Xi through a
top-down traversal, do

3: ta(Xi)←▷◁, th(Xi)← th(Pre(Xi) + |CH(Xi)|,
4: end for
5: for each leaf node Xi, do
6: ta(Xi)←▷◁, th(Xi)←∞,
7: end for
8: Post(B(x−1, t−1))← Xφ

root(t0),
9: for each Xj that is reachable from Xφ

root by a Boolean
segment (see Definition 5.2), do

10: Post(B(x−1, t−1))← Post(B(x−1, t−1)) ∪
Xj(t0),

11: ta(Xj)← t0,
12: end for

Algorithm 7 trackingSetNode

Input: Post(B(xk−1, tk−1)).
Return: B(xk, tk).

1: Compute L(xk, tk) according to (9),
2: B(xk, tk)← L(xk, tk) ∩ Post(B(xk−1, tk−1)),
3: for each Si(tk) ∈ B(xk, tk) do,
4: if ∃Sj(tk) ∈ B(xk, tk) s.t. Sj(tk) = Post(Si(tk)),

then
5: B(xk, tk)← B(xk, tk) \ Si(tk),
6: end if
7: end for

(line 2); 2) determine the activation time of Xi, whose
corresponding set node Si(tk) ∈ B(xk, tk) (if ta(Xi) is
unknown, i.e., being visited for the first time, it is set as
tk; otherwise, i.e., being visited before, it is unchanged)
(lines 3-7); 3) calculate Tφ(tk+1) via Algorithm 8 (line 8);
4) build a control tree Tu(tk) (Definition 5.3) via Algorithm
9 (line 9), compress it via Algorithm 3 (line 10), and then
the feasible control set U(xk, tk) is given by backtracking
the compressed control tree T c

u (tk) via Algorithm 10 (line
11). If the obtained feasible control set U(xk, tk) = ∅, the
control synthesis process stops and returns NExis (lines
12-13); otherwise, the control input νk can be chosen as
any element of U(xk, tk) (one example is to choose νk as
minνk∈U(xk,tk){∥νk∥}) (line 15). Then, we implement the
chosen νk, measure xk+1 (line 16), and finally compute the
subset of set nodes that are possibly available at the next time
instant tk+1, i.e., Post(B(xk, tk)), via Algorithm 11 (line
17).

We further detail Algorithms 6-11 in the following.

• Algorithm 6 calculates the functions ta and th (lines
1-7) and Post(B(x−1, t−1)) (lines 8-12).

• Algorithm 7 outlines the procedure of finding the
subset of set nodes in P (tk) that are valid at time
tk, i.e., B(xk, tk). This is the most important step
of the control synthesis, and it relates to Algorithm
11 postSet. Firstly, one needs to compute the subset
of set nodes of P (tk) that contains xk at time tk,
i.e., L(xk, tk) (line 1). Then, one has from Definition

Yu et al. 13

Algorithm 8 updatetTLT

Input: Tφ(tk), ta and B(xk, tk).
Return: Tφ(tk+1).

1: for each set node Si(tk) of Tφ(tk), do
2: if Si(tk) ∈ B(xk, tk) ∧ ta(Si(tk)) +
|CH(Si(tk))| ≥ tk+1, then

3: Si(tk+1)← Xi(tk+1 − ta(Si(tk))),
4: else
5: Si(tk+1)← Si(tk),
6: end if
7: end for

4.4 that if a trajectory x satisfies one complete path
of the tTLT, it must i) visit each tube node of
the complete path sequentially and ii) stay in each
tube node for sufficiently long time steps (Remark
4.1). Based on these two requirements, Algorithm
11 is designed to predict the subset of set nodes
that are possibly available at the next time instant,
i.e., Post(B(xk−1, tk−1)). Note that B(xk, tk) must
belong to L(xk, tk) and Post(B(xk−1, tk−1)) at the
same time. Therefore, we let B(xk, tk)← L(xk, tk) ∩
Post(B(xk−1, tk−1)) (line 2). The rest of Algorithm
7 (lines 3-7) guarantees that B(xk, tk) contains at most
one set node for each complete path of Tφ(tk).

• Algorithm 8 outlines the procedure of calculating
Tφ(tk+1), given Tφ(tk), ta and B(xk, tk). It is
designed based on (8).

• Algorithm 9 outlines the procedure of building a
control tree Tu(tk), which is then used for control set
synthesis. It is initialized as Tφ(tk) (line 1). Then, for
those set nodes Si(tk) that belongs to B(xk, tk), it
is replaced with the feasible control set (lines 2-8),
otherwise, it is replaced with ∅ (lines 9-11).

• Algorithm 10 is similar to Algorithm 4, which outlines
the procedure of backtracking a compressed tree.

• Algorithm 11 outlines the procedure of finding the
subset of set nodes that are possibly available at
the next time instant tk+1 given B(xk, tk), ta and
Tφ(tk+1). It is designed based on Definition 4.4, where
the three cases (lines 4-8, 9-12, 13-16) correspond
to items i)-iii) of Definition 4.4, respectively. It
guarantees that the resulting trajectory visits each tube
node of Tφ sequentially and stays in each tube node
for sufficiently long time steps (as we discussed in
Algorithm 7).

Next, an example is given to illustrate one iteration of the
control synthesis algorithm (Algorithm 5).

Example 5.1. Consider the single-integrator control system
ẋ = u+ w with a sampling period of one second. The
corresponding discrete-time system is given by

xk+1 = xk + uk + wk,

where xk ∈ R2, uk ∈ U := {u : ||u|| ≤ 1} ⊂
R2, wk ∈W := {w : ||w|| ≤ 0.1} ⊂ R2,∀k ∈ N.
The task specification φ is given in Example 3.1,
i.e., φ = F[a1,b1]G[a2,b2]µ1 ∧ µ2U[a3,b3]µ3, where
[a1, b1] = [5, 10], [a2, b2] = [0, 10], [a3, b3] = [0, 8],

Algorithm 9 buildControlTree

Input: Tφ(tk), B(xk, tk), and Tφ(tk+1).
Return: A control tree Tu(tk).

1: Initialize Tu(tk) as Tφ(tk),
2: for each Si(tk) ∈ B(xk, tk) do
3: if Si(tk) is a leaf node then,
4: Si(tk)← U(Si(tk)) := U ,
5: else
6: Si(tk)← U(Si(tk)) := {uk ∈ U :

fk(xk, uk, wk) ∈ Si(tk+1),∀wk ∈W},
7: end if
8: end for
9: for each Si(tk) /∈ B(xk, tk) do

10: Si(tk)← ∅,
11: end for

Algorithm 10 Backtracking*

Input: a compressed tree T c
u (tk).

Return: the root node of T c
u (tk).

1: for each Boolean operator node Θ of T c
u (tk) through a

bottom-up traversal, do
2: if Θ = ∧, then
3: PA(Θ)← PA(Θ) ∪ (CH1(Θ) ∩ CH2(Θ)),
4: else
5: PA(Θ)← PA(Θ) ∪ (CH1(Θ) ∪ CH2(Θ)),
6: end if
7: end for

Algorithm 11 postSet

Input: B(xk, tk), ta and Tφ(tk+1).
Return: Post(B(xk, tk)).

1: Initialize Post(Si(tk)) = ∅,∀Si(tk) ∈ B(xk, tk).
2: for each Si(tk) ∈ B(xk, tk), do
3: switch the children of Si(tk) do
4: case CH(Si(tk)) ∈ {∧,∨},
5: Post(Si(tk))← Si(tk+1),
6: for each Sj(tk) that is reachable from Si(tk)

by a Boolean segment, do
7: Post(Si(tk))← Post(Si(tk)) ∪

Sj(tk+1),
8: end for
9: case CH(Si(tk)) ∈ {U[a,b],F[a,b]},

10: if tk > ta(Pre(Si(tk)) + a
}

, then
11: Post(Si(tk))← Si(tk+1) ∪

Post(Si(tk+1)),
12: end if
13: case CH(Si(tk)) ∈ {G[a,b]},
14: if tk > ta(Pre(Si(tk)) + b

}
, then

15: Post(Si(tk))← Si(tk+1) ∪
Post(Si(tk+1)),

16: end if
17: end for

gµ1
(x) = 1− ∥x∥, gµ2

(x) = 5− ∥x− [4, 4]T ∥, and
gµ3

(x) = 1− ∥x− [3, 5]T ∥. Then, one has

Sµ1
= {x0 : ∥x0∥ ≤ 1},

Sµ2
= {x0 : ∥x0 − [4, 4]T ∥ ≤ 5},

14 The International Journal of Robotics Research XX(X)

Sµ3
= {x0 : ∥x0 − [3, 5]T ∥ ≤ 1}.

The tTLT that corresponds to φ is plotted in Figure 5. Using
Definitions 2.6 and 2.7, one can calculate that

X4(tk) = {xk : ∥xk∥ ≤ 0.9},
X3(tk) = {xk : ∥xk − [3, 5]T ∥ ≤ 8.1− k

∧∥xk − [4, 4]T ∥ ≤ 5},
X2(tk) = {xk : ∥xk∥ ≤ 9.9− k},
X1(tk) = X2(tk) ∩ X3(tk).

The initial state x0 = [0.5, 0.8]T , for which x0 ∈ Xφ
root(t0).

Firstly, an initialization process is required, and one can get
from Algorithm 6 that

th(X1) = 0, th(X2) = 10, th(X3) = 8,

th(X4) = 20, th(Sµ1
) =∞, th(Sµ3

) =∞,

and

Post(B(x−1, t−1)) = {X1(t0),X2(t0),X3(t0)}.

Now, let us see how the feasible control set U(x0, t0) is
synthesized at time instant t0.

1) Find B(x0, t0) via Algorithm 7. First, L(x0, t0) is
computed according to (9),

L(x0, t0) = {X1(t0),X2(t0),X3(t0),X4(t0),Sµ1
}.

Then, after running lines 2-7, one has

B(x0, t0) = {S2(t0), S3(t0)}.

2) Determine the activation time. Initially, both ta(X2)
and ta(X3) are unknown, therefore, ta(X2) = ta(X3) = t0.

3) Update the TLT (thus obtain Tφ(t1)) via Algorithm 8.
The output Tφ(t1) is given by

S1(t1) = X1(t0), S2(t1) = X2(t1),

S3(t1) = X3(t1), S4(t1) = X4(t0),

and the leaf nodes Sµ1
and Sµ3

are unchanged.
4) Build the control tree Tu(t0), compress it to obtain

T c
u (t0), and then get U(x0, t0). This process is illustrated

in Figure 9, and U(x0, t0) = U(S2(t0)) ∩ U(S3(t0)).
Since U(x0, t0) ̸= ∅, the online control synthesis contin-

ues, and we can further compute Post(B(x0, t0)) via Algo-
rithm 11, which gives

Post(B(x0, t0)) = {S2(t1), S3(t1),Sµ3
}.

The following theorem shows the applicability and
soundness of Algorithm 5.

Theorem 5.1. Consider uncertain system (1) with initial
state x0 and an STL formula φ in (5). Assume that
φ is robustly satisfiable for (1) and x0 ∈ T φ

root(t0).
Then, implementing the online control synthesis algorithm
(Algorithm 5) guarantees that

(i) the control set U(xk, tk) is nonempty for all k ∈ N;
(ii) the resulting trajectory x ⊨ φ.

Proof. The proof follows from the construction of tTLT and
Algorithms 5-11. The existence of a controller νk at each
time step tk, is guaranteed by the definition of maximal
and minimal reachable sets (Definitions 2.6 and 2.7), and
the construction of tTLT (Propoition 3.1, Theorem 3.1 and
Algorithm 1). Moreover, the design of Algorithms 5-11
guarantees that the resulting trajectory x satisfies the tTLT
Tφ, i.e., x ⊨ Tφ, which implies x ⊨ φ as proven in Theorem
4.1.

Remark 5.1. The tTLT construction relies on the compu-
tation of backward reachable tubes. Over the past decade,
new approaches (e.g., decomposition-based approach (Chen
et al., 2018a) and learning-based approaches (Allen et al.,
2014; Bansal and Tomlin, 2021)) and software tools (e.g.,
Hamilton-Jacobi Toolbox (Mitchell and Templeton, 2005)
and CORA Toolbox (Althoff, 2015)), have been developed
for improving the efficiency of computing backward reach-
able tubes. Moreover, we remark that the computation of
reachable tubes in our work for constructing of the tTLT
can be performed offline, which may mitigate the online
computational burden. On the other hand, although the exact
computation of backward reachable sets/tubes is in general
nontrivial for high-dimensional nonlinear systems, efficient
algorithms exist for linear systems with polygonal input and
disturbance sets (Kurzhanski and Pravin, 2014).

Remark 5.2. The online control synthesis algorithm
(Algorithm 5) contains 7 sub-algorithms, i.e., Algorithm
3 and Algorithms 6-11. The computational complexity is
determined by Algorithm 9, in which one-step feasible
control sets need to be computed. The computational
complexity of Algorithms 3, 6, 7, 8, 10, 11 is O(1). Note
that in Algorithm 8, the computation of reachable sets,
which is required for set node update, is done offline when
constructing the tTLT.

Remark 5.3. Different from the mixed-integer program-
ming formulation for STL control synthesis (Raman et al.,
2015, 2014), where an entire control policy has to be synthe-
sized at each time step, the control synthesis in our work is
reactive in the sense that only the control input at the current
time step is generated at each time step.

6 Numerical Simulations
In this section, two examples illustrating the theoretical
results are provided. We first perform a numerical simulation
for car overtaking. We then apply our algorithms to motion
planning of a mobile robot over a group of STL specifications
and test the scalability of our algorithms with respect to the
growing STL complexity.

6.1 Car overtaking example
We first consider a car overtaking example. This example
will specify an overtaking task as an STL formula and then
show how to synthesize an overtaking controller with safety
guarantees.

As shown in Figure 10, we consider a scenario where an
automated vehicle Veh1 plans to move to a target set Sµ1

within 80 seconds. Since there is a broken vehicle Veh2 in
front of Veh1 and there is another vehicle Veh3 that moves in

Yu et al. 15

∅

∧

U(S2(t0))

U[5,10]

∅

G[0,10]

∅

U(S3(t0))

U[0,8]

∅

⇒

∅

∧

U(S2(t0)) U(S3(t0))

⇒ U(S2(t0)) ∩ U(S3(t0))

Figure 9. Left: Tu(t0), Middle: T c
u (t0), Right: root node of T c

u (t0) after implementing Algorithm 10, where
U(S2(t0)) = U = {u : ||u|| ≤ 1},U(S3(t0)) = U ∩ {u : ∥u− [3.4, 3.1]T ∥ ≤ 5}.

0

0

−5

5

Sµ2
Sµ1

120

Sµ4

Sµ3
Sµ5Veh2Veh1

Veh3

Figure 10. Scenario illustration: an automated vehicle plans to reach a target set Sµ1 while overtaking a broken vehicle Veh2 in
front of it in the same lane and avoiding Veh3 moving in an opposite direction in the other lane.

X1

∧

X2

∧

X4

∧

X6

U[0,16]

Sµ4

X7

U[0,30]

Sµ5

X5

U[0,80]

X8

G[0,2]

Sµ1

X3

G[0,80]

Sµ2 ∪ Sµ6

Figure 11. The constructed tTLT Tφfast overtake .

an opposite direction in the other lane, Veh1 must overtake
Veh2 for reaching Sµ1

and avoid Veh3 for safety.
We describe the dynamics of the vehicle Veh1 as in

Murgovski and Sjöberg (2015):

xk+1 =

 1 0 δ
0 1 0
0 0 1

︸ ︷︷ ︸

A

xk +

 0 0
δ 0
0 δ

︸ ︷︷ ︸

B

uk + wk,

where xk = [px(k), py(k), vx(k)]T , uk = [vy(k), ax(k)]T ,
and δ is the sampling period. The working space is
X = {z ∈ R3 | [0,−5,−3]T ≤ z ≤ [120, 5, 3]T }, the
control constraint set is U = {z ∈ R2 | [−1,−1]T ≤
z ≤ [1, 1]T }, the disturbance set is W = {z ∈ R3 |
[−0.05,−0.05,−0.05]T ≤ z ≤ [0.05, 0.05, 0.05]T }, and
the target region is Sµ1

= {z ∈ R2 | [115,−5, 0.5]T ≤ z ≤
[120, 0, 0.5]T }.

We use Sµ2
= {z ∈ R3 | [45,−5,−∞]T ≤ z ≤

[50, 0,∞]T } to denote the state set that contains the
occupancy of Veh2. We describe the dynamics of the vehicle
Veh3 as

x̄k+1 =

[
1 0
0 1

]
︸ ︷︷ ︸

Ā

xk +

[
δ 0
0 δ

]
︸ ︷︷ ︸

B̄

ūk,

where xk = [p̄x(k), p̄y(k)]T , ūk = [v̄x(k), v̄y(k)]T , We
assume that it moves at a constant velocity ūk = [v̄x, 0]T .
The initial state of Veh3 is x̄0 = [p̄xini, 2.5]

T . Then, we have
that its position of x-axis is p̄xk = p̄xini + δ × (k − 1)× v̄x.

To formulate the overtaking task, we define
the following three sets as shown in Figure 10:
Sµ3

= {z ∈ R3 | [0,−5,−3]T ≤ z ≤ [35, 0, 3]T },
Sµ4 = {z ∈ R3 | [35,−5,−3]T ≤ z ≤ [60, 5, 3]T }, and
Sµ5 = {z ∈ R3 | [60,−5,−3]T ≤ z ≤ [120, 0, 3]T }.

Let us choose the sampling period as δ = 0.2s(seconds).
To respect the time constraint and the input constraint
for Veh1, we consider two possible solutions to the
previous reachability problem: (1) fast overtaking: overtake
Veh2 before Veh3 passes Veh2; (2) slow overtaking: wait
until Veh3 passes Veh2 and then overtake Veh2. The fast

16 The International Journal of Robotics Research XX(X)

Figure 12. Trajectories for one realization of disturbance signal in the fast overtaking: (a) position trajectory; (b) velocity trajectory
of x-axis; (c) control trajectory of x-axis; (d) control trajectory of y-axis.

Figure 13. Trajectories for one realization of disturbance signal in the slow overtaking: (a) position trajectory; (b) velocity trajectory
of x-axis; (c) control trajectory of x-axis; (d) control trajectory of y-axis.

overtaking can be encoded into an STL formula:

φfast overtake = µ3U[0,16]µ4 ∧ (µ3 ∨ µ4)U[0,30]µ5

∧ (µ3 ∨ µ4 ∨ µ5)U[0,80]G[0,2]µ1 ∧ G[0,80]¬(µ2 ∨ µ6),

where Sµ6 = {z ∈ R6 | [p̄x(16), 0,−∞]T ≤ z ≤
[p̄x(0), 5,∞]T }. Note that Sµ6 denotes the reachable
set for the vehicle Veh3 within the time interval [0, 16]
seconds and 16 (that corresponds to the sampling index
k = 80) is the maximal time instant that the vehicle Veh1
can reach the set Sµ5 in the sprit of φ1. Using Algorithm
1, one can construct the tTLT Tφfast overtake

(see Figure 11),
where

X6(tk) = RM (X,Sµ4
,Sµ3

, [0, 16], k),

X7(tk) = RM (X,Sµ5
,Sµ3

∪ Sµ4
, [0, 30], k),

X8(tk) = Rm(X,Sµ1
, [0, 2], k),

X4(tk) = X6(tk) ∩ X7(tk),

X5(tk) = RM (X,X8(t0),Sµ3
∪ Sµ4

∩ Sµ5
, [0, 80], k),

X2(tk) = X4(tk) ∩ X5(tk),

X3(tk) = Rm(X,Sµ2
∩ Sµ6

, [0, 80], k), and
X1(tk) = X2(tk) ∪ X3(tk).

The slow overtaking can be encoded into an STL formula

φslow overtake = µ3U[16,32]µ4 ∧ (µ3 ∨ µ4)U[0,45]µ5

∧ (µ3 ∨ µ4 ∨ µ5)U[0,80]G[0,2]µ1 ∧ G[0,80]¬(µ2 ∨ µ7)

where Sµ7
= {z ∈ R2 | [−∞, 0,−∞]T ≤ z ≤

[p̄x(16), 5,∞]T }. Note that Sµ7
denotes the reachable

set for the vehicle Veh3 within the time interval [16,+∞)
and 16 (that corresponds to the sampling index k = 80) is
the minimal time instant that the vehicle Veh1 can reach the
set Sµ4

in the sprit of φ2. The tTLT Tφslow overtake
can be

constructed similar to Tφfast overtake
.

In the following, two simulation cases are considered and
the online control synthesis algorithm is implemented. In
the fast overtaking, we choose the initial position p̄xini = 95

Yu et al. 17

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

fast overtaking with disturbance

fast overtaking without disturbance

0 20 40 60 80 100 120

-2

0

2

0 20 40 60 80 100 120

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120

-0.1

-0.05

0

0.05

0.1

Figure 14. Comparison of robust control with noise and deterministic control without disturbance signal in the fast overtaking: (a)
position-time trajectory; (b) velocity trajectory of x-axis; (c) control trajectory of x-axis; (d) control trajectory of y-axis; (e)
disturbance signals.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

slow overtaking with disturbance

slow overtaking without disturbance

0 20 40 60 80 100 120

-2

0

2

0 20 40 60 80 100 120

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120

-0.1

-0.05

0

0.05

0.1

Figure 15. Comparison of robust control with noise and deterministic control without disturbance signal in the fast overtaking in the
slow overtaking: (a) position-time trajectory; (b) velocity trajectory of x-axis; (c) control trajectory of x-axis; (d) control trajectory of
y-axis; (e) disturbance signals.

18 The International Journal of Robotics Research XX(X)

(a) Position trajectories for 100 realizations of disturbance signals in the fast overtaking.

(b) Position trajectories for 100 realizations of disturbance signals in the slow overtaking.

Figure 16. Position trajectories for 100 realizations of disturbance signals.

and the moving velocity v̄x = −2 for the vehicle Veh3 and
the initial position x0 = [0.5,−2.5, 2]T for Veh1. One can
verify that the specification φslow overtake is infeasible in
this case. Figure 12 (a) shows the position trajectories, from
which we can see that the whole specification is fulfilled.
The blue region denotes the set Sµ6

. Figure 12 (b) shows
the velocity trajectory of vx and Figures 12 (c)–(d) show
the corresponding control inputs, where the dashed lines
denote the control bounds. The cyan regions represent the
synthesized control sets and the blue lines are the control
trajectories. In the slow overtaking, we choose the initial
position p̄xini = 80 and the moving velocity v̄x = −3 for the
vehicle Veh3 and the same initial position x0 = [0.5,−2.5]T
for Veh1. In this case one can verify that φfast overtake is
infeasible. Figure 13 (a) shows the position trajectories, from
which we can see that the whole specification is fulfilled. The
blue region denotes the intersection between the set X and
the set Sµ7

. Figure 13 (b) shows the velocity trajectory of vx

and Figures 13 (c)–(d) show the corresponding control input
trajectories of ax and vy .

To highlight the effect of disturbances, we compare
the trajectories with and without disturbances in the fast
overtaking, which are shown in Figure 14(a)–(e). In
Figure 14(a), we show the evolution of the x-axis position
along the time. We use k1, k2, and k3 (or k′1, k′2,
and k′3) to denote the minimal time instants that Veh1

reaches the sets Sµ4
, Sµ5

, and Sµ1
for the noisy scenario

(or for the deterministic scenario). We can see that the
disturbances slightly delay the reaching time, while both
two position trajectories satisfy the time intervals encoded
in φ1. The differences of the velocity trajectory of vx

and the corresponding control input trajectories of ax and
vy are highlighted in Figures 13 (c)–(d), respectively. The
disturance realizations of wk are shown in Figure 13(e).
In the deterministic scenario, the controller is aggressive in
the sense that the velocity can actively reach the maximum
velocity. As a comparison, the controller in the noisy
scenario is more cautious in the sense that some gaps
always exist between the actual velocity and the maximum
velocity. In order to reject the disturbance, more frequent
changing of the control inputs occurs in the noisy scenario.
Similar observations are applied to the slow overtaking,
whose comparisons are shown in Figure 15. Furthermore, in
order to show the robustness, we run 100 realizations of the
disturbance trajectories in the fast overtaking and in the slow

Figure 17. Scenario illustration: an automated vehicle needs to
enter into the parking lot, park in the designated parking spot
(blue), and leave the parking lot, while avoiding any collisions.

overtaking, respectively. The position trajectories for such
100 realizations of two cases are shown in Figure 16.

Finally, we report the computation time of this example,
which was run in Matlab R2016a with MPT toolbox (Herceg
et al., 2013) on a Dell laptop with Windows 7, Intel i7-6600U
CPU 2.80 GHz and 16.0 GB RAM. We perform reachability
analysis for constructing the tTLT offline, which takes
59.10 seconds. For online control synthesis, the minimal
computation time at a single time step over 100 realizations
is 0.23 seconds, while the maximal computation time is
1.07 seconds. The average time of each time step is 0.31
seconds. We remark that the mixed-integer formulation is
difficult to implement in this example. This is because the
computational complexity of mixed-integer programming
grows exponentially with the horizon of the STL formula,
which in this example reaches up to 400 sampling instants,
much longer than the horizons considered in the simulation
examples of Raman et al. (2015, 2014); Sadraddini and Belta
(2015).

6.2 Motion planning example
In this section, we consider the motion planning of a mobile
robot in an environment, as shown in Figure 17, under
a group of STL specifications with growing complexity.
We describe the underlying continuous dynamics of the

Yu et al. 19

φ1 = (µ0 ∧ ¬ (µ1 ∨ µ2 ∨ µ3))U[0,30]G[0,2]µ4 (10a)
φ2 = ϕ21 ∧ ϕ22 (10b)
ϕ21 = (µ0 ∧ ¬ (µ1 ∨ µ2 ∨ µ3 ∨ µ4 ∨ µ5))U[0,20]G[0,2]µ6

ϕ22 =
(
(µ0 ∧ ¬ (µ1 ∨ µ2 ∨ µ3))U[0,35]G[0,2]µ4

)
φ3 = (ϕ21 ∨ ϕ31) ∧ ϕ22 (10c)
ϕ31 = (µ0 ∧ ¬ (µ1 ∨ µ2 ∨ µ3 ∨ µ4 ∨ µ5))U[0,20]G[0,3]µ7

φ4 = (ϕ21 ∧ ϕ22 ∧ ϕ41) ∨ (ϕ31 ∧ ϕ22 ∧ ϕ42) (10d)
ϕ41 = (µ0 ∧ ¬ (µ1 ∨ µ2 ∨ µ3 ∨ µ5))U[35,55]G[0,2]µ6

ϕ42 = (µ0 ∧ ¬ (µ1 ∨ µ2 ∨ µ3 ∨ µ5))U[35,55]G[0,3]µ7

φ5 = φ4 ∧ ϕ51 (10e)
ϕ51 = (µ0 ∧ ¬ (µ1 ∨ µ2 ∨ µ3 ∨ µ5))U[55,75]G[0,2]µ8

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 s

7 s

13 s

19 s

25 s

(a) A position trajectory that fulfill φ1

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 s

8 s

16 s

24 s

32 s

(b) A position trajectory that fulfills φ2 (c) Two position trajectories that fulfills φ3

(d) Two position trajectories that fulfills φ4 (e) Two position trajectories that fulfills φ5

Figure 18. The position trajectories that fulfill the STL formulas φi, i = 1, . . . , 5. The time information is indicated using different
colors.

automated vehicle as:

f(x, u, w) =

ṗxṗy
θ̇

 =

v cos θv sin θ
σ

+ w,

where x = [px, py, θ]T is the vehicle’s x position, y posi-
tion, and heading, respectively. The control input is u =
[v, σ]T , where v is the vehicle’s velocity and σ is the
angular velocity. The working space is X = {z ∈ R3 |
[−5,−5,−π]T ≤ z ≤ [−5, 5, π]T }, the control set is U =
{z ∈ R2 | [−0.5,−π/5]T ≤ z ≤ [0.5, π/5,]T }, and the dis-
turbance set is W = {z ∈ R3 | [−0.1,−0.1,−0.1]T ≤ z ≤
[0.1, 0.1, 0.1]T }. For constructing the tTLT, we discretize the
above dynamics using a simple zero-order hold estimation.
Let ∆ be the sampling period, then we describe the discrete
dynamics of the automated vehicle as

xk+1 = xk + f(xk, uk, wk)∆.

For the parking task, we set ∆ = 0.05s.

We consider the following five STL formulas φi, i =
1, . . . , 5, as defined in Eq.(10). These five formulas have
increasing complexity, e.g., longer horizon and more
operators. We report the computation time of this example,
which was run in Matlab R2022b with the Level Set
Method Toolbox (Mitchell and Templeton, 2005). The
offline computation time for constructing the tTLT and the
online computation time for synthesizing the controller are
summarized in Table 2. As expected, the offline computation
time typically increases with respect to the complexity of
STL formulas. Note that the formulas φ3 and φ4 have the
same computation time (134.49s) since the computation of
reachable sets for ϕ3 can be directly reused to construct the
tTLT of ϕ4, despite that ϕ4 looks more complex than ϕ3. On
the other hand, the online computation for control synthesis,
measured by the computation time per time step, is very

20 The International Journal of Robotics Research XX(X)

Table 2. Computation time under different STL formulas

STL formula
Offline com. time

(tTLT construction)
Online com. time
(control synthesis)

φ1 in (10a) 71.60s 0.0180s
φ2 in (10b) 82.70s 0.0178s
φ3 in (10c) 134.49s 0.0193s
φ4 in (10d) 134.49s 0.0159s
φ5 in (10e) 187.81s 0.0164s

efficient for all the formulas. The position trajectories are
plotted in Figure 18, where the initial position is indicated
by the star and the end position is the circle. The time
information over the trajectories is illustrated by the color
map.

7 Car Parking Experiment
In this section, we consider a car parking example. This
example will specify a parking task as an STL formula and
then show how our algorithms perform on real hardware.
We will first perform reachability analysis for constructing
the tTLT offline and then we use the tTLT to synthesize
a parking controller for the Small-Vehicles-for-Autonomoy
(SVEA) platform (Jiang et al., 2022).

As shown in Figure 19, we consider a scenario where an
automated vehicle must enter the parking lot Sµ1 , park in
the designated parking spot Sµ2

, and leave the parking lot
through the exit Sµ4

, where each step of the scenario has a
specific deadline. Additionally, throughout the scenario, the
vehicle must stay safe and avoid collisions with the parking
lot walls and parked vehicles Sµ3 .

We describe the underlying continuous dynamics of the
automated vehicle as:

f(x, u, w) =

ṗx

ṗy

θ̇
v̇

 =

v cos θ
v sin θ
v tan δ

L
a

+ w, (11)

where x = [px, py, θ, v]T is the vehicle’s x position, y
position, heading, and velocity, respectively. u = [δ, a]T

is the vehicle’s steering and acceleration inputs. The
working space is X = {z ∈ R4 | [−2,−3,−π,−0.6]T ≤

Figure 19. Scenario illustration: an automated vehicle needs to
enter into the parking lot, park in the designated parking spot
(blue), and leave the parking lot, while avoiding any collisions.

X1

∧

X2

∧

X4

∧

X6

G[0,60]

Sµ3

X7

F[0,10]

X8

G[0,30]

Sµ1

X5

F[10,40]

Sµ2

X3

F[40,60]

Sµ4

Figure 20. The constructed tTLT Tφparking .

z ≤ [2, 2, π, 0.6]T }, the control set is U = {z ∈ R2 |
[−π/5,−0.5]T ≤ z ≤ [π/5, 0.5]T }, and the disturbance
set is W = {z ∈ R4 | [−0.01,−0.01,−π/72,−0.01]T ≤
z ≤ [0.01, 0.01, π/72, 0.01]T }. For constructing the tTLT,
we discretize (11) using a simple zero-order hold estimation.
Let δ be the sampling period, then we describe the discrete
dynamics of the automated vehicle as

xk+1 = xk + f(xk, uk, wk)∆.

For the parking task, we set ∆ = 0.05s. We define
the state sets in Figure 19 as Sµ1

= {z ∈ R4 |
[−2,−3,−π,−0.6]T ≤ z ≤ [2, 0, π, 0.6]T }, Sµ2

= {z ∈
R4 | [1.3,−2,−π,−0.6]T ≤ z ≤ [2,−1.5, π, 0.6]T },
Sµ4 = {z ∈ R4 | [0.5, 0,−π,−0.6]T ≤ z ≤ [1, 1, π, 0.6]T },
and Sµ3

= Sµ3,1
∪ Sµ3,2

∪ Sµ3,3
, where Sµ3,1

= {z ∈
R4 | [−2,−3,−π,−0.6]T ≤ z ≤ [−1.3, 0, π, 0.6]T },
Sµ3,2

= {z ∈ R4 | [1.3,−1.5,−π,−0.6]T ≤ z ≤
[2, 0, π, 0.6]T }, Sµ3,3

= {z ∈ R4 | [1.3,−3,−π,−0.6]T ≤
z ≤ [2,−2, π, 0.6]T }.

We let the full scenario be 60 seconds long and specify
that the vehicle needs to enter the parking lot, park in the
designated spot, and leave the parking lot within 10 seconds,
40 seconds, and 60 seconds, respectively. Then, this parking
task can be encoded into the following STL formula:

φparking = G[0,60]¬µ3 ∧ F[0,10]G[0,30]µ1 ∧ F[10,40]µ2

∧ F[40,60]µ4.

First, we use Algorithm 1 to construct the corresponding
tTLT Tφparking

(see Figure 20), where the tube nodes Xi, i =

Yu et al. 21

Figure 21. The position trajectory of a SVEA vehicle
performing the parking task φparking.

1, · · · , 8 are computed in a bottom-up manner as in the
previous example. Then, we implement the online control
synthesis algorithm (Algorithm 5) on a SVEA vehicle using
Tφparking

. For choosing a control policy within the constraints
of the synthesized control sets, we apply the same approach
as described in Section IV.C of Jiang et al. (2020).

For our evaluation, we initialize the SVEA vehicle with
the initial state of x0 = [1, 1.75,−π, 0]. At this initial state,
φ3 is robustly satisfiable. Figure 21 shows the position
trajectory, where one can see that the specification is fulfilled.
In Figure 22, we show the control input trajectories for
acceleration and steering. We use k1, k2, k3 to denote the
minimal time instants that the automated vehicle reaches
sets Sµ1

, Sµ2
, and Sµ4

. Using the synthesized controller, the
SVEA vehicle realized k1 = 8.0, k2 = 18.7, and k3 = 48.7,
as illustrated in both Figures 21 and 22, confirming the
satisfaction of φparking. For our evaluation, we initialize the
SVEA vehicle with the initial state of x0 = [1, 1.75,−π, 0].
At this initial state, φ3 is robustly satisfiable. Figure 21
shows the position trajectory, where one can see that the
specification is fulfilled. In Figure 22, we show the control
input trajectories for acceleration and steering. We use k1,
k2, k3 to denote the minimal time instants that the automated
vehicle reaches sets Sµ1 , Sµ2 , and Sµ4 . Using the synthesized
controller, the SVEA vehicle realized k1 = 8.0, k2 = 18.7,
and k = 48.7, as illustrated in both Figures 21 and 22,
confirming the satisfaction of φparking.

Finally, we report the computation time of this example,
which was run in Matlab R2022b with the Level Set Method
Toolbox (Mitchell and Templeton, 2005). We perform
reachability analysis for constructing the tTLT offline on
a Dell laptop with Ubuntu 20.04, Intel i7-4600U CPU
2.10GHz and 8.0 GB RAM, which takes 2371.81 seconds.
We note that the offline computation time for constructing
the tTLT can be significantly reduced by using the python
implementation (Bui et al., 2022). Throughout the parking
task, we perform the online control synthesis on an NVIDIA
Jetson TX2 embedded computer onboard the SVEA vehicle.
The average time step of the online control synthesis is 0.001
seconds. A video demonstration of this experiment can be
found at https://bit.ly/STL-TLT.

8 Conclusion
A novel approach for the online control synthesis of
uncertain discrete-time systems under STL specifications
was proposed in this paper. First, a real-time version of STL
semantics and a notion of tTLT were introduced. Then the
formal semantic connection between an STL formula and its
corresponding tTLT was derived, i.e., a trajectory satisfying a
tTLT also satisfies the corresponding STL formula. Finally,
an online control synthesis algorithm was designed for the
uncertain systems based on the connection between STL and
tTLT. For the fragment of STL formulas under consideration,
the soundness of the algorithm was proven. In the future, the
control synthesis for multi-agent systems under local and/or
global STL specifications is of interest.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding
The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication
of this article: This work was supported by the Swedish
Research Council (VR) (Distinguished Professor Grant
2017-01078 and International Postdoc Grant 2021-06727),
Knut and Alice Wallenberg Foundation (Wallenberg Scholar
Grant and Wallenberg Academy Fellow), the ERC COG
LEAFHOUND (Grant agreement ID: 864720), and the ERC
ADG FUN2MODEL (Grant agreement ID: 834115).

References

Allen RE, Clark AA, Starek JA and Pavone M (2014) A
machine learning approach for real-time reachability analysis.
In: Proceedings of IEEE/RSJ international conference on
intelligent robots and systems. pp. 2202–2208.

Althoff M (2015) An introduction to CORA 2015. In: Proceedings
of the Workshop on Applied Verification for Continuous and
Hybrid Systems.

Alur R, Feder T and Henzinger TA (1996) The benefits of relaxing
punctuality. Journal of the ACM 43(1): 116–146.

Baier C and Katoen JP (2008) Principles of Model Checking. MIT
press.

Baillieul J and Samad T (2021) Encyclopedia of Systems and
Control. Springer.

Bansal S and Tomlin CJ (2021) Deepreach: A deep learning
approach to high-dimensional reachability. In: Proceedings of
IEEE International Conference on Robotics and Automation.
pp. 1817–1824.

Barbosa FS, Duberg D, Jensfelt P and Tumova J (2019) Guiding
autonomous exploration with signal temporal logic. IEEE
Robotics and Automation Letters 4(4): 3332–3339.

Belta C, Bicchi A, Egerstedt M, Frazzoli E, Klavins E and Pappas
GJ (2007) Symbolic planning and control of robot motion
[grand challenges of robotics]. IEEE Robotics & Automation
Magazine 14(1): 61–70.

Belta C, Yordanov B and Gol EA (2017) Formal Methods for
Discrete-time Dynamical Systems, volume 89. Springer.

https://bit.ly/STL-TLT

22 The International Journal of Robotics Research XX(X)

Figure 22. The velocity and heading trajectories in response to the acceleration and steering inputs throughout the parking task
φparking.

Bertsekas D (1972) Infinite time reachability of state-space regions
by using feedback control. IEEE Transactions on Automatic
Control 17(5): 604–613.

Bui M, Giovanis G, Chen M and Shriraman A (2022) OptimizedDP:
An efficient, user-friendly library for optimal control and
dynamic programming. DOI:10.48550/ARXIV.2204.05520.
URL https://arxiv.org/abs/2204.05520.

Buyukkocak AT, Aksaray D and Yazıcıoğlu Y (2021) Planning of
heterogeneous multi-agent systems under signal temporal logic
specifications with integral predicates. IEEE Robotics and
Automation Letters 6(2): 1375–1382.

Buyukkocak AT, Aksaray D and Yazıcıoğlu Y (2022) Control
barrier functions with actuation constraints under signal
temporal logic specifications. In: Proceedings of European
Control Conference.

Chen M, Herbert SL, Vashishtha MS, Bansal S and Tomlin CJ
(2018a) Decomposition of reachable sets and tubes for a class
of nonlinear systems. IEEE Transactions on Automatic Control
63(11): 3675–3688.

Chen M, Tam Q, Livingston SC and Pavone M (2018b)
Signal temporal logic meets Hamilton-Jacobi reachability:
connections and applications. In: Proceedings of Workshop on
Algorithmic Foundations of Robotics.

Dokhanchi A, Hoxha B and Fainekos G (2014) On-line monitoring
for temporal logic robustness. In: Proceedings of International
Conference on Runtime Verification. pp. 231–246.

Fainekos GE and Pappas GJ (2009) Robustness of temporal
logic specifications for continuous-time signals. Theoretical
Computer Science 410(42): 4262–4291.

Farahani SS, Majumdar R, Prabhu VS and Soudjani S (2018)
Shrinking horizon model predictive control with signal
temporal logic constraints under stochastic disturbances. IEEE
Transactions on Automatic Control 64(8): 3324–3331.

Fu J and Topcu U (2015) Computational methods for stochastic
control with metric interval temporal logic specifications.
In: Proceedings of 54th IEEE Conference on Decision and
Control. pp. 7440–7447.

Gao Y, Abate A, Jiang FJ, Giacobbe M, Xie L and Johansson
KH (2022) Temporal logic trees for model checking and
control synthesis of uncertain discrete-time systems. IEEE
Transactions on Automatic Control 67(10): 5071–5086.

Gastin P and Oddoux D (2001) Fast LTL to Büchi automata
translation. In: Proceedings of International Conference on
Computer Aided Verification. Springer, pp. 53–65.

Gilpin Y, Kurtz V and Lin H (2020) A smooth robustness measure
of signal temporal logic for symbolic control. IEEE Control
Systems Letters 5(1): 241–246.

Hamilton N, Robinette PK and Johnson TT (2022) Training
agents to satisfy timed and untimed signal temporal logic
specifications with reinforcement learning. In: International
Conference on Software Engineering and Formal Methods.
Springer, pp. 190–206.

Hashimoto W, Hashimoto K and Takai S (2022) Stl2vec: Signal
temporal logic embeddings for control synthesis with recurrent
neural networks. IEEE Robotics and Automation Letters 7(2):
5246–5253.

Herceg M, Kvasnica M, Jones CN and Morari M (2013) Multi-
parametric toolbox 3.0. In: Proceedings of European Control

https://arxiv.org/abs/2204.05520

Yu et al. 23

Conference. pp. 502–510.
Ho QH, Ilyes RB, Sunberg ZN and Lahijanian M (2022)

Automaton-guided control synthesis for signal temporal logic
specifications. In: 2022 IEEE 61st Conference on Decision and
Control (CDC). pp. 3243–3249.

Jiang FJ, Al-Janabi M, Bolin T, Johansson KH and Mårtensson J
(2022) SVEA: an experimental testbed for evaluating V2X use-
cases. In: Proceedings of IEEE 25th International Conference
on Intelligent Transportation Systems. pp. 3484–3489. DOI:
10.1109/ITSC55140.2022.9922544.

Jiang FJ, Gao Y, Xie L and Johansson KH (2020) Ensuring safety
for vehicle parking tasks using Hamilton-Jacobi reachability
analysis. In: Proceedings of 59th IEEE Conference on Decision
and Control. pp. 1416–1421. DOI:10.1109/CDC42340.2020.
9304186.

Kantaros Y and Zavlanos MM (2018) Sampling-based optimal
control synthesis for multirobot systems under global temporal
tasks. IEEE Transactions on Automatic Control 64(5): 1916–
1931.

Kapoor P, Balakrishnan A and Deshmukh JV (2020) Model-
based reinforcement learning from signal temporal logic
specifications. arXiv preprint arXiv:2011.04950 .

Karlsson J, Barbosa FS and Tumova J (2020) Sampling-based
motion planning with temporal logic missions and spatial
preferences. IFAC-PapersOnLine 53(2): 15537–15543.

Kochdumper N and Bak S (2023) Fully automated verification
of linear time-invariant systems against signal temporal logic
specifications via reachability analysis. arXiv preprint
arXiv:2306.04089 .

Koymans R (1990) Specifying real-time properties with metric
temporal logic. Real-Time Systems 2(4): 255–299.

Kress-Gazit H, Lahijanian M and Raman V (2018) Synthesis for
robots: Guarantees and feedback for robot behavior. Annual
Review of Control, Robotics, and Autonomous Systems 1: 211–
236.

Kurtz V and Lin H (2022) Mixed-integer programming for signal
temporal logic with fewer binary variables. IEEE Control
Systems Letters 6: 2635–2640.

Kurzhanski AB and Pravin V (2014) Dynamics and Control of
Trajectory Tubes: Theory and Computation. Springer.

Leung K, Aréchiga N and Pavone M (2023) Backpropagation
through signal temporal logic specifications: Infusing logical
structure into gradient-based methods. The International
Journal of Robotics Research 42(6): 356–370.

Leung K and Pavone M (2022) Semi-supervised trajectory-
feedback controller synthesis for signal temporal logic
specifications. In: 2022 American Control Conference (ACC).
pp. 178–185.

Lindemann L and Dimarogonas DV (2018) Control barrier
functions for signal temporal logic tasks. IEEE Control Systems
Letters 3(1): 96–101.

Lindemann L and Dimarogonas DV (2019) Feedback control
strategies for multi-agent systems under a fragment of signal
temporal logic tasks. Automatica 106: 284–293.

Lindemann L, Matni N and Pappas GJ (2021a) Stl robustness risk
over discrete-time stochastic processes. In: 2021 60th IEEE
Conference on Decision and Control (CDC). pp. 1329–1335.

Lindemann L, Pappas GJ and Dimarogonas DV (2021b) Reactive
and risk-aware control for signal temporal logic. IEEE

Transactions on Automatic Control 67(10): 5262–5277.
Liu W, Mehdipour N and Belta C (2021) Recurrent neural network

controllers for signal temporal logic specifications subject to
safety constraints. IEEE Control Systems Letters 6: 91–96.

Maler O and Nickovic D (2004) Monitoring temporal properties
of continuous signals. In: Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems. Springer, pp.
152–166.

Mitchell IM and Templeton JA (2005) A toolbox of Hamilton-
Jacobi solvers for analysis of nondeterministic continuous and
hybrid systems. In: Proceedings of International Workshop on
Hybrid Systems: Computation and Control. pp. 480–494.

Murgovski N and Sjöberg J (2015) Predictive cruise control
with autonomous overtaking. In: Proceedings of 54th IEEE
Conference on Decision and Control. pp. 644–649.

Raman V, Donzé A, Maasoumy M, Murray RM, Sangiovanni-
Vincentelli A and Seshia SA (2014) Model predictive control
with signal temporal logic specifications. In: Proceedings of
53rd IEEE Conference on Decision and Control. pp. 81–87.

Raman V, Donzé A, Sadigh D, Murray RM and Seshia SA (2015)
Reactive synthesis from signal temporal logic specifications.
In: Proceedings of the 18th International Conference on Hybrid
Systems: Computation and Control. pp. 239–248.

Roehm H, Oehlerking J, Heinz T and Althoff M (2016) Stl model
checking of continuous and hybrid systems. In: Automated
Technology for Verification and Analysis: 14th International
Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings 14. pp. 412–427.

Sadraddini S and Belta C (2015) Robust temporal logic model
predictive control. In: Proceedings of 53rd Annual Allerton
Conference on Communication, Control, and Computing
(Allerton). pp. 772–779.

Scher G, Sadraddini S and Kress-Gazit H (2022) Robustness-
based synthesis for stochastic systems under signal temporal
logic tasks. In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 1269–1275.

Singh NK and Saha I (2023) Stl-based synthesis of feedback
controllers using reinforcement learning. In: Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37. pp.
15118–15126.

Sun D, Chen J, Mitra S and Fan C (2022) Multi-agent motion
planning from signal temporal logic specifications. IEEE
Robotics and Automation Letters 7(2): 3451–3458.

Takayama Y, Hashimoto K and Ohtsuka T (2023) Signal temporal
logic meets convex-concave programming: A structure-
exploiting sqp algorithm for stl specifications. arXiv preprint
arXiv:2304.01475 .

van Huijgevoort BC, Verhoek C, Tóth R and Haesaert S (2023)
Direct data-driven signal temporal logic control of linear
systems. arXiv preprint arXiv:2304.02297 .

Vasile CI and Belta C (2013) Sampling-based temporal logic
path planning. In: Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 4817–4822.

Vasile CI, Raman V and Karaman S (2017a) Sampling-based
synthesis of maximally-satisfying controllers for temporal
logic specifications. In: Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 3840–3847.

Vasile CI, Raman V and Karaman S (2017b) Sampling-based
synthesis of maximally-satisfying controllers for temporal
logic specifications. In: 2017 IEEE/RSJ International

24 The International Journal of Robotics Research XX(X)

Conference on Intelligent Robots and Systems (IROS). pp.
3840–3847.

Venkataraman H, Aksaray D and Seiler P (2020) Tractable
reinforcement learning of signal temporal logic objectives. In:
Learning for Dynamics and Control. PMLR, pp. 308–317.

Wolff EM and Murray RM (2016) Optimal control of nonlinear
systems with temporal logic specifications. In: Robotics
Research. Springer, pp. 21–37.

Yang G, Belta C and Tron R (2020) Continuous-time signal
temporal logic planning with control barrier functions. In:
Proceedings of American Control Conference. pp. 4612–4618.

Zhou Y, Maity D and Baras JS (2016) Timed automata approach
for motion planning using metric interval temporal logic. In:
Proceedings of European Control Conference. pp. 690–695.

	Introduction
	Motivation
	Related work
	LTL or MITL control synthesis
	STL control synthesis
	Other related work

	Contributions
	Organization and notations

	Preliminaries and Problem Formulation
	Systems dynamics
	Signal temporal logic
	Reachability operators
	Problem formulation

	Real-time STL semantics and tube-based temporal logic tree
	Real-time STL semantics
	Tube-based temporal logic tree and its construction

	Semantic Connection between STL and tTLT
	Online Control Synthesis
	Definitions and notations
	Online control synthesis

	Numerical Simulations
	Car overtaking example
	Motion planning example

	Car Parking Experiment
	Conclusion

