
Probabilistic Reach-Avoid for

Bayesian Neural Networks

Matthew Wickera , Luca Laurentib, Andrea Patanea,
Nicola Paolettic, Alessandro Abatea, Marta Kwiatkowskaa

aDepartment of Computer Science, University of Oxford, Oxford, UK,
bDelft Center for Systems and Control (DCSC), TU Delft, Delft, Netherlands,

cDepartment of Informatics, King’s College London, London, UK,

Abstract

Model-based reinforcement learning seeks to simultaneously learn the dynam-
ics of an unknown stochastic environment and synthesise an optimal policy
for acting in it. Ensuring the safety and robustness of sequential decisions
made through a policy in such an environment is a key challenge for poli-
cies intended for safety-critical scenarios. In this work, we investigate two
complementary problems: first, computing reach-avoid probabilities for iter-
ative predictions made with dynamical models, with dynamics described by
Bayesian neural network (BNN); second, synthesising control policies that are
optimal with respect to a given reach-avoid specification (reaching a “target”
state, while avoiding a set of “unsafe” states) and a learned BNN model. Our
solution leverages interval propagation and backward recursion techniques to
compute lower bounds for the probability that a policy’s sequence of actions
leads to satisfying the reach-avoid specification. Such computed lower bounds
provide safety certification for the given policy and BNN model. We then in-
troduce control synthesis algorithms to derive policies maximizing said lower
bounds on the safety probability. We demonstrate the effectiveness of our
method on a series of control benchmarks characterized by learned BNN dy-
namics models. On our most challenging benchmark, compared to purely
data-driven policies the optimal synthesis algorithm is able to provide more
than a four-fold increase in the number of certifiable states and more than a
three-fold increase in the average guaranteed reach-avoid probability.

Keywords: Reinforcement Learning, Formal Verification, Certified Control
Synthesis, Bayesian Neural Networks, Safety, Reach-while-avoid

Preprint submitted to Artificial Intelligence Journal October 19, 2023

1. Introduction

The capacity of deep learning to approximate complex functions makes
it particularly attractive for inferring process dynamics in control and rein-
forcement learning problems (Schrittwieser et al., 2019). In safety-critical
scenarios where the environment and system state are only partially known
or observable (e.g., a robot with noisy actuators/sensors), Bayesian models
have recently been investigated as a safer alternative to standard, determin-
istic, Neural Networks (NNs): the uncertainty estimates of Bayesian models
can be propagated through the system decision pipeline to enable safe deci-
sion making despite unknown system conditions (McAllister and Rasmussen,
2017; Carbone et al., 2020; Depeweg et al., 2017). In particular, Bayesian
Neural Networks (BNNs) retain the same advantages of NNs (relative to their
approximation capabilities) and also enable reasoning about uncertainty in
a principled probabilistic manner (Neal, 2012; Murphy, 2012), making them
very well-suited to tackle safety-critical problems.

In problems of sequential planning, time-series forecasting, and model-
based reinforcement learning, evaluating a model with respect to a control
policy (or strategy) requires making several predictions that are mutually de-
pendent across time (Liang, 2005; Deisenroth and Rasmussen, 2011). While
multiple models can be learned for each time step, a common setting is for
these predictions to be made iteratively by the same machine learning model
(Huang and Rosendo, 2020), where the state of the predicted model at each
step is a function of the model state at the previous step and possibly of an
action (from the policy). We refer to this setting as iterative predictions.

Unfortunately, performing iterative predictions with BNN models poses
several practical issues. In facts, BNN models output probability distribu-
tions, so that at each successive timestep the BNN needs to be evaluated
over a probability distribution, rather than a fixed input point – thus posing
the problem of successive predictions over a stochastic input. Even when
the posterior distribution of the BNN weights is inferred using analytical ap-
proximations, the deep and non-linear structure of the network makes the
resulting predictive distribution analytically intractable (Neal, 2012). In it-
erative prediction settings, the problem is compounded and exacerbated by
the fact that one would have to evaluate the BNN, sequentially, over a distri-
bution that cannot be computed analytically (Depeweg et al., 2017). Hence,
computing sound, formal bounds on the probability of BNN-based iterative
predictions remains an open problem. Such bounds would enable one to pro-

2

vide safety guarantees over a given (or learned) control policy, which is a
necessary precondition before deploying the policy in a real-world environ-
ment (Polymenakos et al., 2020; Vinogradska et al., 2016).

In this paper, we develop a new method for the computation of proba-
bilistic guarantees for iterative predictions with BNNs over reach-avoid speci-
fications. A reach-avoid specification, also known as constrained reachability
(Soudjani and Abate, 2013), requires that the trajectories of a dynamical
system reach a goal/target region over a given (finite) time horizon, whilst
avoiding a given set of states that are deemed “unsafe”. Probabilistic reach-
avoid is a key property for the formal analysis of stochastic processes (Abate
et al., 2008), underpinning richer temporal logic specifications: its compu-
tation is the key component for probabilistic model checking algorithms for
various temporal logics such as PCTL, csLTL, or BLTL (Kwiatkowska et al.,
2007; Cauchi et al., 2019).

Even though the exact computation of reach-avoid probabilities for it-
erative prediction with BNNs is in general not analytically possible, with
our method, we can derive a guaranteed (conservative) lower bound by solv-
ing a backward iterative problem obtained via a discretisation of the state
space. In particular, starting from the final time step and the goal region,
we back-propagate the probability lower bounds for each discretised portion
of the state space. This backwards reachability approach leverages recently
developed bound propagation techniques for BNNs (Wicker et al., 2020). In
addition to providing guarantees for a given policy, we also devise methods
to synthesise policies that are maximally certifiable, i.e., that maximize the
lower bound of the reach-avoid probability. We first describe a numerical
solution that, by using dynamic programming, can synthesize policies that
are maximally safe. Then, in order to improve the scalability of our ap-
proach, we present a method for synthesizing approximately optimal strate-
gies parametrised as a neural network. While our method does not yet scale
to state-of-the-art reinforcement learning environments, we are able to verify
and synthesise challenging non-linear control case studies.

We validate the effectiveness of our certification and synthesis algorithms
on a series of control benchmarks. Our certification algorithm is able to
produce non-trivial safety guarantees for each system that we test. On each
proposed benchmark, we also show how our synthesis algorithm results in
actions whose safety is significantly more certifiable than policies derived via
deep reinforcement learning. Specifically, in a challenging planar navigation
benchmark, our synthesis method results in policies whose certified safety

3

probabilities are eight to nine times higher than those for learned policies.
We further investigate how factors like the choice of approximate inference

method, BNN architecture, and training methodology affect the quality of the
synthesised policy. In summary, this paper makes the following contributions:

• We show how probabilistic reach-avoid for iterative predictions with
BNNs can be formulated as the solution of a backward recursion.

• We present an efficient certification framework that produces a lower
bound on probabilistic reach-avoid by relying on convex relaxations of
the BNN model and said recursive problem definition.

• We present schemes for deriving a maximally certified policy (i.e., max-
imizing the lower bound on safety probability) with respect to a BNN
and given reach-avoid specification.

• We evaluate our methodology on a set of control case studies to pro-
vide guarantees for learned and synthesized policies and conduct an
empirical investigation of model-selection choices and their effect on
the quality of policies synthesised by our method.

A previous version of this work (Wicker et al., 2021b) has been presented
at the thirty-seventh Conference on Uncertainty in Artificial Intelligence.
Compared to the conference paper, in this work, we introduce several new
contributions. Specifically, compared to Wicker et al. (2021b) we present
novel algorithms for the synthesis of control strategies based on both a nu-
merical method and a neural network-based approach. Moreover, the exper-
imental evaluation has been consistently extended, to include, among others,
an analysis of the role of approximate inference and NN architecture on safety
certification and synthesis, as well as an in-depth analysis of the scalability of
our methods. Further discussion of related works can be found in Section 7.

2. Bayesian Neural Networks

In this work, we consider fully-connected neural network (NN) archi-
tectures fw : Rm → Rn parametrised by a vector w ∈ Rnw containing
all the weights and biases of the network. Given a NN fw composed by
L layers, we denote by fw,1, ..., fw,L the layers of fw and we have that
w =

(
{Wi}Li=1

)
∪
(
{bi}Li=1

)
, where Wi and bi represent weights and biases

of the i−th layer of fw. For x ∈ Rn the output of layer i ∈ {1, ..., L} can be

4

explicitly written as fw,i(x) = a(Wif
w,i−1(x)+bi) with fw,1(x) = a(W1x+b1),

where a : R→ R is the activation function. We assume that a is a continuous
monotonic function, which holds for the vast majority of activation functions
used in practice such as sigmoid, ReLu, and tanh (Goodfellow et al., 2016).
This guarantees that fw is a continuous function.

Bayesian Neural Networks (BNNs), denoted by fw, extend NNs by plac-
ing a prior distribution over the network parameters, pw(w), with w being
the vector of random variables associated to the parameter vector w. Given a
dataset D, training a BNN on D requires to compute posterior distribution,
pw(w|D), which can be computed via Bayes’ rule (Neal, 2012). Unfortu-
nately, because of the non-linearity introduced by the neural network archi-
tecture, the computation of the posterior is generally intractable. Hence,
various approximation methods have been studied to perform inference with
BNNs in practice. Among these methods, we consider Hamiltonian Monte
Carlo (HMC) (Neal, 2012), and Variational Inference (VI) (Blundell et al.,
2015). In our experimental evaluation in Section 6.3 we employ both HMC
and VI.

Hamiltonian Monte Carlo (HMC). HMC proceeds by defining a Markov
chain whose invariant distribution is pw(w|D), and relies on Hamiltionian
dynamics to speed up the exploration of the space. Differently from VI dis-
cussed below, HMC does not make any parametric assumptions on the form
of the posterior distribution and is asymptotically correct. The result of
HMC is a set of samples that approximates pw(w|D). We refer interested
readers to (Neal et al., 2011; Izmailov et al., 2021) for further details.

Variational Inference (VI). VI proceeds by finding a Gaussian approximating
distribution q(w) ∼ pw(w|D) in a trade-off between approximation accuracy
and scalability. The core idea is that q(w) depends on some hyperparame-
ters that are then iteratively optimized by minimizing a divergence measure
between q(w) and pw(w|D). Samples can then be efficiently extracted from
q(w). See (Khan and Rue, 2021; Blundell et al., 2015) for recent develop-
ments in variational inference in deep learning.

5

3. Problem Formulation

Given a trained BNN fw we consider the following discrete-time stochas-
tic process given by iterative predictions of the BNN:

xk = fw(xk−1,uk−1) + vk, uk = πk(xk), k ∈ N>0, (1)

where xk is a random variable taking values in Rn modelling the state of
System (1) at time k, vk is a random variable modelling an additive noise
term with stationary, zero-mean Gaussian distribution N (0, σ2 · I), where I
is the identity matrix of size n× n. uk represents the action applied at time
k, selected from a compact set U ⊂ Rc by a (deterministic) feedback Markov
strategy (a.k.a. policy, or controller) π : Rn × N→ U .1

The model in Eqn. (1) is commonly employed to represent noisy dynam-
ical models driven by a BNN and controlled by the policy π (Depeweg et al.,
2017). In this setting, fw defines the transition probabilities of the model
and, correspondingly, p(x̄|(x, u),D) is employed to describe the posterior pre-
dictive distribution, namely the probability density of the model state at the
next time step being x̄, given that the current state and action are (x, u), as:

p(x̄|(x, u),D) =
∫
Rnw

N (x̄ | fw(x, u), σ2 · I)pw(w|D)dw, (2)

where N (· | fw(x, u), σ2 · I) is the Gaussian likelihood induced by noise vk

and centered at the NN output (Neal, 2012).
Observe that the posterior predictive distribution induces a probability

density function over the state space. In iterative prediction settings, this
implies that at each step the state vector xk fed into the BNN is a random
variable. Hence, a N -step trajectory of the dynamic model in Eqn (1) is a
sequence of states x0, ..., xN ∈ Rn sampled from the predictive distribution.
As a consequence, a principled propagation of the BNN uncertainty through
consecutive time steps poses the problem of predictions over stochastic in-
puts. In Section 4.1 we will tackle this problem for the particular case of
reach-avoid properties, by designing a backward computation scheme that
starts its calculations from the goal region, and proceeds according to Bell-
man iterations (Bertsekas and Shreve, 2004).

1We can limit ourselves to consider deterministic Markov strategies as they are optimal
in our setting (Bertsekas and Shreve, 2004; Abate et al., 2008). Also, in the following, we
denote with π the time-varying policy described, at each step k, by policy πk : Rn → U .

6

We remark that p(x̄|(x, u),D) is defined by marginalizing over pw(w|D),
hence, the particular p(x̄|(x, u),D) depends on the specific approximate in-
ference method employed to estimate the posterior distribution. As such, the
results that we derive are valid w.r.t. a specific BNN posterior.

Probability Measure. For an action u ∈ Rc, a subset of states X ⊆ Rn and
a starting state x ∈ Rn, we call T (X|x, u) the stochastic kernel associated
(and equivalent (Abate et al., 2008)) to the dynamical model of Equation (1).
Namely, T (X|x, u) describes the one-step transition probability of the model
of Eqn. (1) and is defined by integrating the predictive posterior distribution
with input (x, u) over X, as:

T (X|x, u) =
∫
X

p(x̄|(x, u),D)dx̄. (3)

In what follows, it will be convenient at times to work over the space of
parameters of the BNN. To do so, we can re-write the stochastic kernel by
combining Equations (2) and (3) and applying Fubini’s theorem (Fubini,
1907) to switch the integration order, thus obtaining:

T (X|x, u) =
∫
Rnw

[∫
X

N (x̄|fw(x, u), σ2 · I)dx̄
]
pw(w|D)dw. (4)

From this definition of T it follows that, under a strategy π and for a given
initial condition x0, xk is a Markov process with a well-defined probability
measure Pr uniquely generated by the stochastic kernel T (Bertsekas and
Shreve, 2004, Proposition 7.45) and such that for X0, Xk ⊆ Rn:

Pr[x0 ∈ X0] = 1X0(x0),

Pr[xk ∈ Xk|xk−1 = x, π] = T (Xk|x, πk−1(x)),

where 1X0 is the indicator function (that is, 1 if x ⊆ X0 and 0 otherwise).
Having a definition of Pr allows one to make probabilistic statements over
the stochastic model in Eqn (1).

Remark 1. Note that, as is common in the literature (Depeweg et al., 2017),
according to the definition of the probability measure Pr we marginalise over
the posterior distribution at each time step. Consequently, according to our
modelling framework, the weights of the BNN are not kept fixed during each
trajectory, but we re-sample from w at each time step.

7

3.1. Problem Statements

We consider two problems concerning, respectively, the certification and
the control of dynamical systems modelled by BNNs. We first consider safety
certification with respect to probabilistic reach-avoid specifications. That is,
we seek to compute the probability that from a given state, under a selected
control policy, an agent navigates to the goal region without encountering
any unsafe states. Next, we consider the formal synthesis of policies that
maximise this probability and thus attain maximal certifiable safety.

Problem 1 (Computation of Probabilistic Reach-Avoid). Given a strat-
egy π, a goal region G ⊆ Rn, a finite-time horizon [0, N] ⊆ N, and a safe set
S ⊆ Rn such that G ∩ S = ∅, compute for any x0 ∈ G ∪ S

Preach(G, S, x0, [0, N]|π) =
Pr

[
∃k ∈ [0, N],xk ∈ G ∧ ∀0 ≤ k′ < k,xk′ ∈ S | x0 = x0, π

]
. (5)

Outline of the Approach. In Section 4.1 we show how Preach(G, S, x0, [0, N]|π)
can be formulated as the solution of a backward iterative computational
procedure, where the uncertainty of the BNN is propagated backward in
time, starting from the goal region. Our approach allows us to compute
a sound lower bound on Preach, thus guaranteeing that xk, as defined in
Eqn (1), satisfies the specification with a given probability. This is achieved
by extending existing lower bounding techniques developed to certify BNNs
(Wicker et al., 2020) and applying these at each propagation step through
the BNN.

Note that, in Problem 1, the strategy π is provided, and the goal is to
quantify the probability with which the trajectories of xk satisfy the given
specification. In Problem 2 below, we expand the previous problem and seek
to synthesise a controller π that maximizes Preach. The general formulation
of this optimization is given below.

Problem 2 (Strategy Synthesis for Probabilistic Reach-Avoid). For
an initial state x0 ∈ G ∪ S, and a finite time horizon N , find a strategy
π∗ : Rn × R≥0 → Rc such that

π∗ = argmax
π

Preach(G, S, x0, [0, N] | π). (6)

In Section 5, we will provide specific schemes for synthesizing optimal strate-
gies when π is either a look-up table or a deterministic neural network.

8

Outline of the Approach. To solve this problem, we notice that the backward
iterative procedure outlined to solve Problem 1 has a substructure such that
dynamic programming will allow us to compute optimal actions for each state
that we verify, thus producing an optimal policy with respect to the given
posterior and reach-avoid specification. With low-dimensional or discrete
action spaces, we can then derive a tabular policy by solving the resulting
dynamic programming problem. For higher-dimensional action spaces in-
stead, in Section 5.1 we consider (generalising) policies represented as neural
networks.

4. Methodology

In this section, we illustrate the methodology used to compute lower
bounds on the reach-avoid probability, as described in Problem 1. We begin
by encoding the reach-avoid probability through a sequence of value func-
tions.

4.1. Certifying Reach-Avoid Specifications

We begin by showing that Preach(G, S, x, [k,N]|π) can be obtained as the
solution of a backward iterative procedure, which allows to compute a lower
bound on its value. In particular, given a time 0 ≤ k < N and a strategy π,
consider the value functions V π

k : Rn → [0, 1], recursively defined as

V π
N (x) = 1G(x),

V π
k (x) = 1G(x) + 1S(x)

∫
V π
k+1(x̄)p

(
x̄|(x, πk(x)),D

)
dx̄. (7)

Intuitively, V π
k is computed starting from the goal region G at k = N ,

where it is initialised at value 1. The computation proceeds backwards at
each state x, by combining the current values with the transition probabil-
ities from Eqn (1). The following proposition, proved inductively over time
in the Supplementary Material, guarantees that V π

0 (x) is indeed equal to
Preach(G, S, x, [0, N]|π).

Proposition 1. For 0 ≤ k ≤ N and x0 ∈ G ∪ S, it holds that

Preach(G, S, x0, [k,N]|π) = V π
k (x).

9

The backward recursion in Eqn (7) does not generally admit a solution in
closed-form, as it would require integrating over the BNN posterior predictive
distribution, which is in general analytically intractable. In the following
section, we present a computational scheme utilizing convex relaxations to
lower bound Preach.

Figure 1: Examples of functions Kπ
N−1 (left) and Kπ

N−2 (right), which are lower
bounds of V π

k . On the left, we consider the first step of our backward algorithm,
where we compute Kπ

N−2(q) by computing the probability that xN ∈ G given that
xN−1 ∈ q. On the right, we consider the subsequent step. We outline the state
we want to verify in red and the goal region in green. With the orange arrow,
we represent the 0.95 transition probability of the BNN dynamical model, and in
pink we represent the worst-case probabilities spanned by the BNN output. On
top, we show where each of these key terms comes into play in Eqn (9).

4.2. Lower Bound on Preach

We develop a computational approach based on the discretisation of the
state space, which allows convex relaxation methods such as (Wicker et al.,
2020) to be used. The proposed computational approach is illustrated in
Figure 1 and formalized in Section 4.3. Let Q = {q1, ..., qnq} be a partition of
S∪G in nq regions and denote with z : Rn → Q the function that associates to
a state in Rn the corresponding partitioned state in Q. For each 0 ≤ k ≤ N
we iteratively build a set of functions Kπ

k : Q → [0, 1] such that for all
x ∈ G ∪ S we have that Kπ

k (z(x)) ≤ V π
k (x). Intuitively, K

π
k provides a lower

bound for the value functions on the computation of Preach.

10

The functions Kπ
k are obtained by propagating backward the BNN pre-

dictions from time N , where we set Kπ
N(q) = 1G(q), with 1G(q) being the

indicator function (that is, 1 if q ⊆ G and 0 otherwise). Then, for each
k < N , we first discretize the set of possible probabilities in np sub-intervals
0 = v0 ≤ v1 ≤ ... ≤ vnp = 1. Hence, for any q ∈ Q and probability interval
[vi, vi+1], one can compute a lower bound, R(q, k, π, i), on the probability
that, starting from any state in q at time k, we reach in the next step a
region that has probability ∈ [vi, vi+1] of safely reaching the goal region. The
resulting values are used to build Kπ

k (as we will detail in Eqn (9)). For a
given q ⊂ S, Kπ

k (q) is obtained as the sum over i of R(q, k, π, i) multiplied
by vi−1, i.e., the lower value that Kπ

k+1 obtains in all the states of the i− th
region. Note that the discretisation of the probability values does not have
to be uniform, but can be adaptive for each q ∈ Q. A heuristic for picking
the value of thresholds vi will be given in Algorithm 1. In what follows, we
formalise the intuition behind this computational procedure.

4.3. Lower Bounding of the Value Functions

For a given strategy π, we consider a constant η ∈ (0, 1) and ϵ =√
2σ2erf−1(η), which are used to bound the value of the noise, vk, at any

given time. Intuitively, η represents the proportion of observational error we
consider.2 Then, for 0 ≤ k < N , Kπ

k : Q → [0, 1] are defined recursively as
follows:

Kπ
N(q) = 1G(q), (8)

Kπ
k (q) = 1G(q) + 1S(q)

np∑
i=1

vi−1R(q, k, π(q), i), (9)

where

R(q, k, π(q), i) = ηn
∫
Hq,π,ϵ

k,i

pw(w|D)dw, (10)

Hq,π,ϵ
k,i = {w ∈ Rnw | ∀x ∈ q,∀γ ∈ [−ϵ, ϵ]n, it holds that:

vi−1 ≤ Kπ
k+1(q

′) ≤ vi, with q′ = z(fw(x, πk(x)) + γ)}.

2The threshold is such that it holds that Pr(|v(i)
k | ≤ ϵ) = η. In the experiments of

Section 6 we select η = 0.99.

11

The key component for the above backward recursion is R(q, k, π, i), which
bounds the probability that, starting from q at time k, we have that xk+1 will
be in a region q′ such that Kπ

k+1(q
′) ∈ [vi, vi+1]. By definition, the set Hq,π,ϵ

k,i

defines the weights for which the BNN maps all states covered by q into the
goal states given action π(q). Given this, it is clear that integration of the
posterior pw(w|D) over the Hq,π,ϵ

k,i will return the probability mass of system
(1) transitioning from q to q′ with probability in [vi, vi+1] in one time step.
The computation of Eqn (9) then reduces to computing the set of weights
Hq,π,ϵ

k,i , which we call the projecting weight set. A method to compute a safe

under-approximation H̄ ⊆ Hq,π,ϵ
k,i is discussed below. Before describing that,

we analyze the correctness of the above recursion.

Theorem 1. Given x ∈ Rn, for any k ∈ {0, ..., N} and q = z(x), assume
that Hq,π,ϵ

k,i ∩Hq,π,ϵ
k,j = ∅ for i ̸= j. Then:

inf
x∈q

V π
k (x) ≥ Kπ

k (q).

A proof of Theorem 1 is given in the Supplementary Material. Note that the
assumption on the null intersection between different projecting weight sets
required in Theorem 1 can always be enforced by taking their intersection
and complement.

4.4. Computation of Projecting Weight Set

Theorem 1 allows us to compute a safe lower bound to Problem 1, by
relying on an abstraction of the state space, that is, through the computation
of Kπ

0 (q). This can be evaluated once the projecting set of weight values
Hq,π,ϵ

k,i associated to [vi−1, vi] is known.3 Unfortunately, direct computation
of Hq,π,ϵ

k,i is intractable. Nevertheless, a method for its lower bounding was
developed by Wicker et al. (2020) in the context of adversarial perturbations
for one-step BNN predictions, and can be directly adapted to our settings.

The idea is that an under approximation H̄ ⊆ Hq,π,ϵ
k,i is built by sampling

weight boxes of the shape Ĥ = [wL, wU], according to the posterior, and

3In the case of Gaussian VI the integral of Equation (10) can be computed in terms of
the erf function, whereas more generally Monte Carlo or numerical integration techniques
can be used.

12

checking whether:

vi−1 ≤ Kπ
k+1(z(f

w(x, πk(x)) + γ)) ≤ vi,

∀x ∈ q, ∀w ∈ Ĥ, ∀γ ∈ [−ϵ, ϵ]n. (11)

Finally, H̄ is built as a disjoint union of boxes Ĥ satisfying the above con-
dition. For a full discussion of the details of this method we refer interested
readers to (Wicker et al., 2020). In order to apply this method to our setting,
we propagate the abstract state q through the policy function πk(x), so as to

obtain a bounding box Π̂ = [πL, πU] such that πL ≤ πk(x) ≤ πU for all x ∈ q.
In the experiments, this bounding is only necessary when πk(x) is given by
an NN controller, for which bound propagation of NNs can be used for the
computation of Π̂ (Gowal et al., 2018; Gehr et al., 2018).

The results of Proposition 2 and Proposition 3 from Wicker et al. (2020)

can then be used to propagate q, Π̂ and Ĥ through the BNN. For discrete
posteriors (e.g., those resulting from HMC) one can use the method described

by Gowal et al. (2018) (Equations 6 and 7). Propagation of q, Π̂ amounts
to using these method to compute values fL

q,ϵ,k and fU
q,ϵ,k such that, for all

x ∈ q, γ ∈ [−ϵ, ϵ]n, w ∈ Ĥ, it holds that:

fL
q,ϵ,k ≤ fw(x, πk(x)) + γ ≤ fU

q,ϵ,k. (12)

Furthermore, fL
q,ϵ,k and fU

q,ϵ,k are differentiable w.r.t. to the input vector
(Gowal et al., 2018; Wicker et al., 2021a).

Finally, the two bounding values can be used to check whether or not the
condition in Eqn (11) is satisfied, by simply checking whether [fL

q,ϵ,k, f
U
q,ϵ,k]

propagated through Kπ
k+1 is within [vi, vi+1]. We highlight that computing

this probability is equivalent to a conservative estimate of R(q, k, π, i).

4.5. Probabilistic Reach-Avoid Algorithm

In Algorithm 1 we summarize our approach for computing a lower bound
for Problem 1. For simplicity of presentation, we consider the case np = 2,
(i.e., we partition the range of probabilities in just two intervals [0, v1], [v1, 1] -
the case np > 2 follows similarly). The algorithm proceeds by first initializing
the reach-avoid probability for the partitioned states q inside the goal region
G to 1, as per Eqn (8). Then, for each of the N time steps and for each one of
the remaining abstract states q, in line 4 we set the threshold probability v1
equal to the maximum value that Kπ attains at the next time step over the

13

states in the neighbourhood of q (which we capture with a hyper-parameter
ρx > 0). We found this heuristic for the choice of v1 to work well in practice
(notice that the obtained bound is formal irrespective of the choice of v1,
and different choices could potentially be explored). We then proceed in the
computation of Eqn (9). This computation is performed in lines 5–14. First,
we initialise to the null set the current under-approximation of the projecting
weight set, H̄. We then sample ns weights boxes Ĥ by sampling weights from
the posterior, and expanding them with a margin ρw heuristically selected
(lines 6-8). Then, for each of these sets, we first propagate the state q, policy
function, and weight set H̄ to build a box X̄ according to Eqn (12) (line 9),
which is then accepted or rejected based on the value that Kπ at the next
time step attains in states in X̄ (lines 10-12). Kπ

N−i(q) is then computed in
line 14 by integrating pw(w|D) over the union of the accepted sets of weights.

Algorithm 1 Probabilistic Reach-Avoid for BNNs
Input: BNN model fw, safe region S, goal region G, discretization Q of S ∪ G,
time horizon N , neural controller π, number of BNN samples ns, weight margin
ρw, state space margin ρx
Output: Lower bound on V π

1: For all 0 ≤ k ≤ N set Kπ
k (q) = 1 iff q ⊆ G and 0 otherwise

2: for k ← N to 1 do
3: for q ∈ Q \G do
4: v1 ← maxx∈[q−ρx,q+ρx]K

π
k+1(z(x))

5: H̄ ← ∅ # H̄ is the set of safe weights
6: for desired number of samples, ns do
7: w′ ∼ P (w|D)
8: Ĥ ← [w′ − ρw, w

′ + ρw]
9: X̄ ← [fL

q,ϵ,k, f
U
q,ϵ,k] # Computed according to Eqn (12)

10: if minx∈X̄ Kπ
k+1(z(x)) ≥ v1 then

11: H̄ ← H̄
⋃
Ĥ

12: end if
13: end for
14: Ensure Hi ∩Hj = ∅ ∀Hi, Hj ∈ H̄
15: Kπ

k (q) = v1 · ηn
∫
H̄ pw(w|D)dw (Eqn (9))

16: end for
17: end for
18: return Kπ

14

5. Strategy Synthesis

We now focus on synthesising a strategy that maximizes our lower bound
on Preach, thus solving Problem 2. Notice that, while no global optimality
claim can be made about the strategy that we obtain, maximising the lower
bound guarantees that the true reach-avoid probability will still be greater
than the improved bound obtained after the maximisation.

Definition 1. A strategy π∗ is called maximally certified (max-cert), w.r.t.
the discretised value function Kπ, if and only if, for all x ∈ G∪S, it satisfies

Kπ∗

0 (z(x)) = sup
π

Kπ
0 (z(x)),

that is, the strategy π∗ maximises the lower bound of Preach.

It follows that, if Kπ∗
0 (z(x)) > 1 − δ for all x ∈ G ∪ S, then the max-cert

strategy π∗ is a solution of Problem 2. Note that a max-cert strategy is
guaranteed to exist when the set of admissible controls U is compact (Bert-
sekas and Shreve, 2004, Lemma 3.1), as we assume in this work. In the next
theorem, we show that a max-cert strategy can be computed via dynamic
programming with a backward recursion similar to that of Eqn (9).

Theorem 2. For 0 ≤ k < N and 0 = v0 < ... < vnp = 1, define the functions
K∗

k : Rn → [0, 1] recursively as follows

K∗
k(q) = sup

u∈U

(
1G(q) + 1S(q)

np∑
i=1

viR(q, k, u, i)
)
,

where R(q, k, u, i) and Hq,u,ϵ
k,i are defined as in Eqn (10). If π∗ is s.t. K∗

0 =

Kπ∗
0 , then π∗ is a max-cert strategy. Furthermore, for any x, it holds that

Kπ∗
0 (z(x)) ≤ Preach(G, S, [0, N], x|π∗).

Theorem 2 is a direct consequence of the Bellman principle of optimality
(Abate et al., 2008, Theorem 2) and it guarantees that for each state q ∈ S
and time k, we have that π∗(q, k) = argmaxu∈U

∑np

i=1 viR(q, k, u, i).
In Algorithm 2 we present a numerical scheme based on Theorem 2 to

find a max-cert policy π∗. Note that the optimization problem required to
be solved at each time step state, i.e. argmaxu∈U

∑np

i=1 viR(q, k, u, i), is non-
convex. Hence, in Algorithm 2, in Line 1, we start by partitioning the action
space U . Then, in Lines 4–15 for each action in the partition we estimate

15

the expectation of K∗
k+1 starting from q via ns samples taken from the BNN

posterior (250 in all our experiments). Finally, in Lines 11–14 we keep track
of the action maximising K∗

k+1.
The described approach for synthesis, while optimal in the limit of an

infinitesimal discretization of U , may become infeasible for large state and
action spaces. As a consequence, in the next subsection, we also consider
when π is parametrised by a neural network and thus can serve as a function
over a larger (even infinite) state space. Specifically, we show how a set of
neural controllers, one for each time step, can be trained in order to max-
imize probabilistic reach-avoid via Theorem 2. In Section 6 we empirically
investigate both controller strategies.

Algorithm 2 Numerical Synthesis of Action for region q at time k
Input: BNN model fw, safe region S, goal region G, action space U , abstract
state q ∈ Q, controller π, number of BNN samples ns

Output: Action maximizing Kπ

1: Υ← middle points of each region in a partition of U
2: κ∗ ← 0
3: u∗ ← 0
4: for u ∈ Υ do
5: κ̂← 0
6: for j from 0 to ns do
7: w′ ∼ P (w|D)
8: X̄ ← [fL

q,ϵ,k, f
U
q,ϵ,k] # Computed for q and u via (Eqn (12))

9: κ̂ = κ̂+
minx∈X̄ K∗

k+1(z(x))

ns

10: end for
11: if κ̂ > κ∗ then
12: κ∗ ← κ̂
13: u∗ ← u
14: end if
15: end for
16: return u∗

5.1. An Approach for Strategy Synthesis Based on Neural Networks

In this subsection we show how we can train a set of NN policies π0, ..., πN−1 :
Rn → U such that at each time step k, πk approximately solves the dynamic
programming equation in Theorem 2. Note that, because of the approxi-
mate nature of the NN training, the resulting neural policies will necessarily

16

be sub-optimal, but have the potential to scale to larger and more complex
systems, compared to the approach presented in Algorithm 2.

At time k we start with an initial set of parameters (weights and biases)
θk for policy πk. These parameters can either be initialized to θk+1, the
parameters synthesised at the previous time step of the value iteration for
πk+1, or to a policy employed to collect the data to train the BNN as in Gal
et al. (2016b), or simply selected at random. In our implementation where
no previous policy is available, we start with a randomly initialized NN, and
then at time k we set our initial neural policy with that obtained at time
k + 1. We then employ a scheme to learn a “safer” set of parameters via
backpropagation. In particular, we first define the following loss function
penalizing policy parameters that lead to an unsafe behavior for an ensemble
of NNs sampled from the BNN posterior distribution:

L(x, θk) = −α||
∑
w∈W̄

fw(x, πk(x))−Ak||2 + (1− α)||
∑
w∈W̄

fw(x, πk(x))−Rk||2,

(13)

where W̄ are a set of parameters independently sampled from the BNN pos-
terior pw(w|D), for a probability threshold 0 ≤ pt ≤ 1, Ak = {x : K

πk+1

k+1 (x) ≥
pt} and Rk = {x : K

πk+1

k+1 (x) ≤ 1 − pt} are the sets of states for which the
probability of satisfying the specification at time k+1 is respectively greater
than pt and smaller than 1− pt. For X ⊂ Rn, ||x−X||2 = inf x̄∈X ||x− x̄||2
is the standard L2 distance of a point from a set, and 0 ≤ α ≤ 1 is a pa-
rameter taken to be 0.25 in our experiments, that weights between reaching
the goal and staying away from “bad” states. Intuitively, the first term in
L(x, θk) enforces θk that leads to high values of K

πk+1

k+1 , while the second term
penalizes parameter sets that lead to small values of this quantity.
L(x, θk) only considers the behaviour of the dynamical system of Equation

(1) starting from initial state x. Then, in order to also enforce robustness
in a neighbourhood of initial states around x, similarly to the adversarial
training case (Madry et al., 2017), we consider the robust loss

L̄(x, θk) = max
x′:||x−x′||2≤ϵ

L(x, θk), (14)

Note that by employing Eqn (12) we obtain a differentiable upper bound of
L̄(x, θk), which can be employed for training θk.

17

5.2. Discussion on the Algorithms

In this section we provide further discussion of our proposed algorithms
including the complexity and the various sources of approximation that may
lead to looser guarantees. To frame this discussion, we start by highlighting
the complexity and approximation introduced by the chosen bound prop-
agation technique shared by both of the algorithms. We then proceed to
discuss how discretisation choices made with respect to the state-space, the
weight-space, and the observational noise, practically affect the tightness of
our probability bounds for both algorithms, and finally how the action-space
discretisation affects our synthesis algorithm.

Bound Propagation Techniques. Given that there are currently no methods
for BNN certification that are both sound and complete (Wicker et al., 2020,
2021b; Berrada et al., 2021), the evaluation of the R function will always
introduce some approximation error. While it is difficult to characterize
this error in general, it is known that for deeper networks, BNN certifica-
tion methods introduce more approximation than shallow networks (Wicker,
2021). The recently developed bounds from Berrada et al. (2021), have been
shown to be tighter than the IBP and LBP approaches from Wicker et al.
(2020) at the cost of computation complexity that is exponential in the num-
ber of dimensions of the state-space. In contrast, each iteration of the interval
bound propagation method proposed in and Wicker et al. (2020) requires the
computational complexity of four forward passes through the neural network
architecture.

Discretization Error and Complexity. While our formulation supports any
form of state space discretisation, we can assume for simplicity that each
dimension of the n-dimensional state-space is broken into m equal-sized ab-
stract states. This implies that certification of the system requires us to
evaluate the R function O

(
N(mn)

)
many times, where N is the time horizon

we would like to verify. Given that n is fixed, the user has control over m, the
size of each abstract state. For large abstract states, small m, one introduces
more approximation as the R function must account for all possible behaviors
in the abstract state. For small abstract states, large m, there is much less
approximation, but considerably larger runtime. Assume the c-dimensional
action space is broken into t equal portions at each dimension, then the com-
putational complexity of the algorithm becomes O

(
tcN(mn)

)
as each of the

mn states must be evaluated tc-many times to determine the approximately

18

optimal action. As with the state-space discretization, larger t will lead to a
more-optimal action choice but requires greater computational time.

6. Experiments

We provide an empirical analysis of our BNN certification and policy
synthesis methods. We begin by providing details on the experimental setting
in Section 6.1. We then analyse the performance of our certification approach
on synthesized policies in Section 6.2. Next, in Section 6.3, we discuss how
the choice of the BNN inference algorithm affects synthesis and certification
results. Finally, in Section 6.4 we study how our method scales with larger
neural network architectures and in higher-dimensional control settings.

6.1. Experimental Setting

We consider a planar control task consisting of a point-mass agent navi-
gating through various obstacle layouts. The point-mass agent is described
by four dimensions, two encoding position information and two encoding ve-
locity (Astrom and Murray, 2008). To control the agent there are two contin-
uous action dimensions, which represent the force applied on the point-mass
in each of the two planar directions. The task of the agent is to navigate to
a goal region while avoiding various obstacle layouts. The knowledge sup-
plied to the agent about the environment is the locations of the goal and
obstacles. The full set of equations describing the agent dynamics is given
in Appendix A.1. In our experiments, we analyse three obstacle layouts of
varying difficulty, which we name v1, v2 and Zigzag - visualized in the left
column of Figure 3. Obstacle layout v1 places an obstacle directly between
the agent’s initial position and the goal, forcing the agent to navigate its
way around it. Obstacle layout v2 extends this setting by adding two further
obstacles that block off one side of the state space. Finally, scenario Zigzag

has 5 interleaving triangles and requires the agent to navigate around them
in order to reach the goal.

In order to learn an initial policy to solve the task, we employ the episodic
learning framework described in Gal et al. (2016a). This consists of itera-
tively collecting data from deploying our learned policy, updating the BNN
dynamics model to the new observations, and updating our policy. When
collecting data, we start by randomly sampling state-action pairs and observ-
ing their resulting state according to the ground-truth dynamics. After this
initial sample, all future observations from the ground-truth environment

19

are obtained from deploying our learned policy. The initial policy is set by
assigning a random action to each abstract state. This is equivalent to tab-
ular policy representations in standard reinforcement learning (Sutton and
Barto, 1998). We additionally discuss neural network policies in Section 6.4.
Actions in the policy are updated by performing gradient descent on a sum
of discounted rewards over a pre-specified finite horizon. The reward of an
action is taken to be the ℓ2 distance moved towards the goal region penal-
ized by the ℓ2 proximity to obstacles as is done in (Sutton and Barto, 1998;
Gal et al., 2016a). For the learning of the BNN, we perform approximate
Bayesian inference over the neural network parameters. For our primary in-
vestigation, we select an NN architecture with a single fully connected hidden
layer comprising 50 hidden units, and learn the parameters via Hamiltonian
Monte Carlo (HMC). Larger neural network architectures are considered in
Section 6.4, while results for variational approximate inference are given in
Section 6.3.

Unless otherwise specified, in performing certification and synthesis we
employ abstract states spanning a width of 0.02 around each position dimen-
sion and 0.08 around each velocity dimension. Velocity values are clipped
to the range [−0.5, 0.1]. When performing optimal synthesis, we discretise
the two action dimensions for the point-mass problem into 100 possible vec-
tors which uniformly cover the continuous space of actions [−1, 1]. When
running our backward reachability scheme, at each state, we test all 100 ac-
tion vectors and take the action that maximizes our lower bound to be the
policy action at that state, thus giving us the locally optimal action within
the given discretisation. Further experimental details are presented in Ap-
pendix A and code to reproduce all results in this paper can be found at
https://github.com/matthewwicker/BNNReachAvoid.

The computational times for each system were roughly equivalent. This
is to be expected given that each has the same state space. The following
average times are reported for a parallel implementation of our algorithm run
on 90 logical CPU cores across 4 Intel Core Xeon 6230 clocked at 2.10GHz.
Training of the initial policy and BNN model takes in the order of 10 minutes,
6 hours for the certification with a horizon of 50 time steps, and 8 hours for
synthesis.

20

https://github.com/matthewwicker/BNNReachAvoid

Figure 2: Left Column: 200 simulated trajectories for the learned policy start-
ing from the initial state. Center Left Column: A 2D visualization of the
learned policy. Each arrow represents the direction of the applied force. Cen-
ter Right Column: The epistemic uncertainty for the learned dynamics model.
Right Column: Certified lower-bounds of probabilistic reach avoid for each ab-
stract state according to BNN and final learned policy.

6.2. Comparing Certification of Learned and Max-Cert Policies

In Figure 2 and Figure 3 we visualize systems from both learned and syn-
thesized policies. Each row represents one of our control environments and
is comprised of four figures. These figures show, respectively, simulations
from the dynamical system, BNN uncertainty, the control policy plotted as a
gradient field, and the certified safety probabilities. The first column of the
Figures depicts 200 simulated trajectories of the learned (Figure 2) or syn-
thesized (Figure 3) control policies on the BNN (whose uncertainty is plotted
along the second column). Notice how in both cases we visually obtain the

21

Figure 3: A version of each learned system after a new policy has been syn-
thesized from the reach-avoid specification. First column: 200 simulations of
the synthesized policy in the real environment. Second column: BNN epistemic
uncertainty given as the variance of the BNN predictive distribution. Third col-
umn: A visualization of the maximally certifiable policies, which demonstrate a
clearer tendency to avoid obstacles throughout the state space compared to the
policies in Figure 2. Fourth column: Synthesized policies have remarkably higher
lower-bounds than learned policies, corresponding plots for learned systems in Fig-
ure 2.

22

behaviour expected, with the overwhelming majority of the simulated trajec-
tories safely avoiding the obstacles (red regions in the figure) and terminating
in the goal (green region). A vector field associated with the policy is de-
picted in the third column of the figures. Notice that, the actions returned
by our synthesis method intuitively align with the reach-avoid specification,
that is, synthesized actions near the obstacle and out-of-bounds are aligned
with moving away from such unsafe states. Exceptions to this are repre-
sented by locations where the agent is already unsafe and that, as such, are
not fully explored during the BNN learning phase (e.g., the lower triangles
in the Zigzag scenario), locations where two directions are equally optimal
(e.g., in the top right corner of the v1 environment) and locations which are
not along any feasibly optimal path (e.g., the lower right corner of v2) and
as such are not accounted by the BNN learning.

In Table 1 we compare the certification results of the synthesized policy
against the initial learned policy. As the synthesized policy is computed by
improving on the latter, we expect the former to outperform the learned
policy in terms of the guarantees obtained. This is in fact confirmed and
quantified by the results of Table 1, which lists, for each of the three environ-
ments, the average reach-avoid probability estimated over 500 trajectories,
the average certification lower bound across the state space, and the certifi-
cation coverage (i.e., the proportion of states where our algorithm returns a
non-zero probability lower bound). This notion of coverage only requires a
state to be certified with a probability above 0, and so it is most informative
when evaluated together with the average lower-bound and visual inspection
of Figure 2 and Figure 3.

Indeed, the synthesized policy significantly improves on the certifica-
tion guarantees given by the learned policy, and consistently so across the
three environments analysed, with the lower bound improving by a factor of
roughly 3.5. This considerable improvement is to be expected as worst-case
guarantees can be poor for deep learning systems that are not trained with
specific safety objectives(Mirman et al., 2018; Gowal et al., 2018; Wicker
et al., 2021a). In particular, for both the V1 and Zigzag case studies, we ob-
serve that the average lower bound jumps from roughly 0.2 to greater than
0.7. Moreover, the most significant improvements are obtained in the most
challenging case, i.e., the Zigzag environment, with the certification coverage
increasing of a 4.75 factor. Interestingly, also the average model performance
increases for the synthesized models. Intuitively this occurs because while
in the learning of the initial policy passing through the obstacle is only pe-

23

Learned Policy
Performance Avg. Lower Bound Cert. Coverage

V1 0.789 0.212 0.639
V2 0.805 0.192 0.484
Zigzag 0.815 0.189 0.193

Synthesized Policy (Optimal)
Performance Avg. Lower Bound Cert. Coverage

V1 0.94 0.789 0.808
V2 0.94 0.597 0.624
Zigzag 1.00 0.710 0.910

Table 1: Certification comparisons for learned and synthesized policy across the
three environments. Performance indicates the proportion of simulated trajec-
tory that respect the reach-avoid specification. Avg. Lower Bound is the mean
certification probability across all states. Cert. Coverage is the proportion of
states that we are able to certify (i.e., with a non-zero lower bound for the reach-
avoid probability).

nalised by a continuous factor, the synthesized policy strives to rigorously
enforce safety across the BNN posterior. A visual representation of these
results is provided in the last column of Figure 2 for the learned policy and
in Figure 3 for the synthesized policy. We note that the uncertainty maps in
these figures are identical as the BNN model is not changed, only the policy.

6.3. On the Effect of Approximate Inference

The results provided so far have been generated with BNN dynamical
models learned via HMC training. However, different inference methods pro-
duce different approximations of the BNN posterior thus leading to different
dynamics approximations and hence synthesized policies.

Table 2 and the plots in Figures 4 and 5 analyse the effect of approxi-
mate inference on both learned and synthesized policies, comparing results
obtained by HMC with those obtained by VI training on the v1 scenario. We
notice that also in the case of VI the synthesized policy significantly improves
on the initial policy. Interestingly, the certification results over the learned
policy for VI are higher than those obtained for HMC, but the results are
comparable for the synthesized policies. In fact, it is known in the litera-
ture that VI tends to under-estimate uncertainty (Myshkov and Julier, 2016;

24

Learned Policy
Performance Avg. Lower Bound Coverage

Var. Inference 0.832 0.399 0.696
Ham. Monte Carlo 0.789 0.212 0.639

Synthesized Policy (Optimal)
Performance Avg. Lower Bound Coverage

Var. Inference 1.00 0.762 0.851
Ham. Monte Carlo 0.94 0.789 0.808

Table 2: Certification comparisons for learned and synthesized policy between
VI and HMC BNN learning on obstacle layout V1. Performance indicates the
proportion of simulated trajectory that respect the reach-avoid specification. Avg.
Lower Bound is the mean certification probability across all states. Cert. Cov-
erage is the proportion of states that we are able to certify with non-zero proba-
bility.

Michelmore et al., 2020) and is more susceptible to model misspecification
(Masegosa, 2020). As such, being probabilistic, the bound obtained is tighter
for VI where the uncertainty is lower than that of HMC which provides a
more conservative representation of the agent dynamics. For example, we
see in the first two rows of Table 2 that the average lower bound achieved
for the variational inference posterior is 1.88 times higher than the bounds
for HMC posterior. However, our synthesis method reduces this gap between
HMC and VI, while still accounting for the higher uncertainty of the former,
and hence the more conservative guarantees.

While HMC approximates the posterior by relying on a Monte Carlo es-
timate of it, VI is a gradient-based technique, where the number of training
epochs (i.e., the number of full sweeps through the dataset) is a key hyper-
parameter. We thus analyse the effect of training epochs in the quality of the
dynamics obtained in Figure 6, along with the effect on the synthesized poli-
cies and the certificates obtained for such policies. The left plot of the figure
shows a set of predicted trajectories over a 10 time-step horizon for a varying
number of training epochs, with the ground truth behaviour highlighted in
red. The BNN trajectories are color-coded based on the number of epochs
each dynamics model was trained for. In yellow, we see that the BNN which
has only been trained for 10 epochs displays considerable error in its iterative
predictions. This is reduced considerably for a model trained for 50 epochs,

25

HMC Posterior

VI Posterior

Figure 4: Top Row: Visualization of the learned system using HMC to approxi-
mately infer dynamics. Bottom Row: Visualization of the learned system using
VI to approximately infer dynamics. We highlight that the VI approximation dis-
plays a 5 to 10 times reduction in epistemic uncertainty.

but the cumulative error after 10 epochs is still considerable. Finally, as ex-
pected, for models trained for 250 and 1500 epochs we empirically observe a
trend toward convergence to the ground truth.

We notice that the policy and certifications directly reflect the quality of
the approximation. In fact, as we increase the model fit, we see that there
are significant improvements in both the intuitive behavior of the synthesized
policy as well as the resulting guarantees we are able to compute.

6.4. Depth Experiments

In this section, we evaluate how our method performs when we vary the
depth of the BNN dynamics model considered. In Figure 7, we plot the
certified reach-avoid probabilities for a learned policy and a one, two, and
three-layer BNN dynamics model where each layer has a width of 12 neu-
rons. Similar architectures are found in the BNNs studied in recent related
work (Lechner et al., 2021). Other than the depth of the BNN, all the other
variables in the experiment are held equal (e.g., number of episodes during

26

HMC Posterior

VI Posterior

Figure 5: Top Row: Visualization of the synthesized policy and its performance
based on the HMC dynamics model. Bottom Row: Visualization of the synthe-
sized policy and its performance based on the VI dynamics model.

learning, discretization of state-space, and number of BNN samples consid-
ered for the lower bound). The learning procedure results in BNN models
with roughly equivalent losses and in policies that are qualitatively similar,
see Appendix A.3 for further visualizations. Given that the key factors of the
system have been held equal, we notice a decrease in our certified lower bound
as depth increases. Specifically, the average lower bound for the one-layer
model is 0.811, for the two-layer model it is 0.763, and for the three-layer
model it decreases further to 0.621. Figure 7 clearly demonstrates that as the
BNN dynamics model becomes deeper, then our lower bound becomes more
conservative. This finding is consistent with existing results in certification
of BNNs (Wicker et al., 2020; Berrada et al., 2021) and DNNs (Gowal et al.,
2018; Mirman et al., 2018). We note, however, that when the verification
parameters are refined, i.e., more samples from the BNN are taken, we are
able to certify the three-layer system with an average certified lower-bound
of 0.867 (see Appendix A.3). These additional BNN samples increase the
runtime of our certification procedure by 1.5 times.

27

Synthesis with
each model

Figure 6: Analysis for number of training epochs used in performing VI training
on the V1 environment. Left: sample of 10-step agent trajectories obtained with
BNNs trained with VI and different number of epochs (red: ground truth trajec-
tory). Right: synthesis and certification results for a selection of training epochs.

7. Related Work

Certification of machine learning models is a rapidly growing area (Gehr
et al., 2018; Katz et al., 2017; Gowal et al., 2018; Wicker et al., 2022). While
most of these methods have been designed for deterministic NNs, recently
safety analysis of Bayesian machine learning models has been studied both
for Gaussian processes (GPs) (Grosse et al., 2017; Cardelli et al., 2019b;
Blaas et al., 2020) and BNNs (Athalye et al., 2018; Cardelli et al., 2019a;
Wicker et al., 2020), including methods for adversarial training (Liu et al.,
2019; Wicker et al., 2021a). The above works, however, focus exclusively on
the input-output behaviour of the models, that is, can only reason about
static properties. Conversely, the problem we tackle in this work has addi-
tional complexity, as we aim to formally reason about iterative predictions,
i.e., trajectory-level behaviour of a BNN interacting in a closed loop with a
controller.

Iterative predictions have been widely studied for Gaussian processes (Gi-

28

Figure 7: We vary the depth of the BNN used to learn the dynamics and observe
its effects on our certified safety probabilities over the first half of the Puck-V1
state-space. From left to right we plot the lower-bound reach-avoid probabilities
for a one-layer BNN dynamics model, a two-layer BNN dynamics model, and a
three-layer BNN dynamics model.

rard et al., 2003) and safety guarantees have been proposed in this setting in
the context of model-based RL with GPs (Jackson et al., 2020; Polymenakos
et al., 2019; Berkenkamp et al., 2017, 2016). However, all these works are
specific to GPs and cannot be extended to BNNs, whose posterior predictive
distribution is intractable and non-Gaussian even for the more commonly
employed approximate Bayesian inference methods (Neal, 2012). Recently,
iterative prediction of neural network dynamic models have been studied
(Wei and Liu, 2021; Adams et al., 2022) and methods to certify these mod-
els against temporal logic formulae have been derived (Adams et al., 2022).
However, these works only focus on standard (i.e., non-Bayesian) neural net-
works with additive Gaussian noise. Closed-loop systems with known (de-
terministic) models and control policies modelled as BNNs are considered in
(Lechner et al., 2021). In contrast with our work, Lechner et al. (2021) can
only support deterministic models without noisy dynamics, only focus on the
safety verification problem, and are limited to BNN posterior with unimodal
weight distribution.

Various recent works consider verification or synthesis of RL schemes
against reachability specifications (Sun et al., 2019; Könighofer et al., 2020;
Bacci and Parker, 2020). None of these approaches, however, support both
continuous state-action spaces and probabilistic models, as in this work.
Continuous action spaces are supported in (Hasanbeig et al., 2019), where
the authors provide RL schemes for the synthesis of policies maximising
given temporal requirements, which is also extended to continuous state- and

29

action-spaces in (Hasanbeig et al., 2020). However, the guarantees resulting
from these model-free algorithms are asymptotic and thus of a different na-
ture than those in this work. The work of Haesaert et al. (2017) integrates
Bayesian inference and formal verification over control models, additionally
proposing strategy synthesis approaches for active learning (Wijesuriya and
Abate, 2019). In contrast to our paper these works do not support unknown
noisy models learned via BNNs.

A related line of work concerns the synthesis of runtime monitors for pre-
dicting the safety of the policy’s actions and, if necessary, correct them with
fail-safe actions (Alshiekh et al., 2018; Avni et al., 2019; Bouton et al., 2019;
Fulton and Platzer, 2019; Phan et al., 2020). These approaches, however, do
not support continuous state-action spaces or require some form of ground-
truth mechanistic model for safety verification (as opposed to our data-driven
BNN models).

8. Conclusions

In this paper, we considered the problem of computing the probability
of time-bounded reach-avoid specifications for dynamic models described by
iterative predictions of BNNs. We developed methods and algorithms to
compute a lower bound of this reach-avoid probability. Additionally, relying
on techniques from dynamic programming and non-convex optimization, we
synthesized certified controllers that maximize probabilistic reach-avoid. In
a set of experiments, we showed that our framework enables certification of
strategies on non-trivial control tasks. A future research direction will be
to investigate techniques to enhance the scalability of our methods so that
they can be applied to state-of-the-art reinforcement learning environments.
However, we emphasise that the benchmark considered in this work remains
a challenging one for certification purposes, due to both the non-linearity
and stochasticity of the models, and the sequential, multi-step dependency
of the predictions. Thus, this paper makes an important step toward the
application of BNNs in safety-critical scenarios.

Acknowledgements

This project received funding from the ERC under the European Union’s
Horizon 2020 research and innovation programme (FUN2MODEL, grant
agreement No. 834115).

30

References

Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Prob-
abilistic reachability and safety for controlled discrete time stochastic hy-
brid systems. Automatica, 44(11):2724–2734, 2008.

Steven Adams, Morteza Lahijanian, and Luca Laurenti. Formal control
synthesis for stochastic neural network dynamic models. arXiv preprint
arXiv:2203.05903, 2022.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer,
Scott Niekum, and Ufuk Topcu. Safe reinforcement learning via shield-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Karl J. Astrom and Richard M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, Princeton, NJ,
USA, 2008.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial exam-
ples. In International Conference on Machine Learning, pages 274–283.
PMLR, 2018.

Guy Avni, Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger,
Bettina Könighofer, and Stefan Pranger. Run-time optimization for
learned controllers through quantitative games. In International Confer-
ence on Computer Aided Verification, pages 630–649. Springer, 2019.

Edoardo Bacci and David Parker. Probabilistic guarantees for safe deep
reinforcement learning. In International Conference on Formal Modeling
and Analysis of Timed Systems, pages 231–248. Springer, 2020.

Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. Safe controller
optimization for quadrotors with Gaussian processes. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), pages 493–
496, 2016.

Felix Berkenkamp, Matteo Turchetta, Angela P Schoellig, and Andreas
Krause. Safe model-based reinforcement learning with stability guaran-
tees. In NIPS, 2017.

31

Leonard Berrada, Sumanth Dathathri, Krishnamurthy Dvijotham, Robert
Stanforth, Rudy R Bunel, Jonathan Uesato, Sven Gowal, and M Pawan
Kumar. Make sure you’re unsure: A framework for verifying probabilistic
specifications. Advances in Neural Information Processing Systems, 34:
11136–11147, 2021.

Dimitir P Bertsekas and Steven Shreve. Stochastic optimal control: the
discrete-time case. Athena Scientific, 2004.

Arno Blaas, Andrea Patane, Luca Laurenti, Luca Cardelli, Marta
Kwiatkowska, and Stephen Roberts. Adversarial robustness guarantees
for classification with Gaussian processes. In International Conference on
Artificial Intelligence and Statistics, pages 3372–3382. PMLR, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural network. In International Conference on
Machine Learning, pages 1613–1622. PMLR, 2015.

Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura, Mykel J
Kochenderfer, and Jana Tumova. Reinforcement learning with probabilis-
tic guarantees for autonomous driving. arXiv preprint arXiv:1904.07189,
2019.

Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane', Luca
Bortolussi, and Guido Sanguinetti. Robustness of bayesian neural networks
to gradient-based attacks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 15602–15613. Curran Associates, Inc., 2020.

Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, An-
drea Patane, and Matthew Wicker. Statistical guarantees for the ro-
bustness of bayesian neural networks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19, pages 5693–5700. International Joint Conferences on Artificial In-
telligence Organization, 7 2019a. doi: 10.24963/ijcai.2019/789. URL
https://doi.org/10.24963/ijcai.2019/789.

Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, and Andrea Patane. Ro-
bustness guarantees for Bayesian inference with Gaussian processes. In

32

https://doi.org/10.24963/ijcai.2019/789

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 7759–7768, 2019b.

Nathalie Cauchi, Luca Laurenti, Morteza Lahijanian, Alessandro Abate,
Marta Kwiatkowska, and Luca Cardelli. Efficiency through uncertainty:
Scalable formal synthesis for stochastic hybrid systems. In Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation
and Control, pages 240–251, 2019.

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-
based and data-efficient approach to policy search. In In Proceedings of
the International Conference on Machine Learning, 2011.

S Depeweg, JM Hernández-Lobato, F Doshi-Velez, and S Udluft. Learning
and policy search in stochastic dynamical systems with bayesian neural
networks. In 5th International Conference on Learning Representations,
ICLR 2017-Conference Track Proceedings, 2017.

Guido Fubini. Sugli integrali multipli. Rend. Acc. Naz. Lincei, 16:608–614,
1907.

Nathan Fulton and André Platzer. Verifiably safe off-model reinforcement
learning. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 413–430. Springer, 2019.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving
PILCO with Bayesian neural network dynamics models. In International
Conference in Machine Learning (ICML), 2016a.

Yarin Gal, Rowan Thomas McAllister, and Carl Edward Rasmussen. Im-
proving PILCO with Bayesian neural network dynamics models. In Data-
Efficient Machine Learning workshop, volume 951, page 2016, 2016b.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin Vechev. Ai2: Safety and robustness cer-
tification of neural networks with abstract interpretation. In 2018 IEEE
S&P, pages 3–18. IEEE, 2018.

Agathe Girard, Carl Edward Rasmussen, Joaquin Quinonero Candela, and
Roderick Murray-Smith. Gaussian process priors with uncertain inputs

33

application to multiple-step ahead time series forecasting. In Advances in
neural information processing systems, pages 545–552, 2003.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics, pages 249–256.
JMLR Workshop and Conference Proceedings, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel,
Chongli Qin, Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and
Pushmeet Kohli. On the effectiveness of interval bound propagation for
training verifiably robust models. Neural Information Processing Systems
(NeurIPS), 2018.

Kathrin Grosse, David Pfaff, Michael Thomas Smith, and Michael Backes.
How wrong am i?-studying adversarial examples and their impact on un-
certainty in gaussian process machine learning models. arXiv preprint
arXiv:1711.06598, 2017.

S. Haesaert, P.M.J. V.d. Hof, and A. Abate. Data-driven and model-based
verification via Bayesian identification and reachability analysis. Automat-
ica, 79(5):115–126, 2017.

M. Hasanbeig, D. Kroening, and A. Abate. Deep reinforcement learning with
temporal logics. In Proceedings of FORMATS, LNCS 12288, pages 1–22,
2020.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening.
Certified reinforcement learning with logic guidance. arXiv preprint
arXiv:1902.00778, 2019.

Jingyi Huang and Andre Rosendo. Deep vs. deep bayesian: Reinforce-
ment learning on a multi-robot competitive experiment. arXiv preprint
arXiv:2007.10675, 2020.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gor-
don Gordon Wilson. What are bayesian neural network posteriors really

34

like? In International conference on machine learning, pages 4629–4640.
PMLR, 2021.

John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. Safety
verification of unknown dynamical systems via gaussian process regression.
In 2020 59th IEEE Conference on Decision and Control (CDC), pages 860–
866. IEEE, 2020.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochender-
fer. Reluplex: An efficient SMT solver for verifying deep neural networks.
In International Conference on Computer Aided Verification, pages 97–
117. Springer, 2017.

Mohammad Emtiyaz Khan and H̊avard Rue. The bayesian learning rule.
arXiv preprint arXiv:2107.04562, 2021.

Bettina Könighofer, Roderick Bloem, Sebastian Junges, Nils Jansen, and
Alex Serban. Safe reinforcement learning using probabilistic shields. In
International Conference on Concurrency Theory: 31st CONCUR 2020:
Vienna, Austria (Virtual Conference). Schloss Dagstuhl-Leibniz-Zentrum
fur Informatik GmbH, Dagstuhl Publishing, 2020.

Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model
checking. In International School on Formal Methods for the Design
of Computer, Communication and Software Systems, pages 220–270.
Springer, 2007.

Mathias Lechner, Dorde Žikelić, Krishnendu Chatterjee, and Thomas Hen-
zinger. Infinite time horizon safety of bayesian neural networks. Advances
in Neural Information Processing Systems, 34, 2021.

Faming Liang. Bayesian neural networks for nonlinear time series forecasting.
Statistics and computing, 15(1):13–29, 2005.

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn:
Improved adversarial defense through robust Bayesian neural network.
7th International Conference on Learning Representations, ICLR 2019-
Conference Track Proceedings, 2019.

35

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083, 2017.

Andres Masegosa. Learning under model misspecification: Applications to
variational and ensemble methods. Advances in Neural Information Pro-
cessing Systems, 33:5479–5491, 2020.

Rowan McAllister and Carl Edward Rasmussen. Data-efficient reinforce-
ment learning in continuous state-action gaussian-pomdps. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli, Yarin
Gal, and Marta Kwiatkowska. Uncertainty quantification with statistical
guarantees in end-to-end autonomous driving control. In 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 7344–
7350. IEEE, 2020.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract
interpretation for provably robust neural networks. In International Con-
ference on Machine Learning, pages 3578–3586. PMLR, 2018.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

Pavel Myshkov and Simon Julier. Posterior distribution analysis for bayesian
inference in neural networks. In Workshop on Bayesian Deep Learning,
NIPS, 2016.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of
markov chain monte carlo, 2(11):2, 2011.

Dung T Phan, Radu Grosu, Nils Jansen, Nicola Paoletti, Scott A Smolka, and
Scott D Stoller. Neural simplex architecture. In NASA Formal Methods
Symposium, pages 97–114. Springer, 2020.

36

Kyriakos Polymenakos, Alessandro Abate, and Stephen Roberts. Safe policy
search using Gaussian process models. In Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and Multi Agent Systems, pages
1565–1573. IFAAMS, 2019.

Kyriakos Polymenakos, Luca Laurenti, Andrea Patane, Jan-Peter Cal-
liess, Luca Cardelli, Marta Kwiatkowska, Alessandro Abate, and Stephen
Roberts. Safety guarantees for iterative predictions with Gaussian pro-
cesses. In 2020 59th IEEE Conference on Decision and Control (CDC),
pages 3187–3193. IEEE, 2020.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Has-
sabis, Thore Graepel, et al. Mastering atari, go, chess and shogi by plan-
ning with a learned model. corr abs/1911.08265 (2019). arXiv preprint
arXiv:1911.08265, 2019.

S. Esmaeil Zadeh Soudjani and A. Abate. Probabilistic reach-avoid compu-
tation for partially-degenerate stochastic processes. IEEE Transactions on
Automatic Control, 58(12):528–534, 2013.

Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. Formal verification of
neural network controlled autonomous systems. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Con-
trol, pages 147–156, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, 1998.

Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Anne Romer, Hen-
ner Schmidt, and Jan Peters. Stability of controllers for gaussian process
forward models. In International Conference on Machine Learning, pages
545–554. PMLR, 2016.

Tianhao Wei and Changliu Liu. Safe control with neural network dynamic
models. arXiv preprint arXiv:2110.01110, 2021.

Matthew Wicker. Adversarial robustness of Bayesian neural networks. PhD
thesis, University of Oxford, 2021.

37

Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska.
Probabilistic safety for bayesian neural networks. In Jonas Peters and
David Sontag, editors, Proceedings of the 36th Conference on Uncertainty
in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine
Learning Research, pages 1198–1207. PMLR, 03–06 Aug 2020.

Matthew Wicker, Luca Laurenti, Andrea Patane, Zhuotong Chen, Zheng
Zhang, and Marta Kwiatkowska. Bayesian inference with certifiable ad-
versarial robustness. In Arindam Banerjee and Kenji Fukumizu, editors,
Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine Learning Research,
pages 2431–2439. PMLR, 13–15 Apr 2021a.

Matthew Wicker, Luca Laurenti, Andrea Patane, Nicola Paoletti, Alessandro
Abate, and Marta Kwiatkowska. Certification of iterative predictions in
bayesian neural networks. In Uncertainty in Artificial Intelligence, pages
1713–1723. PMLR, 2021b.

Matthew Robert Wicker, Juyeon Heo, Luca Costabello, and Adrian Weller.
Robust explanation constraints for neural networks. In The Eleventh In-
ternational Conference on Learning Representations, 2022.

V. Wijesuriya and A. Abate. Bayes-adaptive planning for data-efficient ver-
ification of uncertain Markov decision processes. In Proceedings of QEST,
LNCS 11785, pages 91–108, 2019.

38

Appendix A. Further Experimental Details

Appendix A.1. Agent Dynamics

The puck agent is derived from a classical control problem of controlling
a vehicle from an initial condition to a goal state or way point (Astrom
and Murray, 2008). This scenario is more challenging than other standard
benchmarks (i.e. inverted pendulum) due to both the increase state-space
dimension and to the introduction of momentum which makes control more
difficult. The state space of the unextended agent is a four vector containing
the position in the plane as well as a vector representing the current velocity.
The control signal is a two vector representing a change in the velocity (i.e.
an acceleration vector). The dynamics of the puck can be given as a the
following system of equations where η determines friction, m determines the
mass of the puck, and h determines the size of the time discretization.

q̇ = Aq +Bc

A =


1 0 h 0
0 1 0 h
0 0 1− hη/m 0
0 0 0 1− hη/m



B =


0 0
0 0

h/m 0
0 h/m


The n dimensional extension of the above dynamics is done by simply

noting the structure of the matrices and generalizing them. In the upper-left
of matrix A we have the 2 × 2 identity matrix which is extended to n × n.
Similarly, the upper-right of A is extended to h times the n × n identity
matrix, and the lower-right is 1 − hη/m times the n × n identity matrix.
For each environment and including the n dimensional generalizations, time
resolution, h, is set to 0.35, the mass of the object, m, is fixed to 5.0, and
the friction coefficient, η, is set to 1.0.

Appendix A.2. Learning Parameters

In this section we provide the hyper-parameters used for learning an initial
policy and for synthesizing NN policies. In particular, we give full param-
eters for the environmental interaction required to learn our policies, BNN

39

Episodic Learning Parameters
Episodes # Trajectories Max Horizon Policy Size c

V1 15 20 25 35× 35× 5× 5 0.25
V2 10 15 45 35× 35× 5× 5 0.25
Zigzag 25 15 35 25× 25× 3× 3 0.125

Table A.3

parameters to perform approximate inference, and NN parameters for neural
policy synthesis.

Episodic Parameters. In Table A.3 we give the parameters for our episodic
learning set up. We provide the duration (number of episodes) and the
amount of data collected for each episode (number of trajectories). We high-
light that as this is a model-based set up, we require many fewer simulations
of the system than corresponding model-free algorithms. Each environment
also has an empirically tuned maximum horizon (maximum duration for each
trajectory), policy size (discretization of the state-space), and obstacle aver-
sion, c, as discussed in Section 5.

BNN Architectures. In Table A.4, we report the HMC learning parameters
for our initial set up. We give details on NN architecture size, and highlight
that our hidden layer uses sigmoid activation functions while the output
is equipped with a linear activation function. The burn-in perior of the
HMC chain is the number of samples which are automatically not included
in the posterior but help initialize the chain prior to use of the Metropolis-
Rosenbluth-Hastings correction step Neal (2012). For each environmental set
up we employ a leap-frog numerical integrator with 10 steps. The prior for all
NN architectures is selected based on 2 times the variance perscribed by Glo-
rot and Bengio (2010) which has shown to be an empirically well-performing
prior in previous works Wicker et al. (2020, 2021a). The likelihood used to
fit the BNN dynamics model is a mean squared error (ℓ2) loss function.

When using variations inference, we use 1500 epochs to fit a posterior
approximated by Stochastic Weight Averaging Guassian (SWAG) which does
not admit a weight-space prior. We use a learning rate of 0.025 and a decay
of 0.1.

Neural Policy Parameters. In our experiments, we employ an NN policy, πθ,
comprised of a single hidden layer with 36 neurons. This is first trained

40

BNN Learning Parameters
Layers # Neurons Acivations Samps. Burn In LR Decay

V1 1 50 sigmoid 500 25 0.05 0.1
V2 1 50 sigmoid 500 5 0.05 0.1
Zigzag 1 50 sigmoid 250 15 0.1 0.1

Table A.4

to mimic actions that are sampled randomly at uniform. This training is
done with SGD and is done for 15000 sampled states and actions. The
NN policy is trained with 100 epochs of stochastic gradient descent with
learning rate 0.00075 every time it is trained. This occurs after a BNN
has been fit and used to update the actions according to loss presented in
Section 5 save for no adversarial noise is taken into consideration. When we
do perform synthesis, all of the same parameters are used: 15000 actions are
considered and updated in parallel by SGD w.r.t. the adversarial loss defined
in Section 5.

Figure A.8: Left: Certified lower bound for forward invariance with respect to
an increasing number of state-space dimensions. Center: Certified lower bound
as a function of the width of the BNN Right: Comparison between synthesised
policy and learned policy on the 12-dimensional puck problem.

41

Figure A.9: We plot the learned policies corresponding to each of the dynamical
systems whose certification is visualized in Figure 7. The left plot is the policy
learned along with a one-layer BNN, the center plot is the policy learned along
with a two-layer BNN, and the right plot is the policy learned along with a three-
layer BNN.

Figure A.10: Lower-bound reach-avoid probabilities for the three layer BNN
after refining the certification parameters from the procedure in Figure 7.

Appendix A.3. Further Scalability Experiments

In this section we provide further analysis and discussion of experiments
on BNN depth in our framework and provide further experiments exploring
how our method scales with state-space dimensions.

Appendix A.3.1. Further Detail on BNN Depth Experiments

In Figure A.9 we plot the policies that correspond to each of the BNNs
learned for our depth experiments discussed in Section 6.4 and visualized in

42

Figure 7. We highlight that each of the policies are qualitatively very similar,
though they may have slight quantitative differences. In Figure A.10 we plot
the result of the more computationally expensive certification on the three-
layer BNN. Though our method struggles to get strong certification for the
system with a three-layer BNN in Figure 7, by tuning the certification pa-
rameters we are able to get a much tighter lower-bound (average lower-bound
safety probability 0.621 → 0.867). We notice that many of the previously
uncertified (i.e., lower-bound probability 0.0) states have lower-bounds above
0.6 when more BNN samples are used in the certification procedure.

Appendix A.3.2. Scaling with State-Space Dimensionality

In this section, we evaluate how our method performs while varying the
dimensionality of the environment and the size of the BNN architecture. In
particular we perform the analyses using an n-dimensional generalizations of
the v1 layout - described by 3n continuous values, n dimensions for position,
velocity, and action spaces, respectively. For such high-dimensional state
space, full discretisation of the state space becomes infeasible. In order to
overcome this, we consider a forward-invariance variant of the reach-avoid
property from our previous experiments, where the agent goal is iteratively
moved at each step in order to guide it to the global goal. In other words, here
we consider one-step reachability (N = 1), which allows us to significantly
reduce the set of discretised states to consider (by restricting to neighbour
states that can be reached in one step only).

The results for these analyses are given in Figure A.8. The left plot of
the figure, shows how even for 48 dimensions we are still able to obtain non-
vacous bounds at 0.5, but as expected, the quality of the bound decreases
quickly with the size of the state space and actions. The centre plot depicts
the certified bounds obtained for an increasing number of BNN hidden units,
up until 1000 for the 12-dimensional v1 scenario. Finally, the right plot
of Figure A.8 shows that our synthesis algorithm strongly improves on the
initially learned policy, even in higher-dimensional settings. We accomplish
this improvement by following the neural policy synthesis method presented
in Section 5 where the worst-case ϵ for tuning our actions is set to 0.025.

This analysis of the forward invariance property allows us to understand
how our algorithm, particularly the evaluation of the R function, scales to
larger NNs and state spaces. However, for state-space dimensions that are
greater than the ones analyzed in the prior section of this paper, certification
of the entire state-space is computationally infeasible due to the exponential

43

nature of the discretization involved.

Appendix B. Proofs

Proof of Proposition 1 In what follows, we omit π (which is given and
held constant) from the probabilities for a more compact notation. The proof
is by induction. The base case is k = N , for which we have

V π
N (x) = 1G(x) = Preach(G, S, x, [N,N]),

which holds trivially. Under the assumption that, for any given k ∈ [0, N−1],
it holds that

V π
k+1(x) = Preach(G, S, x, [k + 1, N]), (B.1)

we show the induction step for time step k. In particular,

Preach(G, S, x, [k,N]|π) =

Pr(xk ∈ G|xk = x) +
N∑

j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k, j),xj′ ∈ S|xk = x) =

1G(x) + 1S(x)
N∑

j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k, j),xj′ ∈ S|xk = x)

Now in order to conclude the proof we want to show that

N∑
j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k, j) + 1,xj′ ∈ S|xk = x) =∫
V π
k+1(x̄)p(x̄ | (x, πk(x)),D)dx̄.

44

This can be done as follow

N∑
j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 1, j),xj′ ∈ S|xk = x) =

Pr(xk+1 ∈ G|xk = x)+

N∑
j=k+2

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 1, j),xj′ ∈ S|xk = x) =∫
G

p(x̄ | (x, πk(x)),D)dx̄+

N∑
j=k+2

∫
S

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 2, j),xj′ ∈ S ∧ xk+1 = x̄|xk = x)dx̄ =∫
G

p(x̄ | (x, πk(x)),D)dx̄+

N∑
j=k+2

∫
S

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 2, j),xj′ ∈ S|xk+1 = x̄)p(x̄ | (x, πk(x)),D)dx̄ =∫ (
1G(x̄)+

1S(x̄)
N∑

j=k+2

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 2, j),xj′ ∈ S|xk+1 = x̄)
)
p(x̄ | (x, πk(x)),D)dx̄ =∫

V π
k+1(x̄)p(x̄ | (x, πk(x)),D)dx̄

where the third step holds by application of Bayes rule over multiple events.
Proof of Theorem 1 The proof is by induction. The base case is k = N ,

for which we have

inf
x∈q

V π
N (x) = inf

x∈q
1G(x) = 1G(q) = Kπ

N(q).

Next, under the assumption that for any k ∈ {0, N − 1} it holds that

inf
x∈q

V π
k+1(x) ≥ Kπ

k+1(q),

45

we can work on the induction step: in order to derive it, it is enough to show
that for any ϵ > 0∫

V π
k+1(x̄)p(x̄ | (x, πk(x)),D)dx̄ ≥

F ([−ϵ, ϵ]|σ2)n
np∑
i=1

∫
Hq,π

k,i

vi−1pw(w|D)dw,

where F ([−ϵ, ϵ]|σ2) = erf(ϵ√
2σ2

) is the cumulative function distribution for a

normal random variable with zero mean and variance σ2 being within [−ϵ, ϵ].
This can be argued by rewriting the first term in parameter space (recall
that the stochastic kernel T is induced by pw(w|D)) and providing a lower
bound, as follows:∫

V π
k+1(x̄)p(x̄ | (x, πk(x)),D)dx̄ =

(By definition of predictive distribution)∫ (∫
V π
k+1(x̄)p(x̄|(x, u), w)dx̄

)
pw(w|D)dw ≥

(By V k
k+1 being non negative everywhere and by the Gaussian likelihood)∫ (∫ fw(x,π(x,k)−ϵ

fw(x,π(x,k))+ϵ

V π
k+1(x̄)N (x̄|fw(x, π(x, k)), σ2 · I)dx̄

)
pw(w|D)dw ≥

(By standard inequalities of integrals)∫
inf

γ̄∈[−ϵ,ϵ]
V π
k+1(f

w(x, π(x, k) + γ̄)
(∫

[−ϵ,ϵ]n
N (γ|0, σ2)dγ

)n
pw(w|D)dw ≥

(By the assumptions that for i ̸= j Hq,π
k,i and Hq,π

k,j are non-overlapping)(∫
[−ϵ,ϵ]

N (γ|0, σ2)dγ
)n np∑

i=1

∫
Hq,π,ϵ

k,i

inf
γ̄∈[−ϵ,ϵ]

V π
k+1(f

w(x, π(x, k) + γ̄)pw(w|D)dw,

(By the fact that vi ≤ inf
x∈q

V π
k+1(f

w(x, π(x, k) + γ̄))

(∫
[−ϵ,ϵ]

N (γ|0, σ2)dγ
)n np∑

i=1

vi

∫
Hq,π,ϵ

k,i

pw(w|D)dw,

where the last step concludes the proof because, by the induction hypothesis,
we know that for q′ ⊆ Rn

inf
x̄∈q′

V π
k+1(x̄) ≥ Kπ

k+1(q
′)

46

and by the construction of setsHq,π
k,i for each of its weightsKπ

k+1(f
w(x̄, π(x, k))

is lower bounded by vi−1.

47

	Introduction
	Bayesian Neural Networks
	Problem Formulation
	Problem Statements

	Methodology
	Certifying Reach-Avoid Specifications
	Lower Bound on Preach
	Lower Bounding of the Value Functions
	Computation of Projecting Weight Set
	Probabilistic Reach-Avoid Algorithm

	Strategy Synthesis
	An Approach for Strategy Synthesis Based on Neural Networks
	blackDiscussion on the Algorithms

	Experiments
	Experimental Setting
	Comparing Certification of Learned and Max-Cert Policies
	On the Effect of Approximate Inference
	Depth Experiments

	Related Work
	Conclusions
	Further Experimental Details
	Agent Dynamics
	Learning Parameters
	Further Scalability Experiments
	Further Detail on BNN Depth Experiments
	Scaling with State-Space Dimensionality

	Proofs

