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Abstract

We consider the problem of computing reach-avoid
probabilities for iterative predictions made with
Bayesian neural network (BNN) models. Specifi-
cally, we leverage bound propagation techniques
and backward recursion to compute lower bounds
for the probability that trajectories of the BNN
model reach a given set of states while avoiding
a set of unsafe states. We use the lower bounds
in the context of control and reinforcement learn-
ing to provide safety certification for given control
policies, as well as to synthesize control policies
that improve the certification bounds. On a set of
benchmarks, we demonstrate that our framework
can be employed to certify policies over BNNs pre-
dictions for problems of more than 10 dimensions,
and to effectively synthesize policies that signifi-
cantly increase the lower bound on the satisfaction
probability.

1 INTRODUCTION

While retaining the main advantages intrinsic to deep learn-
ing, Bayesian neural networks (BNNs) reason about un-
certainty in a principled and probabilistic manner, making
them a particularly appealing model class for tackling safety-
critical scenarios. In principle, their predictive uncertainty
can be propagated through the decision pipeline to enable
formal evaluations and analyses of a system under aleatoric
conditions [McAllister and Rasmussen, 2016], which can
model partial knowledge of a system as well as its intrinsic
stochasticity [Depeweg et al., 2016].

In scenarios such as sequential planning, time-series fore-
casting/control and model-based reinforcement learning, to
evaluate a model w.r.t. a control policy (or strategy) one
often needs to be able to make several predictions corre-
lated across time [Liang, 2005]. While multiple models

can be learned for each time step, a common setting is for
these predictions to be made iteratively by the same ma-
chine learning model [Huang and Rosendo, 2020], where
the predicted model output at each step is a function of the
model output at the previous step and possibly an additional
control input. We refer to this setting as iterative predic-
tions. The challenge with BNN models is that they output
probability distributions, posing the problem of successive
predictions over a stochastic input. Even when the BNN pos-
terior weights are estimated using analytical approximations,
its deep and non-linear nature makes iterative predictions
with BNNs an analytically intractable problem [Neal, 2012].
To the best of our knowledge, computing formal bounds on
the probability of BNN-based iterative predictions remains
an open problem. Such bounds would enable one to provide
safety guarantees over a given (or learned) control policy,
which is a necessary precondition before deploying the pol-
icy in a real-world environment [Polymenakos et al., 2020,
Vinogradska et al., 2016].

In this paper, we develop a method for the computation of
probabilistic guarantees for iterative predictions with BNNs
over reach-avoid specifications. A reach-avoid specification,
also known as constrained reachability [Soudjani and Abate,
2013], requires that the trajectories of a dynamical system
reach a goal region over a given (finite) time horizon, whilst
avoiding a given set of unsafe states. Probabilistic reach-
avoid is a key property for formal analysis of stochastic
processes [Abate et al., 2008], underpinning richer temporal
logic specifications [Baier et al., 2008, Mnih et al., 2016,
Cauchi et al., 2019]. Even though the exact computation of
reach-avoid probabilities for iterative prediction with BNNs
is analytically intractable, we show how to derive a guaran-
teed lower bound by solving a backward iterative problem
obtained via a discretisation of the state space. In particular,
starting from the final time step, we back-propagate lower
bounds to reach-avoid probabilities through previous time
steps and for each discretised portion of the state-space, be-
ginning from the goal region. The propagation of bounds
through consecutive time steps leverages bound propaga-
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tion techniques for BNNs [Wicker et al., 2020]. By further
combining these with bound propagation techniques for
(non-Bayesian) neural networks (NNs) [Gowal et al., 2018,
Gehr et al., 2018], we then discuss how the resulting lower
bound can be employed to provide certificates for NN poli-
cies learned over the BNN dynamical system. Finally, we
demonstrate how our bound can be used to tackle the syn-
thesis problem, where given an initial policy we seek to
maximise the lower bound associated to a given reach-avoid
specification.

In a set of case studies, we confirm the scalability of our
methodology. We begin by considering four planar control
problems involving obstacle layouts of varying complex-
ity. We then study the scalability of our framework on two
locomotion problems from the Mujoco robotic physics sim-
ulator [Ray et al., 2019]. With our approach, we can derive
probabilistic reach-avoid certifications for planar control
tasks, including a 25-dimensional car agent. Finally, we
demonstrate how controllers can be successfully improved
by using our synthesis algorithm. In summary, this paper
makes the following contributions:

• We show how probabilistic reach-avoid for iterative
prediction with BNNs can be formulated as the solution
of a backward computation problem, and design an
algorithm for the lower bounding of the latter.

• We discuss how our lower-bound can be used for policy
certification and, further, for synthesising NN control
policies via dynamic programming.

• We demonstrate the applicability of our methodology
on a set of case studies of more than 10 dimensions.

Related Work Certification of machine learning models
is a rapidly growing area [Gehr et al., 2018, Katz et al., 2017,
Gowal et al., 2018]. While most of these methods have been
designed for deterministic NNs, recently safety analysis of
Bayesian machine learning models has been studied both
for Gaussian processes (GPs) [Grosse et al., 2017, Cardelli
et al., 2019b, Blaas et al., 2020] and BNNs [Athalye et al.,
2018, Cardelli et al., 2019a, Wicker et al., 2020], including
methods for adversarial training [Liu et al., 2018, Wicker
et al., 2021]. The above works, however, focus exclusively
on the input-output behaviour of the models, that is, can
only reason about static properties. Conversely, the problem
we tackle in this work has additional complexity, as we aim
to formally reason about iterative predictions, i.e., trajectory-
level behaviour of a BNN interacting in closed-loop with
a controller. Iterative predictions have been widely stud-
ied for Gaussian processes [Girard et al., 2003] and safety
guarantees have been proposed in this setting in the context
of model-based RL with GPs [Jackson et al., 2020, Poly-
menakos et al., 2019, Berkenkamp et al., 2016]. However,
all these works are specific to GPs and cannot be extended to
BNNs, whose posterior predictive distribution is intractable
and non-Gaussian even for the more commonly employed

approximate Bayesian inference methods [Neal, 2012].

Various recent works consider verification or synthesis of
RL schemes against reachability specifications [Sun et al.,
2019, Könighofer et al., 2020, Bacci and Parker, 2020].
None of these approaches, however, support both continu-
ous state-action spaces and probabilistic models, as in this
work. Continuous action spaces are supported in [Hasan-
beig et al., 2020], where the authors provide RL schemes
for the synthesis of policies maximising given temporal re-
quirements. However, the guarantees resulting from these
model-free algorithms are asymptotic, and thus of different
nature than those in this work. The work of Haesaert et al.
[2017] integrates Bayesian inference and formal verification
over control models, additionally proposing strategy syn-
thesis approaches for active learning [Haesaert et al., 2016,
Wijesuriya and Abate, 2019]. In contrast to our paper these
works do not support unknown noisy models learned via
BNNs.

2 BACKGROUND

In this section we briefly review BNNs and modeling of
discrete-time dynamical systems with BNNs.

Bayesian Neural Networks Let fw : Rm → Rn be a
feed-forward NN architecture, where w ∈ Rnw is the vec-
tor containing all the weights and biases of the network.
BNNs extend NNs by having a prior distribution placed
over the network parameters, pw(w), with w being the vec-
tor of random variables associated to the weights vector.
Given a dataset D, a BNN posterior, pw(w|D), is inferred
approximately by means of Bayes’ rule [Neal, 2012]. Unfor-
tunately, pw(w|D) is analytically intractable. Thus, various
techniques have been developed to approximate pw(w|D),
including Hamiltonian Monte Carlo (HMC) [Neal, 2012]
and Variational Inference (VI) [Blundell et al., 2015]. While
we conduct experiments on VI, the techniques we describe
are general and can be employed to HMC methods, e.g., by
using the approach of Wicker et al. [2021].

Iterative Predictions of BNNs Given a trained BNN, fw,
we consider its associated dynamical system described by
the following discrete-time stochastic control process:

xk = fw(xk−1,uk−1) + vk, uk = πk(xk), (1)
k ∈ N>0, xk,vk ∈ Rn, uk ∈ U ⊆ Rc,

where vk is a random variable modelling an additive
noise term with stationary zero mean Gaussian distribu-
tionN (x̄|0, σ2 · I). The vector xk is the model state at time
k; uk represents the control input applied at time k, selected
from an admissible, compact, set U ⊂ Rc by a (determinis-
tic) feedback Markov strategy (policy) π : Rn × N→ U .1

1For our settings time-dependent Markov strategies are opti-
mal [Bertsekas and Shreve, 2004].



Intuitively, the model in Eqn (1) represents a noisy con-
trolled discrete-time stochastic process whose time evolu-
tion is given by iterative predictions of the BNN fw, and
is controlled by π. In this setting, fw defines the transition
probabilities of the system and pw(w|D) is employed to es-
timate the posterior predictive p(x̄|(x, u),D) that describes
the probability density of the system at the next time step
being x̄, given that the current state and action are (x, u),
and it is defined as:

p(x̄|(x, u),D) =

∫
Rnw
N (x̄|fw(x, u), σ2 · I)pw(w|D)dw,

where N (x̄|fw(x, u), σ2 · I) is the Gaussian likelihood in-
duced by vk and centered at the NN output [Neal, 2012].
Observe that the posterior predictive distribution induces a
probability density function over the state space. In iterative
prediction settings this implies that at each step the state
vector xk fed into the BNN is a random variable. Hence,
a principled propagation of the BNN uncertainty through
consecutive time steps poses the problem of predictions over
stochastic inputs. In Section 4 we will tackle this for the
particular case of reach-avoid properties, by designing a
backward computation scheme that starts its calculations
from the goal region. We remark that p(x̄|(x, u),D) is de-
fined by marginalizing over pw(w|D). Hence, the particular
p(x̄|(x, u),D) depends on the particular approximate infer-
ence method employed to estimate the posterior distribution.
As such, the bounding results that we derive are to be under-
stood to be valid only for each specifically trained BNN.

3 PROBLEM FORMULATION

For an action u ∈ Rc, a subset of states X ⊆ Rm and a
starting state x ∈ Rm, we call T (X|x, u) the stochastic
kernel associated to the dynamical system. T (X|x, u) de-
scribes the one-step transition probability of the model of
Eqn. (1) and is defined by integrating the predictive posterior
distribution with input (x, u) over X:

T (X|x, u) =

∫
X

p(x̄|(x, u),D)dx̄.

Note that the integral is defined here over the state space
(Rn). In what follows, it will be convenient at times to work
in the parameter space of the BNN instead. To do so, we can
re-write the stochastic kernel by applying Fubini’s theorem
to switch the integration order, thus obtaining:

T (X|x, u) =

∫
Rnw

[∫
X

N (x̄|fw(x, u), σ2 · I)dx̄

]
pw(w|D)dw.

From the definition of T it follows that, under a strategy π
and for a given initial condition x0, xk is a Markov process
with a well defined probability measure Pr uniquely gener-
ated by the stochastic kernel T [Bertsekas and Shreve, 2004,

Proposition 7.45] and such that for X0, Xk ⊆ Rn:

Pr[x0 ∈ X0] = 1X0
(x0),

Pr[xk ∈ Xk|xk−1 = x, π] = T (Xk|x, πk−1(x)).

The definition of Pr allows one to make probabilistic state-
ments over the model in Eqn (1). In Problem 1 we consider
probabilistic reach-avoid, that is the probability that a tra-
jectory of xk reaches a goal region within the state space,
whilst always avoiding a given set of (bad) states.

Problem 1 (Computation of Probab. Reach-Avoid)
Given a strategy π, a goal region G ⊆ Rm, a finite-time
horizon [0, N ] ⊆ N, and a safe set S ⊆ Rm such that
G ∩ S = ∅, compute for any given x0 ∈ G ∪ S

Preach(G,S, x0, [0, N ]|π) = Pr
[
∃k ∈ [0, N ],xk ∈ G∧

(2)

∀0 ≤ k′ < k,xk′ ∈ S | x0 = x0, π
]
.

Note that, in Problem 1, the strategy π is given, and the goal
is to quantify the probability with which the trajectories of
xk satisfy the given specification.

In Problem 2 below we generalise the previous problem
and seek to synthesise a controller π that guarantees that
Preach(G,S, x0, [0.N ]|π) is above a given threshold δ.

Problem 2 (Strategy Synthesis for Probab. Reach-Avoid)
For a given tolerance 0 < δ < 1 and x0 ∈ G ∪ S, find a
strategy π : Rn × R≥0 → Rc such that

Preach(G,S, x0, [0, N ] | π) > 1− δ. (3)

Outline of the Approach In Section 4 we show how
Preach(G,S, x, [k,N ]|π) can be formulated as the solution
of a backward iterative computational procedure, where the
uncertainty of the BNN is propagated backward over time
starting from the goal region. We will show that such a
formulation of Preach has two main advantages. Firstly, it
allows us to define techniques for certification of BNNs to
compute a sound lower bound on Preach, thus guaranteeing
that the process xk satisfies the specification with a given
probability (Section 4.1). Secondly, relying on the differ-
entiability of the resulting lower bound, it allows one to
synthesize control strategies to improve the lower bound on
the reach-avoid probability.

4 PROBABILISTIC REACH-AVOID

In this section we show how Preach(G,S, x, [k,N ]|π) can
be formulated as the solution of a backward iterative proce-
dure, which will allow us to compute a lower bound on its
value.



Given a time 0 ≤ k < N and strategy π, consider the value
functions V πk : Rn → [0, 1], recursively defined as

V πN (x) = 1G(x),

V πk (x) = 1G(x) + 1S(x)

∫
V πk+1(x̄)p

(
x̄|(x, πk(x)),D

)
dx̄.

(4)

Intuitively, V πk is computed backwards starting from the
goal region G at k = N , where it is initialised at 1. The
computation then proceeds backwards for each state x
by combining the current values with the transition prob-
abilities coming from the system of Eqn. (1). The fol-
lowing proposition, proved in the Supplementary Mate-
rial, guarantees that V π0 (x) is indeed a reformulation of
Preach(G,S, x, [0, N ]|π).

Proposition 1 For 0 ≤ k ≤ N and x0 ∈ G ∪ S, it holds
that

Preach(G,S, x0, [k,N ]|π) = V πk (x).

The backward recursion in Eqn (4) does not generally admit
a solution in closed-form, as it would require integrating
over the BNN posterior predictive distribution, which is
itself analytically intractable. A computational scheme for
its lower bounding is derived in the following section.

4.1 LOWER BOUND ON Preach

We develop a computational approach based on the discreti-
sation of the state space, and on the backward formulation
of Eqn (4), for calculating a lower bound for Preach. As it
is a pessimistic estimation, a lower bound on reach-avoid
can thus be used to provide probabilistic certification of a
strategy controlling the BNN dynamical system.

Our computational approach is illustrated in Figure 1. Let
Q = {q1, ..., qnq} be a partition of S ∪G in nq regions. We
denote with z : Rn → Q the function that associates to a
state in Rn the corresponding partitioned state in Q. For
each 0 ≤ k ≤ N we iteratively build a set of functions
Kπ
k : Q → [0, 1] such that for all x ∈ G ∪ S we have that

Kπ
k (z(x)) ≤ V πk (x). Intuitively, Kπ

k provides a discretised
lower bound for the value functions on the computation of
Preach.

The functionsKπ
k are obtained by propagating backward the

BNN predictions from time k = N , where we set Kπ
N (q) =

1G(q), with 1G(q) being the indicator function (that is, 1 if
q ⊆ G and 0 otherwise). Then, for each k < N , we first
discretize the set of possible probabilities in np sub-intervals
0 = v0 ≤ v1 ≤ ... ≤ vnp = 1. Hence, for any q ∈ Q and
probability interval [vi, vi+1], we compute a lower bound
R(q, k, π, i) on the probability that, starting from any state
in q at time k, we reach in the next step a region that has
probability ∈ [vi, vi+1] of safely converging to the goal

Figure 1: Examples of functions Kπ
k , which are lower bounds

of V πk for any 0 ≤ k ≤ N . On the left, we consider the first
step of our backward algorithm, where we compute Kπ

N−1(q) by
computing the probability that xN ∈ G given that xN−1 ∈ q. On
the right, we consider the subsequent step. We outline the state
we want to verify in red and the goal region in green. With the
orange arrow we represent the 0.95 transition probability of the
BNN dynamical model, and in pink we represent the worst-case
probabilities spanned by the BNN output. On top, we show where
each of these key terms comes into play in Eqn. (6).

region. The resulting values are used to build Kπ
k (as we

will detail in Eqn (6)). For a given q ⊂ S,Kπ
k (q) is obtained

as the sum over i ofR(q, k, π, i) multiplied by vi−1, i.e., the
lower value that Kπ

k+1 obtains in all the states of the i− th
region. Note that the discretisation of the probability values
does not have to be uniform, but can be adaptive for each
q ∈ Q. A heuristic for picking the value of thresholds vi
will be given in Algorithm 1. In what follows, we formalise
the intuition behind this computational procedure.

Lower Bounding of the Value Functions For a given
strategy π, consider a constant η ∈ (0, 1) and ε =√

2σ2erf−1(η), which are used to bound the value of the
noise, vk, at any given time.2 Then, for 0 ≤ k < N , con-
sider the functions Kπ

k : Q→ [0, 1] defined recursively as
follows:

Kπ
N (q) = 1G(q), (5)

Kπ
k (q) = 1G(q) + 1S(q)

np∑
i=1

vi−1R(q, k, π, i), (6)

where

R(q, k, π, i) = ηn
∫
Hq,π,εk,i

pw(w|D)dw, (7)

Hq,π,ε
k,i = {w ∈ Rnw | ∀x ∈ q,∀γ ∈ [−ε, ε]n, it holds that:

vi−1 ≤ Kπ
k+1(q′) ≤ vi, with q′ = z(fw(x, πk(x)) + γ)}.

The key component for combining the above computations
together is R(q, k, π, i), which bounds the probability that,
starting from q at time k, we have that xk+1 will be in a

2The thresholds are such that it holds that Pr(|v(i)
k | ≤ ε) = η.

In the experiments of Section 6 we select η = 0.99.



region q′ such that Kπ
k+1(q′) ∈ [vi, vi+1]. In fact, Hq,π,ε

k,i

defines the weights for which that is true, so that integra-
tion of the posterior pw(w|D) over the Hq,π,ε

k,i will return
the probability mass for the BNN dynamical system tran-
sitioning from q to q′ with probability in [vi, vi+1]. The
computation of Eqn (6) then reduces to computing the set of
weights Hq,π,ε

k,i , which we call the projecting weight set. A
method to compute a safe under-approximation H̄ ⊆ Hq,π,ε

k,i

is discussed below. Before describing that, we analyze the
correctness of the above recursion.

Theorem 1 Given x ∈ Rn, for any k ∈ {0, ..., N} and
q = z(x), assume that Hq,π,ε

k,i ∩H
q,π,ε
k,j = ∅ for i 6= j. Then:

inf
x∈q

V πk (x) ≥ Kπ
k (q).

A proof of Theorem 1 is given in the Supplementary Ma-
terial. Note that the assumption on the null intersection
between different projecting weight sets required in Theo-
rem 1 can always be enforced by taking their intersection
and complement.

Computation of Projecting Weight Sets Theorem 1 al-
lows us to compute a safe lower bound to Problem 1, by re-
lying on an abstraction of the state space, that is, through the
computation of Kπ

0 (q). This can be evaluated once the pro-
jecting set of weight values Hq,π,ε

k,i associated to [vi−1, vi]

is known.3 Unfortunately, direct computation of Hq,π,ε
k,i is

intractable. Nevertheless, a method for its lower bounding
was developed by Wicker et al. [2020] in the context of
adversarial perturbations for one-step BNN predictions, and
can be directly adapted to our settings.

The idea is that a safe approximation H̄ ⊆ Hq,π,ε
k,i is built

by sampling weight boxes of the shape Ĥ = [wL, wU ],
according to the posterior, and checking whether:

vi−1 ≤ Kπ
k+1(z(fw(x, πk(x)) + γ)) ≤ vi,
∀x ∈ q, ∀w ∈ Ĥ, ∀γ ∈ [−ε, ε]n. (8)

Finally, H̄ is built as a disjoint union of boxes Ĥ that sat-
isfy the above condition. In order to apply this method
to our setting, we propagate the abstract state q through
the policy function πk(x), so as to obtain a bounding box
Π̂ = [πL, πU ] such that πL ≤ πk(x) ≤ πU for all x ∈ q.
In the experiments we focus on the case in which πk(x) is
given by a NN controller, so that methods for bound propa-
gation of NNs can be used for the computation of Π̂ [Gowal
et al., 2018, Gehr et al., 2018]. The results from Wicker et al.
[2020] can then be used to propagate q, Π̂ and Ĥ through
the BNN, that is, to compute values fLq,ε,k and fUq,ε,k such

3In the case of Gaussian VI, in fact, the integral of Equation
(7) can be computed in terms of the erf function, while Monte
Carlo or numerical integration techniques can be used in general.

that, for all x ∈ q, γ ∈ [−ε, ε]n, w ∈ Ĥ it holds that:

fLq,ε,k ≤ fw(x, πk(x)) + γ ≤ fUq,ε,k. (9)

Furthermore, fLq,ε,k and fUq,ε,k are differentiable w.r.t. to the
input vector. Finally, the two bounding values can be used to
check whether or not the condition in Eqn (8) is satisfied, by
simply checking whether [fLq,ε,k, f

U
q,ε,k] propagated through

Kπ
k+1 is within [vi, vi+1]. Now that we have the necessary

ingredients, in the following we describe our algorithm for
the lower bounding of Preach.

Probabilistic Reach-Avoid Algorithm In Algorithm 1 we
summarize our approach for computing a lower bound for
Problem 1. For simplicity of presentation, we consider the
case np = 2, (i.e., we partition the range of probabilities in
just two intervals [0, v1], [v1, 1]); the case np > 2 follows
similarly. The algorithm proceeds by first initializing the
reach-avoid probability for the partitioned states q inside
the goal region G to 1 (Eqn (5)). Then, for each of the N
time steps and for each one of the remaining partition states
q, in line 4 we set the threshold probability v1 equal to the
maximum value that Kπ attains at the next time step in the
states in the neighbourhood of q (which we capture with
a hyper-parameter ρx > 0). We found this heuristic for
the choice of v1 to work well in practice (notice that the
obtained bound is formal irrespective of the choice of v1,
and different choices could potentially be explored). We then
proceed in the computation of Eqn (6). This computation is
performed in lines 5–14. First, we initialise to the null set the
current under-approximation of the projecting weight set, H̄ .
We then sample ns weights boxes Ĥ by sampling weights
from the posterior, and expanding them with a margin ρw
heuristically selected (lines 6-8). Then, for each of these sets
we first propagate the state q, policy function, and weight set
H̄ to build a box X̄ according to Eqn (9) (line 9), which is
then accepted or rejected based on the value that Kπ at the
next time step attains in states in X̄ (lines 10-12). Kπ

N−i(q)
is then computed in line 14 by integrating pw(w|D) over
the union of the accepted sets of weights.

5 STRATEGY SYNTHESIS

We now focus on the synthesis problem. More specifically,
instead of bounding the reach-avoid probability for a given
strategy π, we are interested in synthesising such a strat-
egy. In particular, we do this by finding the strategy π∗

that maximises the lower bound to Preach that we devel-
oped in the previous section. Notice that, while no global
optimality claim can be made about the strategy that we
obtain, the maximisation of a lower bound guarantees that
the true reach-avoid probability will still be greater than the
improved bound obtained after the maximisation.

Definition 1 A strategy π∗ is called maximal certified (max-
cert), w.r.t. to the discretised value function Kπ , if and only



Algorithm 1 Probabilistic Reach-Avoid for BNNs
Input: BNN model fw, safe region S, goal region G, discretiza-
tion Q of S ∪G, time horizon N , neural controller π, number of
BNN samples ns, weight margin ρw, state space margin ρx
Output: Lower bound on Kπ

1: For all 0 ≤ k ≤ N set Kπ
k (q) = 1 iff q ⊆ G and 0 otherwise

2: for k ← N to 1 do
3: for q ∈ Q \G do
4: v1 ← maxx∈[q−ρx,q+ρx] K

π
k+1(z(x))

5: H̄ ← ∅ {H̄ is the set of safe weights}
6: for desired number of samples, ns do
7: w′ ∼ P (w|D)
8: Ĥ ← [w′ − ρw, w′ + ρw]
9: # Propagation according to (Eqn (9))

10: X̄ := [fLq,ε,k, f
U
q,ε,k]← Prop.(q, π, Ĥ, γ)

11: if Kπ
k+1(X̄) ≥ v1 then

12: H̄ ← H̄
⋃
Ĥ

13: end if
14: end for
15: Kπ

k (q) = v1 · ηn
∫
H̄
pw(w|D)dw (Eqn (6))

16: end for
17: end for

if, for all x ∈ G ∪ S, it satisfies

Kπ∗

0 (z(x)) = sup
π
Kπ

0 (z(x)),

that is, the strategy π∗ maximises the lower bound of Preach.

It follows that, if Kπ∗

0 (z(x)) > 1 − δ for all x ∈ G ∪ S,
then the max-cert strategy π∗ is a solution of Problem 2.
Note that a max-cert strategy is guaranteed to exist when
the set of admissible controls U is compact [Bertsekas and
Shreve, 2004, Lemma 3.1] (as we assume in this work).
In the next theorem we show that a max-cert strategy can
be computed via dynamic programming with a backward
recursion similar to that of Eqn (6).

Theorem 2 For 0 ≤ k < N and 0 = v0 < ... < vnp = 1,
define the functionsK∗k : Rn → [0, 1] recursively as follows

K∗k(q) = sup
u∈U

(
1G(q) + 1S(q)

np∑
i=1

viR(q, k, u, i)
)
,

where R(q, k, u, i) and Hq,u,ε
k,i are defined as in Eqn (7).

If π∗ is s.t. K∗0 = Kπ∗

0 , then π∗ is a max-cert strat-
egy. Furthermore, for any x, it holds that Kπ∗

0 (z(x)) ≤
Preach(G,S, [0, N ], x|π∗).

A proof for Theorem 2 can be derived similarly as in [Abate
et al., 2008, Theorem 2]. Theorem 2 allows one to recur-
sively compute a max-cert strategy, by selecting at each time
step the action that maximizes the function K. Note that
the resulting π∗ will generally depend on the time step k.
We remark that Theorem 2 does not make any assumption

on the form of π, so that any can be employed, as long
as the set in which π varies is parametrised by a compact
set. In the following we focus, in particular, on the case in
which the set of allowed strategies U is parametrised by a
NN controller π, which is of particular relevance for RL
applications [Arulkumaran et al., 2017]. Namely, we show
how a neural controller π that builds on the lower bound
can be computed using standard training methods for NNs.

Training of Certified NN Strategies In Theorem
2, the only term that depends on the input π is∑np
i=1 viR(q, k, π, i). Hence, in order to synthesise a strat-

egy one needs to find the neural controller input, over U ,
that maximizes the integral of pw(w|D) over the projecting
weight sets Hq,π,ε

k,i .

Let Lreward be a (differentiable) reward function for the
control problem at hand (which we obtain at training time
by employing standard model-based RL algorithms [Arulku-
maran et al., 2017]). Our goal is to synthesize the parameters
of πk such that Lreward is maximised, while also maximis-
ing the lower-bound to Preach. In order to do so, we pro-
ceed in a similar fashion to methods for adversarial training
of NNs with bound propagation techniques [Gowal et al.,
2018]. Consider PLBreach(π) to be the lower bound to prob-
abilistic reach-avoid that we have developed in Section 4.
Interestingly, because of differentiability of PLBreach(π) the
policy parameters can be optimised using standard out-of-
the-box gradient descent methods for NNs. We remark that,
even though Theorem 2 guarantees existence of a max-cert
strategy, performing gradient descent does not guarantee to
find one. However, it does provide significant local improve-
ments of the reach-avoid probability around the starting
policy π, as we show in the next section.

6 EXPERIMENTS

In this section, we empirically study the effectiveness of our
framework on several benchmarks of varying complexity. In
particular, we consider three different environments (Simple
Navigation, Obstacle Avoidance, and Zigzag) and 5 differ-
ent agents (2D Kinematic Car [Fan et al., 2018], 2D Puck
[Astrom and Murray, 2008], 3D Hovercraft [Miller et al.,
2020], Ball Robot, and Car Robot [Ray et al., 2019]). In each
setting, we apply Algorithm 1 to certify policies learned via
existing model-based strategy synthesis algorithms [Chua
et al., 2018], including an experiment to study the effect
of the parameter choices in Algorithm 1. We then proceed
to an investigation of our synthesis methodology and an
evaluation of the tightness of our lower bounds against em-
pirical probability estimates. Additional details for each of
the benchmarks, environments, and agents can be found in
the Supplementary Material along with a further discussion
of motivation and limitations of our setting. 4

4Link to code: github.com/matthewwicker/BNNIterativePrediction.



Figure 2: Top Row (I): the Simple Navigation environment with a 2D Puck agent. Middle Row (II): the obstacle environment with a
2D Puck agent. Bottom Row (III): the Zigzag environment with 2D Kinematic Car agent. We note that the blue rectangle in column
(A) corresponds to area verified in column (D). For each environment we analyse the main components of the system. Column (A): a
collection of 25 simulated runs using the learned policy indicates that the algorithm is successful in learning a policy to reach the goal.
Column (B): the per-point NN control actions show that the controller has learned a reasonable policy even outside of the explored region.
Column (C): Uncertainty quantification shows that where policy exploration has occurred the BNN is most certain. Column (D): We are
able to verify non-trivial probabilistic guarantees for each system.

Experimental Settings For BNN and neural policy train-
ing we utilize a standard model-based control loop. Specif-
ically, we learn both model and policy concurrently in an
episodic learning framework, whereby we operate in the en-
vironment with our policy (following the PE-TS algorithm
[Chua et al., 2018]) and aggregate a dynamics dataset on
which our BNN model is trained at the end of each episode.
The trajectory sampling stage of PE-TS selects the action
sequence which minimizes a cumulative discounted reward.
We reward improvement of the agent’s distance to the goal
with a weighted lp and, in the presence of obstacles, we add
a penalty according to the distance to the obstacles. For all
the experiments we initialize our BNN with a Gaussian prior
over the parameters; approximate Bayesian inference is per-
formed using Variational Online Gauss-Newton (VOGN)
[Khan et al., 2018].

Simple Navigation The first environment we consider is
a navigation task where an agent must navigate from any
initial state to the origin. Albeit basic, this task becomes
challenging with high dimensional agents and noisy sensors.
In this scenario we have that the goal region G is a box cen-
tered at (0.05, 0.05) (see Figure 2(I A)). For the Hovercraft
agent the safe set is restricted to be all states with altitude
within the interval (0.0, 0.5]. For the Puck, we encode a
safe set that restricts the velocity of the object to be less
than 1.0 at all times. For the Mujoco agents (Ball and Car
Robots) we bound the change in velocity to be less than
0.25 and in these cases (where dimensionality is high) we

do not discretize dimensions of the state space which are not
safety-critical, e.g., the direction of the main sensor on the
Car Robot. In Figure 2 row (I), we visualize the actions and
simulated trajectories of the Puck agent. We note that the
uncertainty of our BNN model is well calibrated, showing
higher uncertainty in regions where less data are available.
We observe that states with low uncertainty are those for
which the lower bound of safely reaching the origin is higher
and close to 1, even order of magnitude time steps away
from the goal region (for the experiment we considered
N = 30).

Obstacle Avoidance The obstacle avoidance task extends
the simple navigation environment by adding an obstacle
directly between the agent and the goal (see Figure 2(II A)).
For the Hovercraft, which is not bound to the 2D plane,
we assume the obstacle extends infinitely high. In Figure 2
row (II), we visualize the actions and simulated trajectories
of the Puck agent. We observe in column (D) that, in this
setting, the state-space portion directly behind the obstacle
attains a reach-avoid probability of 0, even though sampled
trajectories in Figure 2(II A) are able to safely reach the
goal region. This is due to the conservatism of our approach
that computes only a lower bound of Preach.

Zigzag The Zigzag environment is taken from [Fan et al.,
2018]. In this task, agents are placed in the fourth quadrant
and are tasked with navigating through a series of equilat-
eral triangles which impede the path to the goal region (see



Figure 2(III A)). The goal region is a box centered at (0, 0).
In the Supplementary Material we also analyse a harder
version of the Zigzag problem. In Figure 2 row (III), we
visualize the actions and simulated trajectories of the Kine-
matic Car agent. The key observation here is that the large
size of the obstacles (see column (D)) makes the verification
much more challenging and Algorithm 1 produces overly
conservative probabilities for a large portion of initial states.
In what follows (see Table 1) we will show that, by modify-
ing the training loss of the agent, as discussed in Section 5,
one is able to obtain substantially tighter bounds.

Effect of Parameter Bounding for the Car Robot Agent
We analyse the effect of Algorithm 1 parameters on a single-
step prediction on a 25D agent, the Mujoco Car, and the
Simple Navigation environment. We just focus on a prob-
abilistic version of the forward invariance property consid-
ered in Ames et al. [2014]: the policy is considered safe at a
given time if the action taken does not move the agent away
from the goal region at the next time step. In Figure 3, we
show how increasing the number of samples from the poste-
rior (parameter ns in Algorithm 1), as well as increasing the
size of the weight margin (parameter ρw in Algorithm 1), im-
proves the resulting lower bound. Intuitively, by increasing
the sample size and the weight margin we are able to build
a larger under approximation of the projecting weight set.
We should stress that, if the weight margin is too large, then
this can be detrimental for performance due to increased
approximation.

Figure 3: Top Left: Visualization of the car in the Mujoco sim-
ulator. Top Right: Increasing the weight margin has a positive
effect on the bound. Bottom: Increasing the number of samples
considered has a considerably positive effect on the bound.

Synthesis of Certified Strategies In Table 1, we com-
pare the lower bound obtained from Algorithm 1 with an
empirical estimate obtained by simulating xk (Eqn 1) with
a randomly picked initial state (we use 100 trajectory simu-
lations to compute each empirical estimate). In this case we
consider a subset of the verified states in Figure 2, which

Env. Agent Emp. Cert. Emp. (S) Cert. (S)
Simple Puck 0.738 0.4444 0.986 0.9595
Zigzag 2D Car 1.00 0.7859 1.00 0.8550
Simple Hover 1.00 0.6676 1.00 0.9706

Table 1: Lower bound obtained following Algorithm 1 compared
to an empirical estimate. Emp. are the empirical estimates each
computed over 100 trajectories simulations. Cert. is the average
of the lower bound obtained considering only states in Q where
the sampled trajectories start. (S) denotes bounds coming from the
control actions synthesized according to our synthesis framework.

are close to the goal region and are in the first quadrant.
For each of the tested agents (Puck, 2D Kinematic Car, and
Hovercraft) our lower bound is, in the best case, within 0.22
of the empirical estimate and the tightness of the bound is
greatly improved when employing Theorem 2 to synthesise
strategies that maximize the lower bound given by Algo-
rithm 1. In these examples we found that, for the Puck and
Hovercraft, synthesised actions allowed us to get a certified
safety within 0.03 of the statistically estimated bound. The
improvement is expected because our synthesis approach
aims to explicitly maximize the lower bound probability and
is in line with what was observed for adversarial training
of NNs with IBP [Gowal et al., 2018, Wicker et al., 2021].
Further benefits of synthesis can be observed in the Simple
Navigation environment, where our approach for strategy
synthesis not only improves the certification we provide,
but also the empirical performance of the control policy.
We further examine this in Figure 8, where we observe that
with our synthesis algorithm we are able to correct for the
erroneous behavior of the original PE-TS controller and
certify that virtually all the states have a high probability of
reaching the goal.

7 CONCLUSIONS

In this paper we considered iterative predictions with BNNs
and studied the problem of computing the probability that a
trajectory iteratively sampled from a BNN reaches safely a
target goal region. We developed methods and algorithms to
compute a lower bound of this reach-avoid probability and
synthesize certified neural controllers, based on techniques
from dynamic programming and non-convex optimization.
In a set of experiments we show that our framework enables
certification of strategies on BNN models and non-trivial,
high-dimensional control tasks.
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A MOTIVATION FOR BNNS IN CONTROL

Here we provide further details on the motivation to use Bayesian models in a model-based control or reinforcement learning
scenario. Choosing an appropriate model when capturing unknown dynamics of a system under consideration is of critical
importance to the success of the ultimate algorithm. In particular, it is known that the introduction of slight biases can
greatly affect the learning of a good control policy [Atkeson and Santamaria, 1997, Abbeel et al., 2006]. Model bias can
lead to over-confident predictions in the early stages of learning which can in turn lead to unsafe exploration and to the
degradation of the learned control policy [Abbeel et al., 2006]. Moreover, at deployment time, being able to reason about
both out-of-distribution scenarios as well as the uncertainties about ones beliefs regarding the underlying dynamics can
enable more safe actions in principle [Michelmore et al., 2020]. This, incorporating a model which is inherently capable of
reasoning about uncertainty and which can provide the modeller with critical feedback about model choice is intuitively
desirable.

Bayesian neural networks represent a potentially powerful model for uncertainty-aware model-based reinforcement learning
Chua et al. [2018]. While deterministic neural networks enable greater scalability than Bayesian neural networks, they fail to
reason about uncertainty and can be a great source of model bias. Similarly, while GPs tend to be more successful in terms
of calibrated uncertainty, they fail to scale to high-dimensional, large-data regime required by many real world problems
[Deisenroth and Rasmussen, 2011]. Bayesian Neural Networks combine the uncertainty benefits of Gaussian processes
with the scalability of neural networks. In addition, their uncertainty has been shown to make them more resistant to small
changes in their inputs [Carbone et al., 2020] as well as more sample-efficient during model-based learning Chua et al.
[2018].

B AGENT DESCRIPTIONS AND DYNAMICS

Figure 4: Analysis of the harder variant of Zigzag. Left: Layout of the state-space and 25 simulations from the BNN control loop
demonstrates that we learn to solve the problem. Center: The uncertainty lines up well with what is considered in the main text and
displays that the model is uncertain in states it is unable to visit. Right: Here we see that unlike what is presented in the main text, the
controller has a bias toward navigating the agent upward and thus it is easier to verify the region below the goal.

2D Kinematic Car Both the 2D kinematic car dynamics and the Zigzag environment given in the first row of Figure 2
are benchmarks from [Fan et al., 2018]. The agent dynamics model is a planar version of a single rear wheel kinematic
vehicle and has three state space variables: two for its position in the plane and one for the rotation status of the wheel. The
controller chooses how to change the angle of the wheel as well as the magnitude of its movement vector. We only use the
2D kinematic car in the Zigzag environment where the agent starts below a trench created by a set of five equilateral triangle
obstacles. We further consider a ‘harder’ variant of this problem with a more challenging placement of the triangles. For this
environment, we use the negative l1 distance from your current position as the reward function, meaning the agent’s action
is rewarded proportional to its improvement to the goal region. In the standard instance, no information about the obstacles
is given and thus must be learned via trial and error at train time. In the harder instance the reward function is modified to
compute the l2 distance of the agent to the point of each triangle and the reward is penalized according to this.
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θ̇
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2D Puck The Puck environment is derived from a classical control problem of controlling a vehicle from an initial
condition to a goal state or way point [Astrom and Murray, 2008]. This scenario is slightly more challenging than Zigzag not
only due to the increase state-space dimension but also due to the introduction of momentum and reduced control. The state
space of the agent is a four vector containing the position in the plane as well as a vector representing the current velocity.
The control signal is a two vector representing a change in the velocity (i.e. an acceleration vector). We study this agent in
both the ‘Simple Navigation’ and ‘Obstacle Avoidance’ scenarios as visualized in Figure 2 rows (I) and (II), respectively.
For the former, an l2 reward signal is used, and for the latter an l2 reward penalized by the l2 distance to the obstacle is used.

In Table 1 we report that our synthesis algorithm not only improves the certification but also the empirical performance
of the controller. In Figure 8, we give a visual explanation for how this is the case. The original controller learned by the
PE-TS algorithm did not, under certain conditions, apply enough velocity in the negative x direction thus not only making
certification difficult, but also adversely affecting the performance. We see that our synthesis algorithm corrects for this and
enables us to not only improve performance, as reported in Table 1, but also improve the certification.

The dynamics of the puck can be given as a the following system of equations where η determines friction, m determines
the mass of the puck, and h determines the size of the time discretization.

q̇ = Aq +Bc

A =


1 0 h 0
0 1 0 h
0 0 1− hη/m 0
0 0 0 1− hη/m


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0 0
0 0

h/m 0
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
3D Hovercraft The dynamics of the 3D hovercraft are similar to those of the 2D kinematic car, save for the fact that
it exists in 3D and must also learn a policy which maintains altitude. This vehicle is taken from [Miller et al., 2020] and
amended with a gravity term that makes learning slightly harder, but more realistic. We consider the task of learning to
navigate to the goal in the presence of an infinitely tall triangular obstacle placed directly in the path of the agent.
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Figure 5: Far Left: A render of the Ball robot in the Mujoco simulator. Center Left: 25 simulations of the Ball roboto control loop.
Center Right: The uncertainty of the BNN for the Ball robot does not show an interpretable pattern indicating that it may not be very
well calibrated. Right: Despite the higher dimensionality of the Ball robot problem we are still able to compute good lower-bounds for a
portion of the state-space.

Ball Robot For the 3D Ball Robot environment we consider a simple locomotive task inside of the OpenAI gym RL suite
[Brockman et al., 2016]. The agent observes a set of noisy sensor outputs involving the center of mass of the robot, the



status of its wheel, velocity, and the location of its sensor (red cube seen in [TODO]). The challenge of this task is not only
the dimensional of the robots state-space but also noise injected into the observations. Due to this, the BNN dynamics model
takes longer to converge and it makes it challenging for the PE-TS algorithm to quickly identify a strong strategy. Despite
this, after 20 episodes of learning, the BNN fits the dynamics of the system well and is able to reliably navigate to the goal.
The dynamics of this agent are wholly defined by the Mujoco physics simulator and thus are too complex to be listed in
closed form here.

Figure 6: Far Left: A render of the Car robot in the Mujoco simulator. Center Left: A visualization of the control policy learned by the
car robot. Center Right: The uncertainty of the BNN for the Car robot does not show an interpretable pattern indicating that it may not be
very well calibrated. Right: Similarly to what is shown in Figure 3 we are able to obtain high probability certificates for the one-step
forward invariance property.

Car Robot The Car Robot poses a locomotion problem in which the controller must navigate a vehicle with two
independently-driven parallel wheels and a free rolling rear wheel into a goal region. Just as with the ball robot, the Car
is not fixed to the 2D-plane, and observations are taken from noisy sensors about the state of the robot in space. This
problem is significantly more challenging than the previous robots as moving forward and turning require coordination of
the independently actuated wheels. Due to the large dimensionality of the state space of this robot, reach properties cannot
be easily handled due to the explosion of the state space discretization needed. Instead, we compute a probabilistic lower
bound on the one step forward invariance property presented in [Ames et al., 2014]. Similar to the Ball robot, the dynamics
of the physics simulator are too complex to be listed in closed form here.

Figure 7: Left: Simulated trajectories from the hovercraft control loop demonstrates that it successfully solves the task well and navigates
around the obstacle. Center: The uncertainty of this BNN is interpretable but may not be considered well-calibrated. Right: The
reach-avoid property shows that we are able to verify a large portion of the state-space, here we are considering negative altitude as the
avoid region of the state-space.

C LEARNING PARAMETERS

In this section, we use Table 2 to report the parameters of our learning set up. We report the state-space and control
dimensions (n and m respectively) as well as the architectures used for both the dynamics model (BNN) and controller
(DNN). We give the number of episodes of PE-TS that are used in these scenarios as well as the number of samples and time
horizon considered during the trajectory sampling stage of PE-TS. During the trajectory sampling stage we have a set of
3-10 different discrete control signals which can be picked for each control dimension (see dynamics above). In order to
pick the best action for the current time step, one simple randomly samples a series of actions over a finite time horizon and



uses the sum of discounted rewards in order to pick the most promising action sequence. From this, only the first action is
taken and then the process is repeated. For more details see Chua et al. [2018] and for the exact sampling parameters for our
settings we reference Table 2.

All BNN posteriors are approximately inferred with the VOGN algorithm Khan et al. [2018].

Figure 8: Left Column: Actions given by DNN controller trained with PE-TS (I) do not properly account for movement in the negative x
direction compared to synthesized actions (II). Right Column: Verification of learned controller (I) has worse certified bounds compared
to that of synthesized control actions (II).

Benchmark: n, m BNN Arch. Control Arch. Property Episodes Action Samples Time Horizon
Zigzag 3,2 FCN-1-64 FCN-1-32 Reach-Avoid 8 4096 5
Zigzag-Hard 3,2 FCN-1-64 FCN-1-64 Reach-Avoid 12 8000 3
PointMass (Simple) 4,2 FCN-1-64 FCN-1-64 Reach 10 2048 9
PointMass (Obstacle) 4,2 FCN-1-64 FCN-1-32 Reach-Avoid 10 7500 10
Hovercraft 5,3 FCN 1-64 FCN 1-32 Reach-Avoid 15 10000 5
Ball Robot 8,2 FCN-1-128 FCN-1-64 Reach 20 10000 10
Car Robot 23,2 FCN-1-128 FCN-1-64 Forward Invariance 25 5000 5

Table 2: Here we report the parameters of our learning environments. Episodes referes to the number of learning episodes performed
before the policy was successful at solving the task. Action Samples and Time Horizon refer to the trajectory sampling required by PE-TS.

D LIMITATIONS OF THE APPROACH

The limitations of our approach come from a few places: approximation of Bayesian inference, approximation in certification,
and the reliance on discretization of the state space.

Approximate Inference In both theory and practice, an overly approximate inference method can hamper our framework.
While it makes perfect sense to verify with respect to ones posterior beliefs about an underlying system’s unknown dynamics,
if those posterior beliefs are flawed (e.g. due to overly approximate inference) then the probabilities of safety may not match
the true probability of safety due to a gap between posterior belief and reality. We do note, however, that recent works in
approximate inference have shown that with a larger computational budget that BNNs inferred (even with MCMC) can
reliably scale to inputs with tens of thousands of dimensions.

Reliance on Discretization While modern certification and bound propagation techniques for NNs and BNNs have shown
remarkable scalability, being able to scale to images with thousands of input dimensions, we remark that formal reach-avoid
certification of an input space can only be done by fully considering the potential interdependence of different dimensions of
the state space. As such, while single-step certification may be able to scale to large inputs, our method incurs a complexity



exponential in the number of state space variables that one discretizes over. Finally we note that, as in our experiments, one
can chose to only discretize safety critical variables while also providing certification for single-step constraints over other
variables.

E PROOFS

Proof of Proposition 1 In what follows, we omit π (which is given and held constant) from the probabilities for a more
compact notation. The proof is by induction. The base case is k = N , for which we have

V πN (x) = 1G(x) = Preach(G,S, x, [N,N ]),

which holds trivially. Under the assumption that, for any given k ∈ [0, N − 1], it holds that

V πk+1(x) = Preach(G,S, x, [k + 1, N ]), (10)

we show the induction step for time step k. In particular,

Preach(G,S, x, [k,N ]|π) =

Pr(xk ∈ G|xk = x) +

N∑
j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k, j),xj′ ∈ S|xk = x) =

1G(x) + 1S(x)

N∑
j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k, j),xj′ ∈ S|xk = x)

Now in order to conclude the proof we want to show that

N∑
j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k, j) + 1,xj′ ∈ S|xk = x) =∫
V πk+1(x̄)p(x̄ | (x, πk(x)),D)dx̄.



This can be done as follow

N∑
j=k+1

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 1, j),xj′ ∈ S|xk = x) =

Pr(xk+1 ∈ G|xk = x)+

N∑
j=k+2

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 1, j),xj′ ∈ S|xk = x) =∫
G

p(x̄ | (x, πk(x)),D)dx̄+

N∑
j=k+2

∫
S

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 2, j),xj′ ∈ S ∧ xk+1 = x̄|xk = x)dx̄ =∫
G

p(x̄ | (x, πk(x)),D)dx̄+

N∑
j=k+2

∫
S

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 2, j),xj′ ∈ S|xk+1 = x̄)p(x̄ | (x, πk(x)),D)dx̄ =∫ (
1G(x̄)+

1S(x̄)

N∑
j=k+2

Pr(xj ∈ G ∧ ∀j′ ∈ [k + 2, j),xj′ ∈ S|xk+1 = x̄)
)
p(x̄ | (x, πk(x)),D)dx̄ =∫

V πk+1(x̄)p(x̄ | (x, πk(x)),D)dx̄

where the third step holds by application of Bayes rule over multiple events.

Proof of Theorem 1 The proof is by induction. The base case is k = N , for which we have

inf
x∈q

V πN (x) = inf
x∈q

1G(x) = 1G(q) = Kπ
N (q).

Next, under the assumption that for any k ∈ {0, N − 1} it holds that

inf
x∈q

V πk+1(x) ≥ Kπ
k+1(q),

we can work on the induction step: in order to derive it, it is enough to show that for any ε > 0∫
V πk+1(x̄)p(x̄ | (x, πk(x)),D)dx̄ ≥

F ([−ε, ε]|σ2)n
np∑
i=1

∫
Hq,πk,i

vi−1pw(w|D)dw,

where F ([−ε, ε]|σ2) = erf( ε√
2σ2

) is the cumulative function distribution for a normal random variable with zero mean and
variance σ2 being within [−ε, ε]. This can be argued by rewriting the first term in parameter space (recall that the stochastic



kernel T is induced by pw(w|D)) and providing a lower bound, as follows:∫
V πk+1(x̄)p(x̄ | (x, πk(x)),D)dx̄ =

(By definition of predictive distribution)∫ ( ∫
V πk+1(x̄)p(x̄|(x, u), w)dx̄

)
pw(w|D)dw ≥

(By V kk+1 being non negative everywhere and by the Gaussian likelihood)∫ ( ∫ fw(x,π(x,k)−ε

fw(x,π(x,k))+ε

V πk+1(x̄)N (x̄|fw(x, π(x, k)), σ2 · I)dx̄
)
pw(w|D)dw ≥

(By standard inequalities of integrals)∫
inf

γ̄∈[−ε,ε]
V πk+1(fw(x, π(x, k) + γ̄)

( ∫
[−ε,ε]n

N (γ|0, σ2)dγ
)n
pw(w|D)dw ≥

(By the assumptions that for i 6= j Hq,π
k,i and Hq,π

k,j are non-overlapping)( ∫
[−ε,ε]

N (γ|0, σ2)dγ
)n np∑

i=1

∫
Hq,π,εk,i

inf
γ̄∈[−ε,ε]

V πk+1(fw(x, π(x, k) + γ̄)pw(w|D)dw,

(By the fact that vi ≤ inf
x∈q

V πk+1(fw(x, π(x, k) + γ̄) )

( ∫
[−ε,ε]

N (γ|0, σ2)dγ
)n np∑

i=1

vi

∫
Hq,π,εk,i

pw(w|D)dw,

where the last step concludes the proof because, by the induction hypothesis, we know that for q′ ⊆ Rn

inf
x̄∈q′

V πk+1(x̄) ≥ Kπ
k+1(q′)

and by the construction of sets Hq,π
k,i for each of its weights Kπ

k+1(fw(x̄, π(x, k)) is lower bounded by vi−1.
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