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Abstract

This paper presents a multiplayer Homicidal Chauffeur reach-avoid differential game, which involves Dubins-car pursuers and
simple-motion evaders. The goal of the pursuers is to cooperatively protect a planar convex region from the evaders, who
strive to reach the region. We propose a cooperative strategy for the pursuers based on subgames for multiple pursuers against
one evader and optimal task allocation. We introduce pursuit enclosure functions (PEFs) and propose a new enclosure region
pursuit (ERP) winning approach that supports the forward analysis for the strategy synthesis in the subgames. We show that
if a pursuit coalition is able to defend the region against an evader under the ERP winning, then no more than two pursuers
in the coalition are necessarily needed. We also propose a steer-to-ERP approach to certify the ERP winning and synthesize
the ERP winning strategy. To implement the strategy, we introduce a positional PEF and provide the necessary parameters,
states, and strategies that ensure the ERP winning for both one pursuer and two pursuers against one evader. Additionally,
we formulate a binary integer program using the subgame outcomes to maximize the captured evaders in the ERP winning for
the pursuit task allocation. Finally, we propose a multiplayer receding-horizon strategy where the ERP winnings are checked
in each horizon, the task is allocated, and the strategies of the pursuers are determined. Numerical examples are provided to
illustrate the results.
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1 Introduction

Problem motivation and description: Multi-robot sys-
tems with adversarial goals, failures or improper uses,
could pose significant threat to safety-critical infrastruc-
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ture, such as airports and military facilities. We consider
a planar multiplayer Homicidal Chauffeur reach-avoid
differential game. In this game, multiple Dubins-car pur-
suers are used to protect a convex region against a num-
ber of malicious simple-motion evaders. To capture the
most number of evaders, we propose a receding-horizon
strategy for the pursuers based on subgames for multiple
pursuers against one evader and optimal task allocation.

Literature review: The classical Homicidal Chauffeur dif-
ferential game first proposed by Isaacs (1965), is an at-
tractive pursuit-evasion game between a Dubins-car pur-
suer and a simple-motion evader, and has a long research
history (Patsko & Turova, 2011). The strategies for the
players in this game are quite complex mainly due to the
non-linearity of the Dubins-car dynamics, and it took
a long time to finally obtain its complete solution by
Merz (1971). Since then, many interesting variants have
been proposed, including surveillance-evasion objectives
(Lewin & Breakwell, 1975; Lewin & Olsder, 1979), the
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stochastic version (Pachter & Yavin, 1981) and suicidal
pedestrians (Exarchos et al., 2015). Numerical investiga-
tion and multiplayer extensions can be found in (Bopar-
dikar et al., 2009; Falcone, 2006; Mitchell, 2002).

Recently, reach-avoid differential games (Margellos &
Lygeros, 2011; Yan et al., 2023a; Zhou et al., 2012), also
known as two-target differential games (Cardaliaguet,
1996; Getz & Pachter, 1981), perimeter defense games
(Shishika & Kumar, 2020), or target guarding prob-
lems (Fu & Liu, 2023; Mohanan et al., 2020), have re-
ceived considerable research attention due to the wide
safety and security applications in antagonistic multi-
player systems. These games consider a scenario where
a group of pursuers (or defenders) are tasked to protect
a critical region from a group of evaders (or attackers).
Due to the high-dimensional continuous joint action and
state spaces, as well as complex cooperations and com-
petitions among players, the current literature either fo-
cuses on one pursuer against one evader (Cardaliaguet,
1996; Margellos & Lygeros, 2011; Mitchell et al., 2005;
Mohanan et al., 2020; Zhou et al., 2012), or solves a mul-
tiplayer game suboptimally by decomposing it intomany
subgames with a few players and piecing them together
through task allocation (Chen et al., 2017; Garcia et al.,
2020b; Lee & Bakolas, 2022b; Shishika & Kumar, 2018,
2020; Yan et al., 2023a, 2022; Yan et al., 2020; Yan et al.,
2021). Three common approaches have been developed
to determine the game winners or compute strategies for
the players. The popular Hamilton-Jacobi-Isaacs (HJI)
method using level sets relies on gridding over the state
space and is ideal for low-dimensional systems (Margel-
los & Lygeros, 2011; Mitchell, 2002; Mitchell et al., 2005;
Zhou et al., 2012). The classical characteristic method
(Garcia et al., 2020a; Von Moll et al., 2022) involves
integrating backward from non-unique terminal condi-
tions (capture or entry into the protected region), and
may generate complicated singular surfaces when differ-
ent backward trajectories meet. The geometric method
employs geometric concepts, such as Voronoi diagram
(Yan et al., 2019; Zhou et al., 2016), Apollonius cir-
cle (Mohanan et al., 2020; Yan et al., 2019; Yan et al.,
2020), function-based evasion space (Yan et al., 2022),
and dominance region (Oyler et al., 2016), for both qual-
itative and quantitative analysis, and have been proved
powerful especially in the case of simple-motion players.

However, there are limited works on Homicidal Chauf-
feur reach-avoid differential games which integrate the
Homicidal Chauffeur dynamics with reach-avoid compe-
tition goals.Most of the research in reach-avoid games fo-
cuses on either complex dynamical models (e.g., Dubins
car) with numerical methods, or simple dynamical mod-
els with analytical methods. HJI reachability has been
applied to one-pursuer-one-evader cases (Chen et al.,
2019), but would suffer from high computational burden
for multiplayer games. The most relevant work is Yan
et al. (2023b) in which a feedback strategy is proposed
with the guaranteed capture of an evader by a pursuer,

provided that some conditions on initial configurations
are satisfied. In Yan et al. (2023b), it mainly considers
one pursuer against one evader for a protected region
with infinite area and a linear boundary, and constructs
pursuit strategies based on the Apollonius circle.

Contributions: We propose a receding-horizon coopera-
tive pursuit strategy for multiplayer Homicidal Chauf-
feur reach-avoid differential games, with efficient compu-
tation and guaranteed winning performance. The main
contributions are as follows:

(1) For the subgame with multiple pursuers (a pursuit
coalition) and one evader, we introduce pursuit en-
closure functions (PEFs) and then propose a new
enclosure region pursuit (ERP) winning approach.
The ERP winning and its strategies can be com-
puted through the forward analysis instead of the
backward reachability from the terminal conditions
that generally involves solving HJI equations.

(2) We prove that under the ERP winning, if a pursuit
coalition is able to defend against an evader, then
at most two pursuers in the coalition are needed.
This largely simplifies the pursuit strategies, as only
one-pursuer and two-pursuer coalitions are needed
to ensure the win.

(3) We propose a steer-to-ERP approach in which an
optimization problem is solved, to generate new
ERP winning states and synthesize the correspond-
ing ERP winning strategies, based on the known
ERP winning states.

(4) To implement the strategy, a positional PEF based
on players’ current positions is introduced. Param-
eters, states and strategies that can ensure the ERP
winning are presented, for the cases of one pur-
suer and two pursuers against one evader. Finally,
a multiplayer receding-horizon strategy is proposed
such that in each horizon, the number of captured
evaders in the ERP winning is maximized.

Paper organization: We introduce Homicidal Chauffeur
reach-avoid differential games in Section 2. The ERP
winning is proposed followed by a coalition reduction
in Section 3. In Section 4, we propose a steer-to-ERP
approach to generate new ERP winning states. Section 5
introduces a positional PEF and presents the conditions
to ensure the ERP winning. In Section 6, a multiplayer
strategy is proposed. Numerical results are presented in
Section 7 and we conclude the paper in Section 8.

Notation: Let R, R>0 and R≥0 be the set of reals, posi-
tive reals and nonnegative reals, respectively. Let Rn be
the set of n-dimensional real column vectors and ∥·∥2 be
the Euclidean norm. All vectors in this paper are col-
umn vectors and x⊤ denotes the transpose of a vector
x ∈ Rn. Let 0 denote the zero vector whose dimension
will be clear from the context. Denote the unit disk in
Rn by Sn, i.e., Sn = {u ∈ Rn | ∥u∥2 ≤ 1}. The dis-
tance between two points x ∈ R2 and y ∈ R2 is defined
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P
E

Ωgoal

T

Ωplay

Fig. 1. Multiplayer Homicidal Chauffeur reach-avoid differ-
ential games, where a group of (red) simple-motion evaders
E , starting from a play region Ωplay, aim to enter a goal re-
gion Ωgoal protected by multiple (blue) car-model pursuers
P, and T is the boundary curve between Ωplay and Ωgoal.

by d(x,y) = ∥x− y∥2. The distance between a point
x ∈ R2 and a non-empty set M ⊂ R2 is defined by
d(x,M) = infy∈M ∥x− y∥2. The distance between two
non-empty setsM1 andM2 is defined by d(M1,M2) =
infx∈M1,y∈M2

∥x− y∥2. For a vector x = [x, y]⊤ ∈ R2,
let x◦ = [y,−x]⊤ be the vector obtained by rotating x
in a clockwise direction by π/2. For a finite set S, we
denote by |S| the cardinality of S. Further notations are
provided in Table 1, which will be explained in more de-
tail later.

2 Problem Statement

2.1 Homicidal Chauffeur reach-avoid games

Consider a Homicidal Chauffeur reach-avoid differential
game in an obstacle-free plane betweenNp pursuersP =
{P1, . . . , PNp} andNe evaders E = {E1, . . . , ENe}. Each
pursuer Pi ∈P is a Dubins car:

ẋPi
= vPi

cos θPi
, xPi

(0) = x0Pi
,

ẏPi
= vPi

sin θPi
, yPi

(0) = y0Pi
,

θ̇Pi
= vPi

uPi
/κi, θPi

(0) = θ0Pi
,

(1)

where xPi
= [xPi

, yPi
]⊤ ∈ R2, θPi

∈ R and uPi
are Pi’s

position, heading and control input, respectively, and
vPi

, κi ∈ R>0 are Pi’s maximum speed and minimum
turning radius, respectively. Assume that uPi

belongs
to UP = {u : [0,∞) → S1 |u is piecewise smooth}. The
initial position and heading are x0

Pi
= [x0Pi

, y0Pi
]⊤ ∈ R2

and θ0Pi
∈ R, respectively. Each evader Ej ∈ E has a

simple motion:

ẋEj
= vEj

uxEj
, xEj

(0) = x0Ej
,

ẏEj
= vEj

uyEj
, yEj

(0) = y0Ej
,

(2)

where xEj
= [xEj

, yEj
]⊤ ∈ R2 and uEj

= [uxEj
, uyEj

]⊤

are Ej ’s position and control input, respectively, vEj ∈
R>0 is Ej ’s maximum speed, and uEj belongs to UE =

{u : [0,∞) → S2 |u is piecewise smooth}. The initial
position is x0

Ej
= [x0Ej

, y0Ej
]⊤ ∈ R2.

We denote the speed ratio between Pi and Ej by αij =
vPi

/vEj
and consider faster pursuers, i.e., αij > 1. The

capture radius of pursuer Pi is ri > 0. An evader is cap-
tured by a pursuer if the latter is pursuing the former
and their Euclidean distance is less than or equal to the
pursuer’s capture radius. This is slightly different from
the pioneering works (Merz, 1971, 1974) by Merz, where
the capture occurs when their Euclidean distance is less
than the capture radius for the convenience of determin-
ing the usable part (Isaacs, 1965) of the terminal sur-
face. However, since the approach we propose below is
based on the forward analysis with no need to work ret-
rogressively from the terminal surface, we here consider
a closed capture condition such that the case when the
distance is equal to the capture radius is also included.

The plane R2 is split by a closed convex curve T called
the target curve, into a goal region Ωgoal and a play re-
gion Ωplay as illustrated in Fig. 1, and formally, they are
respectively defined by

Ωgoal = {y ∈ R2 | g(y) ≤ 0},
T = {y ∈ R2 | g(y) = 0},

Ωplay = {y ∈ R2 | g(y) > 0},

where g : R2 → R is a twice differentiable function,

i.e., gy ≜ dg
dy and gyy ≜ d2g

dy2 exist, such that Ωgoal is

nonempty, compact and convex. The evasion team E
aims to send as many evaders initially in the play region
as possible into the goal region before being captured by
the pursuit team P who guards the goal region.

2.2 Information structure

The information available to each player plays an impor-
tant role in determining game outcomes (Cardaliaguet,
1996; Elliott &Kalton, 1972; Isaacs, 1965;Mitchell et al.,
2005). Since this paper aims to propose strategies for
the pursuit team P, we will build the information struc-
ture from the pursuers’ perspective. We adopt the same
information structure used in Yan et al. (2023b). Un-
der this information structure, the pursuit team makes
decisions about its current control input with the infor-
mation of all players’ current positions, plus the evasion
team’s current control input (i.e., speeds and headings),
which will be explicitly defined below, while the evasion
team is assumed to have only the access to all players’
current positions. The maximum speeds of all players
and the information about Ωgoal, T and Ωplay are known
by both teams.

As in Yan et al. (2023b), we discuss how to practically
access an evader’s current control input (i.e., speed and
heading under (2)). Literature provides several methods
to estimate the exogenous control signals of a moving
object (such as an unmanned aerial vehicle), which can
be used to estimate the evader’s speed and heading in

3



Table 1. Notation Table

Symbol Description Symbol Description

Xij = (xPi , θPi ,xEj ) state of Pi and Ej Sij set of Xij when Ej is not captured by Pi

Xc = {(xPi , θPi)}i∈c state of pursuit coalition Pc fc = {fi}i∈c set of PEFs for pursuit coalition Pc

Xcj = (Xc,xEj ) state of Pc and Ej Scj set of Xcj when Ej is not captured by Pc

E(Xcj ; fc) enclosure region for Pc and Ej ϱ(Xcj ; fc) safe distance for Pc and Ej

Xt
cj state after t starting from Xcj P(Xcj) convex program for computing ϱ(Xcj ; fc)

fps
i , fps

c positional PEF(s) X ps
cj an initial set of ERP winning states

ϱ(Xij ; f
ps
i ), ϱ(Xcj ; f

ps
c ) positional safe distance Pps(Xcj) convex program for computing ϱ(Xcj ; f

ps
c )

our problem (Battistini & Shima, 2014; Fonod & Shima,
2018; Mohanan et al., 2020), or assumes the evader’s
speed and heading are accessible (Exarchos et al., 2015).
Advanced sensor systems, such as phased-array radars,
can provide high-accuracy measurements of the velocity
(i.e., speed and heading) of a moving object (Pihl et al.,
2012; Soumekh, 1997).

3 EnclosureRegionPursuitWinning andCoali-
tion Reduction against One Evader

It is hard to deal with multiple pursuers against multiple
evaders directly due to complicated cooperation among
team members and the lack of sensible matching rules
between the players of different teams (Chen et al., 2017;
Shishika & Kumar, 2018, 2020; Yan et al., 2022). As
an alternative, we split the whole game into many sub-
games, from which cooperative strategies and matching
rules are extracted, thus comprising the team strategies.
Such decomposition into subgames dates back to Li et al.
(2005) where multi-player pursuit-evasion games were
suboptimally solved based on the outcomes of all pairs
of a pursuer and an evader, and was further generalised
into a dynamic divide and conquer approach (Makkap-
ati & Tsiotras, 2019). The subgames considered in this
section focus on multiple pursuers and a single evader.

We first introduce the following definitions and notations
specialized for multiple pursuers. For any non-empty in-
dex set c ∈ 2{1,...,Np}, let Pc = {Pi ∈ P | i ∈ c} be an
element of 2P , and we refer to Pc as a pursuit coalition
containing pursuer Pi if i ∈ c. We denote by Xc and Uc
the states (positions and headings) and control inputs of
all pursuers in Pc, respectively, i.e.,Xc = {(xPi

, θPi
)}i∈c

and Uc = {uPi
}i∈c.

3.1 Enclosure region pursuit winning

Consider a subgame between a pursuit coalition Pc and
an evader Ej , in which Pc wins the game if Ej can never
reach Ωgoal before being captured, while Ej wins if it
reaches Ωgoal prior to the capture. Our goal in this sec-
tion is to determine, given the initial states, who wins the
game. A complete solution to this qualitative problem

involves solving an induced HJI equation numerically.
However, the standard HJI method can only efficiently
handle systems of up to five states (Chen et al., 2018),
while this subgame has 3|c|+2 states. Note that Pc wins
the game in two possible ways: capture Ej in Ωplay or
infinitely delay Ej ’s entry into Ωplay. We instead estab-
lish a stronger winning condition that a dynamic region
containing the evader consistently stays outside the goal
region before the capture. This motivates our function-
induced pursuit winning and strategies below. Actually,
the core reasoning behind this winning condition was
implicitly utilised in Lee & Bakolas (2022a,b); Yan et al.
(2022) when all players have the simple motion, where
the dynamic region is Apollonius circle (Isaacs, 1965) or
it generalisation. We first introduce a class of functions.

Definition 1 (Pursuit enclosure function). For Pi ∈P
and Ej ∈ E , let Xij = (xPi , θPi ,xEj ) and Sij = {Xij ∈
R2× [0, 2π)×R2 | ∥xPi − xEj∥2 > ri}. Then, a function
f : R2 × Sij → R is a pursuit enclosure function (PEF)
if for eachXij ∈ Sij, it satisfies the following conditions:

(1) E(Xij ; f) = {x ∈ R2 | f(x, Xij) ≥ 0} is compact
and strictly convex. We call E(Xij ; f) the enclosure
region of Pi against Ej via f ;

(2) if f(x, Xij) = 0, then f is differentiable in both x
and Xij;

(3) f(xEj
, Xij) ≥ 0.

The conditions (1) and (3) imply that the evader Ej is
contained in the enclosure region E(Xij ; f) (Fig. 2 illus-
trates four enclosure regions, each of which has a dot-
ted boundary). We are now ready to define a new class
of pursuit winning conditions based on the PEFs. Let
Xcj = (Xc,xEj ) be the state of the system comprising of
Pc and Ej , and Scj = {Xcj | ∀i ∈ c, ∥xPi

− xEj
∥2 > ri}

be the set of states such that Ej is not captured by any
pursuer in Pc. Unless otherwise stated we assume that
Xcj ∈ Scj hereinafter. In this subgame, a strategy of Pi
(i ∈ c) under the information structure in Section 2.2 is
a mapping uPi

: Scj × S2 → S1, and a strategy of Ej is
a mapping uEj

: Scj → S2. Note that the strategy uPi

requires the current control input of Ej (i.e., speed and
heading), but not the strategy of Ej .
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P1

P2

EEj

E

Ωgoal

Ωplay

Fig. 2. If P1 and P2 can cooperatively ensure that the in-
tersection E (green) of two enclosure regions containing Ej

never intersects with Ωgoal, then the enclosure region pur-
suit (ERP) winning is achieved.

Suppose that Pc is endowed with a set fc of PEFs, where
fc = {fi}i∈c and fi is a PEF for pursuer Pi (i ∈ c), and
we omit the subscript j for PEFs for simplicity. Then,
the intersection of the enclosure regions of Pi against Ej
via fi for all i ∈ c, is

E(Xcj ; fc) ≜ ∩i∈cE(Xij ; fi)

= {x ∈ R2 | fi(x, Xij) ≥ 0, i ∈ c}.

The green region in Fig. 2 is the intersection of two en-
closure regions of P1 and P2 against Ej . By Definition 1,
E(Xcj ; fc) is nonempty because xEj

∈ E(Xcj ; fc), and
it is compact and strictly convex. Letting

ϱ(Xcj ; fc) ≜ d(E(Xcj ; fc),Ωgoal)

be the distance between the region E(Xcj ; fc) and the
goal region Ωgoal, we next introduce safe distance for Pc
against Ej .

Definition 2 (Safe distance). Consider a pursuit coali-
tion Pc and an evader Ej. Given a set fc of PEFs, the
safe distance of a state Xcj ∈ Scj under fc is ϱ(Xcj ; fc).

Since xEj
∈ E(Xcj ; fc), then d(xEj

,Ωgoal) ≥ ϱ(Xcj ; fc)
for all Xcj ∈ Scj . This implies that if the safe distance is
positive, i.e., ϱ(Xcj ; fc) > 0, then Ej resides outside of
Ωgoal. LetX

t
cj be the system state at t ≥ 0 starting from

Xcj under control inputs Uc and uEj . We next introduce
a new pursuit winning strategy using the safe distance.

Definition 3 (ERP winning state and strategy). Given
a set fc of PEFs, a stateXcj ∈ Scj is an enclosure region
pursuit (ERP) winning state, if there exists a pursuit
strategy Uc for Pc such that the safe distance is positive
from Xcj for all t ≥ 0, i.e., ϱ(Xt

cj ; fc) > 0 for all t ≥ 0,
regardless of uEj

. Such a strategy Uc is called an ERP
winning strategy.

By Definition 3, if a state Xcj is an ERP winning state,
then the pursuit coalition can ensure that, from this
state, the evader can never enter Ωgoal prior to the cap-
ture, by using the ERP winning strategy, as depicted in
Fig. 2. Since E(Xcj ; fc) is strictly convex and Ωgoal is

convex, computing the safe distance ϱ(Xcj ; fc) involves
solving a convex optimization problem.

Definition 4 (Computing the safe distance). Given a
set fc of PEFs and a state Xcj ∈ Scj, let (xI ,xG) be the
solution of the convex optimization problem P(Xcj):

minimize
(x,y)∈R2×R2

d(x,y)

subject to fi(x, Xij) ≥ 0, g(y) ≤ 0, ∀i ∈ c.
(3)

Then, the safe distance is ϱ(Xcj ; fc) = d(xI ,xG).

A recent relevant work by Lee and Bakolas (Lee & Bako-
las, 2022b), which focuses on simple-motion players in
Rn with point capture, requires computing the distance
between two convex sets and has proposed an interest-
ing alternating projection algorithm to solve an induced
convex optimization problem similar to (3). This alter-
nating projection algorithm can also be used to solve (3)
with a slight modification.

3.2 Coalition reduction

The convex optimization problem P(Xcj) in (3) is used
to compute the safe distance which plays a vital role in
the following analysis. Noting this, we next prove that
given Xcj , there are at most two PEFs in fc which are
necessary to solve P(Xcj), greatly simplifying the com-
putation. This also implies that at most two pursuers
in Pc work when computing xI . Similar coalition reduc-
tion for simple-motion players can be found in Von Moll
et al. (2020); Yan et al. (2022); Yan et al. (2020).

Instead of concentrating on the specific convex problem
(3), we consider support constraints (defined later) for
more general convex optimization problems. Consider
the optimization problem

P : minimize
x∈Rn

ϕ(x) subject to : x ∈
⋂

i∈{1,...,m}

Xi (4)

where ϕ(x) is a real-valued function in x and Xi (i =
1, . . . ,m) are closed convex sets. Then, define the pro-
grams Pk, k = 1, . . . ,m obtained from P by removing
the kth constraint

Pk : minimize
x∈Rn

ϕ(x) subject to : x ∈
⋂

i∈{1,...,m}\k

Xi.

We assume program P and the programs Pk admit an
optimal solution, say x∗ and x∗

k, respectively, and let
J∗ = ϕ(x∗) and J∗

k = ϕ(x∗
k).

Definition 5 (Support constraint). The kth constraint
Xk is a support constraint for P if J∗

k < J∗.
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We first recall a well-known result due to Calafiore and
Campi; see Calafiore & Campi (2006).

Lemma 1 (Calafiore and Campi). If ϕ(x) = c⊤x and
program P and the programs Pk admit a unique opti-
mal solution, then the number of support constraints for
problem P is at most n.

By Lemma 1, the convex program P(Xcj) in (3) can be
solved through a convex program with fewer constraints.

Theorem 1 (Constraint reduction). Let J∗
cj be the opti-

mal value of the convex program P(Xcj). Then, if J
∗
cj >

0, there exists a subcoalition c̄ of c such that |c̄| ≤ 2 and
J∗
cj = J∗

c̄j, where J
∗
c̄j is the optimal value of the convex

optimization problem P(Xc̄j):

minimize
(x,y)∈R2×R2

d(x,y)

subject to fi(x, Xij) ≥ 0, g(y) ≤ 0, ∀i ∈ c̄.
(5)

Proof. We prove the theorem by formulating the convex
program P(Xcj) in (3) as a special case of (4) and then
using Lemma 1 to reduce the constraints, which leads
to (5). Since J∗

cj > 0, then ϱ(Xcj ; fc) = d(xI ,xG) > 0
and therefore d(E(Xcj ; fc),Ωgoal) > 0, where (xI ,xG) is
the optimal solution toP(Xcj). SinceE(Xcj ; fc) is closed
and strictly convex and Ωgoal is closed and convex, then
the optimal solution (xI ,xG) is unique.

Then, P(Xcj) in (3) is equivalent to the following prob-

lem P:

minimize
(x,γ)∈R2×R

γ

subject to fi(x, Xij) ≥ 0, ∀i ∈ c,
d(x,xG)− γ ≤ 0.

(6)

In (6), (x, γ) is three-dimensional, and there are |c|+ 1
convex constraints as the convexity of d(x,xG)− γ ≤ 0
is straightforward. In order to apply Lemma 1, we next
show the uniqueness of the solution. We only consider
the case |c| ≥ 3, as we can take c̄ = c when |c| ≤ 2.

Since P(Xcj) has the unique optimal solution (xI ,xG),

then P has a unique optimal solution (xI , γ
∗), where

γ∗ = d(xI ,xG). For i ∈ c, we let Pi be the convex
program obtained from P by removing the constraint
fi(x, Xij) ≥ 0. Then, following the same argument to P,
we have that Pi admits a unique optimal solution. We
do not need to remove the constraint d(x,xG) − γ ≤ 0
as it is a support constraint for P.

By Lemma 1, we conclude that P has at most 3 support
constraints. Since d(x,xG) − γ ≤ 0 is a support con-
straint, then there are at most two support constraints
among fi(x, Xij) ≥ 0 for i ∈ c. 2

4 ERP Winning State Generation

If a set of states are known to be ERPwinning, establish-
ing the connection between this set and other states in
Scj can help find more ERP winning states. This section
proposes a steer-to-ERP approach to verify whether a
state is ERP winning based on the known ERP winning
states, via steering the system to a known ERP winning
state.

The following notations will be required. For a PEF fi,
we define fi,x(x, Xij) = ∂f(x, Xij)/∂x, fi,P (x, Xij) =
∂f(x, Xij)/∂xPi , fi,θ(x, Xij) = ∂f(x, Xij)/∂θPi , and
fi,E(x, Xij) = ∂f(x, Xij)/∂xEj . For two distinct points

x ∈ R2 and y ∈ R2, let dx(x,y) = ∂d(x,y)/∂x and
dy(x,y) = ∂d(x,y)/∂y. Let eθPi

= [cos θPi , sin θPi ]
⊤.

Theorem 2 (Steer-to-ERP approach). Given a set fc
of PEFs and a state Xcj ∈ Scj, if there exists a pursuit
strategy U1

c of Pc and a time horizon T ∈ R≥0 such

that Xt⋆

cj is an ERP winning state for some t⋆ ∈ [0, T ]
regardless ofuEj

, and ϱ(Xcj ; fc) > max{−V T, 0}, where
V is the optimal value of problem

minimize
∑

i∈c
vPi

λi
Ä
f⊤i,PeθPi

+
|fi,θ|
κi

+
∥fi,E∥2
αij

ä
variables xI ∈ R2,xG ∈ R2, X ′

cj ∈ Scj , λi, λg, i ∈ c

subject to 0 = λggy(xG) +
∑

i∈c
λifi,x(xI , X

′
ij)

0 = dy(xI ,xG) + λggy(xG)

fi(xI , X
′
ij) ≥ 0, λi ≤ 0, λifi(xI , X

′
ij) = 0

i ∈ c, g(xG) = 0, λg ≥ 0
(7)

then Xcj is an ERP winning state. Moreover, if U2
c is an

ERP winning strategy for Xt⋆

cj , then taking U1
c for [0, t⋆]

and U2
c for (t⋆,∞) is an ERP winning strategy for Xcj.

Proof. Since Xcj reaches an ERP winning state Xt⋆

cj for

some t⋆ ∈ [0, T ] under U1
c regardless of uEj , then Xcj is

an ERP winning sate if the positive safe distance is kept
before Xt⋆

cj is reached. To that end, we first compute the
minimum speed of the intersection of enclosure regions
moving away from Ωgoal and then obtain the minimum
(possibly negative) increment of the safe distance during
the time horizon T . Thus, Xcj is an ERP winning sate if
the initial safe distance ϱ(Xcj ; fc) can compensate this
minimum increment.

Consider a stateX ′
cj ∈ Scj such that ϱ(X ′

cj ; fc) > 0, that
is, d(E(X ′

cj ; fc),Ωgoal) > 0. Since E(X ′
cj ; fc) is strictly

convex and Ωgoal is convex, there exists a unique solution
(xI ,xG) ∈ E(X ′

cj ; fc) × Ωgoal to P(X ′
cj) in (3), and we

also have d(xI ,xG) > 0.

By Karush-Kuhn-Tucker (KKT) conditions for (3), the
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solution (xI ,xG) satisfies

0 = dx(xI ,xG) +
∑

i∈c
λifi,x(xI , X

′
ij) (8a)

0 = dy(xI ,xG) + λggy(xG) (8b)

fi(xI , X
′
ij) ≥ 0, λi ≤ 0, λifi(xI , X

′
ij) = 0, i ∈ c (8c)

g(xG) ≤ 0, λgg(xG) = 0, λg ≥ 0 (8d)

where X ′
ij is a part of X ′

cj corresponding to Pi, and λi
and λg are the Lagrangemultipliers. The complementary
slackness condition (8c) implies that the index set c can
be classified into two disjoint index sets c=0 and c>0 (c>0

may be empty) where®
fi(xI , X

′
ij) = 0, λi ≤ 0, if i ∈ c=0,

fi(xI , X
′
ij) > 0, λi = 0, if i ∈ c>0.

(9)

Then the region E(X ′
cj ; fc) moves away from Ωgoal with

the speed d
dt ϱ(X

′
cj ; fc) that equals

d

dt
d(xI ,xG) = d⊤x (xI ,xG)ẋI + d⊤y (xI ,xG)ẋG

= −
∑

i∈c
λif

⊤
i,x(xI , X

′
ij)ẋI − λgg⊤y (xG)ẋG

= −
∑

i∈c
λif

⊤
i,x(xI , X

′
ij)ẋI ,

(10)

where the second equality is due to (8), and the third
equality follows noting thatxG is always at the boundary
of Ωgoal, i.e., g(xG) ≡ 0 and thus g⊤y (xG)ẋG = 0. For any

i ∈ c=0, since xI is always at the boundary of E(X ′
ij ; fi),

then fi(xI , X
′
ij) ≡ 0, and according to the condition 2 in

Definition 1, fi is differentiable in x, xPi
, θPi

and xEj
.

Then, we have d
dt fi(xI , X

′
ij) = 0, implying that

f⊤i,x(xI , X
′
ij)ẋI = −f⊤i,P ẋPi

− fi,θ θ̇Pi
− f⊤i,EẋEj

= −vPi
f⊤i,PeθPi

− fi,θvPi
uPi

/κi − vEj
f⊤i,EuEj

,
(11)

where the second equality follows from (1) and (2).

Then, the minimum speed of E(X ′
cj ; fc) moving away

from Ωgoal, denoted by V (X ′
cj), is equal to

min
Uc∈Uc

P

min
uEj

∈UE

d

dt
ϱ(X ′

cj ; fc)

=
∑

i∈c
λi(vPi

f⊤i,PeθPi
+ |fi,θ|vPi

/κi + vEj
∥fi,E∥2),

where (10), (11) and λi ≤ 0 are used. The constraint (8)
is written as (7) using dx(xI ,xG) = −dy(xI ,xG). Thus,
theminimum speed of the regionE(X ′

cj ; fc)moving away
from Ωgoal over Scj is V = minX′

cj
∈Scj

V (X ′
cj). More-

over, by assumption Pc can steer the system stateXcj to

an ERP winning state Xt⋆

cj within the time period T by

using the strategy U1
c . Thus, if the current system state

Xcj ∈ Scj is such that ϱ(Xcj ; fc) > max{−V T, 0}, then
the positive safe distance is kept before Xt⋆

cj is reached.
Thus, by Definition 3, Xcj is an ERP winning state. If

U2
c is an ERP winning strategy for Xt⋆

cj , then the strat-

egy pair (U1
c , U

2
c ) can form an ERP winning strategy for

Xcj as described. 2

Remark 1 By the proof of Theorem 2, the optimal value
V to the problem (7) is the minimum speed of the region
E(X ′

cj ; fc) moving away from Ωgoal for all X ′
cj ∈ Scj.

Moreover, the nonlinear program (7) can be largely sim-
plified if the derivatives of the PEFs are easy to compute.

5 Positional Pursuit Enclosure Function

This section introduces a class of PEFs based on play-
ers’ positions which extend the potential function in
Yan et al. (2022) to the plane. We present an initial set
of the induced ERP winning states and then generate
more based on them using the steer-to-ERP approach.
Since the coalition reduction in Theorem 1 shows that at
most two pursuers are needed to ensure an ERP winning
against an evader, we present the parameters, states and
strategies that can ensure the ERP winning for the cases
of one pursuer and two pursuers, respectively.

5.1 Positional PEFs

The following lemma identifies the positional PEF.

Lemma 2 (Positional PEF). For Pi ∈ P and Ej ∈ E ,
the function fpsi : R2 × Sij → R defined by

fpsi (x, Xij) = ∥x− xPi
∥2 − αij ∥x− xEj

∥
2
− ri (12)

is a PEF. We call fpsi the positional PEF.

Proof. We prove that fpsi is a PEF by verifying the con-
ditions (1)-(3) in Definition 1. Regarding the condition
(2), if x = xPi

, then fpsi = −αij ∥xPi
− xEj

∥
2
− ri < 0.

If x = xEj , then f
ps
i = ∥xEj − xPi∥2 − ri > 0 noting

Xij ∈ Sij . Therefore, if fpsi = 0, then x ̸= xPi and x ̸=
xEj , and thus fpsi is differentiable in x, xPi , θPi and xEj .
Regarding the condition (3), we have fpsi (xEj

, Xij) =
∥xEj

− xPi
∥
2
− ri > 0.

Regarding the condition (1), we build a polar coordinate
system with xEj as the origin, and let x = xEj + ρe,

where ρ ∈ R>0 and e ∈ ∂S2. We parameterize e by
e = (cos(ψ + ψ0), sin(ψ + ψ0)), where ψ ∈ [0, 2π) is the
rotation with respect to positive x-axis, and ψ0 ∈ [0, 2π)
is the initial rotation. Then, the boundary ofE(Xij ; f

ps
i ),

i.e., fpsi (x, Xij) = 0, in this polar coordinate becomes
∥xEj

+ ρe − xPi
∥2 − αijρ − ri = 0. Thus we have ρ =
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1
α2

ij
−1

(h1(ψ) + h2(ψ)), where h1(ψ) and h2(ψ) are

h1(ψ) = (xEj − xPi)
⊤e− αijri

h2(ψ) =
»
h21(ψ) + (α2

ij − 1)(∥xEj − xPi∥22 − r2i ).
(13)

In deriving (13), αij > 1 and ∥xEj
−xPi

∥2 > ri are used,
which also implies that h2 > 0 and h2 is real as opposed
to complex. Thus, given Xij , ρ is bounded and ρ > 0,
and thus E(Xij ; f

ps
i ) is bounded. Since the boundary

is contained in E(Xij ; f
ps
i ), then it is compact. As for

the strict convexity, following the same argument in the
proof of (Yan et al., 2022, Lemma 3.1), we have ρ2 +

2( dρ
dψ )

2−ρ d2ρ
dψ2 > 0 for all ψ. By (Yan et al., 2022, Lemma

2.1), E(Xij ; f
ps
i ) is strictly convex. 2

Given Xij ∈ Sij , the locus of fpsi (x, Xij) = 0 is a Carte-
sian oval, also called Apollonius oval (Wasz et al., 2019).
Suppose that each pursuer in Pc adopts the positional
PEF and let fpsc = {fpsi }i∈c. We consider a set of states:

X ps
cj = {Xcj ∈ Scj |ϱ(Xcj ; f

ps
c ) > 0, θPi

= σi(Xcj), i ∈ c}
(14)

where σi : Scj → [0, 2π) is a heading function such
that for each Xcj ∈ Scj , [cosσi(Xcj), sinσi(Xcj)]

⊤ =
xI−xPi

∥xI−xPi
∥2
, where (xI ,xG) is the optimal solution of the

convex problem Pps(Xcj):

minimize
(x,y)∈R2×R2

d(x,y)

subject to fpsi (x, Xij) ≥ 0, g(y) ≤ 0, i ∈ c.
(15)

Next, we present the conditions on the parameters such
that X ps

cj is a set of ERP winning states and generate
more from them via the steer-to-ERP approach, for both
one-pursuer and two-pursuer cases.

5.2 ERP winning conditions for one pursuer

We introduce several notations first. We let dopt1opt2 =
∥xopt1 − xopt2∥2 (interchangeable with d(xopt1 ,xopt2))
and eopt1opt2 = (xopt1−xopt2)/dopt1opt2 (if dopt1opt2 > 0)
for opt1, opt2 ∈ {I,G, Pi ∈ P, Ej ∈ E }. For the goal
region Ωgoal, let eIG = gy(xG)/∥gy(xG)∥2 and H(xG)
be the unit gradient and the Hessian matrix of g at xG,
respectively.

We first consider the case of one pursuer and one evader.
Based on X ps

cj , we present the conditions on parameters
and states that can ensure the ERP winning via the
steer-to-ERP approach, and give the corresponding ERP
winning strategies.

Theorem 3 (ERPwinning parameters, state and strat-
egy).Consider a one-pursuer pursuit coalition Pc = {Pi}
against an evader Ej. If the following conditions hold:

(1) the parameters satisfy

αij > 3, ri/κi > CM1(αij) (16)

where CM1(αij) is a bound of the ratio between the
capture radius and the minimum turning radius:

CM1(αij) = 1 +
3α2

ij + 4αij − 3

(αij − 1)2(αij − 3)
; (17)

(2) the safe distance of the state Xij ∈ Sij satisfies

ϱ(Xij ; f
ps
i ) >

2πri/(αij − 1)

ri/κi − CM1(αij)
(18)

thenXij is an ERPwinning state and the feedback pursuit
strategy

uPi
=

− κi

vPi

e◦⊤
IPi

ẋI

dIPi
, if θPi

= σi(Xij)

sgn(sin(σi(Xij)− θPi
)), otherwise

(19)

for Xij ∈ Sij, is an ERP winning strategy with (xI ,xG)
computed by the convex optimization problem (15) and

ẋI =
(αija

◦
1e

⊤
IEj

+A)ẋEj
− vPi

a◦
1

dfa⊤
1 e

◦
IG

where df = ∥eIPi
− αijeIEj

∥2 and

a1 =
e◦IPi

e⊤IPi
eIG

dIPi

−
αije

◦
IEj

e⊤IEj
eIG

dIEj

− dfa2e
◦
IG

1 + dIGa2

A =
αijdfe

◦
IGe

⊤
IGe

◦
IEj

e⊤IEj

dIEj

, a2 =
e◦⊤IGH(xG)e

◦
IG

∥gy(xG)∥2
.

(20)

Proof. We prove the theorem by first proving that X ps
ij

in (14) is a set of ERP winning states, where the key is
to show that (14) is closed under the strategy (19). Ad-
ditionally, we spend much space to obtain the parameter
condition (16) to ensure that the strategy (19) is feasible,
i.e., |uPi

| ≤ 1. Finally, we prove that the states meeting
(18) can be generated by the ERP winning states in X ps

ij ,
via the steer-to-ERP approach in Theorem 2, provided
that (16) holds.

For simplicity, the subscripts i and j will be omitted in
the proof. We first prove that X ps in (14) is a set of ERP
winning states.

We first prove that θP ≡ σ(X) under the strategy (19)
if it holds initially. By the definition of σ above (15) and
the dynamics (1), this equivalently implies that

ẋP ≡ vPeIP , (21)
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i.e., P ’s heading is always pointing at the point xI . Thus,
we only need to verify (21) under the strategy (19) given
it holds initially. Taking the time derivative for (21), we
have

dẋP
dt
− vP

deIP
dt

= −ẋ◦
P θ̇P − vP

ẋI − ẋP − eIPe
⊤
IP (ẋI − ẋP )

dIP

= vPe
◦
IP

vP
κ

κ

vP

e◦⊤IP ẋI
dIP

− vP
ẋI − eIPe

⊤
IP ẋI

dIP
= 0,

(22)
where the first equality follows from the definitions of ẋP
and eIP , and the second equality follows from (21), the
dynamics (1) and the strategy (19) for θP = σ(X). Next,
we show that if X ∈ X ps, then ϱ(Xt; fps) > 0 for all t ≥
0. It suffices to prove that the speed of E(X; fps) moving
away from Ωgoal is non-negative, i.e., d

dt ϱ(X; fps) ≥ 0,
for all X ∈ X ps. According to (10) and (11), we have

d

dt
ϱ(X; fps) =

d

dt
d(xI ,xG)

= λ(fps⊤P (xI , X)ẋP + vEf
ps⊤
E (xI , X)uE)

= λ(−vP + vEαe
⊤
IEuE) ≥ λ(−vP + vEα) = 0,

where λ ≤ 0 is the Lagrange multiplier, fpsP = ∂fps/∂xP
and fpsE = ∂fps/∂xE , and the third equality follows from
(12) and (21). From the above, Xt ∈ X ps for all t ≥ 0
and all X ∈ X ps, under the strategy (19).

In order to implement the strategy (19) for θP = σ(X),
we need to ensure |uP | ≤ 1. To that end, we present
the computation of ẋI . Note that (xI ,xG) satisfies the
KKT conditions (8) consistently. For (8b), we have

gy(xG) || (xI − xG)⇒ g⊤y (xG)(xI − xG)
◦ ≡ 0

⇒ d

dt

Ä
g⊤y (xG)(xI − xG)

◦
ä
= 0⇒

g◦⊤y (xG)ẋI = (H⊤(xG)(xI − xG)
◦ + g◦y(xG))

⊤ẋG,
(23)

where || denotes the parallel of two vectors. For (8d), we
have

g(xG) ≡ 0⇒ d

dt
g(xG) = 0⇒ g⊤y (xG)ẋG = 0. (24)

By (23) and (24), ẋG is computed by

ẋG =
g◦y(xG)g

◦⊤
y (xG)ẋI

∥gy(xG)∥22 + (xI − xG)◦⊤H(xG)g◦y(xG)

=
∥gy(xG)∥22e◦IGe◦⊤IGẋI

∥gy(xG)∥22 + dIG∥gy(xG)∥2e◦⊤IGH(xG)e◦IG

=
e◦IGe

◦⊤
IGẋI

1 + dIGa2
,

(25)

where a2 is defined in (20), and the second equality is
due to the fact that g◦y(xG) = ∥gy(xG)∥2e◦IG using (23)
and (8d). By combining (8a) and (8b), we can obtain
that fpsx (xI , X) || gy(xG), i.e., fps⊤x (xI , X)g◦y(xG) ≡ 0,

where fpsx = ∂fps/∂x. Thus d
dt (f

ps⊤
x (xI , X)g◦y(xG)) =

0 and thus

c⊤1 ẋI + c⊤2 ẋP + c⊤3 ẋE + c⊤4 ẋG = 0, (26)

where

c1 =
e◦IPe

⊤
IPeIG
dIP

− αe◦IEe
⊤
IEeIG

dIE
, c2 = −e◦IPe

⊤
IPeIG
dIP

c3 =
αe◦IEe

⊤
IEeIG

dIE
, c4 = −dfH

⊤(xG)e
◦
IG

∥gy(xG)∥2
.

In order to obtain (26), (12) and g◦y(xG) = ∥gy(xG)∥2e◦IG
are both used. For (8c), we have fps(xI , X) ≡ 0, that
is, d

dt f
ps(xI , X) = 0, leading to

dfe
⊤
IGẋI − e⊤IP ẋP + αe⊤IEẋE = 0, (27)

where (8a) is used, i.e., fpsx (xI , X) = dfeIG, and df =
∥eIP −αeIE∥2. By substituting (25) into (26) and com-
bining (27), ẋI satisfiesc⊤1 + c⊤5

dfe
⊤
IG

 ẋI +

 c⊤2 ẋP + c⊤3 ẋE

αe⊤IEẋE − e⊤IP ẋP

 = 0, (28)

from which

ẋI =
k1(c1 + c5)

◦ − k2dfe◦IG
k3

, (29)

where

k1 = αe⊤IEẋE − e⊤IP ẋP , k2 = c⊤2 ẋP + c⊤3 ẋE

k3 = df (c1 + c5)
⊤e◦IG, c5 = − dfa2e

◦
IG

1 + dIGa2
,

where the definition of a2 in (20) is used. Note that

|k1| ≤ 2vP , |k2| ≤ vP /dIP + vP /dIE . (30)

Let γPG = e⊤IPeIG and γEG = e⊤IEeIG, then k3 can be
rewritten as follows

k3 =
df
dIP

Ä
γ2PG −

αdIP γ
2
EG

dIE

ä
− df∥c5∥2. (31)

Since fpsx (xI , X) = dfeIG, this implies that

df = (eIP − αeIE)⊤eIG = γPG − αγEG. (32)
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Since df ∈ [α−1, α+1] by definition and fps(xI , X) = 0
leads to dIP = αdIE + r, by combining them with (31)
and (32) we have the inequality

γ2PG −
αdIP γ

2
EG

dIE
= γ2PG −

(αdIE + r)(df − γPG)2

αdIE

=
−rγ2PG + 2df (αdIE + r)γPG − (αdIE + r)d2f

αdIE

≤ −r(df − 1)2 + αdfdIE(df − 2)

αdIE
:= −(rk4/dIE + k5),

(33)
where α > 3 by assumption in (16) is used in the last
inequality which follows when γPG = 1, and

k4 = (df − 1)2/α, k5 = df (df − 2). (34)

Since k4, k5 > 0, then (33) implies that |k3| in (31) has
a positive lower bound

|k3| ≥ (rk4/dIE + k5)df/dIP + df∥c5∥2. (35)

Using (29) and the bounds for k1, k2 and k3 in (30) and
(35), we can derive an upper bound for ∥ẋI∥2 as follows

∥ẋI∥2 ≤
2vP (∥c1∥2 + ∥c5∥2) + df (vP /dIP + vP /dIE)

(rk4/dIE + k5)df/dIP + df∥c5∥2

=
2vP dIP (∥c1∥2 + ∥c5∥2) + dfvP + dfdIP vP /dIE

(rk4/dIE + k5)df + dIP df∥c5∥2

≤ 2vP
df

+
rk6/(αdIE) + k7

(rk4/dIE + k5)df + dIP df∥c5∥2
vP ,

(36)
where k6 and k7 are respectively given by

k6 = −2d2f + (α+ 4)df + 2α2 − 2 ≥ α(α+ 1) > 0

k7 = −2d2f + (α+ 5)df + 2α2 + 2 ≥ k6 > 0,

In (36), ∥c1∥2 ≤ 1/dIP +α/dIE and dIP = αdIE+r are
used, and k6 ≥ α(α + 1) is due to df ∈ [α − 1, α + 1].
Then, the upper bound is further derived as follows

∥ẋI∥2 ≤
2vP
df

+
rk6/(αdIE) + k7
(rk4/dIE + k5)df

vP

≤ 2vP
α− 1

+ vP max{k6/(αdfk4), k7/(dfk5)},
(37)

where

k6
αdfk4

=
2α2

df (df − 1)2
+

α

(df − 1)2
− 2

df

≤ 2α2

(α− 1)(α− 2)2
+

α

(α− 2)2
− 2

α+ 1

=
α3 + 12α2 − 17α+ 8

(α2 − 1)(α− 2)2

k7
dfk5

=
2α2 + 2

d2f (df − 2)
+

α+ 5

df (df − 2)
− 2

df − 2

≤ 2α2 + 2

(α− 1)2(α− 3)
+

α+ 5

(α− 1)(α− 3)
− 2

α− 1

=
α2 + 12α− 9

(α− 1)2(α− 3)
.

where df ∈ [α− 1, α+1] and the definitions of k4, k5, k6
and k7 are used. Note that the upper bound of k7/(dfk5)
is larger than the upper bound of k6/(αdfk4). Thus, the
upper bound (37) becomes

∥ẋI∥2 ≤
3α2 + 4α− 3

(α− 1)2(α− 3)
vP . (38)

By combining (38) and (19), the control uP for θP =
σ(X) has the following bound

|uP | =
∣∣∣− κ

vP

e◦⊤IP ẋI
dIP

∣∣∣ ≤ κ∥ẋI∥2
vP r

≤ κ(3α2 + 4α− 3)

r(α− 1)2(α− 3)
,

where dIP ≥ r is used, which implies that |uP | ≤ 1 holds
under the parameter condition (16). Thus, X ps is a set
of ERP winning states.

By Theorem 2, we next prove that the states meet-
ing (18) can be generated by the ERP winning states
in X ps, via the steer-to-ERP approach. To that end, we
compute such a time horizon T in Theorem 2 via a lower
bound of the angle chasing speed |θ̇P | − |σ̇|. Since the
speed of the heading function σ is bounded by

|σ̇| ≤ ∥ẋI∥2 + ∥ẋP ∥2
dIP

≤ ∥ẋI∥2 + vP
r

, (39)

then under the strategy (19) for θP ̸= σ(X) we have

|θ̇P | − |σ̇| ≥ vP /κ− (∥ẋI∥2 + vP )/r

≥ vP
r

Ä r
κ
− 1− 3α2 + 4α− 3

(α− 1)2(α− 3)

ä
> 0,

(40)

where (38) and (16) are used. Since the maximum value
of |θP −σ| to reduce under (19) for θP ̸= σ(X) is π, any
initial state will meet the condition θP = σ(X) within

at most time T := π/(|θ̇P | − |σ̇|). In order to ensure
the positive safe distance before θP = σ(X), we need
to compute the speed d

dt ϱ(X; fps) of E(X; fps) moving
away from Ωgoal. The KKT condition (8a) implies that

|λ| = 1/df . By Theorem 2 and Remark 1, d
dt ϱ(X; fps)

is the optimal value of (7) and is bounded by

d

dt
ϱ(X; fps) ≥ −|λ|(vP |fps⊤P eθP |+ vE∥fpsE ∥2)

≥ −(vP + vEα)/df ≥ 2vP /(1− α).
(41)

10



Therefore, using (40) and (41), if a stateX ∈ S satisfies

ϱ(X; fps) >
2πr

(α− 1)(r/κ− CM1(α))
, (42)

then ϱ(X; fps) + T mint′∈[0,T ]
d
dt ϱ(X

t′ ; fps) > 0, imply-

ing that ϱ(Xt′ ; fps) > 0 for all t′ ∈ [0, t⋆] and Xt⋆ is an
ERP winning state in X ps for some t⋆ ∈ [0, T ]. 2

Remark 2 By (19), (21) and (22), in order to ensure
that θPi

= σi(Xij) holds once reached, the current control
input of Ej is required to compute ẋI as it involves the
term ẋEj . In practice, if the methods in Section 2.2 are
used to estimate or measure ẋEj and the errors are not
negligible, then we need to relax θPi = σi(Xij) based on
the error bounds to generalise X ps

ij in (14), for which a
possibly looser winning condition and a robust strategy
might be obtained. Since the related robustness analysis
is not straightforward, we leave it for future work.

The proof of Theorem 3 shows that X ps
ij is a set of ERP

winning states under the parameters (16) which can be
relaxed further as below.

Lemma 3 (Relaxed ERP winning parameters). If the
state satisfies Xij ∈ X ps

ij and the parameters satisfy

αij > 3, ri/κi ≥
(5α2

ij − 9αij + 8)

(αij − 1)(αij − 2)2
(43)

then Xij is an ERP winning state and the strategy (19)
is an ERP winning strategy.

Proof. For simplicity, the subscripts i and j will be omit-
ted in the proof. Since X ∈ X ps, then (21) holds and
thus the control uP for θP = σ(X) in (19) satisfies

|uP | =
∣∣∣ κ
vP

e◦⊤IP ẋI
dIP

∣∣∣ = κ|k1e⊤IP (c5 − c3)− k2dfe⊤IPeIG|
vP dIP |k3|

≤ κ(2vP (∥c5∥2 + α/dIE) + vP df/dIE)

vP ((rk4/dIE + k5)df + dfdIP ∥c5∥2)

=
2κ

dfdIP
+
κ((2α+ df )/dIE − 2(rk4/dIE + k5)/dIP )

(rk4/dIE + k5)df + dfdIP ∥c5∥2

≤ 2κ

dfdIP
+

κ(2α+ df )/dIE
(rk4/dIE + k5)df

≤ 2κ

dfr
+
κ(2α+ df )

rk4df

=
κ

r

Ä 2

df
+
α(2α+ df )

df (df − 1)2

ä
≤ κ(5α2 − 9α+ 8)

r(α− 1)(α− 2)2
≤ 1,

(44)
where the second equality is due to (29), the first in-
equality follows from (30), (35) and e◦⊤IP ẋP = 0 by (21),
the third inequality is based on the fact that dIP ≥ r
and dIE > 0, the fourth inequality is because the formu-
lation is monotonically decreasing in df which has the
range [α− 1, α+ 1], and the last inequality holds using
the condition (43). Therefore, the conclusion follows by
the argument in the proof of Theorem 3. 2

ri ϱ

κi αij
κi αij

(b)(a)

(d)(c)

ϱ

αij ri

ϱ

ri
κi

Fig. 3. The ERP winning conditions for one pursuer and one
evader with the PEF (12). (a) parameters in (16) (purple)
and (43) (blue); safe distance in (18): (b) ri = 20, (c) κi = 1,
(d) αij = 4.

The ERP winning conditions in Theorem 3 and Lemma
3 for one pursuer and one evader with the PEF (12) are
shown in Fig. 3. In Fig. 3(a), the boundaries of winning
parameters (i.e.,αij , ri and κi) given by (16) and (43) are
depicted in purple and blue, respectively. The boundary
of the winning condition (18) on the safe distance and
parameters is depicted in Fig. 3(b)-(d) when the value of
one of the parameters is fixed.

5.3 ERP winning conditions for two pursuers

We next consider two pursuers and one evader. Based on
X ps
cj and results of the one-pursuer case, we present the

conditions on parameters and states that can ensure the
ERP winning via the steer-to-ERP approach, and give
the corresponding ERP winning strategies.

Theorem 4 (ERPwinning parameters, state and strat-
egy). Let c = {1, 2}. Consider a two-pursuer pursuit
coalition Pc = {P1, P2} against an evader Ej. There are
two scenarios for Xcj ∈ Scj:

(1) if Pps(Xcj) has the unique support constraint (say
P1), then it goes to one-pursuer case in Theorem 3.
Verify P1 against Ej first, and if it fails, then verify
P2 against Ej;

(2) if Pps(Xcj) has two support constraints, then: if the
parameters (16) hold for P1 and P2 against Ej sep-
arately and the safe distance of Xcj satisfies

ϱ(Xcj ; f
ps
c ) > min

i′∈c
max
i∈c

2πirivPi′/(αi′vPi
− vPi

)

ri/κi − CM2(α1, α2)
,

(45)

11



where

CM2(α1, α2) = 1 + min
i′′∈c

3α2
i′′ + 4αi′′ − 3

(αi′′ − 1)2(αi′′ − 3)
,

then Xcj is an ERP winning state and the coopera-
tive feedback pursuit strategy

uPi =

− κi

vPi

e◦⊤
IPi

ẋI

dIPi
, if θPi

= σi(Xcj)

sgn(sin(σi(Xcj)− θPi
)), otherwise

(46)
for all i ∈ c and all Xcj ∈ Scj, is an ERP winning
strategy with (xI ,xG) computed by the convex prob-
lem (15) and ẋI is given by

a◦
1(α2e

⊤
IEj

ẋEj
− vP2

)− a◦
2(α1e

⊤
IEj

ẋEj
− vP1

)

a⊤
1 a

◦
2

where ai = eIPi − αijeIEj for i ∈ c.

Proof. For the second scenario, similar to the proof of
Theorem 3, we first prove thatX ps

cj in (14) is a set of ERP

winning states by showing that (14) is closed under the
strategy (46). Then we also show that the strategy (46)
is feasible, i.e., |uPi

| ≤ 1 for all i ∈ c under the parameter
conditions (16). Finally, we prove that the states meeting
(45) can be generated by the ERP winning states in X ps

cj ,
via the steer-to-ERP approach in Theorem 2.

Unless for clarity, the subscript j for Ej , xEj
,uEj

, vEj
,

αij and eIEj
is omitted in the proof. For the first sce-

nario, since Pps(Xcj) has the unique support constraint
(say P1), checking the case of P1 against E is sufficient.
However, P2 may be able to win against E even if P1

fails. Regarding the second scenario, we first prove that
X ps
cj is a set of ERP winning states.

We first prove that θPi ≡ σi(Xcj) under the strategy (46)
if it holds initially. By the definition of σi above (15) and
the dynamics (1), this equivalently implies that

ẋP1
≡ vP1

eIP1
, ẋP2

≡ vP2
eIP2

. (47)

It can be proved by following the same argument in (22).
Next, we show that if Xcj ∈ X ps

cj , then ϱ(X
t
cj ; f

ps
c ) > 0

for all t ≥ 0 under the strategy (46). It suffices to prove
that the speed of E(Xcj ; f

ps
c ) moving away from Ωgoal is

non-negative, i.e., d
dt ϱ(Xcj ; f

ps
c ) ≥ 0, for all Xcj ∈ X ps

cj .

According to (10) and (11), we have

d

dt
ϱ(Xcj ; f

ps
c ) =

d

dt
d(xI ,xG)

=
∑
i∈c

λi(f
ps⊤
i,P (xI , Xij)ẋPi

+ vEf
ps⊤
i,E (xI , Xij)uE)

=
∑
i∈c

λi(vEαie
⊤
IEuE − vPi) ≥

∑
i∈c

λi(vEαi − vPi) = 0.

From the above, Xt
cj ∈ X

ps
cj for all t ≥ 0 and all Xcj ∈

X ps
cj , under the strategy (46).

Similar to the one-pursuer case, in order to implement
the strategy (46) for θPi

= σi(Xcj), we also need to en-
sure |uPi | ≤ 1 for all i ∈ c. To that end, we present the
computation of ẋI for two pursuers against one evader.
Note that (xI ,xG) satisfies the KKT conditions (8) con-
sistently. Since Pps(Xcj) has two support constraints,
then λ1 < 0 and λ2 < 0 (c = {1, 2}). Then, for (8c), we
have

fpsi (xI , Xij) ≡ 0⇒ d

dt
fpsi (xI , Xij) = 0 for i ∈ c,

that is,a⊤
1

a⊤
2

 ẋI +

α1e
⊤
IEẋE − e⊤IP1

ẋP1

α2e
⊤
IEẋE − e⊤IP2

ẋP2

 = 0,

where ai = eIPi
−αieIE for i ∈ c. By solving the above

equations, ẋI is given by

a◦
1(α2e

⊤
IEẋE − e⊤IP2

ẋP2
)− a◦

2(α1e
⊤
IEẋE − e⊤IP1

ẋP1
)

a⊤
1 a

◦
2

.

(48)
Since we only need to ensure |uPi

| ≤ 1 for θPi
= σi(Xcj)

and for all i ∈ c, i.e., (47) holds, then (48) is simplified as

ẋI =
a◦
1(α2e

⊤
IEẋE − vP2

)− a◦
2(α1e

⊤
IEẋE − vP1

)

a⊤
1 a

◦
2

.

(49)
Take k1 = α1e

⊤
IEẋE − vP1

, k2 = α2e
⊤
IEẋE − vP2

, d1 =
∥a1∥2, d2 = ∥a2∥2 and a⊤

1 a2 = d1d2 cos γ, where γ ∈
(0, π). Then we have

∥ẋI∥22 =
k22d

2
1 + k21d

2
2 − 2k1k2d1d2 cos γ

d21d
2
2 sin

2 γ

⇒ d

dγ
∥ẋI∥22 =

2(k1d2 cos γ − k2d1)(k2d1 cos γ − k1d2)
d21d

2
2 sin

3 γ

⇒ ∥ẋI∥2 ≤ max
¶
lim
γ→0
∥ẋI∥2, lim

γ→π
∥ẋI∥2

©
.

(50)
If γ → 0, i.e., a1 is parallel to a2 with the same direc-
tion, then by (8a), one enclosure region is an inscribed
region of the other and thus it is degenerated into the
one pursuer case. Then by (38), we have

lim
γ→0
∥ẋI∥2 ≤ min

i∈c

3α2
i + 4αi − 3

(αi − 1)2(αi − 3)
vPi

.

If γ → π, i.e., a1 is parallel to a2 with the opposite direc-
tion, then two enclosure regions are externally tangent.
This implies that xI → xE , and thus we have

lim
γ→π
∥ẋI∥2 = ∥ẋE∥2 = vE .
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Therefore, ∥ẋI∥2 is bounded by

∥ẋI∥2 ≤ min
i∈c

3α2
i + 4αi − 3

(αi − 1)2(αi − 3)
vPi . (51)

By combining (51) with (46), the control uPi
for θPi

=
σi(Xcj) has the following bound

|uPi | =
∣∣∣− κi

vPi

e◦⊤IPi
ẋI

dIPi

∣∣∣ ≤ κi∥ẋI∥2
vPi

ri

≤ κi
vPi

ri
min
i′∈c

3α2
i′ + 4αi′ − 3

(αi′ − 1)2(αi′ − 3)
vPi′ < 1,

(52)

where the parameter conditions (16) are used. In con-
clusion, X ps

cj is a set of ERP winning states.

According to Theorem 2, we next prove that the states
meeting (45) can be generated by the ERP winning
states in X ps

cj , via the steer-to-ERP approach. By follow-

ing the same argument (39) and (40), the angle chasing
speed has the positive lower bound

|θ̇Pi
| − |σ̇i|≥

vPi

ri

Ä ri
κi
− 1−min

i′∈c

vPi′ (3α
2
i′ + 4αi′ − 3)

vPi(αi′ − 1)2(αi′ − 3)

ä
.

Thus, similar to the one-pursuer case, any initial state
will meet the condition θPi

= σi(Xcj) for all i ∈ c within
at most time T := maxi∈c π/(|θ̇Pi

| − |σ̇i|). In order to
ensure the positive safe distance before θPi

= σi(Xcj)

for all i ∈ c, we need to compute the speed d
dt ϱ(Xcj ; f

ps
c )

of E(Xcj ; f
ps
c ) moving away from Ωgoal. By Theorem 2

and Remark 1, d
dt ϱ(Xcj ; f

ps
c ) is the optimal value of (7)

and is bounded by

d

dt
ϱ(Xcj ; f

ps
c )

≥ −
∑
i∈c
|λi|(|f⊤i,P ẋPi

|+ vPi
|fi,θ|/κi + vE∥fi,E∥2)

≥ −(2vP1
|λ1|+ 2vP2

|λ2|) = 2vP1
λ1 + 2vP2

λ2.
(53)

Since λ1 and λ2 are subject to (8a), then we consider the
optimization problem

minimize
(λ1,λ2)∈R2

2vP1
λ1 + 2vP2

λ2

subject to λ1a1 + λ2a2 + eIG = 0.
(54)

The KKT conditions to (54) lead to

2vP1
+ z⊤a1 = 0, 2vP2

+ z⊤a2 = 0 (55a)

λ1a1 + λ2a2 + eIG = 0, (55b)

where z ∈ R2 is the Lagrange multiplier, from which we

ϱ

r1 r2
(b)(a)

ϱ

α1j α2j

Fig. 4. The ERP winning conditions for two pursuers and
one evader with the PEF (12). Safe distance in (45): (a)
α1j = α2j = 4 and κ1 = κ2 = 1; (b) r1 = r2 = 20 and
κ1 = κ2 = 0.5.

have

2vP1
λ1 + 2vP2

λ2 = −λ1z⊤a1 − λ2z⊤a2

= z⊤eIG ≥ −∥z∥2,
(56)

and
z = (2vP2

a◦
1 − 2vP1

a◦
2)/(a

⊤
1 a

◦
2). (57)

Note that z has the similar expression as ẋI in (49).
Then, following the argument (50), we obtain

∥z∥2 ≤ max
¶
lim
γ→0
∥z∥2, lim

γ→π
∥z∥2

©
. (58)

If γ → 0, it is degenerated into the one pursuer case, and
if γ → π, then xI → xE . This observation implies that

d

dt
ϱ(Xcj ; f

ps
c ) ≥ max

i∈c
2vPi/(1− αi), (59)

where (41) is used. Thus, if a state Xcj ∈ Scj satisfies

ϱ(Xcj ; f
ps
c ) > min

i′∈c
max
i∈c

2πirivPi′/(αi′vPi − vPi)

ri/κi − CM2(α1, α2)
,

then ϱ(Xcj ; f
ps
c ) + T mint′∈[0,T ]

d
dt ϱ(X

t′

cj ; f
ps
c ) > 0, and

thus ϱ(Xt′

cj ; f
ps
c ) > 0 for t′ ∈ [0, t⋆] and Xt⋆

cj is an ERP

winning state in X ps
cj for some t⋆ ∈ [0, T ]. 2

The ERP winning conditions in Theorem 4 for two pur-
suers and one evader with the PEF (12) are shown in
Fig. 4. Since the winning condition (45) on the safe dis-
tance and parameters involves seven variables, we visu-
alise the boundaries by fixing the values of speed ratios
and minimum turning radii in Fig. 4(a), and capture
radii and minimum turning radii in Fig. 4(b).

6 Pursuit Strategies based on Task Allocation

This section first considers the task allocation between
pursuit coalitions and evaders by piecing together the
outcomes of all subgames. Let G = (VP ∪ VE , E) be an
undirected bipartite graph consisting of two independent
vertex sets VP and VE , and a set of edges E . In our

13



problem, VP is the set of all nonempty pursuit coalitions
of size less than or equal to two, and VE the set of evaders.
The edge connecting vertex Pc ∈ VP and vertex Ej ∈
VE is denoted by ecj , and ecj ∈ E if and only if Pc is
able to defend against Ej through the ERP winning. Let
C = (E , Ē) be a conflict graph, where each vertex in C
corresponds uniquely to an edge in G, and an edge ē ∈ Ē
if and only if two vertexes (two edges in G) connecting
by ē involve at least one common pursuer.

We formulate the problem of maximizing the number of
captured evaders in the ERP winning as a binary integer
program (BIP):

maximize
acj ,apq∈{0,1}

∑
ecj∈E

acj + z(acj)

subject to
∑

Pc∈VP

acj ≤ 1, ∀Ej ∈ VE∑
Ej∈VE

acj ≤ 1, ∀Pc ∈ VP

acj + apq ≤ 1, ∀(ecj , epq) ∈ Ē

(60)

where the subscripts p and q mean the pursuit coalition
Pp and evader Eq, respectively, acj = 1 indicates the
allocation of pursuit coalition Pc to capture evader Ej ,
and acj = 0 means no assignment (similar for apq), and
z : E×{0, 1} → R evaluates the assignment. By the defi-
nition of C, the last constraint in (60) implies that for ev-
ery edge in Ē , at most one associated assignment can be
taken, which ensures that a pursuer does not get multi-
ple assignments. Let L = 1+maxPc∈VP ,Ej∈VE

ϱ(Xcj ; fc)
be the maximum safe distance among players plus one.

Theorem 5 (Task allocation). For the BIP (60),

(1) the complexity is NP-hard;
(2) if z(acj) = 0, the solution corresponds to the most

captured evaders.
(3) if z(acj) = acjϱ(Xcj ; fc)/(min{Np, Ne}L), the so-

lution corresponds to the most captured evaders with
the maximum sum of safe distances;

(4) if z(acj) = −acjϱ(Xcj ; fc)/(min{Np, Ne}L), the so-
lution corresponds to the most captured evaders with
the minimum sum of safe distances.

Proof.Regarding (1), the identical argument to the proof
of Theorem 4.1 in Yan et al. (2022) proves that the
well-known NP-complete 3-dimensional matching prob-
lem (Karp, 1972) is polynomially reduced to special in-
stances of the BIP (60). Regarding (2), it follows from
the definition. Regarding (3), since 0 ≤

∑
ecj∈E z(acj) <∑

ecj∈E
acjL

min{Np,Ne}L ≤ 1, then
∑
ecj∈E z(acj) is strictly dom-

inated by the value increment of matching one more
evader. Thus, the conclusion follows directly, and (4) can
be proved similarly. 2

To solve (60), many solvers can be used (e.g., Gurobi,
Matlab). If the number of players is large, the Sequen-

tial Matching Algorithm (Yan et al., 2022) is a 1/2
approximation polynomial algorithm, and an exact al-
gorithm if the solution does not contain pursuit coali-
tions with two pursuers. Motivated by Antonyshyn et al.
(2023); Yan et al. (2022), we combine the ERP winning
(motion planning) with the task allocation (task plan-
ning) in a receding-horizon manner and thus propose a
multiplayer receding-horizon ERP strategy (Algorithm
1) that ensures a monotonically increasing number of
guaranteed captured evaders. Since at most two pur-
suers are needed for the ERP winning by the coalition
reduction, the number of tasks to be considered is re-
duced from (2Np − 1)Ne to (Np + 1)/NpNe, which how-
ever, as Theorem 5 states, is still an NP-hard problem.
ERP Winning(Xcj , fc) determines whether Pc guaran-
tees an ERP winning against Ej from Xcj . This can be
verified using the proposed steer-to-ERP approach with
the positional PEFs {fpsi }Pi∈P , i.e, check the winning
parameters and safe distances in Theorems 3 or 4.

Algorithm 1 Multiplayer ERP strategy

Initialize: {xPi , θPi}Pi∈P , {xEj}Ej∈E , PEFs {fi}Pi∈P

1: VP ← {Pc ∈ 2P | 1 ≤ |Pc| ≤ 2}, VE ← E
2: repeat
3: for Pc ∈ VP , Ej ∈ VE do
4: Add ecj to E if ERP Winning(Xcj , fc) is true

5: G← (VP ∪ VE , E)
6: M ← solve the BIP (60)
7: Adopt ERP winning strategy (19) or (46) for Pc

if (Pc, Ej) ∈M for some Ej
8: Adopt some (any) strategy for Ej ∈ VE and

unmatched Pi ∈P
9: Update xPi

, θPi
,xEj

with a time step ∆
10: Remove captured or arriving evaders from VE
11: until VE = ∅

7 Simulations

We run the Homicidal Chauffeur reach-avoid differential
games in various scenarios with different team sizes and
initial configurations to illustrate the theoretical results.
The positional PEF (12) is used for the ERP winning.

Case 1: one pursuer P1 and one evader E1. We consider
the parameters α11 = 5, r1 = 7.31 and κ1 = 1.5 which
satisfy the condition (16), and consider the initial states
xP1

= [−6, 7], θP1
= −1.5 and xE1

= [18, 18] which sat-
isfy the condition (18). By Theorem 3, the initial state is
an ERP winning state and thus under the ERP winning
strategy (19), P1 is able to defend the goal region against
E1 which can take any strategy. The scenario is depicted
in Fig. 5(a), where the blue dashed circle is the capture
range. After the state enters X ps

11 in (14), the ERP win-
ning strategy by P1 ensures that the enclosure regions
containing E1 (in green at several time instants) never
approach the goal region, and thus E1 cannot reach the
goal region before being captured.
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Fig. 5. Three simulations. (a) one pursuer and one evader; (b) two pursuers and one evader; (c) four pursuers and three evaders.

Case 2: two pursuers P1, P2 and one evader E1. We con-
sider α11 = α21 = 4, r1 = r2 = 17.56 and κ1 = κ2 = 2.
The initial states are xP1

= [−12, 65], θP1
= 1.5, xP2

=
[80,−14], θP2

= −0.1 and xE1
= [60.5, 58.5]. By Theo-

rem 3, P1 and P2 cannot ensure the ERPwinning against
E1 individually due to the failure of the state condition
(18). However, the initial states meet the condition (2)
in Theorem 4, and thus P1 and P2 can defend against E1

by cooperation using the strategy (46), as in Fig. 5(b),
where the enclosure regions are depicted at the instant
when the state enters X ps

cj in (14).

Case 3: four pursuers and three evaders. The multiplayer
receding-horizon ERP strategy is used in this example.
The task allocation shows that the pursuit team can en-
sure the simultaneous ERP winning against at most two
evaders, show in Fig. 5(c). More concretely, P1 and P2

cooperatively defend against E1, and P3 defends against
E2. The pursuer P4 is tasked to pursue E3, although it
cannot ensure the ERP winning against E3.

8 Conclusion

We presented a cooperative pursuit strategy for mul-
tiplayer Homicidal Chauffeur reach-avoid differential
games in which the pursuers protect a convex region
against the evaders. For the subgames, the ERP winning
provides a sufficient condition to guarantee the pursuit
winning without directly working with the terminal con-
ditions. In addition to avoiding the backward analysis,
the ERP winning has simple cooperation among pur-
suers due to the pursuit coalition reduction. The steer-
to-ERP approach shows that, if a set of ERP winning
states are constructed, the new ERP winning states can
be generated by solving an optimization problem. The
parameters, states and strategies that ensure the ERP
winning with the proposed positional PEFs are able to
find a part of the pursuit winning conditions. The task
allocation leads to an increasing number of guaranteed
captured evaders. Future work will involve two-car dy-
namics and distributed games. Moreover, since the task
allocation at each step involves solving a combinato-
rial problem, for future work, we will propose heuristic

methods based on players’ current states to prune the
pursuit coalitions that are considered for possible tasks.
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