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Abstract
In many domains, worst-case guarantees on the per-
formance (e.g., prediction accuracy) of a decision
function subject to distributional shifts and uncer-
tainty about the environment are crucial. In this
work we develop a method to quantify the robust-
ness of decision functions with respect to credal
Bayesian networks, formal parametric models of
the environment where uncertainty is expressed
through credal sets on the parameters. In particu-
lar, we address the maximum marginal probability
(MARmax) problem, that is, determining the greatest
probability of an event (such as misclassification)
obtainable for parameters in the credal set. We de-
velop a method to faithfully transfer the problem
into a constrained optimization problem on a prob-
abilistic circuit. By performing a simple constraint
relaxation, we show how to obtain a guaranteed up-
per bound on MARmax in linear time in the size of
the circuit. We further theoretically characterize
this constraint relaxation in terms of the original
Bayesian network structure, which yields insight
into the tightness of the bound. We implement the
method and provide experimental evidence that the
upper bound is often near tight and demonstrates
improved scalability compared to other methods.

1 Introduction
Probabilistic models allow us to make quantitative inferences
about the behaviour of complex systems, and are an impor-
tant tool to guide their use and design. When such models are
learnt from data, exposed to potential distribution shifts or
are partially unknown, it is important to be able to verify the
robustness of inferences on the model to these uncertainties.
This is particularly relevant for decision functions taking ac-
tion in the model, where much work has gone into verifying
worst-case behaviour when exposed to various disturbances
or changes in the environment (distribution shifts). Causal
Bayesian networks (BNs) [Pearl, 1985] are compelling mod-
els for this purpose, since one can perform causal interven-
tions on them, giving rise to families of distributions that
share a common structure. However, performing useful in-
ference on BNs is often intractable, and one way to address

this is to compile them into more tractable representations
such as arithmetic circuits [Darwiche, 2003]. Recent work
has shown that such compilation methods can also efficiently
compute bounds on a decision function’s robustness to causal
interventions [Wang et al., 2021]. A limiting factor on the
applicability of these methods is the need to have an exact
model, where all non-intervened parameters are known pre-
cisely. This is difficult to achieve when learning parameters
from data, since most settings will only allow reliable deter-
mination up to some error bound ϵ.

In this paper we study robustness of credal Bayesian net-
works (CrBNs) [Mauá and Cozman, 2020], a generalisation
of Bayesian networks where parameters are only known to be
within some credal sets (e.g., intervals). They can be used
to model causal interventions, but are also very well suited to
modelling parameters learned from data, as well as modelling
of exogenous variables [Zaffalon et al., 2020].

We consider the maximum marginal probability (MARmax)
problem for CrBNs and develop a solution by encoding the
network as a tractable probabilistic circuit (a credal extension
of sum-product networks, called CSPNs). More specifically,
this paper makes the following contributions: (i) a method for
constructing a probabilistic circuit whose parameters seman-
tically represent the conditional probability distributions of a
BN, allowing the transfer of credal inference problems from a
highly intractable setting (CrBNs) to a tractable one (CSPN)
through constraint relaxation; (ii) algorithms which make use
of this transfer to compute upper and lower bounds on proba-
bilities of events under many forms of parameter uncertainty;
(iii) a characterization of the tightness of the upper bound in
terms of the network structure; and (iv) an evaluation on a set
of benchmarks, demonstrating comparable precision and sig-
nificantly improved scalability compared to state-of-the-art
credal network inference, while also providing formal guar-
antees.

Due to space constraints some details and proofs can
be found in the Appendix of the extended paper at
http://www.fun2model.org/bibitem.php?key=WWK22

1.1 Related Work
The problem of robustness of inferences under imprecise
knowledge of the distribution has been studied under many
guises. In the machine learning community, there has been
much work on robustness of classifiers to simple adversarial



attacks or distribution shifts [Quiñonero-Candela et al., 2009;
Zhang et al., 2015; Lipton et al., 2018]. Motivated by safety
concerns, methods have been developed to compute formal
guarantees of robustness through constraint solving [Katz
et al., 2017; Narodytska et al., 2018] or output reachability
analysis [Ruan et al., 2018]. However, these methods do not
model the environment, and are thus limited in the types of
distributional shifts they can address.

In the Bayesian network literature, robustness has pri-
marily been studied in terms of the effect of parameters on
inference queries, such as marginal probabilities. For in-
stance, sensitivity analysis [Coupé et al., 2000; Chan and
Darwiche, 2004] is concerned with the effect of small, local
changes/perturbations to parameters. Closer to our work is
the formalism of credal networks [Mauá and Cozman, 2020],
which represent imprecise knowledge by positing sets of pa-
rameters for each conditional distribution, rather than precise
values. Inference then corresponds to computing maximal
(or minimal) probabilities over the possible parameter val-
ues. Unfortunately, exact methods for inference in credal net-
works do not perform well except for smaller networks with
simple credal sets, or in special cases such as polytrees [Fag-
iuoli and Zaffalon, 1998; De Campos and Cozman, 2007].
On the other hand, approximate methods [Cano et al., 2007;
Antonucci et al., 2010; Antonucci et al., 2015] usually cannot
provide theoretical guarantees (upper bounds), limiting their
applicability in safety-critical scenarios.

This paper builds on work showing the tractability of credal
inference for certain probabilistic circuits [Mauá et al., 2017]
[Mattei et al., 2020]. Our key contribution is a method for
mapping credal network problems into tractable credal in-
ference problems on probabilistic circuits, which affords not
only greater scalability compared to the state-of-the-art in
credal network inference, but also provides formal guaran-
tees.

Finally, methods for providing robustness guarantees for
classifiers in combination with a Bayesian network environ-
ment model have recently been proposed [Wang et al., 2021].
Our paper generalizes and extends their work, enabling ef-
ficient computation for broader and more realistic classes of
parameter uncertainty.

2 Background
A Bayesian network (BN) N = (G,Θ) over discrete vari-
ables V = {V1, ..., Vn} consists of a directed acyclic graph
(DAG) G = (V ,E) and a set of parameters Θ. It is a fac-
toring of a joint probability distribution pN into conditional
distributions for each variable, such that

pN (V1, ..., Vn) =

n∏
i=1

pN (Vi|pa(Vi)),

where the parents pa(Vi) of Vi are the set of variables Vj such
that (Vj , Vi) ∈ E. Θ is the set of parameters of the form:

θvi|ui
= pN (Vi = vi|Ui = ui),

for each instantiation vi,ui of a variable Vi and its parents
Ui.

Given a Bayesian network model, to obtain useful infor-
mation about the distribution we will need to perform infer-
ence. For example, we might wish to obtain the probability
pN (W = w) for some subset of variables W ⊆ V , a pro-
cedure known as marginalization. In the worst case, marginal
inference in Bayesian networks is known to be #P-complete,
though many practical inference methods exist.

Given a classifier, we can represent its input-output be-
haviour using a decision function F : X → Y , which ob-
serves some subset X ⊆ V and tries to predict Y ∈ V .
To combine this with a Bayesian network environment model
N , we follow [Wang et al., 2021] in the construction of
an augmented BN NF , which is a Bayesian network based
on N where an additional variable (node) Ŷ is added with
pa(Ŷ ) = X and pNF

(Ŷ = ŷ|X = x) = 1[ŷ = F (x)]. NF

is thus a unified model of environment and decision maker,
and inference on the model can answer questions such as the
prediction accuracy pNF

(Ŷ = Y ).

3 Robust Inference on Bayesian Networks
It is rarely the case that we can specify the parameters of a
Bayesian network with complete certainty before performing
inference. Firstly, whether the parameters are learned from
data or elicited from expert knowledge, the knowledge that
we obtain regarding the parameters is typically imprecise,
specified as sets or intervals. Secondly, when the Bayesian
network is imbued with a causal interpretation, one is of-
ten concerned about potential distribution shift, modelled by
causal interventions, and their effect on inference queries.

As a running example, consider a fictional scenario de-
picted in Figure 1, where patients are infected by some unob-
servable strain S of a disease, with some strains much more
severe than others, and a decision rule F must be created
based on observable symptoms V and test results R that de-
cides whether to administer an expensive treatment option.
While it is desirable to save resources by only administering
treatment for the more severe strains, the result of denying
treatment to a patient with a severe strain would be disas-
trous, so a guarantee is needed that the decision rule has a
robustly low probability of an erroneous decision. To provide
such a guarantee we model the system as an augmented BN
NF over variables {S, V,R, T}, where T is binary and deter-
ministic, given by F (v, r). However, we do not have precise
knowledge over the parameters of the BN, so we instead de-
sign intervals which specify the range of values a parameter
could take.

We start with θS , the distribution over the strains. We ex-
pect that the decision rule will be deployed across a variety of
areas and times, and as such we are concerned about distribu-
tional shifts in θS . We could thus decide to allow any prob-
ability distribution across the strains, i.e. θS=s ∈ [0, 1]. We
imagine the tests used are very well understood, and we know
θR|s exactly. Moving onto the parameters θV |s, describing the
symptoms of a particular strain, we might expect that these,
unlike θS , are relatively fixed across different settings. How-
ever, gathering enough data on each strain and symptom com-
bination to be certain of this (fixed) parameter value might
turn out to be challenging. In this case it might be suitable to
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Figure 1: The DAG of an augmented BN modelling a simple fic-
tional medical treatment scenario.

take mean estimates of the parameter values θ∗V=v|s, and then
select some confidence interval [θ∗V=v|s − ϵ, θ∗V=v|s + ϵ].

3.1 Credal Bayesian Networks
To formalize the prior discussion, we use credal Bayesian net-
works [Mauá and Cozman, 2020], a framework that encom-
passes both causal interventions and imprecise knowledge of
parameters.
Definition 1. Let pΘ,Θ ∈ Θ, be any parameterised proba-
bility distribution, where Θ is the set of allowed parameter
values. Then we call C ⊆ Θ a credal set for this parameter-
isation, and the credal family Cp[C] = {pΘ′ |Θ′ ∈ C} is the
family of distributions where the parameters are in C.

This is a maximally expressive formalism for credal un-
certainty. However, an independence assumption between
the uncertainty of different conditional distributions in a BN
(sometimes known as the strong extension [Cozman, 2000])
is usually assumed:
Definition 2. [Cozman, 2000] A Credal BN (CrBN)
CN [C] = {NΘ |Θ ∈ C} over a BN NΘ = (G,Θ) is a credal
family satisfying

C =
∏
Vi,ui

CVi|ui
,

i.e. the credal set decomposes as a cartesian product of sep-
arate credal sets for each variable Vi and instantiation of its
parent variables ui.

Since augmented Bayesian networks are simply Bayesian
networks with an additional deterministic node (the decision
function), we can convert any credal set over a Bayesian net-
work model N to a credal set over NF by maintaining the
credal sets for all variables, while assuming the conditional
distribution for the new variable Ŷ is known exactly. This
framework then fully generalizes the “interventional robust-
ness problem” introduced by [Wang et al., 2021] to allow ar-
bitrary credal sets for parameters; see Appendix for details.

3.2 Problem Definition
In the treatment example we wished to guarantee the worst-
case probability of an event occurring over a CrBN. We will
now formalise this problem.

s1 s2 s3

θR 0.95 0.05 0.5
θV 0.2± 0.1 0.8± 0.1 0.6± 0.2

Table 1: Credal sets for symptom and test result parameters.

Definition 3. Given an (augmented) CrBN CN [C]
and an event e (an instantiation of a subset of the vari-

ables), the maximum marginal probability (MARmax) problem
is that of determining

MARmax(N ,C, e) = max
Θ∈C

pNΘ
(e).

This generalization of causal interventions enables many
new problems to be considered, as causal interventions re-
quire parameters to be known exactly or be entirely unknown.
Crucially, it allows us to model parameters which are esti-
mated from data to be within some interval. It also allows the
degree of uncertainty to depend on the value of the parents,
as it might if some parent values are rare and lack data points.

As an illustration we now define a CrBN over NF to for-
malize the treatment scenario in Figure 1. We imagine there
are three strains s1, s2, s3, of which only s3 is severe and
requires treatment. We take V and R to be binary vari-
ables (symptomatic/asymptomatic and positive/negative test).
We wish to be able to apply the decision rule in any situ-
ation where the prevalence of s3 is at most 0.1, so we as-
sign CS = {θ ∈ Z3|θS=s3 < 0.1}, where Z3 is the three-
dimensional probability simplex. We use singleton credal sets
for R and confidence intervals for V , with the values given
in Table 1. The decision rule to be analysed gives treatment
when R = V , since this is unlikely for s1 and s2.

This is an instance of the maximum marginal probabil-
ity MARmax problem, where the CrBN CN [C] is as specified
above, and the event of interest is e = (T = 0) ∧ (S = s3).

4 Credal Robustness via Probabilistic Circuits
In this section, we present an efficient method for bounding
MARmax credal robustness for Bayesian networks with guar-
antees. In particular, the method returns an upper bound on
MARmax. In the treatment example, this would mean that we
can be certain that the probability of denying treatment to a
patient with the severe strain does not exceed the computed
value, assuming all parameters lie within the credal sets. Our
method is based upon establishing a correspondence between
credal BNs and credal sum-product networks (CSPN) [Mauá
et al., 2017], a recently proposed model which introduces un-
certainty sets over the weights of a sum-product network. In
particular, we develop an algorithm for compiling CrBNs into
equivalent CSPNs. By efficiently solving a similar credal
maximization problem on the CSPN, we can derive upper
bounds on MARmax for the original CrBN.

4.1 Compilation to Arithmetic Circuits
The first step of our method is to compile the credal Bayesian
network to an arithmetic circuit. To describe this, we first
consider an alternative representation of a Bayesian network.



Definition 4. [Darwiche, 2003] The network polynomial of
a BN N is defined as

lN [λ,Θ] =
∑

v1,...,vn

n∏
i=1

θvi|ui
λvi ,

where λvi are indicator variables for variable Vi, which take
the value 1 if Vi = vi and 0 otherwise.

The network polynomial is a multilinear function which
unambigously encodes the graphical structure of the Bayesian
network, for any value of the parameters Θ. In particular, one
can obtain the joint probability pN (v1, ..., vn) for any instan-
tiation v1, ..., vn by setting the indicator variables and evalu-
ating the network polynomial. Unfortunately, it has an expo-
nential number of terms in the number of variables of the BN,
which means we cannot use it directly. The goal of compila-
tion is to represent the network polynomial more efficiently,
by exchanging sums and products where possible. The result
of such a procedure can be interpreted as a rooted directed
acyclic graph (DAG) called an arithmetic circuit.

Definition 5. [Darwiche, 2003] An arithmetic circuit (AC) T
over variables V and parameters Θ is a rooted DAG, whose
internal nodes are labelled with + or × and whose leaf nodes
are labelled with indicator variables λv

or non-negative parameters. For an internal node t we
will write Tt for the arithmetic circuit containing t and all
its descendants.

Definition 6. [Chan and Darwiche, 2006] A complete subcir-
cuit α of an AC is obtained by traversing the circuit top-down,
choosing one child of every visited +-node and all children of
every visited ×-node. The term term(α) of α is the product of
all leaf nodes visited (i.e. all indicator and parameter vari-
ables). The AC polynomial lT [λ,Θ] is the sum of the terms
of all complete subcircuits.

Compilation will produce an AC T which has the same
polynomial as the BN, i.e. lN [λ,Θ] = lT [λ,Θ]. In addition,
it will satisfy technical conditions called decomposability, de-
terminism and smoothness, which allow us to perform many
inference queries in linear time in the size of the circuit.

In [Wang et al., 2021] a method is described for compiling
an augmented BN to a smooth, decomposable and determinis-
tic AC, which allows one to tractably compute marginal prob-
abilities involving both the decision function and Bayesian
network variables. In order to support further queries, they
additionally impose ordering constraints on the AC.

Definition 7. A +-node t with children t1, ..., tn in an arith-
metic circuit T splits on variable Vi if there exists an ordering
of the domain v1i , ..., v

n
i of Vi such that all complete subcir-

cuits of Tti contain the indicator λvi .

Definition 8. Let σ = (V1, ..., Vn) be a topological ordering
of the variables in BN N . We say that an (smooth, decompos-
able, deterministic) arithmetic circuit T computes the BN N
respecting σ if:

1. lT [λ,Θ] = lN [λ,Θ]

2. Each +-node in T splits on some variable Vi. We define
split(t) for a +-node t to be the variable it splits on.

3. The variables are split respecting the topological order.
That is, if Vi = split(t), Vj = split(t′), then

t′ is a descendant of t =⇒ j > i.

In other words, it is required that the AC represents the
same polynomial as the BN, and further that the AC satisfies
particular structural constraints that mean that the AC must
split on parents before children. This leads to the following
new result, which intuitively means that, when an AC splits
on variable V , the values of its parents are already known.
Lemma 1. Suppose that T computes N respecting some
topological order. Let t be a +-node in T splitting on some
variable V . Then all complete subcircuits α which include t
must agree on the value of its parents paN (V ).

The AC compiled from the treatment example (Figure 1)
is too large to include in its entirety, but Figure 2a shows one
branch from the root sum node, with +-nodes labelled with
the variable they split on. Notice that the topological order
(S,R, V, T ) is respected, and that, at every +-node, the value
of the parents of the splitting variable are already “known”.

4.2 Compiling to Credal SPNs
While this compiled AC allows us to efficiently compute
marginals for given parameter values Θ, it does not effec-
tively represent credal sets, and thus finding maximizing pa-
rameter values is challenging (one would need to solve con-
straints potentially spread out across the whole circuit).

In the next step of our method, we further compile the AC
to a sum-product network (SPN). SPNs differ from ACs in
that they lack parameter nodes and instead have parameters
(i.e. weights) associated with branches from sum nodes.
Definition 9. [Poon and Domingos, 2011] A sum-product
network (SPN) over variables V and with weights W is a
rooted DAG whose internal nodes are labelled with either +
or ×, and whose leaf nodes are labelled with indicator vari-
ables λv . The branches of a sum node ti with k branches are
labelled with weights wi,1, .., wi,k.

Definition 10. A complete subcircuit α of an SPN S is ob-
tained by traversing the circuit top-down, choosing one child
of every visited +-node and all children of every visited ×-
node. The term term(α) of α is the product of all leaf nodes
visited (i.e. all indicators) and all weights wij along branches
chosen by the subcircuit.

The SPN-polynomial lS [λ,W ] is the sum of the terms of
all complete subcircuits.

Our compilation differs from that presented in [Rooshenas
and Lowd, 2014] in that we make use of the particular struc-
ture of the AC, shown in Lemma 1, to make sure the weights
on the sum nodes directly correspond to the parameters in the
BN (which would not be the case under standard compila-
tion).

At a high level, the compilation only involves two steps:

1. For each sum node t splitting on Vi, assign weights over
branches according to θVi|ui

, where all variables in ui

are known due to Lemma 1.
2. Remove all parameter nodes.
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Figure 2: Illustration of Algorithm 2 for the treatment example. Due to space constraints we show only the S = s3 branch of the AC/SPN.

To algorithmically decide which parameters correspond to
a particular sum node we construct a notion of ’possible val-
ues’ for variables at nodes in the SPN. We first say that a
node ’conditions’ on V = v if the node is a parameter node
θW=w|V=v,U=u, and define

Pt(V ) = {v : ∃t′ ∈ descendants(t), t′ conditions on V = v}.

Corollary 1. For any sum node t splitting on V , if W is a
parent of V then Pt(W ) must contain exactly one possible
value.

Proof. Any complete subcircuit corresponds to a term of the
network polynomial, and must contain a parameter θV |wi,ui

for some wi,ui. This parameter cannot occur as an ancestor
of t, since it would then be impossible to satisfy Definition
7, and so it must be a descendant. Thus Pt(V ) is non-empty.
By Lemma 1, it cannot contain more than 1 element.

These sets uniquely determine the values of all parents, and
thus which parameters to use. The sets can be efficiently com-
puted , as described in Algorithm 1.

Figure 2b shows the result for the AC in Figure 2a.

Algorithm 1: SPN compilation from AC
Input: AC T computing N and satisfying Definition 8.
Result: An SPN computing N where all sum node weights

correspond to a CPT θVi|ui

1 begin
2 For indicator nodes t, assign Pt(V ) = {};
3 For parameter nodes θv|u1,u2,...,, assign Pt(Ui) = {ui}

if Ui ∈ pa(V ) and Pt(Ui) = {} otherwise;
4 For inner nodes t compute

Pt(V ) =
⋃

c∈children(t) Pc(V );
5 For sum nodes t, label the edges according to

θV |u1,u2,..., where t splits on V and ui is the unique
value in Pt(Ui);

6 Remove all parameter nodes.

Proposition 1. Given an arithmetic circuit T which com-
putes N satsifying some topological order, the SPN S com-
piled as above satisfies

lT [λ,Θ] = lS [λ,Θ].

Proof. We can put the complete subcircuits of T and S
in a one-to-one correspondence by the choice of branch at
each sum node (since only the parameter nodes/weights have
changed). Let αT be a subcircuit of T , and αS the corre-
sponding subcircuit of S. For every variable V , αT contains
exactly one +-node splitting on V , and exactly one parameter
of the form θV |pa(V ). The compilation procedure moves this
parameter to be a weight of the +-node splitting on V , so that
the overall term is unchanged. Applying this to all variables,
we have that term(αT ) = term(αS), and thus the result.

For credal families over SPNs satisfying an independence
requirement between all sum nodes (such that knowing the
weights of one sum node does not affect your uncertainty over
other weights), MARmax can be computed efficiently. These
are exactly the Credal SPNs introduced in [Mauá et al., 2017].
Definition 11. [Mauá et al., 2017] A Credal SPN (CSPN) is
a credal family CS [C] over an SPN S satisfying

C =

n∏
i=1

Ci,

where Ci is a subset of a probability simplex on the weights of
sum node i.

We can construct a credal family over the compiled SPN,
which is equivalent to our CrBN, by requiring all sum nodes
that split on a variable Vi and have parents ui to (i) all have
the same weights and (ii) have that weight be in CVi|ui

. How-
ever, this will not in general be a CSPN, since (i) breaks the
independence requirement (observing the weights of one sum
node will change the credal set for a different sum node if
they both split on the same variable with the same values of
the parents).

We can, however, construct a CSPN by removing require-
ment (i), which creates a strictly larger credal family. This
relaxation is the final step of our compilation process.



Lemma 2. For a CrBN CN [CN ] and its compiled CSPN
CS [CS ],

max
Θ∈CS

lS [λ,Θ] ≥ max
Θ′∈CN

lN [λ,Θ′].

Proof. For any given Θ ∈ CN we have lS [λ,Θ] = lN [Θ,λ],
by Proposition 1 and the fact that S computes N . The only
way to violate the inequality is if Θ /∈ CS . But CS only de-
mands that at each sum node t splitting on Vi the parameters
are in CVi|ui

, which will certainly be true if Θ ∈ CN .

If we apply this to construct a CSPN for our treatment ex-
ample, it will be a CSPN over the SPN in Figure 2b, where
the weights of the sum nodes are constrained by the credal
sets of the CrBN defined in Section 3.2.

4.3 Solving MARmax

Analogously to CrBNs, we can define the maximum marginal
probability problem for CSPNs as MARmax(S,C, e) =
maxΘ∈C lS [λe,Θ], where λe refers to the appropriate instan-
tiation of the indicators for the event e.

While MARmax for the AC (and BN) is intractable, we can
compute it efficiently for a CSPN [Mauá et al., 2017].

Proposition 2. Given a Credal SPN CS [
∏n

i=1 Ci], we can
solve MARmax for this family of distributions in O(|S|L),
where L is an upper bound on solving maxwi

∑
j wijcj sub-

ject to wi ∈ Ci.

Proof. If we assume the maximum possible value of the
children c1, ..., cj of a sum node ti are known, finding
the maximum possible value of ti can be done by solving
maxwi

∑
j wijcj subject to wi ∈ Ci. The same is true for

product nodes, with the maximum value being the product of
the maximum values of its children. By induction we can find
the maximum possible value of the root node through bottom-
up evaluation. For details see [Mauá et al., 2017].

Figure 2c illustrates the computation on the CSPN com-
piled from the treatment example. The algorithm evaluates
nodes bottom up in the graph, with the indicators set to their
appropriate value (λT = λs1 = λs2 = 0, the rest 1). The
s1, s2 branches always lead to an indicator with the value
0. When a sum node is reached, the maximizing weights al-
lowed by the credal set at that sum node are picked. For the
left +V node this means assigning θV |s3 the lowest weight al-
lowed (0.4), while the right +V is instead maximized with the
highest weight allowed (0.8). No choice is made at +R since
it is a singleton, and at +S the maximum weight for s3 (0.1) is
chosen. This demonstrates that MARmax(S,C, T̄∧s3) = 0.07.

Our overall method CUB is summarized in Algorithm 2.
The following theorem, which follows directly from Lemma
2, shows that we do indeed return an upper bound:

Theorem 2. The output MARmax(S,CS , e) returned by Algo-
rithm 2 satisfies

MARmax(S,CS , e) ≥ MARmax(N ,CN , e)

Thus, we find that the probability of not assigning treat-
ment to a patient with the severe strain in the treatment exam-
ple can be no greater than MARmax(S,C, T̄ ∧ s3) = 0.07.

Algorithm 2: Upper Bounding for MARmax

Input: Credal Bayesian Network CN [CN ], event e, order σ
Result: Upper bound on MARmax(N ,CN , e)

1 begin
2 Compile N to AC obeying topological order σ;
3 Construct a credal SPN CS [CS ] from the AC;
4 Compute MARmax(S,CS , e) for this credal SPN;
5 Return MARmax(S,CS , e)

4.4 Tightness of Upper Bound
Though our algorithm provides an upper bound on MARmax

for the Bayesian network, it will not typically be tight. This
is illustrated in Figure 2c, where the two different sum nodes
representing θV |s3 are assigned different weights by the max-
imization in the CSPN, while this is not possible for the orig-
inal CrBN. We will now provide a precise characterization of
the looseness of the upper bound, using the concept of struc-
tural enrichment to find an enriched CrBN which can be put
in a 1-1 correspondence with the CSPN.
Definition 12. A structural enrichment of a CrBN CN [C] is
a new CrBN CN ′ [C′] with a new underlying graph (V ,E′)
such that E ⊆ E′, and a new credal set given by

(∀wi ∈ Wi)C′
Vi|ui,wi

= CVi|ui
,

where Ui are the parents of Vi in N , while Wi are the newly
added parents in N ′ which were not parents in N .

To illustrate this, suppose that we had a BN with 3 vari-
ables A,B,C, where A is the only parent of C and we have
the credal set θC=0|A=0 ∈ [0.3, 0.8]. If we now consider a
structurally enriched BN where A,B are both parents of C,
then we have the same interval θC=0|A=0,B=b ∈ [0.3, 0.8] for
b ∈ {0, 1}, but, crucially, the parameters for b = 0 and b = 1
can take different values in this interval.
Definition 13. Given a CrBN CN [C] and ordering σ, the
maximal structural enrichment CN+

σ
[C+

σ ] is the (unique)
structurally enriched CrBN which has an edge (Vi, Vj) for
all i <σ j.

The maximal structural enrichment of a CrBN with some
ordering simply allows for the choice of parameters (within
the credal set) at some variable to depend on all variables
earlier in the order. In the case of the treatment example, the
ordering S,R, V, T (used for compilation in Figure 2a) would
give a structurally enriched CrBN where the parameter θV |s3
is allowed to depend on R, as it does in the CSPN (Figure
2c).
Theorem 3. The output MARmax(S,C, e) returned by Algo-
rithm 2 using ordering σ satisfies

MARmax(S,C, e) = MARmax(N+
σ ,C+

σ , e).

An implication of this result (see Appendix for the proof) is
that the ordering σ used when compiling the SPN can affect
the tightness of the bound. Consequently, it is possible to
search over topological orderings to obtain a better bound,
at the cost of additional computation; we exploit this in our
experiments as the method CUBmax. It also demonstrates



that if we do, in fact, want to bound the probability of an
event in a maximally ordered enrichment, then Algorithm 2
will give an exact result.

We can also make use of this result to lower bound
MARmax. We can project the optimal parameters θ+

Vi|ui,wi

found for CN+
σ
[C+

σ ] to obtain parameters θVi|ui
= θ+

Vi|ui,w∗
i

valid for CN [C], by fixing some w∗
i for each credal set. It

is not guaranteed that the exact solution for CN [C] will be
such a projection, but it is much easier to search over pro-
jections than parameter values and this can provide a strong
lower bound in many cases, or serve as a way to initialize a
more thorough search algorithm. In our experiments we will
evaluate a local greedy search algorithm CLB, which is ini-
tialized to an arbitrary projection given by some wi for each
credal set Ci, and tries a series of local changes wi → w′

i,
keeping any that increase the probability. It terminates if it
reaches parity with the upper bound or no local improvement
can be found. Note that there is no guarantee of convergence
to the upper bound – by Theorem 3 it is only possible when
MARmax(N+

σ ,C+
σ , e) = MARmax(N ,C, e), and even when

this holds CLB can get stuck in local optima.

5 Experimental Results
We evaluate our method on the CREPO [Cabañas and An-
tonucci, 2021] [Huber et al., 2020] credal inference bench-
mark, which consists of 960 queries over 377 small-to-
moderately sized networks, and, to evaluate scalability,
hepar2, a 70-node Bayesian network. We include three of
our methods1: (i) CUB, which computes an upper bound; (ii)
CUBmax, which searches over (n = 30) orderings to obtain
a better bound; and (iii) CLB, which computes a lower bound
as described in Section 4.4 (capped to n = 100 steps).

We compare the performance of our methods to exact
credal variable elimination [Cozman, 2000] (where feasi-
ble) and ApproxLP [Antonucci et al., 2015], an approximate
method returning a lower bound which has been shown to be
state of the art both in terms of scalability and accuracy of
inferences. We do not consider comparison to the IntRob al-
gorithm presented in [Wang et al., 2021] as it cannot address
arbitrary credal sets, and Algorithm 2 is equivalent to theirs in
the limited cases where both can be applied (when all credal
sets are either singletons or maximal).

We split CREPO into two subsets, CREPO-exact (768
queries), where an exact solution could be computed, and
CREPO-hard (192 queries), where it ran out of memory
(16GB). Since other methods do not support inferences in-
volving decision functions, we use an augmented BN only
for hepar2, where both the exact and ApproxLP methods run
out of memory even without a decision function.

In Table 2, for all benchmarks we report the time taken
by each method. For CREPO-exact, we compute the average
difference in computed probability to the exact result (posi-
tive/negative for upper/lower bounds respectively), while for
the other sets we report the average difference to the best up-
per bound. Remarkably, we see that our upper-bounding and

1Code for algorithms and experiments available at
https://github.com/HjalmarWijk/credal-bound

Network Exact ApproxLP CLB CUB CUBmax

CREPO-exact Diff 0 -0.0523 -0.0432 0.0018 0.0015
Time(ms) 626 384 46(6) 2(6) 209(618)

CREPO-hard Diff - -0.0529 -0.0742 0.0220 0
Time(ms) - 1154 65(6) 2(6) 231(618)

Hepar2 Diff - - -0.0917 0 -
Time (s) - - 429(287) 4(287) -

Table 2: Average computation time (compilation time in parenthe-
sis) and difference in computed probability to exact/upper bound. −
indicates the method ran out of memory (16GB).

lower-bounding algorithms dominate ApproxLP on CREPO-
exact, with better lower bounds being produced in an order of
magnitude less time. Given the simplicity of the greedy iter-
ation in CLB, this is primarily explained by the effectiveness
of projection from the upper bound as a starting heuristic. On
CREPO-hard, our upper bounding is the only method capable
of providing guarantees. Meanwhile, our lower bound per-
forms worse on average than ApproxLP, but only by a small
amount, while using significantly less time. Finally, we see
that our method is the only one to scale to the challenging
hepar2 network, completing in a reasonable amount of time
even with the significant additional computational expense of
incorporating a decision function.

6 Conclusions
We have demonstrated how to construct an SPN whose pa-
rameters (sum node weights) can be semantically interpreted
as representing specific conditional probability distributions
in a CrBN. The result relies on a novel SPN compilation
technique, which ensures that (i) all sum nodes correspond
to some variable V and (ii) that the values of all parents of V
can be uniquely determined. This is significant as (after ap-
plying constraint relaxation) it enables a direct mapping of the
credal sets of the CrBN to a CSPN, which, unlike the CrBN,
can be tractably maximized. This gives an efficient method
to analyse robustness of decision functions learnt from data in
the presence of imprecise knowledge, distributional shifts and
exogenous variables. Our method provides formally guaran-
teed upper and lower bounds on the probability of an event
of interest, and the experimental evaluation has additionally
demonstrated that it compares favourably in accuracy to state-
of-the-art approximate methods while being orders of magni-
tude faster.

In future work the upper bound could be improved through
reintroducing some of the dropped equality constraints be-
tween weights of sum nodes in the CSPN, though this will
involve trade-offs between computational challenge and ac-
curacy. The methodology could also be extended to handle
more challenging queries such as maximum expectations, by
imposing additional structure on the compiled circuit.
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A Proofs
A.1 Proof of Lemma 1
Lemma 1. Suppose that T computes N respecting some
topological order. Let t be a +-node in T splitting on some
variable V . Then all complete subcircuits α which include t
must agree on the value of its parents paN (V ).

Proof. First, we show that the part of the subcircuit ”external
to” the sub-AC Tt is sufficient to determine the value of the
parents of V .

Suppose that α, α′ are two complete subcircuits which both
include t and differ only in the chosen +-node children in the
sub-AC from t. Since T respects a topological ordering, by
Defn. 8 no nodes in Tt split on any variable in paN (V ). Then,
these subcircuits must assign the same values to paN (V ).

Now for the main result, suppose for contradiction there
exist two complete subcircuits α1, α2 which both include t
and specify different values u1,u2 for paN (V ) through indi-
cators. We will write α1 = (α1P , α1S), where α1P (prefix)
is the part of the subcircuit external to Tt, and α1S (suffix) is
the part internal to Tt (similar for α2). Now we consider con-
structing a subcircuit α′

2 = (α2P , α1S ) which has the prefix
of α2, but suffix of α1.

Comparing α1, α
′
2, we see that they are identical in Tt,

meaning that they specify the same value of V (say, v), but
they specify different values u1,u2 of paN (V ). Since each
subcircuit corresponds to a term of the network/AC polyno-
mial, the subcircuits must contain parameters θv|u1

, θv|u2
re-

spectively. Since these parameters depend on the value of V ,
they must appear in Tt. But this is a contradiction as both
subcircuits are identical in that sub-AC.

A.2 Proof of Theorem 3
Theorem 3. The output MARmax(S,C, e) returned by Algo-
rithm 2 using ordering σ satisfies

MARmax(S,C, e) = MARmax(N+
σ ,C+

σ , e).

To prove Theorem 3 we will introduce an expansion oper-
ation EX on SPNs, which intuitively ‘distributes’ all products
over the sum nodes, so that product nodes only have leaf node
children. As we perform the expansion we will use labels on
the sum nodes to track their origin in the original SPN.

Definition 14. Let S be a SPN respecting the ordering σ,
where each sum node is given a unique label. We define the
expanded SPN EX(S) to be an SPN constructed as follows:

• If the root t is a single leaf node, then EX(S) = S;

• If the root t is a sum node labelled l with children
t1, ..., tn, then EX(S) is a sum node also labelled l with
children EX(St1), ...,EX(Stn) and the same weights;

• If the root is a product node which has only leaf nodes
as children, then EX(S) = S;

• If the root is a product node t with at least one product
node child p, then EX(S) is the result of applying EX
to a single product node with all the children of t and p
together;

• If the root is a product node t with at least one sum
node child and no product node children, then let s (la-
belled l) be the first sum node child in σ, let s1, ..., sn
be the children of s and let t1, ..., tm be the other chil-
dren of t. Then EX(S) is a sum node (labelled l) with n
children EX(p1), ...,EX(pn), and weights identical to s.
Each SPN pi has a product node at the root and children
t1, ..., tm, si, labelled with their original labels.

It should be noted that each of these operations performs
recursive calls on SPNs with fewer nodes than the original
SPN. Thus the recursion will always finish.

Lemma 3. For any SPN S respecting ordering σ, the ex-
panded SPN EX(S) has the same SPN polynomial lS [λ,Θ] =
lEX(S)[λ,Θ]. Further, EX(S) also respects σ, and all its prod-
uct nodes have only leaf nodes as children.

Proof. We will prove this by induction on the SPNs EX(St),
where we proceed in reverse topological order of the nodes t
in the SPN (i.e. children before parents).

First, if the root is a leaf node or a product node with only
leaf node children then all the statements are trivially true.

If the root is a sum node t labelled l with children t1, ..., tn,
then the SPN polynomial is the weighted sum of the polyno-
mials of the expanded children which are unchanged (by the
induction hypothesis), where the weights (parameters) are the
same as in the original SPN. Further, the expanded children
split on the same variables as before, respecting ordering, so
the sum node as a whole does so as well.

If the root is a product node with another product node as
a child, then it is enough to observe that (by the associativ-
ity of products) moving all children to one product node has
no effect on the polynomial or ordering - the remaining re-
sult follows from the inductive hypothesis on the combined
product node.

It remains to show the result for product nodes with at least
one sum node child (and no product node children). Adopting
the same notation used in the definition, we will show that the
sum node s must split on a variable Vi such that Vi < Vj for
all other variables Vj split on somewhere in S . For Vk split
on at one of the other sum node children t1, ..., tm we have
Vi < Vk by construction. For some Vj split on elsewhere any
node splitting on it must be a descendant of either s or some
tk, and since S obeys the ordering condition Vk < Vj which
shows the claim by transitivity. This (along with the inductive
hypothesis) shows that ordering is respected. The polynomial
being the same follows immediately from the distributive law.

The overall procedure only produces sum nodes, leaf
nodes, and product nodes with only leaf nodes as chil-
dren.

Note that requiring all product nodes to have only leaf node
children is a very restrictive condition. Any complete sub-
circuit of such an SPN must be a single path of sum nodes
t1, ..., tn followed by a single product node containing all its
leaf nodes at the end. We can now prove Theorem 3.

Proof. Given the CrBN CN [CN ] (with maximal ordered en-
richment CN+

σ
[C+

N ]), let CS [CS ] be the CSPN constructed by
Algorithm 2 respecting ordering σ.



We now define credal sets C−
S and C+

S over the
weights/parameters of the expanded SPN EX(S). In both, for
a sum node s in EX(S), we assign individual credal sets Ci
to the weights of s from the node with the same label in the
original SPN S. However, for C−

S , we additionally impose
the constraint that sum nodes with the same label in EX(S)
must also have the same weights; CEX(S)[C−

S ] is thus not a
CSPN (while CEX(S)[C+

S ] is).

Firstly, we show that MARmax(S,CSe) =
MARmax(EX(S),C−

S , e). Since S and EX(S) have the
same polynomial, the distributions are equivalent (for the
same parameters). Further, since the credal sets CS ,C−

S are
the same by construction, the maximal marginal probability
(and parameter assignment) is the same for both.

Second, we show that MARmax(EX(S),C+
S , e) =

MARmax(EX(S),C−
S , e), that is, that the same value can

be obtained despite the additional constraints on C−
S .

Recall that, since CEX(S)[C+
S ] is a CSPN, we can find

MARmax(EX(S),C+
S , e) by maximizing the weights at each

sum node locally based on the maximized value of its chil-
dren (2). Looking at the definition of the expansion process
(Defn. 14), we see that the only way in which two sum nodes
r, r′ in EX(S) can have the same label is if two product nodes
in the original SPN have a common sum node child (with
that label). Then, using similar notation as in the Definition,
r will have children EX(p1), ...,EX(pn), where pi is an SPN
with a product node root and children t1, ..., tm, si, while r′

will have children EX(p′1), ...,EX(p
′
n) where p′i is an SPN

with product node root and children t′1, ..., t
′
m′ , si. Since ap-

plying EX does not change the SPN polynomial, the ith child
of r has polynomial lSpi

[λ,Θ] = lSsi
[λ,Θ]

∏m
j=1 lSti

[λ,Θ].
Since SPN polynomials are multilinear functions of
their parameters, each parameter can appear in only
one of the RHS polynomials. Thus we can max-
imize each separately, i.e. maxΘ∈C+

S
lSpi

[λ,Θ] =

maxΘ∈C+
S
lSsi

[λ,Θ]
∏m

j=1 maxΘ∈C+
S
lStj

[λ,Θ] =

maxΘ∈C+
S
lSsi

[λ,Θ]
∏m

j=1 c where c :=∏m
j=1 maxΘ∈C+

S
lStj

[λ,Θ] is independent of i. Apply-
ing a similar argument to the ith child of r′, we get
maxΘ∈C+

S
lSp′

i
[λ,Θ] = maxΘ∈C+

S
lSsi

[λ,Θ]
∏m

j=1 c
′ where

c′ :=
∏m′

j=1 maxΘ∈C+
S
lSt′

j
[λ,Θ] is again independent

of i. Thus we see that the value of the ith child of r
and r′ are proportional, and hence the same choice of
parameters/weights for r, r′ maximize both. Thus we
have that the maximizing weight in C+

S is also in C−
S , and

MARmax(EX(S),C+
S , e) = MARmax(EX(S),C−

S , e).

Finally, we want to show that MARmax(EX(S),C+
S , e) =

MARmax(N+
σ ,C+

N , e). We have already established that the
product nodes in EX(S) have only leaf node children. Thus,
each product node must correspond to a particular instantia-
tion of the variables, and the sum nodes from the root must
branch out to cover all of these instantiations. Since EXS re-
spects the ordering σ, this means that EX(S) takes the form
of a rooted tree which splits on each variable in succession

in the order σ. This also provides a very clear semantics for
the weight on each edge of a sum node t: it is simply θvi|ui

,
where vi is the value corresponding to that edge of the vari-
able Vi which t is splitting on, and ui records the values of all
variables before Vi in the ordering σ (which is unique as the
SPN is a tree). It is then apparent that EX(S) precisely de-
scribes the polynomial of CN+

σ
[C+

N ]. Further, the credal sets
C+
N and C+

S are the same by construction, so we are done.
All together, we have that MARmax(S,CSe) =

MARmax(EX(S),C−
S , e) = MARmax(EX(S),C+

S , e) =

MARmax(N+
σ ,C+

N , e), as required.

B Comparison to Intervention Sets
Bayesian networks are particularly convenient for studying
data-generating processes which include some adversary or
unknown process that could seemingly arbitrarily intervene
on the behaviour of certain variables in our system, thus
changing the distribution. [Wang et al., 2021] formalize this
by defining intervention sets where some subset of variables
W ⊆ V . In this section, we show how our formulation of
credal sets over augmented BNs generalizes their definitions.

[Wang et al., 2021] consider parametric interventions on
variables W in a BN N which assign new values to all the pa-
rameters associated with variables in W . Each such interven-
tion leads to a new BN N ′ with a new joint distribution pN ′ .
We define IN [W ] to be the family of distributions arising
from some parametric intervention on W in N . A structural
intervention on W in N can further introduce new edges to
the graph through a context function CW : V → P(V ), al-
lowing the variables in W to depend on variables which pre-
viously they could not. We define IN [W , CW ] to be the fam-
ily of distributions arising from some structural intervention
with context function CW on W in N .

B.1 Credal Sets
The interventional families of distributions assume that for
each variable we either have complete certainty about its be-
haviour (if it is not an intervenable variable), or its behaviour
is completely unknown (if it is an intervenable variable). This
does not allow us to represent other forms of uncertainty, such
as that which might arise from learning a model from data.
However, these can be represented by credal sets.
Proposition 3. For any BN N and subset of the variables
W , there exists a CrBN CN [C] such that

IN [W ] = CN [C].
Proof. Given W , construct a CrBN CN [C] with a credal set
such that CVi|ui

is maximal (all probability distributions al-
lowed) if Vi ∈ W , and a singleton containing only the param-
eter value in N otherwise. For any BN N ′ ∈ IN [W ] it will
differ from N only for parameters related to variables in W .
Since these are allowed to take any value by the credal set C,
we must have N ′ ∈ CN [C]. Likewise, for any N ′ ∈ CN [C]
it can differ from N only for parameters of variables in W ,
so there will be some intervention generating N ′.

This demonstrates that the notion of CrBNs generalizes
the notion of parametric interventions. It can also generalize



structural interventions, though we need a CrBN on a struc-
turally enriched graph. Here we reproduce our definition of
structural enrichments for CrBNs from the main paper:
Definition 12. A structural enrichment of a CrBN CN [C] is
a new CrBN CN ′ [C′] with a new underlying graph (V ,E′)
such that E ⊆ E′, and a new credal set given by

(∀wi ∈ Wi)C′
Vi|ui,wi

= CVi|ui
,

where Ui are the parents of Vi in N , while Wi are the newly
added parents in N ′ which were not parents in N .

Proposition 4. For any BN N , subset of the variables W ,
ordering σ, and context function [Wang et al., 2021] CW

whose edges respect σ, there exists a structurally enriched
CrBN CN [C] such that

I ′
N [W , CW ] = CN [C].

Proof. We construct CN ′ [C′] from N and W as in the proof
of Proposition 3. We then construct the structural enrich-
ment CN [C] of CN ′ [C′], where we add all edges given by
the context function CW (guaranteed to be possible since the
context function is compatible with σ). For Vi ∈ W , after
observing any value for the newly added parents, the credal
sets for any value of the remaining parents must be maxi-
mal (allow any probability distribution) by construction, and
so the credal sets must be maximal for all values of all par-
ents. For Vi /∈ W , after observing any value for the newly
added parents the value must be a singleton for all values of
the old parents by construction, so it must be a singleton for
all values of all parents. As in Proposition 3, we thus have
CN [C] = I ′

N [W , CW ].

This demonstrates that CrBNs fully generalize families
found by allowing causal interventions of the type in [Wang
et al., 2021].

C Experimental Details
C.1 CREPO
The full list of queries and models included in the bench-
mark is given at https://github.com/IDSIA/crepo. The split
into exact and hard is post-hoc and per-query, based on which
queries ran out of memory (16GB) when running credal vari-
able elimination.

C.2 hepar2
Since there is to our knowledge no existing credal sets over
the hepar2 parameters (other than the ones in [Wang et al.,
2021], where our generalized algorithm exactly matches their
results, as expected), we create credal sets by allowing pertur-
bations of ϵ = 0.1 to all parameters. The results are averaged
over 100 randomized queries; the full list can be found at
https://github.com/HjalmarWijk/credal-bound

C.3 Credal Set Representation
As ApproxLP is based on solving linear programming in-
stances, it requires credal sets to be represented as a set of
linear constraints. Meanwhile, credal variable elimination
traditionally assumes the credal set is specified by a finite

set of vertices. Our algorithm is entirely agnostic regarding
the credal set representation, but in order to allow compar-
isons with both of these approaches we use Polco (through
CREMA [Huber et al., 2020]) to convert between them.
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