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Abstract— Recent work has considered trust-aware decision
making for human-robot collaboration (HRC) with a focus on
model learning. In this paper, we are interested in enabling
the HRC system to complete complex tasks specified using
temporal logic that involve human trust. Since human trust
in robots is not observable, we adopt the widely used partially
observable Markov decision process (POMDP) framework for
modelling the interactions between humans and robots. To
specify the desired behaviour, we propose to use syntactically
co-safe linear distribution temporal logic (scLDTL), a logic that
is defined over predicates of states as well as belief states
of partially observable systems. The incorporation of belief
predicates in scLDTL enhances its expressiveness while si-
multaneously introducing added complexity. This also presents
a new challenge as the belief predicates must be evaluated
over the continuous (infinite) belief space. To address this
challenge, we present an algorithm for solving the optimal
policy synthesis problem. First, we enhance the belief MDP
(derived by reformulating the POMDP) with a probabilistic
labelling function. Then a product belief MDP is constructed
between the probabilistically labelled belief MDP and the
automaton translation of the scLDTL formula. Finally, we
show that the optimal policy can be obtained by leveraging
existing point-based value iteration algorithms with essential
modifications. Human subject experiments with 21 participants
on a driving simulator demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Autonomous robots are rapidly evolving into an essential
component of our society, to mention home assistive robots
[1] and automated vehicles (AV) [2]. Despite significant
advances made in automation in recent years, attaining full
autonomy, which would enable robots to successfully deal
with complicated and unpredictable events or situations, re-
mains stubbornly out of reach. For instance, the AV industry
has had to reset expectations as it shifts its focus from level
5 to 4 autonomy [3]. In many applications where robots
work with or alongside humans, it is customary to have
robots that are operated or supervised by a human operator.
Collaborative human-robot partnerships often hinge on the
foundation of trust. Therefore, recognizing human trust and
incorporating it into the decision-making process is essential
for achieving the full potential of human-robot interactive
systems.
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The subject of trust has been actively studied in multiple
contexts such as psychology [4] and automation [5]. It is
a multifaceted concept that can be influenced by a large
number of factors. In the context of human-robot collabo-
ration (HRC), studies have shown that the level of human
trust in robots evolves over their interaction, affected by
factors such as the automation’s reliability, predictability, and
transparency [6]. While earlier work has focused on studying
the measurement [7], modelling [8], and calibration [9] of
human trust in robots, recent work has gravitated towards
devising strategies that enable robots to proactively infer and
influence the human collaborator’s trust [10], [11].

Various methods exist for modeling the interaction be-
tween humans and robots. Among these, the game-theoretic
approaches [12], [13] and the partially observable Markov
decision process (POMDP) framework [14], [15] have been
extensively explored. Since trust is not fully observable, in
this work we adopt the POMDP, where human trust can be
modelled as a hidden variable. While the POMDP formu-
lation allows the robot to act according to its beliefs about
the human collaborator’s trust based on observations, finding
solutions to POMDPs of a realistic size is computationally
challenging and existing work often relies on approximation
algorithms [16]–[18]. Due to the inherent complexity of
solving a POMDP, prior work devoted to trust-based decision
making for HRC often focused on relatively simple specifi-
cations (e.g., accumulated reward maximisation) [19], [20].
Moreover, in all these studies, trust was treated as an implicit
factor that impacts the performance of collaboration. None of
these works has considered trust as part of the specification,
where explicit requirements can be imposed. Real-world case
studies have shown that an inappropriate level of trust may
result in the misuse or disuse of automation [5]. Therefore,
in practical scenarios, it might be advantageous to stipulate
conditions such as “the trust level must not fall below a
certain threshold” and “the trust level at a particular juncture
must surpass a certain threshold”.

In this work, we investigate trust-aware motion planning
for HRC with complex temporal logic specifications applied
to both the state of the robot and the trust (belief) of human.
The trust-based human-robot interaction is modelled by a
trust POMDP and syntactically co-safe linear distribution
temporal logic (scLDTL) [21] is utilised to specify the
desired behaviour of the system. Syntactically co-safe linear
temporal logic (scLTL) is a commonly employed logic in
robotics to specify the intended behaviour of a robot [22],
[23]. In [21], scLDTL was introduced as an extension of
scLTL to leverage the richness of information contained
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Fig. 1: Route planning for AVs: a) A map with three types
of road incidents (pedestrian, obstacle, and oncoming truck).
b) A schematic view of the decision making process.

within belief states of partially observable systems. It was
shown that scLDTL is capable of expressing properties
involving uncertainty and likelihood that cannot be described
by existing logic. Nevertheless, the increased complexity
introduced by the inclusion of belief predicates in scLDTL,
which must be evaluated over the continuous (infinite) belief
space, renders verification and synthesis from scLDTL a
more demanding task. In [21], a feasibility checking al-
gorithm was proposed for POMDPs with scLDTL specifi-
cations. However, to the best of our knowledge, the more
challenging synthesis problem remains unresolved. Our con-
tributions are summarised as follows: i) We demonstrate the
suitability of scLDTL for specifying the desired behaviour
of trust-aware HRC systems that involve requirements in the
robot workspace as well as the trust (belief) space. ii) We
propose an efficient algorithm to solve the scLDTL optimal
policy synthesis for trust POMDPs, which overcomes the
aforementioned complexity of scLDTL specifications. iii)
We design and conduct human subject experiments with 21
participants on a driving simulator to evaluate the proposed
approach, with encouraging results.

II. MOTIVATING EXAMPLE

We describe a route planning problem for AVs. A human
is driving an AV in a town, whose map is shown in Fig.
1(a). Within the town, we consider that there are 3 types
of typical incidents that may occur on the road: (1) a
pedestrian crossing the road, (2) an obstacle (e.g., a broken
bicycle) ahead of the lane, and (3) an oncoming truck in the
neighbouring lane. For simplicity, here we assume that there
is at most one incident at a time for each road segment.

Fig. 1(b) shows a schematic view of the AV traveling

from one location to another. Imagine the AV is approaching
an incident on a road segment while in autopilot mode.
For safety considerations, the driver might choose to take
over control of the AV and switch to manual driving. The
level of trust that the driver has in the AV’s ability to
handle various types of incidents can influence their takeover
decision; a driver with lower trust is more inclined to do so.
Furthermore, the driver’s level of trust changes over time and
depends on the takeover decision and the vehicle’s ability to
handle an incident. In our previous work [20], human subject
experiments have shown that, by proactively inferring human
trust and taking it into account during decision making, the
AV can achieve higher cumulative rewards.

The research focus of [20] was on optimal route planning
(e.g., navigating from one location to the other) for AVs.
In contrast, in this work we are interested in trust-aware
HRC in a boarder context. Our goal is to develop a trust-
aware motion planning approach for HRC systems, which is
capable of completing complex tasks specified in temporal
logic that involve requirements on human trust levels.

III. PRELIMINARIES

Before formulating our problem, we provide preliminary
background on POMDPs and scLDTL.

A. Partially observable Markov decision processes

This section introduces POMDPs, which are well suited
to the modelling of HRC systems under investigation. The
human internal states (e.g., trust), which are not fully observ-
able to robots, can be modelled as hidden states in POMDPs.
In order to accurately represent the interactions between hu-
mans and robots, modifications to the conventional definition
of a POMDP [24] are incorporated.

Definition 1 (POMDPs). A POMDP is defined as a tuple
M = (S,A,O,Z, T ), where

• S is a finite set of states;
• A is a finite set of actions;
• O is a finite set of observations;
• Z : S×A×O → [0, 1] is the probabilistic observation

function, which gives the probability of observing o after
taking action a in state s, i.e., Z(s, a, o) = p(o|s, a);

• T : S×A×O×S → [0, 1] is the probabilistic transition
function, which gives the probability that the state has
value s′, after taking action a and receiving observa-
tions o in state s, i.e., T (s, a, o, s′) = p(s′|s, a, o).

Firstly, we note that, in Definition 1, the probability of
receiving observation o ∈ O is determined by the previous
state s (instead of the resulting state s′) and the action a
that was just taken. Secondly, the transition function T is
dependent on the observations. For the purpose of this work,
a reward function is redundant and has been omitted.

Since a POMDP state is partially observable, we rely on
the concept of a belief state1. Let B be the belief space of

1A belief state is a probability distribution over all possible states in the
POMDP. It represents the agent’s subjective probability distribution of being
in each state given its past observations and actions.



S. A POMDP policy π : B → A maps a belief state b ∈ B,
which is a probability distribution over S, to a prescribed
action a ∈ A. Given a policy π, the control of the agent’s
actions is performed online. First, the agent takes an action
a = π(b) according to the given policy π and the current
belief is b. Second, after taking an action a and receiving an
observation o, the agent updates its belief:

b′(s′) =
∑
s∈S

b(s)
∑

o∈FO(s,a)

Z(s, a, o) · T (s, a, o, s′), (1)

where FO(s, a) = {o ∈ O|Z(s, a, o) > 0}. The process
then repeats. An interesting property to note about the
POMDP described in Definition 1 is that the belief update
(1) is linear2. An execution ρ of a POMDP is a possibly
infinite alternating sequence of belief states, actions, and
observations, i.e., ρ = b0a0o0b1a1o1 · · · .

B. Syntactically Co-Safe Linear Distribution Temporal Logic

This section introduces scLDTL for concisely specifying
the desired behaviour of the HRC systems. It will become
clear later that scLDTL is capable of expressing requirements
in both the robot workspace and the trust (belief) space.

scLDTL consists of two types of predicates: i) state
predicates ν ∈ 2S and ii) belief predicates µ, which are
obtained after evaluation of a predicate function gµ : B → R
on the belief space B as follows

µ :=

{
⊤, if gµ(b) < 0

⊥, if gµ(b) ≥ 0.

An scLDTL formula is defined inductively according to
the following syntax [21]:

φ ::= ⊤|ν|µ|¬ν|¬µ|φ1 ∧φ2|φ1 ∨φ2|φ1Uφ2|⃝φ|♢φ, (2)

where ν ∈ 2S is a set of states, µ is a belief predicate,
¬ (negation), ∧ (conjunction), and ∨ (disjunction) are logic
connectives, and U (until), ⃝ (next) and ♢ (eventually) are
temporal operators. We omit the scLDTL semantics due to
page limit and refer the reader to [21].

Let AP be a set of state predicates and BP be a set of
belief predicates. The satisfaction of an scLDTL formula φ
over AP∪BP can be captured through a deterministic finite
automaton (DFA) A = (Q, q0, 2

AP∪BP, δ,Acc), where
• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• δ : Q× 2AP∪BP → Q is the transition function, and
• Acc ⊆ Q is the set of accepting states.

A finite run q = q0q1 . . . qk of A is called accepting if qk ∈
Acc.

Now we define the notion of probabilistic satisfaction with
respect to an execution ρ of a POMDP.

Definition 2. [scLDTL satisfaction with respect to a POMDP
execution] Given an execution ρ = b0a0o0b1a1o1 . . . of a

2The belief update of a conventional POMDP is often represented using
the Bayes’ filter.

POMDP M, the probability that the execution ρ satisfies
the scLDTL formula φ is given by

PrM({s0s1 · · · such that (s0, b0)(s1, b1) · · · |= φ} | ρ).

For simplicity, it is denoted in shorthand as PrM(φ | ρ).

IV. POMDPS FOR HRC
In this work, we consider a human and a robot working

collaboratively in the workspace X . The human (H) adopts a
supervisory role and the robot (R) is charged with performing
tasks. The human can intervene in the task execution due to,
for instance, low trust.

A. HRC modelling

Within the workspace X , one can identify a set of inci-
dents I , i.e., a set of events that can affect human trust and/or
takeover decision. The likelihood of observing an incident
id ∈ I is determined by the current state and the action of
the robot. Denote by Θ the state space of human trust in the
robot, which is not observable by the robot.

The human-robot interaction can be modelled as a
POMDP M as per Definition 1, where the state space S of
M is factored as the observable state space X and the non-
observable state space Θ, i.e., S = X ×Θ. Accordingly, the
probabilistic transition function T is factored as the world
state and the human trust probabilistic transition functions
TX and TΘ, respectively. It has been shown in [19] that the
human trust affects human behaviour (e.g., takeover decision)
and the human trust is affected by factors such as the
robot performance (i.e., success/fail in handling an incident).
Therefore, the state evolution of the trust POMDP M is
determined not only by the robot action ar, but also posterior
observations, including the incident id encountered during
execution, the human takeover decision ah, and the robot
performance er. Formally, the trust POMDP is specified as
a tuple M = (X,Θ, Ar, O,Z, TX , TΘ), where

• Ar is the finite action space of the robot;
• O = I ×Ah × Er is the observation set, where

– I is the set of incidents;
– Ah = {tk, st} is the action space of the human,

where tk and st stand for “takeover” and “stand-
still”, respectively; similarly to [19], we assume
that the human first observes the robot’s action ar

and then decides his or her own action ah;
– Er = {succ, fail} represents the performance of the

robot, where succ and fail stand for “success” and
“failure”, respectively.

• Z : X × Θ × Ar × O → [0, 1] is the probabilistic
observation function, which is given by Z(x, θ, ar, o) =
p(id, ah, er|x, θ, ar);

• TX : X × Ar × O × X → [0, 1] is the world state
probabilistic transition function, i.e., TX(x, ar, o, x′) =
p(x′|x, ar, o);

• TΘ : Θ×O×Θ → [0, 1] is the human trust probabilistic
transition function, i.e., TΘ(θ, o, θ′) = p(θ′|θ, o).

A graphical model of the trust POMDP is shown in Fig. 1.
It contains two key components: (i) a trust dynamics model,



Fig. 2: The graphical model for the trust POMDP M.

which captures the evolution of human trust in the robot,
and (ii) a human decision model, which connects trust with
human actions.

Let BΘ be the belief space of Θ. We associate with each
value x ∈ X a belief space for θ: BΘ(x) := {(x, bΘ)|bΘ ∈
BΘ}. Then the belief space of the trust POMDP M can be
defined as

B = ∪x∈XBΘ(x). (3)

The POMDP policy π : B → Ar maps a belief b ∈ B to a
prescribed robot action ar ∈ Ar(b), where Ar(b) is the set
of actions available at belief b.

We illustrate our results with the motivating example.

Example (continued). The town map shown in Fig. 1(a)
has 12 road intersections {A, · · · ,L}. Depending on the
driving direction, each intersection can be factored into
3 different states (for instance, intersection A contains
states EA, BA, and FA). We use Muir’s questionnaire
[25] with a 7-point Likert scale as a human trust metric
(i.e., trust ranges from 1 to 7). Therefore, one has that
X = {EA,BA,FA · · · ,EL,KL,HL}, Θ = {1, · · · , 7}, and
I = {‘pedestrian′, ‘obstacle′, ‘truck′}. The robot action is
route choices and one can define an indicator function I for
incidents. For instance, I(EA,AB, ‘pedestrian′) = 1.

B. Problem formulation

In this work, we consider that the HRC system is required
to complete complex tasks in the robot workspace X . More-
over, there are requirements on the human trust Θ and/or
trust belief bΘ. We formulate the tasks in the workspace as
well as the requirements on human trust and trust belief in
the form of an scLDTL formula φ.

Example (continued). Consider now that the AV is required
to complete the following tasks: i) visits the target intersec-
tions G, J and L (in this order) from the initial location
EA (see Fig. 1(a)) and ii) the human trust level can not
be too low (lower than 2) at all times, and iii) when the
vehicle reaches the final intersection L, the likelihood that
the human trust level is high (higher than or equal to 6) is
no less than 0.5. In scLDTL, this specification can be written
as

φ = (¬LOWTRUST)U(♢(ν1∧♢(ν2∧♢(ν3∧HIGHTRUST))),

where there are 3 state predicates ν1 = {BG,FG, IG}, ν2 =
{IJ,CJ,KJ}, ν3 = {KL,EL,HL} and 2 belief predicates

LOWTRUST, HIGHTRUST. The predicate functions are given
by gLOWTRUST = 1 − A1bΘ, gHIGHTRUST = 0.5 − A2bΘ, where
A1 = [1, 0, 0, 0, 0, 0, 0] encodes trust lower than 2 and A2 =
[0, 0, 0, 0, 0, 1, 1] encodes trust higher than or equal to 6.

Given the initial belief state b0 and a policy π, denote by
ρπ(b0) the set of all possible executions generated by π. We
consider the optimal policy synthesis problem for HRC under
scLDTL specifications, i.e., find an optimal policy π such
that the probability of the set of all executions that satisfy an
scLDTL formula φ under π is maximised. Mathematically,
this problem can be formulated as follows.

Problem 1. Given the trust POMDP M and the scLDTL
specification φ, find a policy π ∈ Π such that

max
π∈Π

PrπM(φ) ≜
∑

ρ∈ρπ(b0)

Pr(ρ|b0, π)PrM(φ | ρ), (4)

where Π is the set of all policies for the trust POMDP M
and PrM(φ | ρ) is given in Definition 2.

Remark 1. Point-based value iteration (PBVI) algorithm
has been proposed for POMDPs under LTL specifications.
In [26], the atomic propositions of an LTL formula are
evaluated on the state space of the POMDP, which is finite.
Therefore, the construction of the product POMDP and the
computation of maximal end components are similar to finite
MDPs, for which the existing graph-based methods [27] can
be utilised. In this work we consider scLDTL specifications,
in which the belief predicates are evaluated over the belief
space B of the trust POMDP M, which is infinite. Therefore,
the approach proposed in [26] is not applicable here.

V. PROPOSED APPROACH

This section presents our approach to solve the optimal
policy synthesis problem (Problem 1), which falls outside the
purview of existing policy synthesis algorithms designed for
POMDPs. It is divided into two parts: 1) the construction of
the product POMDP with the DFA of the scLDTL formula φ
and 2) an algorithm to approximately compute a policy that
maximises the probability of satisfying the given scLDTL
formula φ.

A. Product POMDP

To begin with, we define the deterministic state and belief
predicate labelling functions Ls and Lb as

• Ls : X × Θ → 2AP, which contains the set of state
predicates that can be true at state (x, θ);

• Lb : X × BΘ → 2BP, which contains the set of belief
predicates that can be true at belief state (x, bΘ).

Then the associated probabilities are given by pLs
: X ×

Θ × 2AP → {0, 1} and pLb
: X × BΘ × 2BP → {0, 1},

respectively.
Now we propose to reformulate the trust POMDP M

(equivalently) as a belief MDP and further expand it by
including probabilistic labels, which gives a probabilistically
labelled belief MDP M̂ = (B, Ar, O, Ẑ, T̂B, L̂, pL̂), where
B is defined in (3), Ar, O are given in M, and



• Ẑ : B×Ar×O → [0, 1] is the probabilistic observation
function;

• T̂B = (TX , TBΘ) is the probabilistic transition function,
where TX is defined in M and TBΘ

: BΘ ×O×BΘ →
[0, 1];

• L̂ : B → 22
AP∪BP

is the belief state labelling function,
where L̂(x, bΘ) contains the set of state and belief
predicate subsets that can be true at (x, bΘ);

• pL̂ : B × 2AP∪BP → [0, 1] specifies the associated
probability.

The probabilistic labelling function pL̂ provides a unified
way of assigning belief states with both state and belief
predicates in an scLDTL formula. For instance, given a belief
state (x, bΘ), a state predicate ν, and a belief predicate µ,
one has that pL̂(x, bΘ, ν) = bΘ(θ)pLs

(x, θ, ν),∀θ ∈ Θ and
pL̂(x, bΘ, µ) = pLb

(x, bΘ, µ).
The product belief MDP M× is constructed between the

probabilistically labelled belief MDP M̂ and the DFA A =
(Q, q0, 2

AP∪BP, δ,Acc) of the scLDTL formula φ.

Definition 3 (Product belief MDP). Denote by M× the prod-
uct M̂ ×A as a tuple M× = (S×, Ar, O,Z×, T ×,Acc×),
where

S× = B × 2AP×BP ×Q

is so that (x, bΘ, l, q) ∈ S×,∀(x, bΘ) ∈ B,∀l ∈ L̂(x, bΘ),
and ∀q ∈ Q, Z× : S××Ar×O → [0, 1] is the probabilistic
observation function, and Acc× = {(x, bΘ, l, q) ∈ S×|q ∈
Acc}. The probabilistic transition function T × : S××Ar ×
O × S× → [0, 1] is defined as

T ×((x, bΘ, l, q), a
r, o, (x′, b′Θ, l

′, q′)) ={
T̂B((x, bΘ), ar, o, (x′, b′Θ)) · pL̂(x′, b′Θ, l

′), if q′ ∈ δ(q, l),

0, otherwise;

where Ẑ, T̂B, and pL̂ are defined in M̂.

Let Π× be the set of all policies for the product belief
MDP M×. The set of accepting states of M× is given by
Acc×. We have the following result.

Theorem 1. Given the trust POMDP M and the scLDTL
formula φ, the maximal probability of satisfying φ is:

max
π∈Π

{PrπM(φ)} = max
π̂∈Π×

{Prπ̂M×(♢Acc×)}.

Theorem 1 shows that, with the set of accepting states
Acc×, the original optimal policy synthesis problem reduces
to a reachability problem.

B. Optimal policy synthesis

PBVI algorithms have been widely used for solving
POMDP synthesis problems [16]–[18]. They often offer
convergence guarantees specified as upper and lower bounds
on the value function. However, these PBVI algorithms are
not directly applicable for solving our problem (Problem 1).
This is because solving a reachability problem for POMDPs
necessitates the presence of a clearly defined reward function,
which assigns value 1 to states in the goal set and 0 other-
wise. However, in our case, capturing the satisfaction of an

scLDTL specification through a state-based reward function
is not feasible due to the presence of belief predicates.

In the following, we show that, with essential modifica-
tions, the existing PBVI algorithms can be leveraged for
solving Problem 1 with the set of accepting states Acc×.

Given a state s of the product belief MDP M×, we first
define a value function V : S× → R≥0 as

V (s) = max
π∈Π×

{PrπM×(♢Acc×)},

which represents the maximal probability of reaching Acc×

from initial state s. Then one can get that V (s) = 1,∀s ∈
Acc×. For s /∈ Acc×, we further define the dynamic
programming operator T as

T (V )(s)

= max
ar∈Ar

 ∑
o∈FO(s,ar)

Z×(s, ar, o)
∑

s′∈S×

T ×(s, ar, o, s′)V (s′)

 .

Before running a PBVI algorithm, first we initialize the
upper- and lower-bounds of the value function V as follows:

V
0
(s) = 1,∀s ∈ S×, V 0(s) =

{
1, if s ∈ Acc×,

0, otherwise.
(5)

Then a precision parameter τ is provided that controls the
tightness of the convergence (for example, by controlling the
depth of the tree in SARSOP [18]), which yields |V (s0) −
V (s0)| ≤ τ, where s0 = (b0, q0) is the initial state of the
product belief MDP M×.

Denote by Prmax
M (φ) := maxπ∈Π{PrπM(φ)} the maximal

probability of satisfying the scLDTL formula φ. We have
the following result.

Theorem 2. Let V (s0) and V (s0) be the upper- and lower-
bounds of V (s0) obtained using PBVI with the initialization
function (5). One has that

V (s0) ≤ Prmax
M (φ) ≤ V (s0).

Finally, the optimal policy π̂∗ for state s ∈ S× can be
derived using the value function.

VI. IMPLEMENTATION

We have implemented the proposed approach to obtain
the optimal policy for each scLDTL specification under
consideration for the motivating example. To construct the
trust POMDP, we utilise the trust dynamics model and the
human takeover decision model, which were derived through
an online user study involving 100 anonymous participants
on Amazon Mechanical Turk (AMT) platform [20]. Then
two scLDTL specifications φ1 and φ2 are considered for the
AV,

φ1 = (¬LOWTRUST)U(♢(ν1 ∧ ♢(ν2 ∧ ♢(ν3 ∧ HIGHTRUST))),

φ2 = (¬LOWTRUST)U(♢(ν4 ∧ ♢(ν5 ∧ ♢(ν6 ∧ HIGHTRUST))),

where ν1, ν2, ν3, LOWTRUST, HIGHTRUST are defined
in the Example and ν4 = {AB,GB,CB}, ν5 =
{DK, JK,LK}, ν6 = {AE,DE,LE}. The DFA for



each scLDTL specification φi, i ∈ {1, 2} is derived using
[28]. Then the corresponding product belief MDP M×

i

is constructed with the DFA of φi. Finally, the upper-
and lower-bounds of the value function Vi are computed
using the POMDP toolkit “pomdp py” [29] (with essential
modifications describled in Section V.B). The precision
parameter is set as τ = 0.01. All simulations are carried out
on a Macbook Pro (2.6 GHz 6-Core Intel Core i7 and 16
GB of RAM).

VII. DRIVING SIMULATOR STUDY

We evaluate the effectiveness of obtained policies via a
driving simulator study. 3

A. Study design

Apparatus. The study was conducted in a fixed-based driv-
ing simulator from SimXperience, consisting of a 55-inch
display, a racing car seat, a Logitech G29 steering wheel,
and sport pedals, see Fig. 3. In our study, four buttons
on the steering wheel were programmed to let the drivers
increase/decrease trust, switch driving mode between manual
and autopilot, switch gear between drive and reverse.
Driving Scenario. The experiments were run on a machine
with 3.5GHz CPU, NVIDIA GeForce RTX 3080 Ti, 62GB
memory, and Ubuntu 20.04.6 LTS operating system. The vir-
tual driving environment was created using CARLA 0.9.13.
An autopilot controller was programmed for several driving
tasks such as lane keeping, taking turns at intersections, and
handling incidents.
Subject allocation. We recruited 21 participants from the
university community. All participants had a valid driver’s
license and regular or corrected-to-normal vision. Each par-
ticipant was compensated with a $10 gift card. We adopted
a within-subject study design: each participant took 4 unique
routes, i.e., trust-aware and trust-free routes for both scLDTL
specifications. The start and destination is either from A to
L (φ1) or from H to E (φ2). The route is either the trust-
aware route (obtained using the computed optimal policy)
or the trust-free route (which is the shortest-distance route
from the start to the destination). However, if the vehicle has
not reached the destination after travelling 20 intersections,
it reschedules a shortest-distance route. The order of trials
are randomized and counter-balanced.

B. Study Procedure

Upon arrival, a participant was instructed to read and sign
a consent form approved by the Institutional Review Board.
We conducted a five-minute training session to familiarize
the participant with the driving simulator setup.

The vehicle started driving in autopilot mode by default.
Participants can decide whether to take over the vehicle
to handle the incidents on the road. If the participants did
takeover, they were required to switch back to autopilot mode
before arriving at the next intersection so that the vehicle can
choose the next direction to go. We asked the participants

3This study was approved by the University of Virginia Institutional
Review Boards under IRB-SBS protocol #6045.

Fig. 3: Driving simulator setup.

to periodically record their trust in the AV using the buttons
on the steering wheel. It took about 40 minutes for each
participant to complete the entire experiment.

C. Results

The computed maximal probabilities for satisfying the
scLDTL specifications φ1 and φ2 are Prmax

M (φ1) = 0.8357
and Prmax

M (φ2) = 0.7288, respectively.
For each participant, we evaluate the satisfaction of each

scLDTL specification φi using the robot states x and human
trust levels Θ recorded in the experiment, and the induced
trust beliefs bΘ. In total, 18 out of 21 (18/21 = 0.8571 >
0.8357) and 17 out of 21 (17/21 = 0.8095 > 0.7288)
participants successfully complete the specifications φ1 and
φ2 respectively, which validates the effectiveness of the
proposed approach. Moreover, we further compare the trust-
aware and trust-free routes for all drivers and both trails. The
percentage of scLDTL satisfaction is 0.85 (trust-aware) vs
0.775 (trust-free). The average human trust is 4.6018 (trust-
aware) vs 4.3933 (trust-free). One can see that the trust-aware
policy outperforms the trust-free one. A video demonstration
of the human experiment can be found at: link.

We summarise three key observations gained from the
experiments. First, observing the AV successfully handle the
same incidents multiple times does not necessarily guar-
antee an increase in human trust. Second, if a human’s
trust remains consistently low for an extended period, it
becomes challenging for them to re-establish trust in the AV.
Third, having the capability to effectively address an incident
beforehand can contribute to boosting human trust. Based on
the feedback received after the experiment, participants have
indicated that, had they noticed the car braking earlier in
situations involving pedestrians, they might have considered
the AV more trustworthy.

VIII. CONCLUSIONS

In this work, we presented a trust-aware motion plan-
ning approach for HRC. We demonstrated the suitability
of scLDTL for describing the desired behaviours of HRC
systems and an algorithm was proposed for solving the
optimal policy synthesis problem. Human subject experi-
ments were conducted on a driving simulator, validating
the effectiveness of the proposed approach and providing
valuable new insights. Additionally, we observed variations
in trust dynamics among individuals, which will be further
investigated in future research.

https://drive.google.com/file/d/1HLHBJe1Xn6Sa6BXVofYKTcKrpGjPeoSj/view?usp=drive_link
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