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Abstract— Recent work has considered trust-aware decision
making for human-robot collaboration (HRC) with a focus on
model learning. In this paper, we are interested in enabling the
HRC system to complete complex tasks specified using temporal
logic formulas that involve human trust. Since accurately
observing human trust in robots is challenging, we adopt
the widely used partially observable Markov decision process
(POMDP) framework for modelling the interactions between
humans and robots. To specify the desired behaviour, we
propose to use syntactically co-safe linear distribution temporal
logic (scLDTL), a logic that is defined over predicates of states
as well as belief states of partially observable systems. The
incorporation of belief predicates in scLDTL enhances its ex-
pressiveness while simultaneously introducing added complex-
ity. This also presents a new challenge as the belief predicates
must be evaluated over the continuous (infinite) belief space.
To address this challenge, we present an algorithm for solving
the optimal policy synthesis problem. First, we enhance the
belief MDP (derived by reformulating the POMDP) with a
probabilistic labelling function. Then a product belief MDP is
constructed between the probabilistically labelled belief MDP
and the automaton translation of the scLDTL formula. Finally,
we show that the optimal policy can be obtained by leveraging
existing point-based value iteration algorithms with essential
modifications. Human subject experiments with 21 participants
on a driving simulator demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Autonomous robots are rapidly evolving into an essential
component of our society, to mention home assistive robots
[1] and automated vehicles (AV) [2]. Despite significant
advances made in automation in recent years, attaining full
autonomy, which would enable robots to successfully deal
with complicated and unpredictable events or situations, re-
mains stubbornly out of reach. For instance, the AV industry
has had to reset expectations as it shifts its focus from level 5
to 4 autonomy [3]. In many applications where robots work
with or alongside humans, it is customary to have robots that
are operated or supervised by a human [4]. Collaborative
human-robot partnerships often hinge on the foundation of
trust. Therefore, recognizing human trust and incorporating
it into the decision-making process is essential for achieving
the full potential of human-robot interactive systems.
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The subject of trust has been actively studied in multiple
contexts such as psychology [5] and automation [6]. It is
a multifaceted concept that can be influenced by a large
number of factors. In the context of human-robot collabo-
ration (HRC), studies have shown that the level of human
trust in robots evolves over their interaction, affected by
factors such as the automation’s reliability, predictability, and
transparency [7]. While earlier work has focused on studying
the measurement [8], modelling [9], and calibration [10] of
human trust in robots, recent work has gravitated towards
devising strategies that enable robots to proactively infer and
influence the human collaborator’s trust [11], [12].

Various methods exist for modeling the interaction be-
tween humans and robots. Among these, the game-theoretic
approaches [13], [14] and the partially observable Markov
decision process (POMDP) framework [15], [16] have been
extensively explored. Since trust is not fully observable, in
this work we adopt the POMDP, where human trust can be
modelled as a hidden variable. While the POMDP formu-
lation allows the robot to act according to its beliefs about
the human collaborator’s trust based on observations, finding
solutions to POMDPs of a realistic size is computationally
challenging and existing work often relies on approximation
algorithms [17]–[19]. Due to the inherent complexity of
solving a POMDP, prior work devoted to trust-based decision
making for HRC often focused on relatively simple specifi-
cations (e.g., accumulated reward maximisation) [20], [21].
Moreover, in all these studies, trust was treated as an implicit
factor that impacts the performance of collaboration. None of
these works has considered trust as part of the specification,
where explicit requirements can be imposed. Real-world case
studies have shown that an inappropriate level of trust may
result in the misuse or disuse of automation [6]. Therefore,
in practical scenarios, it might be advantageous to stipulate
conditions such as “the trust level must not fall below a
certain threshold” and “the trust level at a particular juncture
must surpass a certain threshold”.

Recently, there has been a growing interest in using Linear
Temporal Logic (LTL) [22] or its finite variant, syntactically
co-safe LTL (scLTL) [23], [24], for specifying complex
behaviours of partially observable systems. In [25], it was
demonstrated that, for Gaussian linear-time invariant (LTI)
POMDPs, a finite-state abstraction can be constructed. This
abstraction allows for policy synthesis, which can then be
refined to the original Gaussian LTI POMDPs. However,
we note that this approach is not applicable to general
POMDPs. In [26], [27], policy synthesis for POMDPs under
LTL specifications was investigated. It is worth noting that,



in these studies, LTL was employed to define specifications
over the state space of the POMDPs, rather than beliefs.

In this work, we investigate trust-aware motion planning
for HRC with complex temporal logic specifications applied
to both the state of the robot and the trust (belief) of human.
The trust-based human-robot interaction is modelled by a
trust POMDP and syntactically co-safe linear distribution
temporal logic (scLDTL) [28] is utilised to specify the
desired behaviour of the system. In [28], scLDTL was
introduced as an extension of scLTL to leverage the richness
of information contained within belief states of partially
observable systems. It was shown that scLDTL is capable
of expressing properties involving uncertainty and likelihood
that cannot be described by existing logic. Nevertheless, the
increased complexity introduced by the inclusion of belief
predicates in scLDTL, which must be evaluated over the
continuous (infinite) belief space, renders verification and
synthesis from scLDTL a more demanding task. In [28], a
feasibility checking algorithm was proposed for POMDPs
with scLDTL specifications. However, to the best of our
knowledge, the more challenging synthesis problem remains
unresolved. Our contributions are summarised as follows. (i)
We demonstrate the suitability of scLDTL for specifying the
desired behaviour of trust-aware HRC systems that involve
requirements in the robot workspace as well as the trust
(belief) space. (ii) We propose an efficient algorithm to solve
the scLDTL optimal policy synthesis for trust POMDPs,
which overcomes the aforementioned complexity of scLDTL
specifications. (iii) We design and conduct human subject
experiments with 21 participants on a driving simulator to
evaluate the proposed approach, with encouraging results.

II. MOTIVATING EXAMPLE

We describe a route planning problem for AVs. A human
is driving an AV in a town, whose map is shown in Fig.
1(a). Within the town, we consider that there are 3 types
of typical incidents that may occur on the road: (1) a
pedestrian crossing the road, (2) an obstacle (e.g., a broken
bicycle) ahead of the lane, and (3) an oncoming truck in the
neighbouring lane. For simplicity, here we assume that there
is at most one incident at a time for each road segment.

Fig. 1(b) shows a schematic view of the AV traveling
from one location to another. Imagine the AV is approaching
an incident on a road segment while in autopilot mode.
For safety considerations, the driver might choose to take
over control of the AV and switch to manual driving. The
level of trust that the driver has in the AV’s ability to
handle various types of incidents can influence their takeover
decision; a driver with lower trust is more inclined to do so.
Furthermore, the driver’s level of trust changes over time and
depends on the takeover decision and the vehicle’s ability to
handle an incident. In our previous work [21], human subject
experiments have shown that, by proactively inferring human
trust and taking it into account during decision making, the
AV can achieve higher cumulative rewards.

The research focus of [21] was on optimal route planning
(e.g., navigating from one location to the other) for AVs.

(a)

(b)

Fig. 1: Route planning for AVs. (a) A map with three types
of road incidents (pedestrian, obstacle, and oncoming truck).
(b) A schematic view of the decision making process.

In contrast, in this work we are interested in trust-aware
HRC in a broader context. Our goal is to develop a trust-
aware motion planning approach for HRC systems, which is
capable of completing complex tasks specified in temporal
logic that involve requirements on human trust levels.

III. PRELIMINARIES

Before formulating our problem, we provide preliminary
background on POMDPs and scLDTL.

A. Partially observable Markov decision processes

This section introduces POMDPs, which are well suited
to the modelling of HRC systems under investigation. The
human internal states (e.g., trust), which are not fully observ-
able to robots, can be modelled as hidden states in POMDPs.
In order to accurately represent the interactions between hu-
mans and robots, modifications to the conventional definition
of a POMDP [29] are incorporated.

Definition 1 (POMDPs). A POMDP is defined as a tuple
M = (S,A,O,Z, T ), where S,A, and O are finite sets of
states, actions, and observations, respectively, and

• Z : S×A×O → [0, 1] is the probabilistic observation
function, which gives the probability of observing o after
taking action a in state s, i.e., Z(s, a, o) = p(o|s, a);

• T : S×A×O×S → [0, 1] is the probabilistic transition
function, which gives the probability that the state has
value s′ after taking action a and receiving observations
o in state s, i.e., T (s, a, o, s′) = p(s′|s, a, o).

Firstly, we note that, in Definition 1, the probability of
receiving observation o ∈ O is determined by the previous
state s (instead of the resulting state s′) and the action a



that was just taken. Secondly, the transition function T is
dependent on the observations. For the purpose of this work,
a reward function is redundant and has been omitted.

Since a POMDP state is partially observable, we rely on
the concept of a belief state1. Let B be the belief space of
S. A POMDP policy π : B → A maps a belief state b ∈ B,
which is a probability distribution over S, to a prescribed
action a ∈ A. Given a policy π, the control of the agent’s
actions is performed online. First, the agent takes an action
a = π(b) according to the given policy π and the current
belief is b. Second, after taking an action a and receiving an
observation o, the agent updates its belief:

b′(s′) =
∑
s∈S

b(s)
∑

o∈FO(s,a)

Z(s, a, o) · T (s, a, o, s′), (1)

where FO(s, a) = {o ∈ O|Z(s, a, o) > 0}. The process
then repeats. An interesting property to note about the
POMDP described in Definition 1 is that the belief update
(1) is linear2. An execution ρ of a POMDP is a possibly
infinite alternating sequence of belief states, actions, and
observations, i.e., ρ = b0a0o0b1a1o1 · · · .

B. Syntactically Co-Safe Linear Distribution Temporal Logic

This section introduces scLDTL for concisely specifying
the desired behaviour of the HRC systems. It will become
clear later that scLDTL is capable of expressing requirements
in both the robot workspace and the trust (belief) space.

scLDTL consists of two types of predicates: (i) state
predicates ν that are evaluated over the states and (ii)
belief predicates µ, which are obtained after evaluation of
a predicate function gµ : B → R on the belief space B as:
µ = ⊤ if gµ(b) < 0 and µ = ⊥ if gµ(b) ≥ 0.

An scLDTL formula is defined inductively according to
the following syntax [28]:

φ ::= ⊤|ν|µ|¬ν|¬µ|φ1 ∧φ2|φ1 ∨φ2|φ1Uφ2|⃝φ|♢φ, (2)

where ν is a state predicate, µ is a belief predicate, ¬
(negation), ∧ (conjunction), and ∨ (disjunction) are logic
connectives, and U (until), ⃝ (next) and ♢ (eventually) are
temporal operators. We omit the scLDTL semantics due to
page limit and refer the reader to [28].

Let AP be a set of state predicates and BP be a set of
belief predicates. The satisfaction of an scLDTL formula φ
over AP∪BP can be captured through a deterministic finite
automaton (DFA) A = (Q, q0, 2

AP∪BP, δ,Acc), where Q is
a finite set of states, q0 ∈ Q is the initial state, δ : Q ×
2AP∪BP → Q is the transition function, and Acc ⊆ Q is the
set of accepting states. A finite run q = q0q1 . . . qk of A is
called accepting if qk ∈ Acc. Next we define the notion of
probabilistic satisfaction with respect to an execution ρ of a
POMDP.

1A belief state is a probability distribution over all possible states in the
POMDP. It represents the agent’s subjective probability distribution of being
in each state given its past observations and actions.

2The belief update of a conventional POMDP is often represented using
the Bayes’ filter.

Definition 2. [scLDTL satisfaction with respect to a POMDP
execution] Given an execution ρ = b0a0o0b1a1o1 . . . of a
POMDP M, the probability that the execution ρ satisfies
the scLDTL formula φ is given by

PrM({s0s1 · · · such that (s0, b0)(s1, b1) · · · |= φ} | ρ).

For simplicity, it is denoted in shorthand as PrM(φ | ρ).

IV. POMDPS FOR HRC
In this work, we consider a human and a robot working

collaboratively in the workspace X . The human (H) adopts a
supervisory role and the robot (R) is charged with performing
tasks. The human can intervene in the task execution due to,
for instance, low trust.

A. HRC modelling

Within the workspace X , one can identify a set of inci-
dents I , i.e., a set of events that can affect human trust and/or
takeover decision. The likelihood of observing an incident
id ∈ I is determined by the current state and the action of
the robot. Denote by Θ the state space of human trust in the
robot, which is not fully observable by the robot.

The human-robot interaction can be modelled as a
POMDP M as per Definition 1, where the state space S of
M is factored as the observable state space X and the non-
observable state space Θ, i.e., S = X ×Θ. Accordingly, the
probabilistic transition function T is factored as the world
state and the human trust probabilistic transition functions
TX and TΘ, respectively. It has been shown in [20] that the
human trust affects human behaviour (e.g., takeover decision)
and the human trust is affected by factors such as the
robot performance (i.e., success/fail in handling an incident).
Therefore, the state evolution of the trust POMDP M is
determined not only by the robot action ar, but also posterior
observations, including the incident id encountered during
execution, the human takeover decision ah, and the robot
performance er. Formally, the trust POMDP is specified as
a tuple M = (X,Θ, Ar, O,Z, TX , TΘ), where

• Ar is the finite action space of the robot;
• O = I ×Ah × Er is the observation set, where

– I is the set of incidents;
– Ah = {tk, st} is the action space of the human,

where tk and st stand for “takeover” and “stand-
still”, respectively; similarly to [20], we assume
that the human first observes the robot’s action ar

and then decides his or her own action ah;
– Er = {succ, fail} represents the performance of the

robot, where succ and fail stand for “success” and
“failure”, respectively.

• Z : X × Θ × Ar × O → [0, 1] is the probabilistic
observation function, which is given by Z(x, θ, ar, o) =
p(id, ah, er|x, θ, ar);

• TX : X × Ar × O × X → [0, 1] is the world state
probabilistic transition function, i.e., TX(x, ar, o, x′) =
p(x′|x, ar, o);

• TΘ : Θ×O×Θ → [0, 1] is the human trust probabilistic
transition function, i.e., TΘ(θ, o, θ′) = p(θ′|θ, o).



Fig. 2: The graphical model for the trust POMDP M.

A graphical model of the trust POMDP is shown in Fig. 1.
It contains two key components: (i) a trust dynamics model,
which captures the evolution of human trust in the robot,
and (ii) a human decision model, which connects trust with
human actions.

Let BΘ be the belief space of Θ. We associate with each
value x ∈ X a belief space for θ: BΘ(x) := {(x, bΘ)|bΘ ∈
BΘ}. Then the belief space of the trust POMDP M can
be defined as B = ∪x∈XBΘ(x). The POMDP policy π :
B → Ar maps a belief b ∈ B to a prescribed robot action
ar ∈ Ar(b), where Ar(b) is the set of actions available at b.

We illustrate our results with the motivating example.

Example (continued). The town map shown in Fig. 1(a)
has 12 road intersections {A, · · · ,L}. Depending on the
driving direction, each intersection can be factored into
3 different states (for instance, intersection A contains
states EA, BA, and FA). We use Muir’s questionnaire
[30] with a 7-point Likert scale as a human trust metric
(i.e., trust ranges from 1 to 7). Therefore, one has that
X = {EA,BA,FA · · · ,EL,KL,HL}, Θ = {1, · · · , 7}, and
I = {‘pedestrian′, ‘obstacle′, ‘truck′}. The robot action is
route choices and one can define an indicator function I for
incidents. For instance, I(EA,AB, ‘pedestrian′) = 1.

B. Problem formulation

In this work, we consider that the HRC system is required
to complete complex tasks in the robot workspace X . More-
over, there are requirements on the human trust Θ and/or
trust belief bΘ. We formulate the tasks in the workspace as
well as the requirements on human trust and trust belief in
the form of an scLDTL formula φ.

Example (continued). Consider now that the AV is required
to complete the following tasks: (i) visits the target intersec-
tions G, J and L (in this order) from the initial location EA
(see Fig. 1(a)), (ii) the human trust level cannot be too low
(lower than 2) at all times, and (iii) when the vehicle reaches
the final intersection L, the likelihood that the human trust
level is high (higher than or equal to 6) is no less than 0.5.
In scLDTL, this specification can be written as

φ = (¬LOWTRUST)U(♢(ν1∧♢(ν2∧♢(ν3∧HIGHTRUST))),

where there are 3 state predicates ν1 = {BG,FG, IG}, ν2 =
{IJ,CJ,KJ}, ν3 = {KL,EL,HL} and 2 belief predicates
LOWTRUST, HIGHTRUST. The predicate functions are given
by gLOWTRUST = 1 − A1bΘ, gHIGHTRUST = 0.5 − A2bΘ, where

A1 = [1, 0, 0, 0, 0, 0, 0] encodes trust lower than 2 and A2 =
[0, 0, 0, 0, 0, 1, 1] encodes trust higher than or equal to 6.

Given the initial belief state b0 and a policy π, denote by
ρπ(b0) the set of all possible executions generated by π. We
consider the optimal policy synthesis problem for HRC under
scLDTL specifications, i.e., find an optimal policy π such
that the probability of the set of all executions that satisfy an
scLDTL formula φ under π is maximised. Mathematically,
this problem can be formulated as follows.

Problem 1. Given the trust POMDP M and the scLDTL
specification φ, find a policy π ∈ Π such that

max
π∈Π

PrπM(φ) ≜
∑

ρ∈ρπ(b0)

Pr(ρ|b0, π)PrM(φ | ρ), (3)

where Π is the set of all policies for the trust POMDP M
and PrM(φ | ρ) is given in Definition 2.

Remark 1. Point-based value iteration (PBVI) algorithm
has been proposed for POMDPs under LTL specifications.
In [27], the atomic propositions of an LTL formula are
evaluated on the state space of the POMDP, which is finite.
Therefore, the construction of the product POMDP and the
computation of maximal end components are similar to finite
MDPs, for which the existing graph-based methods [22] can
be utilised. In this work we consider scLDTL specifications,
in which the belief predicates are evaluated over the belief
space B of the trust POMDP M, which is infinite. Therefore,
the approach proposed in [27] is not applicable here.

V. PROPOSED APPROACH

This section presents our approach to solve the optimal
policy synthesis problem (Problem 1), which falls outside
the purview of existing policy synthesis algorithms designed
for POMDPs, e.g., [25]–[27]. It is divided into two parts: (1)
the construction of the product POMDP with the DFA of the
scLDTL formula φ and (2) an algorithm to approximately
compute a policy that maximises the probability of satisfying
the given scLDTL formula φ.

A. Product POMDP

To begin with, we define the deterministic state and belief
predicate labelling functions Ls and Lb as

• Ls : X × Θ → 2AP, which contains the set of state
predicates that can be true at state (x, θ);

• Lb : X × BΘ → 2BP, which contains the set of belief
predicates that can be true at belief state (x, bΘ).

Then the corresponding values are given by pLs : X ×
Θ × 2AP → {0, 1} and pLb

: X × BΘ × 2BP → {0, 1},
respectively.

Now we propose to reformulate the trust POMDP M
(equivalently) as a belief MDP and further expand it by in-
cluding probabilistic labels, which yields a probabilistically
labelled belief MDP M̂ = (B, Ar, O, Ẑ, T̂B, L̂, pL̂), where
B is the belief space, Ar, O are given in M, and

• Ẑ : B×Ar×O → [0, 1] is the probabilistic observation
function;



• T̂B = (TX , TBΘ
) is the probabilistic transition function,

where TX is defined in M and TBΘ : BΘ ×O×BΘ →
[0, 1];

• L̂ : B → 22
AP∪BP

is the belief state labelling function,
where L̂(x, bΘ) contains the set of state and belief
predicate subsets that can be true at (x, bΘ);

• pL̂ : B × 2AP∪BP → [0, 1] specifies the associated
probability.

The probabilistic labelling function pL̂ provides a unified
way of assigning belief states with both state and belief
predicates in an scLDTL formula. For instance, given a belief
state (x, bΘ), a state predicate ν, and a belief predicate µ,
one has that pL̂(x, bΘ, ν) = bΘ(θ)pLs

(x, θ, ν),∀θ ∈ Θ and
pL̂(x, bΘ, µ) = pLb

(x, bΘ, µ).
The product belief MDP M× is constructed between the

probabilistically labelled belief MDP M̂ and the DFA A =
(Q, q0, 2

AP∪BP, δ,Acc) of the scLDTL formula φ.

Definition 3 (Product belief MDP). Denote by M× the prod-
uct M̂ ×A as a tuple M× = (S×, Ar, O,Z×, T ×,Acc×),
where

S× = B × 2AP×BP ×Q

is so that (x, bΘ, l, q) ∈ S×,∀(x, bΘ) ∈ B,∀l ∈ L̂(x, bΘ),
and ∀q ∈ Q, Z× : S××Ar×O → [0, 1] is the probabilistic
observation function, and Acc× = {(x, bΘ, l, q) ∈ S×|q ∈
Acc}. The probabilistic transition function T × : S××Ar ×
O × S× → [0, 1] is defined as

T ×((x, bΘ, l, q), a
r, o, (x′, b′Θ, l

′, q′)) ={
T̂B((x, bΘ), ar, o, (x′, b′Θ)) · pL̂(x′, b′Θ, l

′), if q′ ∈ δ(q, l),

0, otherwise;

where Ẑ, T̂B, and pL̂ are defined in M̂.

Let Π× be the set of all policies for the product belief
MDP M×. The set of accepting states of M× is given by
Acc×. We have the following result.

Theorem 1. Given the trust POMDP M and the scLDTL
formula φ, the maximal probability of satisfying φ is:

max
π∈Π

{PrπM(φ)} = max
π̂∈Π×

{Prπ̂M×(♢Acc×)}.

Theorem 1 shows that, with the set of accepting states
Acc×, the original optimal policy synthesis problem reduces
to a reachability problem.

B. Optimal policy synthesis

PBVI algorithms have been widely used for solving
POMDP synthesis problems [17]–[19]. They often offer
convergence guarantees specified as upper and lower bounds
on the value function. However, these PBVI algorithms are
not directly applicable for solving our problem (Problem 1).
This is because solving a reachability problem for POMDPs
necessitates the presence of a clearly defined reward function,
which assigns value 1 to states in the goal set and 0 other-
wise. However, in our case, capturing the satisfaction of an
scLDTL specification through a state-based reward function
is not feasible due to the presence of belief predicates.

In the following, we show that, with essential modifica-
tions, the existing PBVI algorithms can be leveraged for
solving Problem 1 with the set of accepting states Acc×.

Given a state s of the product belief MDP M×, we first
define a value function V : S× → R≥0 as

V (s) = max
π∈Π×

{PrπM×(♢Acc×)},

which represents the maximal probability of reaching Acc×

from initial state s. Then one can get that V (s) = 1,∀s ∈
Acc×. For s /∈ Acc×, we further define the dynamic
programming operator T as

T (V )(s) = max
ar∈Ar

{
∑

o∈FO(s,ar)

Z×(s, ar, o)
∑

s′∈S×

T ×(s, ar, o, s′)V (s′)
}
.

Before running a PBVI algorithm, first we initialize the
upper- and lower-bounds of the value function V as follows:

V
0
(s) = 1,∀s ∈ S×, V 0(s) =

{
1, if s ∈ Acc×,

0, otherwise.
(4)

Then a precision parameter τ is provided that controls the
tightness of the convergence (for example, by controlling the
depth of the tree in SARSOP [19]), which yields |V (s0) −
V (s0)| ≤ τ, where s0 = (b0, q0) is the initial state of the
product belief MDP M×.

Denote by Prmax
M (φ) := maxπ∈Π{PrπM(φ)} the maximal

probability of satisfying the scLDTL formula φ. We have
the following result.

Theorem 2. Let V (s0) and V (s0) be the upper- and lower-
bounds of V (s0) obtained using PBVI with the initialization
function (4). One has that

V (s0) ≤ Prmax
M (φ) ≤ V (s0).

Finally, the optimal policy π̂∗ for state s ∈ S× can be
derived using the value function.

VI. IMPLEMENTATION

We have implemented the proposed approach to obtain
the optimal policy for each scLDTL specification under
consideration for the motivating example. To construct
the trust POMDP, we utilise the trust dynamics model
and the human takeover decision model, which were de-
rived through an online user study involving 100 anony-
mous participants on Amazon Mechanical Turk (AMT)
platform [21]. Then two scLDTL specifications φ1 =
(¬LOWTRUST)U(♢(ν1 ∧♢(ν2 ∧♢(ν3 ∧ HIGHTRUST))) and
φ2 = (¬LOWTRUST)U(♢(ν4∧♢(ν5∧♢(ν6∧HIGHTRUST)))
are considered for the AV, where state predicates ν1, ν2, ν3
are defined in the Example, ν4 = {AB,GB,CB}, ν5 =
{DK, JK,LK}, ν6 = {AE,DE,LE}, and belief predicates
LOWTRUST and HIGHTRUST are evaluated over the predicate
function gLOWTRUST = 1−A1bΘ and gHIGHTRUST = 0.5−A2bΘ.
The DFA for each scLDTL specification φi, i ∈ {1, 2} is
derived using [31]. Then the corresponding product belief



MDP M×
i is constructed with the DFA of φi. Finally,

the upper- and lower-bounds of the value function Vi are
computed using the POMDP toolkit “pomdp py” [32] (with
essential modifications describled in Section V.B). The preci-
sion parameter is set as τ = 0.01. All simulations are carried
out on a Macbook Pro (2.6 GHz 6-Core Intel Core i7 and
16 GB of RAM).

VII. DRIVING SIMULATOR STUDY

We evaluate the effectiveness of obtained policies via a
driving simulator study. 3

Study design. The study was conducted in a fixed-based
driving simulator from SimXperience, consisting of a 55-
inch display, a racing car seat, a Logitech G29 steering
wheel, and sport pedals, see Fig. 3. In our study, four buttons
on the steering wheel were programmed to let the drivers
increase/decrease trust, switch driving mode between manual
and autopilot, switch gear between drive and reverse.

The experiments were run on a machine with 3.5GHz
CPU, NVIDIA GeForce RTX 3080 Ti, 62GB memory, and
Ubuntu 20.04.6 LTS operating system. The virtual driving
environment was created using CARLA 0.9.13. An autopilot
controller was programmed for driving tasks such as lane
keeping, taking turns at intersections, and handling incidents.

We recruited 21 undergraduate students from the univer-
sity community to participant. All participants had a valid
driver’s license and regular or corrected-to-normal vision.
Each participant was compensated with a $10 gift card.
We adopted a within-subject study design: each participant
took 4 unique routes, i.e., trust-aware and trust-free routes
for both scLDTL specifications. The start and destination is
either from A to L (φ1) or from H to E (φ2). The route
is either the trust-aware route (obtained using the computed
optimal policy) or the trust-free route (which is the shortest-
distance route from the start to the destination). However,
if the vehicle has not reached the destination after travelling
20 intersections, it reschedules a shortest-distance route. The
order of trials is randomized and counter-balanced.
Study Procedure. Upon arrival, a participant was instructed
to read and sign a consent form approved by the Institutional
Review Board. We conducted a five-minute training session
to familiarize the participant with the driving simulator setup.

The vehicle started driving in autopilot mode. When the
vehicle approached an incident, the participants can decide
whether to take over the vehicle to handle the incidents on
the road. Should the participant choose not to take over,
the vehicle will remain in autopilot mode to handle the
incident. At any point during the experiment, the participant
has the option to assume control of the vehicle and switch
to manual driving. Should the participant choose to take
over, he/she was required to switch back to autopilot mode
before arriving at the next intersection so that the vehicle can
choose the next direction to go. We asked the participants
to periodically record their trust in the AV using the buttons

3This study was approved by the University of Virginia Institutional
Review Boards under IRB-SBS protocol #6045.

Fig. 3: Driving simulator setup.

on the steering wheel. It took about 40 minutes for each
participant to complete the entire experiment.
Results. The computed maximal probabilities for satisfying
the scLDTL specifications φ1 and φ2 are Prmax

M (φ1) =
0.8357 and Prmax

M (φ2) = 0.7288, respectively. For each
participant, we evaluate the satisfaction of each scLDTL
specification φi using the robot states x and human trust
levels Θ recorded in the experiment, and the induced trust
beliefs bΘ. In total, 18 out of 21 (18/21 = 0.8571 >
0.8357) and 17 out of 21 (17/21 = 0.8095 > 0.7288)
participants successfully complete the specifications φ1 and
φ2 respectively, which validates the effectiveness of the
proposed approach. We further compare the trust-aware
and trust-free routes for all drivers and both trails. The
percentage of scLDTL satisfaction is 0.85 (trust-aware)
vs 0.775 (trust-free). The average human trust is 4.6018
(trust-aware) vs 4.3933 (trust-free). One can see that the
trust-aware policy outperforms the trust-free one. A video
demonstration of the human experiment can be found at:
https://www.youtube.com/watch?v=pY0PkxYbQXo.

We summarise three key observations gained from the
experiments. First, observing the AV successfully handle the
same incidents multiple times does not necessarily guar-
antee an increase in human trust. Second, if a human’s
trust remains consistently low for an extended period, it
becomes challenging for them to re-establish trust in the AV.
Third, having the capability to effectively address an incident
beforehand can contribute to boosting human trust. Based on
the feedback received after the experiment, participants have
indicated that, had they noticed the car braking earlier in
situations involving pedestrians, they might have considered
the AV more trustworthy.

VIII. CONCLUSIONS

In this work, we presented a trust-aware motion plan-
ning approach for HRC. We demonstrated the suitability
of scLDTL for describing the desired behaviours of HRC
systems and an algorithm was proposed for solving the
optimal policy synthesis problem. Human subject experi-
ments were conducted on a driving simulator, validating
the effectiveness of the proposed approach and providing
valuable new insights. Additionally, we observed variations
in trust dynamics among individuals, which will be further
investigated in future research.

https://www.youtube.com/watch?v=pY0PkxYbQXo
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