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Abstract

Robustness of decision rules to shifts in the data-
generating process is crucial to the successful de-
ployment of decision-making systems. Such shifts
can be viewed as interventions on a causal graph,
which capture (possibly hypothetical) changes in
the data-generating process, whether due to nat-
ural reasons or by the action of an adversary.
We consider causal Bayesian networks and for-
mally define the interventional robustness problem,
a novel model-based notion of robustness for de-
cision functions that measures worst-case perfor-
mance with respect to a set of interventions that
denote changes to parameters and/or causal influ-
ences. By relying on a tractable representation
of Bayesian networks as arithmetic circuits, we
provide efficient algorithms for computing guar-
anteed upper and lower bounds on the interven-
tional robustness probabilities. Experimental re-
sults demonstrate that the methods yield useful and
interpretable bounds for a range of practical net-
works, paving the way towards provably causally
robust decision-making systems.

1 Introduction
As algorithmic decision-making systems become widely de-
ployed, there has been an increasing focus on their safety and
robustness, particularly when they are applied to input points
outside of the data distribution they were trained on. Much
of the work in this area has focused on instance-based robust-
ness properties of classifiers, which guarantee that the pre-
diction does not change in some vicinity of a specific input
point [Shih et al., 2018; Narodytska et al., 2018]. However,
there are many types of distribution shift that cannot be char-
acterized by robustness against norm-bounded perturbations
to individual inputs. Such distribution shifts are often instead
characterized by causal interventions on the data-generating
process [Quionero-Candela et al., 2009; Zhang et al., 2015;
Lipton et al., 2018]. These interventions give rise to a range
of different environments (distributions), which can be the
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effect of natural shifts (e.g. different country) or actions of
other agents (e.g. a hospital changing prescription policy).

To assess the impact of such interventions, we must
leverage knowledge about the causal structure of the data-
generating distribution. This paper concerns itself with a sim-
ple question: given a decision-making system and a posited
causal model, is the system robust to a set of plausible inter-
ventions to the causal model? Defining and verifying such
model-based notions of robustness requires a formal repre-
sentation of the decision-making system. For discrete input
features and a discrete output class, regardless of how a clas-
sifier is learned, its role in decision-making can be unambigu-
ously represented by its decision function, mapping features
to an output class. This observation has spurred a recent trend
of applying logic for meta-reasoning about classifier prop-
erties, such as monotonicity and instance-based robustness,
by compiling the classifier into a tractable form [Shih et al.,
2018; Narodytska et al., 2018; Audemard et al., 2020], for ex-
ample an ordered decision diagram. We extend this approach
to causal modelling by combining logical representations of
the decision rule and causal model, and compiling this joint
representation into an arithmetic circuit, a tractable represen-
tation of probability distributions.

Our main technical contributions are as follows. First, we
motivate and formalize the robustness of a decision rule with
respect to interventions on a causal model, which we call the
interventional robustness problem, and characterize its com-
plexity. Second, we develop a joint compilation technique
which allows us to reason about a causal model and decision
function simultaneously. Finally, we develop and evaluate al-
gorithms for computing upper and lower bounds on the inter-
ventional robustness problem, enabling the verification of ro-
bustness of decision-making systems to causal interventions.

Related Work
The problem of constructing classifiers which are robust to
distribution shifts has received much attention from the ma-
chine learning perspective [Quionero-Candela et al., 2009;
Zhang et al., 2015; Lipton et al., 2018]. Particularly rele-
vant to our work are proactive approaches to learning robust
classifiers, which aim to produce classifiers that perform well
across a range of environments (rather than a specific one)
[Rojas-Carulla et al., 2018; Subbaswamy et al., 2019].

A recent line of work analyses the behaviour of machine
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learning classifiers using symbolic and logical approaches by
compiling these classifiers into suitable logical representa-
tions [Katz et al., 2017; Narodytska et al., 2018; Shi et al.,
2020]. Such representations can be used to answer a range of
explanation and verification queries [Audemard et al., 2020]
about the classifier tractably, depending on the properties of
the underlying propositional language [Darwiche and Mar-
quis, 2002]. Our work uses this premise to tackle defining
and verifying robustness to distribution shift, which involves
not only the classifier but also a probablistic causal model
such as a causal Bayesian network.

In the Bayesian network literature, sensitivity analysis
[Chan and Darwiche, 2004] is concerned with examining the
effect of (typically small) local changes in parameter values
on a target probability. We are concerned with providing
worst-case guarantees against a set of possible causal inter-
ventions, which can involve changing parameters in multi-
ple CPTs, and even altering the graphical structure of the
network. This requires new methods that enable scalability
to these large, potentially structural intervention sets. Our
causal perspective generalizes and extends the work of Qin
[2015], considering a richer class of interventions than previ-
ous work and using this perspective to prove robustness prop-
erties of a decision function.

2 Background and Notation
In the rest of this paper, we use V = (X, Y,H) to denote the
set of modelled variables, which includes observable features
X , the prediction target Y , and hidden variables H . We use
lower case (e.g. x) to denote instantiations of variables.

Decision Functions
Consider the task of predicting Y given features X . Though
many machine learning (ML) techniques exist for this task,
once learned, the input-output behaviour of any classifier can
be characterized by means of a symbolic decision function
F from X to Y . For many important classes of ML meth-
ods, including Bayesian network classifiers, binarized neural
networks, and random forests, it is possible to encode the cor-
responding decision function as a Boolean circuit Σ [Aude-
mard et al., 2020; Narodytska et al., 2018; Shih et al., 2019].
Such logical encodings can then be used to reason about the
behaviour of the decision function, for instance providing ex-
planations for decisions and verifying properties.

Causal Bayesian Networks
In this paper, we are interested in robust performance of de-
cision functions under distribution shift caused by changes in
the data-generating process (DGP). In order to reason about
this, we first need a causal model of the DGP which enables
such changes to be represented. We first define Bayesian net-
works, which are a convenient way to specify a joint distribu-
tion over the set of variables V = {V1, V2, ..., Vn}:
Definition 1 (Bayesian Network). A (discrete)
Bayesian network (BN) N over variables V is a pair
(G,Θ), where G = (V ,E) is a directed acyclic graph
(DAG) whose nodes correspond to the random variables V
and whose edges indicate conditional dependence, and where
Θ denotes the set of conditional probability tables (CPTs)

θVi|Ui with parameters θvi|ui = P (Vi = vi|Ui = ui) which
specify the distribution, where Ui = paG(Vi) are the parents
of Vi in G. We will denote by pN the probability distribution
defined by the BN N .

Causal Bayesian networks (CBNs) are defined similarly to
Bayesian networks, with the addition of causal, or interven-
tional, semantics to the joint distribution. Intuitively, an edge
(V, V ′) in a causal Bayesian network indicates that V causes
V ′, and the CPTs correspond to causal mechanisms. An in-
tervention can be defined to be a change to some of these
mechanisms, replacing Θ with Θ′. A CBN can thus be char-
acterized as representing a set of distributions, each of which
is generated by a different intervention.

We now define a representation of a (causal) Bayesian net-
work, called the network polynomial, based on the seminal
work of Darwiche [2003].

Definition 2 (Network Polynomial). The network polynomial
of causal BN N is defined to be:

lN [λ,Θ] =
∑

v1,...,vn

n∏
i=1

λviθvi|ui (1)

where λvi denotes an indicator variable for each value vi in
the support of each random variable Vi, and θvi|ui denotes
each element of a CPT in Θ. Each component of the addition
lv[λ,Θ] :=

∏n
i=1 λviθvi|ui is called a term, and is associ-

ated with an instantiation v.

Arithmetic circuits
Arithmetic circuits (AC) are computational graphs used to en-
code probability distributions over a set of discrete variables
V , which can tractably answer a broad range of probabilis-
tic queries, depending on certain structural properties (called
decomposability, smoothness and determinism). They were
first introduced by Darwiche [2003] as a means of compil-
ing Bayesian networks for the purposes of efficient inference.
Subsequently they have been considered as objects of study
in their own right, with proposals for directly learning ACs
from data [Lowd and Domingos, 2008] and extensions relax-
ing determinism [Poon and Domingos, 2011].

Definition 3 (Arithmetic Circuit). An arithmetic circuit AC
over variables V and with parameters Φ is a rooted directed
acyclic graph (DAG), whose internal nodes are labelled with
with + or× and whose leaf nodes are labelled with indicator
variables λv , where v is the value of some variable V ∈ V ,
or non-negative parameters φ.

Crucially, evaluating an arithmetic circuit can be done in
time linear in the size (number of edges) of the circuit. When
an AC represents a probability distribution, this means that
marginals can be computed efficiently.

Like Bayesian networks, arithmetic circuits can be repre-
sented as polynomials over indicator and parameter variables,
based on subcircuits [Choi and Darwiche, 2017]:

Definition 4 (Complete Subcircuit). A complete subcircuit
α of an AC is obtained by traversing the circuit top-down,
choosing one child of every visited +-node and all children
of every visited ×-node. The term term(α) of α is the prod-
uct of all leaf nodes visited (i.e. all indicator and parame-
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Figure 1: An example causal model describing accident risk for a
car insurance problem, and illustrating how strategic adaptation to
a classifier can be characterized as a change to a causal model de-
scribing how the data was generated.

ter variables). The set of all complete subcircuits is denoted
αααAC .

Definition 5 (AC Polynomial). The AC polynomial of arith-
metic circuit AC is defined to be:

lAC [λ,Φ] =
∑

α∈αααAC

term(α)

3 The Intervention Robustness Problem
Many distribution shifts faced by decision-making sys-
tems can be characterized by an intervention on the data-
generating process. For example, if an insurance company
gives reduced premiums to drivers who have taken a driving
class, the relationship between ‘risk aversion’ and ‘class’ in
Figure 1 may change in response as more risk-seeking drivers
take driving classes to benefit from reduced premiums. The
company therefore seeks to determine whether this policy
will be robust to changes in the relationship between risk-
sensitivity and driving classes before it deploys the policy.

We thus formulate an intervention robustness problem
which considers the worst-case drop in performance of a clas-
sifier in response to changes to a subset of the causal mecha-
nisms of the Bayesian network. This is inspired by the prin-
ciple of independent causal mechanisms (ICM) [Peters et al.,
2017], which states that causal mechanisms do not inform
or influence each other; that is, even as some mechanisms
are changed, other mechanisms tend to remain invariant. In
the insurance example, this is reflected in that we would not
necessarily expect the mechanism for ’risk aversion’ or ’acci-
dent’ to change, for instance.

While many related notions of robustness exist in the lit-
erature, none accurately captures this notion of robustness
to causal mechanism changes. Many popular definitions of
robustness measure the size of a perturbation necessary to
change an input’s classification, without taking into account
that such perturbations may change the value which the clas-
sifier tries to predict [Shih et al., 2018]. Miller et al. [2020]
highlight the connection between causal inference and robust-
ness to distribution shifts caused by ‘gaming’ in the strategic
classification [Hardt et al., 2016] regime. However, Miller et
al. [2020] does not assume access to a known causal model,
and its focus is on identifying classifiers which are robust
to gaming, whereas our objective is to verify robustness to
a much richer collection of distribution shifts.

3.1 Intervention classes
To reason about the effects of changes to a causal model, we
need a formal description of these interventions. We con-
sider interventions as actions that modify the mechanisms of
a causal Bayesian network N = (G,Θ), thereby changing
its joint distribution. In particular, we consider two types of
interventions: the first concerns changes to the parameters of
the causal model, while the second concerns changes to the
existence of cause-effect relationships themselves.

Typically, we might expect that only mechanisms for a sub-
set of variables W ⊆ V will change. In what follows, given
a subset of variables W ⊆ V , we will use θ(G)

W ⊆ Θ to
denote the parameters associated with the CPTs for variables
W ∈W , where the parents of W are given by graph G.

Definition 6 (Parametric Interventions). A
parametric intervention on variables W substitutes a

subset of parameters θ(G)
W for new values θ(G)′

W obtaining a
new parameter set Θ′, which yields the BN:

N [θ
(G)′
W ] := (G,Θ′) (2)

Parametric interventions encompass the do-interventions
discussed by Qin [2015], but allow us to express more com-
plex changes to causal mechanisms than fixing a variable to
a set value. We can further consider changes not just to the
parameters of the network, but also to its edge structure; such
changes to a set of variablesW can be described by a context
function CW : W → P(V ), which replaces the parents of
W ∈W in G with CW (W ), producing a new graph G′. We
refer to such interventions as structural interventions. In this
work we restrict ourselves to context sets which preserve the
acyclicity of the DAG.

Definition 7 (Structural interventions). A
structural intervention on variables W modifies the
edges E of the graph G = (V ,E) according to a context
function CW , obtaining a new graph G′ = (V ,E′), and
substitutes parameters θ(G)

W for new values θ(G′)′
W , obtaining

a new parameter set Θ′, which yields the BN:

N [θ
(G′)′
W , CW ] := (G′,Θ′) (3)

We will often be interested in considering all of the possi-
ble interventions of a given class on some subset W ⊆ V of
the variables in the causal graph. Letting PG(W ) denote the
set of valid parameter sets for W ⊆ V in graph G, we will
write for parametric interventions:

IN [W ] := {N [θ
(G)′
W ] | θ(G)′

W ∈ PG(W )} (4)
and for structural interventions,

IN [W , CW ] := {N [θ
(G′)′
W , CW ] | θ(G′)′

W ∈ PG′(W )}. (5)

3.2 Problem Definition and Complexity
Accurately assessing the robustness of a decision function F
requires an understanding of the causal data-generating pro-
cess. We propose to model this DGP using a causal Bayesian
network N on all variables V , thus enabling causal model-
based analysis of classifiers. In order to reason about the
causal structure N and decision rule F simultaneously, we
add an additional node to the CBN N .
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Definition 8 (Augmented BN). For a CBNN over variables
V and a classifier F : X → Y , we define the augmented BN
NF based onN as follows: VF = V ∪{Ŷ } with pa(Ŷ ) = X
and deterministic CPT θŷ|x = 1[ŷ = F (x)].

This produces a well-defined joint distribution over the
variables V and Ŷ = F (X), which allows us to specify per-
formance metrics as probabilities of events e. For instance,
a classifier’s false positive rate can be expressed as the prob-
ability pNF (e) of event e = (Ŷ = 1) ∧ (Y = 0). More
importantly, we can consider how these metrics change as the
joint distribution changes, due to hypothetical or observed in-
terventions on the causal model. This provides a basis for
model-based notions of robustness of decision rules.

We use intervention sets to represent all interventions
which the modeller considers plausible. The interventional
robustness problem then concerns the worst-case perfor-
mance of the decision rule over interventions in that set.
Definition 9. Given CBN N and decision rule F , let INF
be an intervention set for the augmented BN NF , e be an
assignment of a subset of the variables in V , and ε > 0. The
interventional robustness problem is that of computing:

IntRob(INF , e) := max
N ′∈INF

pN ′(e) .

We also have the corresponding decision problem:
IntRob(INF , e, ε) := max

N ′∈INF
pN ′(e) > ε .

We will be particularly interested in problem instances
where IN is of the form IN [W ], in which case we can view
the problem instance as IntRob((N ,W ), e). We observe
that, via a reduction which we defer to the Appendix, the
causal semantics of IntRob do not increase the computa-
tional hardness of the problem beyond that of MAP inference.
Theorem 1. Let N = (G,Θ) be a causal Bayesian network,
with n nodes and maximal in-degree d. Then an instance of
MAP can be reduced to an instance of IntRob on a BN N ′
of size linear in |N |, and of treewidthw′ ≤ w+2. An instance
of IntRob can be reduced to an instance of MAP on a BN
N ′ whose CPT Θ′ has size polynomial in the size of Θ, and
with treewidth w′ ≤ 2w.

4 Verification of Intervention Robustness
In this section, we present our approach to verifying inter-
ventional robustness. Due to the difficulty of the problem, we
seek to approximate IntRob(I, e) by providing guaranteed
upper and lower bounds that can be efficiently computed1.

4.1 Joint Compilation
Our first goal is to compile NF into an equivalent arithmetic
circuit AC. To do so, we make use of a standard CNF encod-
ing ∆N of the causal BN N , defined over the indicator and
parameter variables λV ,Θ [Chavira and Darwiche, 2005],
and additionally an encoding of the decision function F .

A naı̈ve encoding of F is to explicitly enumerate all in-
stantiations of features x and prediction ŷ, and encode these

1In Appendix F, we show with an example that heuristic approx-
imation using existing methods cannot provide guarantees.

directly as CNF clauses. However, this approach is very inef-
ficient for larger feature setsX . We instead assume access to
an encoding of the classifier as a Boolean circuit Σ over input
features X and prediction Ŷ 2. Such a circuit can be con-
verted to CNF through the Tseitin transformation, introduc-
ing additional intermediate variables T , obtaining a CNF for-
mula ∆F over λX ,λŶ ,T . We then combine the encodings
of F and N simply by conjoining the CNF formulae, to pro-
duce a new formula ∆joint = ∆N∧∆F , overλV ,λŶ ,Θ,T .

To construct an AC AC, we now compile this CNF encod-
ing into d-DNNF (deterministic decomposable negation nor-
mal form), using the C2D compiler [Darwiche, 2004], and
then replace ∨-nodes with +, ∧-nodes with ×, and set all
negative literals and literals corresponding to T to 1. This
produces an AC with polynomial lAC [λ,Θ], where λ :=
λV ∪ λŶ . Crucially, this AC is equivalent to the augmented
BN, in the following sense:
Proposition 1. lAC [λ,Θ] is equivalent to lNF [λ,Θ]. Fur-
ther, AC can be used to faithfully evaluate marginal proba-
bilities pN ′(e) under any parametric intervention N ′.

The time and space complexity of this procedure is
O(nw2w), where n is the number of CNF variables andw the
treewidth, a measure of the connectivity of the CNF. When
jointly compiling a BN and a decision function, we can bound
n,w in terms of the individual encodings ∆N ,∆F .
Proposition 2. Suppose ∆N has n variables and treewidth
w, and ∆F has n′ variables and treewidth w′. Then ∆joint

has exactly n + n′ − |λX | variables, and treewidth at most
max(w,w′,min(w,w′) + |λX |).

4.2 Orderings
For the correctness of our upper bounding algorithm, it is nec-
essary to impose some structural constraints on the circuit.

Firstly, any circuit compiled using the procedure described
above has the property that every +-node t has two children,
and is associated with some CNF variable c, such that one
child branch has c true, and the other has c false (information
on the identity of this variable for each +-node is provided
by the C2D compiler). We need to ensure that the arithmetic
circuit only contains +-nodes associated with indicators λ,
and not intermediate variables T . Provided this is the case,
the branches of each +-node t will contain contradicting in-
dicators for some unique variable V . We can thus say that t
‘splits’ variable V , as each of its child branches corresponds
to different values of V , and we write split(t) to denote this
splitting variable.

Secondly, provided the above holds, we require our circuit
to satisfy some constraints of the following form.
Definition 10. An arithmetic circuit AC
satisfies the ordering constraint (Vj , Vi) if:

∀t, t′, (split(t) = Vi ∧ split(t′) = Vj)

=⇒ t’ is not a descendant of t in AC (6)
Intuitively, our algorithm requires that for BN variables

in the intervention set W , the relative position of splitting
2If input features are discrete, they can still be encoded using

additional binary variables; see Appendix B.
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Figure 2: Example augmented BN (top), corresponding AC (bottom
left), and execution of Algorithm 1 (bottom right). Nodes which
differ from standard AC evaluation are highlighted in red.

+-nodes in the AC agrees with the causal ordering in the
BN. More formally, we say that AC satisfies the ordering
constraints associated with intervention set INF , if for all
Vi ∈W , and all Vj such that Vj ∈ paG(Vi) (parametric inter-
vention set) or Vj ∈ paG′(Vi) (structural intervention set),AC
satisfies the ordering constraint (Vj , Vi). In practice, when
computationally feasible, we compile ACs with topological
and structural topological orderings, which satisfy these con-
straints for all Vi, not just Vi ∈ W ; such orderings have the
advantage of being valid for any intervention setsW .

We enforce these constraints by enforcing corresponding
constraints on the elimination ordering π over the CNF vari-
ables, which is used to construct the dtree that is used in
the compilation process, and affects the time and space taken
by the compilation. Such an elimination ordering is usually
chosen using a heuristic such as min-fill. We instead find a
elimination ordering by using a constrained min-fill heuris-
tic, which ensures that these constraints are satisfied, but may
produce an AC which is much larger than can be achieved
with an unconstrained heuristic in practice. We provide fur-
ther details of this in Appendix B.1.

4.3 Upper bounds on Intervention Robustness
In order to compute upper bounds on the interventional ro-
bustness quantity, we propose Algorithm 1, which sets pa-
rameters in the AC for the CPTs of variables in W to 1, and
applies maximization instead of addition at +-nodes splitting
on variables in W , when evaluating the (appropriately or-
dered) AC. Algorithm 1 somewhat resembles the well-known
MPE algorithm on ACs, introduced by Chan and Darwiche
[2006] and used as an upper bound on the MAP problem in
Huang et al. [2006]. However, our algorithm maximizes over
parameters rather than variables and makes use of specific
AC structure ensured by our ordering constraints; the reason
it produces correct upper bounds is thus also different.

Intuitively, the maximizations represent decision points,
where choosing a child branch corresponds to intervening to

Algorithm 1: UB(AC, e,W ) (Upper Bounding)
Input: AC, the AC; evidence e; intervenable variables

W ⊆ V ;
Result: Output probability p

1 for node c ∈ AC (children before parents) do
2 switch type(c) do
3 case Indicator λv do
4 p[c] := 0 if v′ not consistent with e else 1
5 case Parameter θv|u do
6 p[c] := 1 if V ∈W else θv|u
7 case × do
8 p[c] :=

∏
d p[d]

where d are the children of c
9 case + do

10 if c splits on some W ∈W then
11 p[c] := maxd p[d]

where d are the children of c
12 else
13 p[c] :=

∑
d p[d]

where d are the children of c
14 Return p[croot], where croot is the root node of AC

set a particular parameter θw|uW
to 1 (and others to 0). For

example, consider the augmented Bayesian network in Fig-
ure 2, where all variables are binary, Ŷ = X ∨W , and the
context for W is X (represented by the dashed line, which is
not part of the original BN). Figure 2 also shows execution
of Algorithm 1 for false positive probability (that is, evidence
e = {Y = 0, Ŷ = 1}). At the two +-nodes where maximiza-
tions occur, the value of X is already “decided”, and the ad-
versary can effectively choose to set θw̄|x = 1 and θw|x̄ = 1.
In this case, the result 0.4 turns out to be exactly equal to the
interventional robustness quantity IntRob(INF , e).

We might ask whether this intuition is correct in general.
Our next result shows that, while the algorithm cannot always
compute IntRob(INF , e) exactly, it does produce guaran-
teed upper bounds (proof in Appendix D):
Theorem 2. Given a parametric/structural intervention set
INF , let AC be an arithmetic circuit with the same poly-
nomial as NF , and satisfying the ordering constraints as-
sociated with the intervention set. Then, applying the UB
algorithm UB(AC, e,W ) returns a quantity BU which is
an upper bound on the interventional robustness quantity
IntRob(INF , e).

This result is quite surprising; it shows that it is possi-
ble, through a very simple and inexpensive procedure re-
quiring just a single linear time pass through the AC, to up-
per bound the worst-case marginal probability over an expo-
nentially sized set of interventions. That this also holds for
structural intervention sets, which alter the structure of the
Bayesian network which the AC was compiled from, is even
more surprising. Further, a compiled AC can be used for any
intervention set given that it satisfies the appropriate ordering
constraints. For instance, an AC compiled using a topologi-
cal ordering allows us to derive upper bounds for parametric
intervention sets involving any subset (of any size) W ⊆ V ,
simply by setting the appropriate parameter nodes in the AC
to 1 (Line 5). This allows us to amortize the cost of evaluating
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robustness against multiple intervention sets.

4.4 Lower bounds via best-response dynamics
In addition to an upper bound on IntRob(INF , e), we can
also straightforwardly lower bound this quantity using any
witness. In this section, we will assume the setting of para-
metric interventions of the form IN [W ], or of structural in-
terventions where the search is over a single context function.

Algorithm 2: Lower Bounding
Input: N = (G,Θ), a Bayesian network; evidence e

whose probability will be maximized;
intervenable variablesW ⊆ V .

Result: Output probability
p(e) ≤ maxN ′∈IN [W ] PN ′(e)

1 begin
2 v ← 0;
3 while pN [ΘW ](e) > v do
4 v ← pN [ΘW ](e);
5 for CPT θ(G)

W |u ∈ ΘW do
6 θ

(G)
W |u ← arg maxθ′

W |u
pN [θ′

W |u](e);

We obtain such an approach by formalizing the problem
of finding an intervention which maximizes pN ′(e) as a
multiplayer game, where each instantiation uW of parents
paG′(W ) for each W ∈ W specifies a player, and where
all players share a utility function given by pN [Θ](e). Each
player’s strategy set consists of the set of deterministic con-
ditional distributions θW |u (we note w.l.o.g. that, by the
multilinearity of the network polynomial, the optimal value
of PN [Θ′](e) is obtained by at least one deterministic in-
terventional distribution). A Nash equilibrium in this game
then corresponds to an interventional distribution for which
no change in a single parameter can increase pN ′(e). Al-
gorithm 2 follows best-response dynamics in this game. We
provide an analysis of the time complexity and convergence
of this approach in the proof of the following proposition.

Proposition 3. Algorithm 2 converges to a locally optimal
parametric intervention in finite time. Further, if the algo-
rithm is stopped before termination, the current value v will
be a lower bound on maxN ′∈I[W ] PN ′(e).

5 Case Study: Insurance
In this case study, we look at an extended version of the car
insurance example, using the Bayesian network model shown
in Figure 3 [Binder et al., 1997].

Suppose an insurance company wishes to use a classi-
fier to predict MedCost (the medical cost of an insurance
claim), and has access to an insurant’s Age, DrivHist,
and MakeModel (categorical variables with 3-5 values).
MedCost is either BelowThousand (0) or AboveThousand
(1). They fit a Naı̈ve Bayes classifier to historical data, ob-
taining a decision function F . This is then used as part of
their decision-making policy determining what premiums to
offer to customers.

Figure 3: INSURANCE Bayesian network

The company is particularly concerned about false nega-
tives, as this could result in the company losing a lot of money
in payouts. Based on the original Bayesian network model
(Figure 3) and their new classifier, this should occur 2.5%
of the time. However, in reality, insurants may attempt to
game the classifier to predict BelowThousand (so that they
get lower premiums), while actually being likely to have a
high medical cost. In our framework, we model this using
structural interventions, assuming that insurants can causally
intervene on some of DrivHist (perhaps hide some acci-
dent history), MakeModel (choose a different type of car
than they would normally choose), and Cushioning (up-
grade/downgrade the degree of protection inside the car). The
company would thus like to understand how robust their clas-
sifier is to these adaptations.

We will consider a number of structural intervention sets
INF , given by intervenable variables W , which may be any
subset of {DrivHist, MakeModel, Cushioning}.
Under each of these intervention sets, we seek to obtain guar-
anteed upper bounds on these two quantities:

• FN: The probability of a false negative p(F =
0,MedCost = 1), i.e. predicted low medical cost, but
high actual medical cost.

• P: The probability of a positive p(MedCost = 1), i.e.
high actual medical cost.

The results are shown in Table 1. The insurance company
can use these bounds to assess risk, and improve their clas-
sifier’s robustness if they deem the false negative rate under
intervention unacceptable.

The bounds can also provide further insight. We notice that
whenever DrivHist is intervenable, the percentage of false
negatives is the same as positives, i.e. the classifier always
predicts wrong when MedCost is 1. This turns out to be be-
cause the Naı̈ve Bayes classifier always predicts 0 whenever
DrivHist is None, regardless of the other input variables.
Thus, an insurant who can change their DrivHist can al-
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Intervenable VariablesW FN P
Empty Set 2.5% 7.2%
{DrivHist} 7.2% 7.2%
{MakeModel} 5.7% 10.0%
{Cushioning} 6.1% 12.9%
{DrivHist, MakeModel} 10.0% 10.0%
{DrivHist, Cushioning} 12.9% 12.9%
{MakeModel, Cushioning} 13.0% 13.9%
{DrivHist, MakeModel, Cushioning} 13.9% 13.9%

Table 1: Guaranteed upper bounds on FN and P, under different
structural intervention sets

ways fool the classifier to predict 0. In addition, the percent-
age of positives doesn’t increase from the original BN: this
can be seen from the causal graph, where DrivHist has no
causal influence on MedCost.

On the other hand, Cushioning significantly increases
the positive rate. Notice that, in the graph, intervening on
Cushioningwill not have any influence on the inputs to the
classifier; thus, the increase in FN to 6.1% is not due to fool-
ing the classifier, but rather making high medical expenses
generally more likely, by downgrading the quality of cush-
ioning. In this way, the intervention is ”taking advantage” of
the classifier not having full information about cushioning.

6 Evaluations
Compilation Performance
In Table 2 we show the performance of our joint compila-
tion approach on a number of benchmark Bayesian networks,
where we jointly compile the network and a decision rule (see
Appendices G and H for further details). We observe that the
sizes of the compiled ACs are significantly smaller than the
worst-case bounds would suggest (exponential in treewidth).
Further, when we enforce a topological ordering, the size of
the compilation increases, but not by more than ∼ 100. Our
results provide evidence that our methods can scale to fairly
large networks and classifiers, including networks compiled
with topological and structural topological orderings.

Lower and Upper Bound tightness
In Table 3 we analyse the quality of our upper and lower
bounds on interventional robustness. We compute bounds
on false negative probability under different intervention sets.
Overall, we find small or nonexistent gaps between the lower
and upper bounds across all networks and intervention sets
evaluated, suggesting that in many settings of interest it is
possible to obtain tight guarantees using our algorithms.

Further, both bounding algorithms are very fast to execute,
taking no more than a few seconds for each run. This is
remarkable given the sizes of the intervention sets. For in-
stance, for the insurance network, the parametric interven-
tion set P2 covers 6 variables (|W | = 6), 248 parameters,
and∼ 1036 different interventions, making brute-force search
clearly infeasible. For worst-case (interventional robustness)
analysis, the sensitivity analysis method of Chan and Dar-
wiche [2004] requires ∼ 107 passes through the AC in this
case. On the other hand, our upper bounding algorithm re-
quires an ordered AC (which is ∼ 5 times larger in this

Net CSize Ord TW AC size Time
(s)

insurance 3 (41) N 24 167121 0.5
3 (41) T 31 794267 4
3 (41) S 33 1270075 8

win95pts 16 (799) N 51 1210072 3
16 (799) T 58 52266950 77

hepar2 12 (946) N 53 8096874 49
12 (946) T 51 123108407 73
12 (946) S 51 123164181 75

Table 2: AC sizes and times (s) for the joint compilations used in
the UB and LB algorithms. Shown are the number of input features
d and the sizes of the Boolean circuits representing the classifier,
ordering constraints (none, topological, or structural topological),
treewidth of the combined CNF encoding, and AC size and compi-
lation time. Further evaluations provided in Appendix G.1.

Network IntSet LBound UBound ∆

insurance P1 0.1181 0.1276 0.0095
P2 0.3275 0.3433 0.0158
S1 0.1181 0.1297 0.0116

win95pts P1 0.2111 0.2111 0.0000
P2 0.2163 0.2191 0.0028

hepar2 P1 0.09445 0.09445 0.0000
P2 0.09585 0.09585 0.0000
S1 0.1029 0.1029 0.0000

Table 3: Analysis of the tightness of bounds (on probability of false
negatives) produced by Algorithms 1 and 2. For each network, we
have different intervention sets (P/S indicates the intervention set is
parametric/structural respectively). Lower and upper bounds, along
with the difference, are shown for each intervention set. Further
evaluations provided in Appendix G.2.

case), but requires just a single pass through the AC, mak-
ing it ∼ 106 faster. Further, our algorithm is uniquely able to
provide guarantees for structural intervention sets.

7 Conclusions
In this work, we have motivated and formalized the inter-
ventional robustness problem, developed a compilation tech-
nique to produce efficient joint representations for classifiers
and DGPs, and provided tractable upper and lower bounding
algorithms which we have shown empirically to be tight on
a range of networks and intervention sets. The techniques
presented here provide ample opportunity for further work,
such as extending the upper and lower bounding technique
to networks where the modeller has uncertainty over the pa-
rameters, and developing learning algorithms for arithmetic
circuits which permit reasoning about causal structure.
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A Proof of Theorem 1
We now prove Theorem 1. To do so, we will formalize the
intervention maximization problem, whose decision form is
IntRob, as follows.
IntRob is the Intervention Robustness problem. Note

that while the definition given in Section 3.2 is agnostic to
the form of the interventions, in order to concretely bound
the size of the input to the problem, we restrict ourselves
to Bayesian networks defined on discrete random variables
and intervention sets of the form IN (W ). Thus, the prob-
lem takes as input a Bayesian network N , a set of interven-
able nodes W , and some evidence e. The goal is to find a
parametric intervention on the variables in W Θ′ such that
PN [Θ′](e) is maximized. The decision version of this prob-
lem is intervention robustness.

MAP: is Maximum a Posteriori inference, a well-studied
problem which takes as input network N , variables W , and
evidence e, and whose objective is to find an instantiation
W = w such that PN (w, e) is maximal.
Theorem 1. Let N = (G,Θ) be a causal Bayesian network,
with n nodes and maximal in-degree d. Then an instance of
MAP can be reduced to an instance of IntRob on a BN N ′
of size linear in |N |, and of treewidthw′ ≤ w+2. An instance
of IntRob can be reduced to an instance of MAP on a BN
N ′ whose CPT Θ′ has size polynomial in the size of Θ, and
with treewidth w′ ≤ 2w.

Without loss of generality, in the proof of this statement
we will assume all variables are binary-valued; it is straight-
forward to then extend the results here to arbitrary discrete
random variables supported on a finite set.
Lemma 1. MAP is reducible to IntRob.

Proof. LetN ,W , e be an instantiation of the MAP problem.
We can convert this into the IntRob problem by adding the
following sets of nodes to N in order to produce a new net-
work N ′.

1. For each V ∈W , add a node Vθ with the same support
as V , and which has no incoming arrows.

2. Additionally, for each V ∈W add a node AV with par-
ents V and Vθ with support True/False, which is True
with probability 1 if V = Vθ and False otherwise. Let
AW denote the set of all such nodes.

We now show that in this new network N ′, IntRob(N ′,
Wθ, {AV = True, e}) is equal to MAP(N ,W , e).

We first observe that for a single V ∈W , we have
PN (V = v) = PN [θVθ=1{Vθ=v}](V = Vθ))

= PN [θVθ=1{Vθ=v}(AV = True)) .

Because Vθ and AV are independent of the rest of the graph
given V , we then straightforwardly obtain that for additional
evidence e, the same equality holds for the joint evidence
(V = v, e):

PN [θVθ=1{Vθ=v}(AV = True, e) = PN (V = v, e) .

VVθ

AV

Parents

Children

Figure 4: Visualization of the construction of N ′ for the proof of
Lemma 1.

V

VU=u1

VU=u2

U(V )

Figure 5: Visualization of the intuition behind the construction of
N ′ for the proof of Lemma 2.

Finally, this equality can be iterated to incorporate all nodes
V ∈ I, and so for any instantiation w = (w1, . . .wn) of
W = {V 1, . . . , V n} with corresponding parameters Θ′w =
{1[V iθ = wi]|V i ∈W } we obtain

PN [Θ′w](AW = True, e) = PN (W = w, e) .

So the parametric interventions which maximize P (AW =
T, e) are equivalent to the variable valuesw which maximize
P (W = w, e).

It is straightforward to show that the size of the resulting
BN N ′ satisfies the theorem statement. We have increased
the number of nodes by 2|W | ≤ 2|V |, and added CPTs of
size |supp(V )|2, which for binary variables will be fixed at
4, so |Θ′| ≤ |Θ| + 4|V |. Finally, we have not increased the
treewidth of the network by more than a constant increment of
2 because we have added a fully connected component with 2
additional nodes to each variable V ∈ I with no other edges
into the graph.

Lemma 2. IntRob is reducible to MAP.

Proof. For the opposite direction, we show that we can use
MAP to solve IntRob(with parametric interventions). Let
N ,W , e be inputs into IntRob. We initially construct N ′
as a copy of N . We will proceed by converting the parame-
ters θV |u into variables Vu in N ′, where observing the value
Vu = v in N ′ is equivalent, up to a constant factor, to setting
θV |u := 1[V = v] in the original network N , while avoid-
ing an exponential blowup in the size of this new Bayesian
network.

Intuition: For each CPT component θV |u in N such that
V ∈ W , introduce a new “parameter-node” Vu to N ′ with
support equal to that of V and uniformly distributed (i.p.
Vu has no parents), and add an edge into V . Set P (V =
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v′|u, Vu) = 1[Vu = v′]. In other words, if the value of
U = u, then V gets the value of the node Vu deterministi-
cally. This construction is visualized in Figure 5.

Naively, this will blow up the CPT for V by a factor ex-
ponential in the size of the parent set, and may increase the
treewidth of the network by this factor as well. We therefore
proceed in the following construction to minimize the impact
on the size of the representation ofN ′. This construction will
still add in the worst case |Θ| variables to the network, but it
will only increase the size of |Θ| by a linear factor and will
only increase the treewidth by at most a factor of 2.

Selector circuits: in a more efficient (and more involved)
construction, we add a number of auxiliary variables that act
as a filter based on the values of the parents U to pass down
the correct value to V . We visualize an example of this con-
struction in Figure 6. We enumerate the parents of V as
U1, . . . , Un, and add auxiliary variables {Vu|u ∈ supp(U)}
to the graph as described in the intuition above. We then
add auxiliary variables Sij , with i ranging from 1 to n and
j ranging from 1 to 2|U |−i for each level i. To each variable
Vu we assign it the binary string un . . . u1. For each prefix
u ∈ {0, 1}n−1 we then draw arrows from U1, Vu0 and Vu1 to
S1,uand define the conditional P (S1,u|Vu0, Vu1, U1 = u1) =
1[S1,u = Vu,u1

]. We inductively define at layer i for a prefix
u ∈ {0, 1}i−1 the random variable Si,u, with parent vari-
ables Si−1,u0, Si−1,u1, and Ui, and conditional distribution
P (Si,u|Si−1,u0, Si−1,u1, Ui = ui) = 1[Si,u = Vu,ui ]. The
value of Sn,∅ will therefore be deterministically the value of
Vu for U = u, and so we can simply set the CPT of V to
depend uniquely and deterministically on Sn,∅.

This procedure will not add more nodes than there are pa-
rameters in the CPT to the graph (i.e. the increase in the
number of nodes n is bounded by exp(w)) and will not in-
crease the treewidth by more than a linear factor, as the se-
lector circuit has treewidth at most 2|U | + 1 (this is easily
observed by forming a tree decomposition via a depth-first-
search procedure). The maximal number of nodes this con-
struction can add to the table is therefore 2|Θ|, assuming that
all n nodes are set to be intervened on, and we can increase
the treewidth by a factor of at most 2, independent of the num-
ber of nodes we modify. We therefore obtain that for N ′:
|V | ≤ |V |+ 2|Θ|, |Θ| ≤ 16|Θ|, and w′ ≤ 2w.

The end result of this construction is that we have changed
the distribution of the variable V so that it now depends on
2|U | additional random variables Vu1

, . . . , Vuk , and deter-
ministically takes the value of Vui whenever its parents satisfy
U = ui.

We now claim that in the new network N ′, the conditional
distribution on V induced by observing Vu = vu is equal up
to a constant to doing a parametric intervention on θv|u in N
which deterministically sets v to vu conditioned on U = u.
To see this, let vU be an instantiation of the variables VU.

PN ′(V = v|u,vU) = PN ′ [V = v|Vu = vu,U = u]

= 1[v = vu]

= PN [θv|u=1][V = v|U = u]

We also observe that for any ancestor U of V , PN (U) =

U1 U2

Vu1u2
Vu1u2

Vu1u2
Vu1u2

S1,1 S1,2

S2,1

Figure 6: Example ‘selector’ circuit. At each level i, pair up so-
lutions from paths that differ only on variables u1, . . . ui (will be
uniquely 2 for binary valued variables), then use the value of ui to
‘select’ the correct value. I.e. P (S1,1 = Vu1,u2|U1) = 1 if U1 = u1

else P (A1 = Vū1u2) = 1 if U1 = ū1. After |U | levels, the value of
An will be the value of Vu, and so will be used to substitute for V .

PN ′(U), since we only changed the conditional distribution
of a descendent of U . Further, for any descendent D of V ,
we obtain PB(D|U = u, V = v) = PN ′(D|V = v,U =
u). This is again because we did not change any conditional
distribution for a descendent of V .

Because VU is uniformly distributed in N ′, we can
therefore straightforwardly derive that for a single variable,
IntRob can be reduced to MAP on N ′. We decompose the
evidence variables e into eC and eA (for descendents, ances-
tors of V respectively).

max
θV |u

PN [θV |u](e) = max
θV |u

PN (eA)PN [θV |u](eC) (7)

=PN (eA) max
vu

∑
u

P (u|eA)P (eC |V = vu,u) (8)

=PN ′(eA) max
VU

2|U |PN ′(VU = vU) (9)∑
u

PN ′(U = u|eA)P (eC |eA, u, V = vu) (10)

=2|U |max
vU

PN ′(e,VU = vU) (11)

We note that because 2|U | is a constant, it does not affect
the maximization problem and so the two maximization prob-
lems will be maximized by equivalent parameter settings.
Once the result is established for single variables, this obser-
vation is easily extended to the entire set W by performing
an analogous summation over all instantiations of variables
which are parents of an element ofW . The only trick is that,
when summing over values u of the parents of W , one must
be careful in dealing with elements v ∈ W which are also
parents of intervenable variables. In such cases, we define
PN ′(w|u) to be zero if the elements at the intersection ofW
and U disagree on their assigned values.

max
θW

PN [θW ](e) = max
θW

PN (eA)PN [θW ](eC) (12)

=PN (eA) max
wU

∑
u

P (u|eA)P (eC |W = wu,u) (13)

=PN ′(eA) max
wU

2|U(W )|PN ′(WU = wU) (14)
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∑
u

PN ′(U = u|eA)P (eC |eA,u, V = vu) (15)

=2|U |max
vU

PN ′(e,VU = vU) (16)

As noted previously, it is sufficient to consider parametric in-
terventions that are deterministic to solve the IntRob prob-
lem (by the multilinearity of the network polynomial, the op-
timal value of PN [Θ′](e) is obtained by at least one determin-
istic interventional distribution). Therefore, searching over
the set of distributions induced by deterministic parametric
interventions is equivalent to searching over conditional dis-
tributions induced by observing VU, and so this set of condi-
tional distributions is sufficient for solving IntRob.

B Compilation Details and Proof of
Proposition 1

Our goal with compilation is to produce an arithmetic circuit
with AC polynomial equivalent to the network polynomial of
NF . To do this, we first generate logical encodings of the
decision function F and original Bayesian network N .

Any decision function F given as a Boolean circuit Σ can
be expressed as a CNF encoding ∆F (λX ,λŶ ,T ) on indica-
tor variables and intermediate variables. For discrete features
X and discrete prediction Ŷ , we assume that the Boolean cir-
cuit takes as input Boolean indicator variables λXi=xi , λŶ=ŷ ,
which outputs true for an instantiation x, ŷ iff ŷ = F (x). For
instance, if Xi is binary, we have separate variables λxi , λx̄i
which take the place of Xi and ¬Xi respectively in the cir-
cuit. With the inputs expressed as indicators, we then intro-
duce an additional binary variable for every internal node in
the Boolean circuit (forming ”intermediate variables” T ), and
use the Tseitin transformation to convert to CNF. The result-
ing CNF encoding ∆(λX ,λŶ ,T ) has the property that, for
a given instantiation x of the features, the CNF encoding has
exactly one model (satisfying assignment) with correspond-
ing feature indicators λX , and that model has λŶ=F (x) true
and all other prediction indicators false.

We can encode the Bayesian network N using the follow-
ing types of CNF clauses, following [Darwiche, 2002]:

• Indicator Clauses: For variable V ∈ V with domain
v1, ...vk, we include the following clauses:

– λv1 ∨ ... ∨ λvk
– ¬λvi ∨ ¬λvj for i 6= j

• Parameter Clauses: For each parameter θv|u, we include
the following clause:

– λv ∧ λu1 ∧ ... ∧ λud =⇒ θv|u
– λv ∧ λu1

∧ ... ∧ λud ⇐= θv|u

The models (satisfying assignments) of the resulting en-
coding ∆N (λV ,Θ) each correspond to an instantiation v of
the variables V , with parameter variables set to true or false
depending on whether they apply to that instantiation. Thus,
they directly correspond to the terms of the network polyno-
mial lN [λV ,Θ].

We now consider the joint encoding ∆joint = ∆N ∧∆F ,
on variables λ := λV ∪ λŶ ,Θ,T :

Lemma 3. The models of the joint encoding ∆joint =
∆N ∧∆F correspond to the terms of the network polynomial
lNF [λ,Θ] (ignoring intermediate variables T ).

Proof. Since the mechanism for Ŷ in NF is deterministic,
we can forgo parameters for this mechanism, and write the
network polynomial as:

lNF [λ,Θ] =
∑

v1,...,vn

λŶ=F (x)

n∏
i=1

λviθvi|ui

If we conjoin the encodings ∆F and ∆N , then since each
model of ∆N corresponds to an instantiation v (including
features x), the models of the joint encoding are precisely the
models of ∆N , with the prediction indicator λŶ=F (x) true
(and all other prediction indicators false), and the intermedi-
ate variables T taking some values. Thus, each model of the
joint encoding directly corresponds to some valid instantia-
tion x, ŷ, i.e. a term in the network polynomial.

Given ∆joint, the next step is to compile the CNF into an
equivalent sd-DNNF, a rooted DAG with literals (a variable
or its negation) as leaves, and conjunctions/disjunctions as
internal nodes, satisfying the following properties:

• Decomposability: From every ∧-node, no two branches
can share a variable.

• Smoothness: From every ∨-node, every branch must
contain the same variables.

• Determinism: From every ∨-node, every two branches
must contradict each other.

We convert the sd-DNNF to an AC by replacing conjunc-
tions with ∗, disjunctions with +, and replacing all negative
literals and literals corresponding to intermediate variables T
with the value 1.

Proposition 1. lAC [λ,Θ] is equivalent to lNF [λ,Θ]. Fur-
ther, AC can be used to faithfully evaluate marginal proba-
bilities pN ′(e) under any parametric intervention N ′.

Proof. The logic can be expressed as a disjunction of the
complete subcircuits of the d-DNNF (complete subcircuits
are generated by traversing the circuit, choosing all children
of every ∧-node and one child of every ∨-node). By decom-
posability and smoothness, each complete subcircuit is a con-
junction which specifies a value (and only one value) for each
CNF variable λ,Θ,T . By Proposition 3, each complete sub-
circuit must thus correspond to a term of the network poly-
nomial. Further, no other complete subcircuit can correspond
to that term; otherwise determinism is violated. That is, there
is a one-to-one correspondence between the complete subcir-
cuits of the d-DNNF, and the terms of lNF [λ,Θ].

Each complete subcircuit thus corresponds to an instantia-
tion v, and takes the form n∧

i=1

λvi ∧ θvi|ui
∧
v′i 6=vi

¬λv′i ∧ ¬θvi|ui
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∧

λŶ=F (x)

∧
ŷ′ 6=F (x)

¬λŶ=ŷ′


∧

 ∧
T∈Tv

T
∧

T∈T \Tv

¬T


where Tv are the intermediate variables which are true for

instantiation v. If we now exchange conjunctions for ×, dis-
junctions for +, and set negative literals and T -literals to 1,
we get that the terms of the complete subcircuits of the AC
take the form:

λŶ=F (x)

n∏
i=1

λviθVi|ui

Thus lAC [λ,Θ] is equivalent to lNF [λ,Θ]. For the second
part, for any fixed value of the parameters Θ, the network/AC
polynomials will be equivalent multi-linear functions of the
indicators, and thus computation of marginals on the respec-
tive polynomials will yield the same result.

B.1 Elimination Ordering
The C2D compiler makes use of a dtree in the compilation
process. One method of generating a dtree is using an elim-
ination ordering π: that is, an ordering of the CNF variables
λ,Θ,T . We now specify the constraints on this ordering that
need to be imposed, in order to compile an AC to be used in
the upper bounding algorithm (Algorithm 1). Each constraint
takes the form c < c′, which indicates that CNF variable c
must come before c′ in the ordering.

Firstly, for all λ ∈ λ, T ∈ T , we impose constraints T <
λ. This ensures that the AC contains only +-nodes associated
with indicator variables λ, and not intermediate variables T .

Secondly, for each constraint (Vj , Vi) corresponding to the
intervention set, we impose constraints λvi < λvj for every
value vi of Vi and every value vj of Vj . This ensures that the
AC satisfies the constraint (Vj , Vi); that is, +-nodes splitting
on Vj cannot appear after +-nodes splitting on Vi.

Given these constraints, we find an elimination ordering π
using the constrained min-fill heuristic. The variables in the
ordering are chosen one at a time. At each point, the min-fill
heuristic associates a cost with each CNF variable. We pick
the lowest-cost variable which would not violate any ordering
constraint.

B.2 Encoding Options
Several improvements to the encoding in [Darwiche, 2002]
have been proposed, which we address in the context of our
joint compilations of causal BNs:

• Dropping parameter clauses: [Chavira and Darwiche,
2005] observed that it is possible to drop the second
type of parameter clause (reverse implication), which
we employ in our experiments. This introduces addi-
tional spurious models for the encoding (since the truth
values of some parameter variables will be unspecified),
which were removed in [Chavira and Darwiche, 2005]

by performing a minimization operation on the result-
ing sd-DNNF. We instead take advantage of the dtree-
based compilation approach in the C2D compiler, which
does not introduce negative parameter literals into the
d-DNNF (since they are not present in the CNF encod-
ing), and forgo smoothing the circuit. This results in a d-
DNNF which does not contain negative parameter liter-
als, while satisfying decomposability/smoothness/deter-
minism with respect to the Bayesian network variables.

• Determinism and Parameter Equality: Determinism
refers to parameters θv|u taking the value 0 in the BN,
and parameter equality refers to two such parameters in
the same CPT taking the same value. Both of these can
be encoded using simple modifications to the encoding
clauses [Chavira and Darwiche, 2005], potentially re-
sulting in much smaller compiled ACs by removing ex-
cess parameter variables. The problem with using such
encodings is that there no longer exists a unique param-
eter variable corresponding to each parameter in the BN.
As such, we cannot compute the effect of interventions
on the network which affect those parameters.
However, it is in theory possible to encode determinism
and parameter equality only for CPTs which we know
in advance we will never want to intervene on, while
avoiding other CPTs. For simplicity, we avoid encoding
determinism or parameter equality entirely in our exper-
iments.

C Proof of Proposition 2
Proposition 2. Suppose ∆N has n variables and treewidth
w, and ∆F has n′ variables and treewidth w′. Then ∆joint

has exactly n + n′ − |λX | variables, and treewidth at most
max(w,w′,min(w,w′) + |λX |).

Denote the set of n CNF variables in ∆N as BN , and the
set of n′ CNF variables in ∆F as BF . The only CNF vari-
ables shared between ∆N and ∆F are the indicators λx for
BN variables X ∈ X . Thus the joint encoding ∆joint =
∆bn ∧∆F has n+ n′ − |λX | variables.

The treewidth of a CNF formula is defined to be the
treewidth of its interaction graph G∆:
Definition 11. The interaction graph G∆ of a CNF formula
∆ is a graph with CNF variables as nodes, and edges between
each variables appearing in the same CNF clause.

Let π be an ordering of the nodes in G∆, called an elim-
ination order. The treewidth of π with respect to G∆ is de-
fined by the following procedure. Remove the CNF nodes
according to π, and connect all pairs of nodes connected to
a removed node immediately after removing it. Then the
treewidth is the maximum number of edges a variable has im-
mediately before it is removed. The treewidth of G∆ is then
defined to be the minimum treewidth among all elimination
orders π.

Let π∗N be the optimal such ordering on G∆N , which has
treewidth w. Let π∗N−X be that ordering with all CNF vari-
ables in λX removed. Then consider removing nodes from
the interaction graph G∆joint

in that order. At the time of re-
moval of any node b in π∗N−X , it will not be connected to any
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node in BN \ λX in G∆joint that it was not connected to at
the time of its removal in π∗N in G∆N . This is since the inter-
spersed removals of nodes in λX in the π∗N ordering can only
have added more edges between nodes in BN \ λX . How-
ever, in general, b may be connected to any or all of the nodes
in λX . Thus the maximal degree of any removed node (at the
time of its removal) is at most w + |λX |.

After removing nodes in BN \ λX , only nodes in BF re-
main. Let π∗F be the optimal ordering on G∆F

with treewidth
w′. Then we can remove those nodes according to that order-
ing, such that the maximal degree of any removed node (at
the time of its removal) is at most w′.

The treewidth of the ordering π = (π∗N−X , π
∗
F ) with re-

spect to G∆joint
is at most max(w + |λX |, w′), and thus the

treewidth of ∆joint is at most this quantity. If we consider
an ordering which follows a similar procedure to above, ex-
cept that we remove nodes BF \ λX first, we get another
bound max(w,w′ + |λX |). Thus the treewidth of ∆joint is
at most min(max(w + |λX |, w′),max(w,w′ + |λX |)) =
max(w,w′,min(w,w′) + |λX |).

D Proof of Theorem 2
Theorem 2. Given a parametric/structural intervention set
INF , let AC be an arithmetic circuit with the same poly-
nomial as NF , and satisfying the ordering constraints as-
sociated with the intervention set. Then, applying the UB
algorithm UB(AC, e,W ) returns a quantity BU which is
an upper bound on the interventional robustness quantity
IntRob(INF , e).

In what follows, the intervention set (including interven-
able variables W ) and evidence e is fixed throughout, and
thus is dropped from notation for brevity.

D.1 Definitions
First, we review the effect of an intervention on the network
polynomial ofNF . ForWi ∈W , letUi denote the parents of
W (paG(W )/paG′(W ) for parametric/structural intervention
sets respectively). Then, any intervention in the set INF can
be specified as a list of functions f = (f1, ..., f|W |), where
fi maps from Ui to Wi, and we write N ′f to represent the
intervened network. This corresponds to setting, for every
instantiation ui of Ui:

• θf(ui)|ui := 1;

• θwi|ui) := 0 for any wi 6= f(ui).
The network polynomial lN ′f [λ,Θ] of the intervened net-

workN ′ is then given by applying these changes to each term
of lNF [λ,Θ]. This can be achieved by setting all parameters
θf(ui)|ui for intervenable variables Wi ∈W to 1, then filter-
ing out those which are incompatible with f . The following
definitions of weight and consistency capture these notions,
given evidence e:
Definition 12. The f -consistency csf (α) of a term α of
lNF [λ,Θ] is defined as:

csf (α) =


1 each parameter in α of the form θW |U

for W ∈W is assigned 1 by f
0 otherwise

We say that α is f -consistent if csf (α) = 1, and
f -inconsistent otherwise.

Definition 13. The weight w(α) of a term α of lNF [λ,Θ] is
obtained by evaluating α after:

• Assigning 1 to indicators if they are consistent with e,
and 0 otherwise;

• Setting all parameters θf(ui)|ui to 1 (other parameters
are unchanged)

Definition 14. The f -value valf (α) of a term α of lNF [λ,Θ]
is defined as:

valf (α) = w(α)× csf (α)

For any set of terms S, we also define:

valf (S) =
∑
α∈S

valf (α)

Proposition 4. Let S() be the set of all terms in lNF [λ,Θ].
Then:

pN ′f (e) = valf (S())

This proposition simply captures how marginal probabili-
ties for intervened Bayesian networks are calculated.

Now we will define similar concepts for the arithmetic cir-
cuit AC. First, recall the definition of a complete subcircuit
of an AC:
Definition 4 (Complete Subcircuit). A complete subcircuit
α of an AC is obtained by traversing the circuit top-down,
choosing one child of every visited +-node and all children
of every visited ×-node. The term term(α) of α is the prod-
uct of all leaf nodes visited (i.e. all indicator and parame-
ter variables). The set of all complete subcircuits is denoted
αααAC .

A partial subcircuit is a subset of the nodes (and edges
from those nodes) chosen by any complete subcircuit. The
term of a partial subcircuit α is also the product of all leaf
nodes in α. Often it will be useful to partition a complete
subcircuit into a prefix αP and suffix αS : that is, two partial
subcircuits which partition the nodes of a complete subcircuit,
such that all nodes in the prefix are non-descendants of those
in the suffix.

Since AC has the same polynomial as NF , each complete
subcircuit corresponds to a term of the network polynomial,
and we can define very similar notions to those above for the
network polynomial, but based on the UB algorithm.

First, the UB algorithm (Algorithm 1) effectively discards
some subcircuits by maximizing at some +-nodes:
Definition 15. The UB-consistency csUB(α) of a complete
or partial subcircuit α is defined as:

csUB(α) =


1 if for every +-node t in α splitting on

W ∈W , α chooses the same branch
from t as the UB algorithm

0 otherwise

We say that α is UB-consistent if csUBf(α) = 1, and
UB-inconsistent otherwise.

Second, note that the UB algorithm sets parameters for in-
tervenable variables W ∈ W to 1. Thus, for any complete
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subcircuit α (corresponding to a network polynomial term),
in a slight abuse of notation, we can define the weight w(α)
in the same way as for network polynomial terms. We can
also define the weight for partial subcircuits in the obvious
way.
Definition 16. The weightw(α) of a complete or partial sub-
circuit α is obtained by evaluating term(α) after:

• Assigning 1 to indicators if they are consistent with e,
and 0 otherwise;

• Setting all parameters θf(ui)|ui to 1 (other parameters
are unchanged)

Definition 17. The UB-value valUB(α) of a complete or par-
tial subcircuit α is defined as:

valUB(α) = w(α)× csUB(α)

For any set of complete or partial subcircuits S, we also
define:

valUB(S) =
∑
α∈S

valUB(α)

Note that the only distinction from f -value is that we use
UB-consistency instead of f -consistency, i.e. we set different
complete subcircuits/terms to 0.
Proposition 5. Let S() be the set of all complete subcircuits
in the AC. Then:

UB(AC, e,W ) = valUB(S())

This proposition simply states that assigning value 0
to subcircuits unselected by the UB-algorithm and value
w(α) to selected subcircuits produces the output of the UB-
algorithm.

Recall that our goal is to show that the UB-algorithm
produces an upper bound to maxN ′∈INF pN ′(e) =
maxf pN ′f (e). By the two Propositions, this is equivalent to
showing:

valUB(S()) ≥ max
f

valf (S()) (17)

D.2 Inductive Lemma
In order to prove Equation 17, we will need to prove a
Lemma, which relies on some additional definitions.
Definition 18 (Subcircuit sets). We will use the following no-
tation to denote various sets of complete and partial subcir-
cuits. Here, t denotes a +-node in the AC, and t = {t1, ...tj}
denotes a set of +-nodes such that no node is a descendant
of another.

• S(t) denotes all complete subcircuits which cross all +-
nodes in t;

• SP (t) denotes all ”prefix” partial subcircuits, obtained
by selecting all visited nodes which are non-descendants
of t from complete subcircuits in S(t);

• SS(t) denotes all ”suffix” partial subcircuits, obtained
by traversing the AC top-down starting at t, choosing
one child of every +-node and every child of every ×-
node.

• S(t, α0) denotes a set of complete subcircuits, defined
for any α0 ∈ SP (t) : S(t, α0) = {(α0, α1, ..., αj) :
α1 ∈ SS(t1), ..., αj ∈ SS(tj)}

We note a few important facts regarding these sets. Firstly,
S(t) can be empty, if t includes two nodes which never ap-
pear in the same complete subcircuit. Second, S(t) can be
represented as the product set SP (t)×SS(t1)× ...×SS(tj),
and {S(t, α0) : α0 ∈ SP (t)} forms a partition of S(t). Fi-
nally, both the UB-consistency and weight of a complete sub-
circuit α = (α0, α1, ...αj) ∈ S(t) can be decomposed. α is
consistent iff its prefix and suffixes are all consistent, that is:

csUB(α) = csUB(α0)

j∏
i=1

csUB(αi)

In addition, the weight of α is given by:

w(α) = w(α0)

j∏
i=1

w(αi)

We now define a modified version of UB-value for a com-
plete subcircuit α which crosses nodes t. Informally, this as-
sumes the prefix α0 to be consistent for the purposes of com-
puting value.

Definition 19. Given a set of +-nodes t, and a complete
subcircuit α crossing t which consists of prefix subcircuit
α0 ∈ SP (t) and suffix subcircuits αi ∈ SS(ti), the
prefix-consistent BU-value valpref,t(α) is defined as:

valpref,t(α) = w(α)×
j∏
i=1

csUB(αi)

For any set of such complete subcircuits S,

valpref,t(S) =
∑
α∈S

valpref,t(α)

Now, we can state our main result:

Lemma 4. Let t be a set of +-nodes, such that no t ∈ t is a
descendant of another. Further, let α0 ∈ SP (t). Then:

valpref,t(S(t, α0)) ≥ max
f

valf (S(t, α0)) (18)

As previously stated, for many sets t, S(t, α0) may be
empty; in such cases, the Lemma is trivially true.

Before proving this Lemma, we demonstrate how this can
be used to derive the inequality in Equation 17, and thus, the
Theorem. Take t to be the singleton set {r}, where r is the
root +/MAX-node of the AC. Then the (only) prefix α0 of
t is empty, so that valpref,t(S(t, α0)) = valUB(S(t, α0)).
Further, S(t, α0) = S() consists of all subcircuits in the AC.
Thus, in this case, the Lemma reduces to Equation 17.

Proof of Lemma 4. We will prove the Lemma by induction.
Let π = {π1, ..., πn} be a reverse topological ordering of the
n+-nodes in the AC (that is, descendants come before ances-
tors), and we write t < t′ to indicate a node t comes before t′
in the ordering. In particular, our inductive hypothesis at step
k will be that the lemma holds for all subsets t containing
only nodes in π≤k = {π1, ...πk}.

At step k (for 1 ≤ k ≤ n), we need to show the inequality
in Equation 18 for any set of +-nodes t′ = {t′1, ..., t′j−1, t

′
j}

s.t. t′j = πk, 0 ≤ j ≤ k, and t′i ∈ π≤k ∀1 ≤ i ≤ j − 1 (so
that t′j := πk), and for any α0 ∈ SP (t′). The proof for step
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k follows one of 2 templates, depending on the node πk, in
particular, whether it splits on a variable inW .

Does not split onW

Suppose that πk has m branches. For each branch 1 ≤ b ≤
m, starting from the prefix α0, add πk, and then traverse down
branch b, adding all children of each ×-node, until we reach
a leaf node (included) or a +-node (excluded). Denote this
extended prefix subcircuit α(b)

0 = (α0, α
(b)) (where α(b) is

defined to be the partial subcircuit added), and the +-nodes
reached by t(b) = {t(b)1 , ...t

(b)
l } (possibly empty). Then de-

fine t′−j = {t′1, ...t′j−1}, that is, t′ with πk removed, and de-
fine t′(b) = (t′−j , t

(b)). This fulfils the condition that no two
nodes are descendants of each other, since t(b) are immediate
descendants of πk.

Every complete subcircuit α ∈ S(t′(b)) is then of the form
(α

(b)
0 , α1, ...αj−1, α

(b)
1 , ...α

(b)
l ), with prefix α(b)

0 ∈ SP (t′(b)),
and suffixes αi ∈ SS(t′i) (1 ≤ i ≤ j−1) and α(b)

a ∈ SS(t
(b)
a )

(1 ≤ a ≤ l).
Recall that S(t′(b), α

(b)
0 ) denotes the set of all complete

subcircuits with prefix α
(b)
0 and any combination of suffix

subcircuits. The prefix-consistent BU-value for these subcir-
cuits is greater than the f -value for any f :

valpref,t′(b)(S(t′(b), α
(b)
0 ))

≥ max
f

valf (S(t′(b), α
(b)
0 ))

This follows directly from the inductive hypothesis for step
k − 1. This is because t′−j only contains nodes from π≤k−1

by definition, and t(b) are descendants of πk, so by the fact π
is a reverse topological order, they too are taken from π≤k−1.

Further, {S(t′(b), α
(b)
0 ) : 1 ≤ b ≤ m} forms a partition of

S(t′, α0) (each set consists of the set of subcircuits following
a particular branch from πk).

Now consider the UB-consistency of the suffix subcircuit
from t′j , αj = (α(b), α

(b)
1 , ..., α

(b)
l ). We have csUB(αj) =

csUB(α(b)) ×
∏l
a=1 csUB(α

(b)
a ) =

∏l
a=1 csUB(α

(b)
a ). The

final equality follows from the fact that t′j = πk does not
split on W ∈ W and is the only +-node in α(b), so α(b)

contains no +-nodes splitting on W ∈W , and it follows that
csUB(α(b)) = 1.

We use this to combine the results for each branch:
valpref,t′(S(t′, α0))

=
∑

α∈S(t′,α0)

w(α)×
j∏
i=1

csUB(αi)

=

m∑
b=1

∑
α∈S(t′(b),α

(b)
0 )

w(α)×
j∏
i=1

csUB(αi)

=

m∑
b=1

∑
α∈S(t′(b),α

(b)
0 )

w(α)×
j−1∏
i=1

csUB(αi)

×
l∏

a=1

csUB(α(b)
a )

=

m∑
b=1

valpref,t′(b)(S(t′(b), α
(b)
0 ))

≥
m∑
b=1

max
f

valf (S(t′(b), α
(b)
0 ))

≥ max
f

m∑
b=1

valf (S(t′(b), α
(b)
0 ))

= max
f

valf (S(t′, α0))

The second equality uses the partition, the third is by the
facts about consistency shown above, the fourth equality is
by definition, the fifth inequality is by inductive hypothesis,
the sixth is a standard sum/max swap, and the final equality
is again by the partition.

Does split onW
In the case where πk splits on someW ∈W , i.e. is aMAX-
node, the above template doesn’t work because the BU algo-
rithm now chooses one of the branches, rather than adding all
branches together.

For a given intervention f , denote the subset of f -
consistent complete subcircuits crossing t′ by Sf (t′, α0). In
this context, we will consider such a complete subcircuit α
to be split into a prefix consisting of α−j = (α0, α1, ...αj−1

with α0 ∈ SP (t′), αi ∈ SS(t′i), and a single suffix αj ∈
SS(t′j). The following two defintions are useful:

• First, we define the set of ”f -consistent prefixes”:
S−j,f (t′) = {α−j : ∃αj s.t. csf (α) = 1} (19)

• Second, for a given prefix α−j , define the set of
complete subcircuits Sf (πk, α−j) to be the subset of
S(πk, α−j) which is f -consistent. This is empty if the
prefix α−j is not consistent.

Our strategy will be to show that we can modify f so
that all f -consistent subcircuits in S(t′, α0) include the same
branch of πk, without reducing the f -value. We can then
use our inductive hypothesis to bound this value. First, we
show that given α−j , any resulting complete subcircuit must
go down the same branch:

Lemma 5. For a given f and α−j , subcircuits Sf (πk, α−j)
all choose the same branch at πk.

Proof. Here we use our crucial assumption of the AC order-
ing constraints, namely, that no node that is a descendant of
πk splits on any variable inU = pa(W ). Since subcircuits in
S(πk, α−j) differ only on their suffix from πk, they all share
the same indicators for variables in pa(W ), corresponding to
an instantiation u. Suppose fW (u) = w. Then, any param-
eter θW=w′|U=u for w′ 6= w is intervened to 0. Since πk
splits on W , all branches from πk have different indicators
forW . Thus, only the branch with indicator corresponding to
W = w can have f -consistent subcircuits.
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This does not preclude, however, that there may be f -
consistent subcircuits with different prefixes α−j , β−j which
choose different branches. The following Lemma shows that
we can find another intervention, fadj , that does always (ef-
fectively) choose the same branch for any prefix, and addi-
tionally has greater or equal value.

Lemma 6. For any intervention f , there exists another inter-
vention fadj such that:

• valfadj (S(t′, α0)) ≥ valf (S(t′, α0))

• All subcircuits α ∈ Sfadj (t
′, α0) with non-zero weight

w(α) choose the same branch at πk (call it badj)

Proof. We will define a non-constructive operation
upgrade, which takes as input an intervention f , and
outputs an intervention fup.

Consider all subcircuits α = (α0, α1, ..., αj−1, αj) ∈
Sf (πk, α−j). Define Sj,f (t′, α−j) ⊆ SS(t′j) as follows:

Sj,f (t′, α−j) = {αj ∈ SS(t′j) : α ∈ Sf (πk, α−j)}
That, is for a given prefix α−j and f , this is the set of suffix
partial subcircuits from πk which are f -consistent.

The ”optimal set” of suffixes over f and αj is defined to
be that which attains the greatest combined weight, that is,
maxf maxα−j w(Sj,f (t′, α−j)). In general the optimal set
will not be unique; we use S∗j to denote the set of optimal
suffix sets. We pick (arbitrarily) some S∗j ∈ S∗j , and denote
the intervention f which attains this f∗, and the prefix which
attains this α∗−j .

Now, we will define a set of complete subcircuits
Tf (t′, α0) by taking all f -consistent prefixes α−j , and tak-
ing the product set with the set of suffixes S∗j . Formally:

Tf (t′, α0) = {(α−j , αj) : α−j ∈ S−j,f (t′), αj ∈ S∗j }
(20)

Intuitvely, we are ”increasing the weight” of the f -
consistent subcircuits of S(t′, α0), while also ensuring con-
sistent subcircuits all choose the same branch (that chosen
by S∗j ). However, we cannot be sure that Tf (t′, α0) actually
corresponds to the fup-consistent subcircuits of any allowed
intervention fup. We will now show that there exists a fup
such that all of these subcircuits are fup-consistent. That is,
Tf (t′, α0) ⊆ Sfup(t′, α0).

Suppose for contradiction this was not the case. Then
there must exist two subcircuits α, β ∈ Tf (t′, α0) which
are contradictory, that is, for some W ∈ W and its parents
U = pa(W ), α, β must contain indicators for the same value
of U = u, but indicators λW=wα , λW=wβ for different val-
ues of W respectively (that is, wα 6= wβ).

We can write α = (α−j , αj) and β = (β−j , βj). Now,
we consider three cases according to where the contradictory
indicators reside:

• If λW=wα ∈ α−j , λW=wβ ∈ β−j
Recall that by definition of Tf (t′, α0), α−j , β−j ∈
S−j,f (t′), that is, the set of f -consistent prefixes. Then
there must exist α′j , β

′
j ∈ S(t′j) such that α′ =

(α−j , α
′
j) and β′ = (β−j , β

′
j) are both f -consistent.

But this is a contradiction as two complete subcircuits

with conflicting indicators λW=wα , λW=wβ cannot si-
multaneously be consistent for any f .

• If λW=wα ∈ αj , λW=wβ ∈ βj
Recall that by definition of Tf (t′, α0), αj , βj ∈ S∗j ,
that is, they both belong to Sj,f∗(t

′, α∗−j). In other
words, α∗ = (α∗−j , αj) and β∗ = (α∗−j , βj) are both
f∗-consistent. But again this is a contradiction, as they
contain conflicting indicators λW=wα , λW=wβ .

• Otherwise
If neither of the above cases hold, then either λW=wα ∈
α−j , λW=wβ ∈ βj or λW=wα ∈ αj , λW=wβ ∈
β−j . Without loss of generality, let us assume the for-
mer. Then consider the subcircuit α′ = (α−j , βj).
This single complete subcircuit contains both indicators
λW=wα , λW=wβ , which is a contradiction as no term/-
complete subcircuit can do so.

Thus, there exists some fup such that Tf (t′, α0) ⊆
Sfup(t′, α0). Our operation upgrade outputs any such fup.
fup has three important properties:

1. Does not remove consistent prefixes
S−j,fup(t′) ⊇ S−j,f (t′)

That is, the set of fup-consistent prefixes subsumes the
set of f -consistent prefixes. This follows from the fact
that Tf (t′, α0) ⊆ Sfup(t′, α0): Tf (t′, α0) contains sub-
circuits with all prefixes in S−j,f (t′).

2. All suffixes for previous consistent prefixes are in S∗j
or have zero weight
∀α−j ∈ S−j,f (t′),∀αj ∈ Sj,fup(t′, α−j), either
w(αj) = 0 or αj ∈ S∗j .
That is, for all f -consistent prefixes α−j , the corre-
sponding fup-consistent subcircuits Sj,fup(t′, α−j) are
either contained in the optimal suffix set S∗j or have
weight 0.
This is shown as follows. From Tf (t′, α0) ⊆
Sfup(t′, α0), we know that S∗j ⊆ Sj,fup(t′, α−j) for
any α−j ∈ S−j,f (t′) (i.e. f -consistent prefixes). If
Sj,fup(t′, α−j) contains some αj /∈ S∗j , then it must
have weight 0, otherwise w(Sj,fup(t′, α−j)) ≥ w(S∗j )
which is a contradiction as S∗j is an optimal suffix set.

3. Does not decrease value
valfup(S(t, α0)) ≥ valf (S(t, α0))

This is proven as follows:
valfup(S(t, α0))

=
∑

α∈S(t,α0)

w(α)× csfup(α)

=
∑

α∈Sfup (t,α0)

w(α)

≥
∑

α∈Tf (t,α0)

w(α)

=
∑

α−j∈S−j,f (t′)

∑
αj∈S∗j

w(α)
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=
∑

α−j∈S−j,f (t′)

∑
αj∈S∗j

w(α−j)× w(αj)

≥
∑

α−j∈S−j,f (t′)

∑
α∈Sf (πk,α−j)

w(α−j)× w(αj)

=
∑

α∈Sf (t′,α0)

w(α−j)× w(αj)

=
∑

α∈Sf (t′,α0)

w(α)

=
∑

α∈S(t′,α0)

w(α)× csf (α)

= valf (S(t, α0))

Consider applying this operation iteratively, producing a
sequence of interventions f (1)

up ,f
(3)
up , .... For each interven-

tion f (i)
up , we can associate two quantities: m(i)

1 , the num-
ber of fup-consistent prefixes, and among these prefixes, the
number m(i)

2 (< m
(i)
1 ) of prefixes which have corresponding

suffixes all in S∗j or having zero weight. Property 1 then tells

us that m(i+1)
1 ≥ m

(i)
1 , and Property 2 tells us that m(i+1)

2 ≥
m

(i)
1 . Since there are a finite number of possible prefixes,

we must (in finite time) obtain some f iup with m(i)
1 = m

(i)
2 ,

which we will call fadj . Since all fadj-consistent prefixes
have corresponding suffixes in S∗j or with weight zero, by
Lemma 5 this intervention indeed has the property that all
subcircuits take the same branch or have weight zero, and
further by Property 3 the fadj-value of S(t, α0) is at least
f -value of S(t, α0).

The significance of this Lemma is that we can now
make use of the inductive hypothesis. As in the
case where πk doesn’t split on W ∈ W , we have
valpref,t′(b)(S(t′(b), α

(b)
0 )) ≥ valfadj (S(t′(b), α

(b)
0 ))

for any branch b. However, since all non-zero weight
fadj-consistent subcircuits follow the same branch,
val

pref,t′(badj)
(S(t′(badj), α

(badj)
0 )) is in fact an upper

bound on the fadj-value summed over subcircuits from all
branches: valf (S(t′, α0)).

Now we use this to prove the inductive hypothesis of
Lemma 4 for step k. Consider, for each branch b of
πk, the set of partial subcircuits given by S

(b)
S (πk) :=

{(α(b), α
(b)
1 , ...α

(b)
l ) : α

(b)
a ∈ SS(t

(b)
a )}. The UB algorithm

chooses the branch with the greatest UB-value ignoring con-
sistency of α(b) (i.e. which branch is actually chosen), that
is,

vb := w(α(b))×
∑

α
(b)
1 ,...,α

(b)
l

l∏
a=1

w(α(b)
a )× csUB(α(b)

a )

Suppose that the UB algorithm chooses branch bUB at πk, so
that csUB(α(bUB)) = 1 and csUB(α(b)) = 0 for all b 6= bUB .
Then, for a given f , we have that:

valpref,t′(S(t′, α0))

=
∑

α∈S(t′,α0)

w(α)×
j∏
i=1

csUB(αi)

=

m∑
b=1

∑
α∈S(t′(b),α

(b)
0 )

w(α)×
j∏
i=1

csUB(αi)

=

m∑
b=1

∑
α∈S(t′(b),α

(b)
0 )

w(α)×
j−1∏
i=1

csUB(αi)

× csUB(α(b))×
l∏

a=1

csUB(α(b)
a )

=

m∑
b=1

∑
α∈S(t′(b),α

(b)
0 )

w(α−j)×
j−1∏
i=1

csUB(αi)

× csUB(α(b))× w(α(b))

×
l∏

a=1

w(α(b)
a )× csUB(α(b)

a )

=
∑

α1,...,αj−1

w(α−j)×
j−1∏
i=1

csUB(αi)

×
m∑
b=1

(
csUB(α(b))× w(α(b))

×
∑

α
(b)
1 ,...,α

(b)
l

l∏
a=1

w(α(b)
a )× csUB(α(b)

a )

)

=
∑

α1,...,αj−1

w(α−j)×
j−1∏
i=1

csUB(αi)

×
m∑
b=1

vb × csUB(α(b))

=
∑

α1,...,αj−1

w(α−j)×
j−1∏
i=1

csUB(αi)

× vbBU

≥
∑

α1,...,αj−1

w(α−j)×
j−1∏
i=1

csUB(αi)

× vbadj

=
∑

α1,...,αj−1

w(α−j)×
j−1∏
i=1

csUB(αi)

× w(α(badj))×∑
α

(badj)

1 ,...,α
(badj)

l

l∏
a=1

w(α
(badj)
a )× csUB(α

(badj)
a )
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=
∑

α∈S(t′(badj),α
(badj)

0 )

w(α)×
j−1∏
i=1

csUB(αi)

×
l∏

a=1

csUB(α
(badj)
a )

= val
pref,t′(badj)

(S(t′(badj), α
(badj)
0 ))

≥ valfadj (S(t′(badj), α
(badj)
0 ))

=
∑

α∈S(t′(badj),α
(badj)

0 )

w(α)× csfadj (α)

=
∑

α∈S(t′,α0)

w(α)× csfadj (α)

= valfadj (S(t′, α0))

≥ valf (S(t′, α0))

Thus, in both cases (whether πk splits on W ∈ W ), we
have shown that the inductive hypothesis holds at step k.
Thus Lemma 4 is proved.

As noted previously, this Lemma immediately implies The-
orem 2; thus we are done.

E Proof of Proposition 3
Proposition 3. Algorithm 2 converges to a locally optimal
parametric intervention in finite time. Further, if the algo-
rithm is stopped before termination, the current value v will
be a lower bound on maxN ′∈I[W ] PN ′(e).

Proof. Because any intervention IP [Θ](N ) gives a lower
bound on the maximum probability of the evidence e, we
know that the algorithm will provide a lower bound on the
true value. Assuming the algorithm terminates, it will out-
put a locally maximal intervention; this follows immediately
from the termination criterion. It remains to show that the al-
gorithm does indeed terminate. We show this by demonstrat-
ing that the algorithm corresponds to best-response dynamics
on a potential game, for which it is known that best response
dynamics converge to a Nash Equilibrium in potential games
[Roughgarden, 2010].

We construct the mapping as follows: for each node V ∈
W and each instantiation u of its parents U , we construct
players pV |u, yielding a finite set P . The action set of each
player pV |u is the finite set of deterministic distributions over
the support of V . Recall that it suffices to consider only de-
terministic interventions to solve the interventional robust-
ness problem, and so this restriction to a finite action set does
not prevent the algorithm from obtaining a globally optimal
value.

The payoff to all players under strategy set Θ′W =
{θ′V |u|pV |u ∈ P} is identical and is equal to PN [Θ′W ](e).
Because the players have identical payoffs, we can define
a potential function for this game as this joint payoff func-
tion PN [Θ′W ](e), and observe that if a player follows best-
response dynamics, it will necessarily increase the value of

Figure 7: Causal model used by a fictional car insurance company
in the example in Section F.

p(e). We therefore obtain that the procedure will eventually
converge to a local optimum.

The problem of finding a Nash equilibrium lies in the com-
plexity class PPAD [Roughgarden, 2010]. In the worst-case,
best-response dynamics can take time proportional to the size
of the joint strategy space, which in this case will be exponen-
tial in the size of the intervention variable setW . While anec-
dotally we do not observe running times anywhere near the
worst case, we further note that because the IntRob prob-
lem concerns itself with finding a maximum over a set, any
element of that set, i.e. any intervention, serves as a witness
to give a lower bound on the maximum intervention probabil-
ity. Thus, the value v of the current intervention is always a
lower bound on the IntRob value, and so the algorithm can
be prematurely halted after any period of time and still yield
a valid lower bound.

F Worked example
We will use the simplified car insurance network from Fig-
ure 7 to illustrate the interventional robustness problem, and
highlight how existing methods cannot provide accurate guar-
antees for this problem.

Model: we assume the probabilistic model of Figure 7
with CPTs described in Table 4. In particular, we assume that
the insurance company decides on premiums based on some
combination of the driver’s age, car model, and history of tak-
ing driving courses. We will focus on the following decision
rule.
low if (class = 1)∧[(age=<25 ∧ model=budget)

∨ (age=>25 ∧ model=lux)].

The target probability in this setting will be P (e) with e =
(Accident = 1,C1 = low), and the intervention set will
be W = {model,class}. The intervention which max-
imizes P (e) is that in which θ′model|age=>25 = 1[model =

luxury] and θ′model|age=<25 = 1[model = budget], and
θ′C|u = 1[C = 1]. We will write these CPTs by θ∗w|u. Under
this intervention, the probability PN [Θ′](e) = 0.126. We set
our threshold ε = 0.1, and so the classifier C1 is not robust to
this intervention set.

There are two critical components to answering the inter-
vention robustness problem: the first is accurate estimation of
the probability PN [Θ′](e), and the second is effective search
over the intervention space. In what follows, we will show
how two approximation methods based on existing method-
ology fail at each of these components, and therefore fail to
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P(accident=1) P(accident=0) u
0.4 0.6 Model=luxury Class=1 risky=1
0.01 0.99 Model=luxury Class=1 risky=0
0.6 0.4 Model=luxury Class=0 risky=1
0.1 0.9 Model=luxury Class=0 risky=0
0.3 0.7 Model=budget Class=1 risky=1
0.05 0.95 Model=budget Class=1 risky=0
0.5 0.5 Model=budget Class=0 risky=1
0.3 0.7 Model=budget Class=0 risky=0

P (C|u) P (C̄|u) u
0.2 0.8 risky=1
0.8 0.2 risky=0

P (model = budget|u) P (model = luxury|u) u
0.3 0.7 age=> 25 risky=1
0.7 0.3 age=> 25 risky=0
0.8 0.2 age=< 25 risky=1
0.2 0.8 age=< 25 risky=0

P (risky=0) P (risky=1) u
0.3 0.7 age=> 25
0.3 0.7 age=< 25

Table 4: CPTs for the insurance network from Figure 1.

effectively answer the intervention robustness problem. This
motivates our proposed algorithms.

Sensitivity analysis, when performed exactly, will provide
the correct answer to parametric IntRob. However, existing
approaches are computationally intractable for large interven-
tion sets. For example, the method of Chan and Darwiche
[2004] requires differentiating the network polynomial with
respect to every combination of parameters from the interven-
able CPTs, which scales very poorly with respect to the size
of each CPT and number of intervenable variables |W |. As
a workaround, we consider a first-order approximation which
consists of summing the partial derivatives of each CPT be-
longing to an intervenable variable W ∈W . This yields the
following estimate of maxΘ′ PN [Θ′](e).

max
Θ′

PN [Θ′](e) ≈
∑
W∈W

∑
u(W )

max
w

∂θw|uP (e)

I.e. the approximation estimates the effect of parameter
changes by computing the effect of single-CPT changes to
P (e), and summing these estimates over all CPTs of interest.

= max
model

∂θmodel|age>25,·P (e) + max
model

∂θmodel|age=<25,·P (e)

+ max
class

∂θclass|·P (e)

= PN [θclass|u=1class=1](e) + PN [θmodel|u=θ∗model|u](e)

= 0.048 + 0.038

= 0.086 < ε = 0.1

Thus, under the single-parameter SA approximation, we
would incorrectly estimate the classifier to be robust to inter-
ventions on model and class.

We could also consider restricting our search over para-
metric interventions to one over do-interventions only. A
do-intervention fixes the value of a variable, in contrast to a
parametric intervention which changes its conditional distri-
bution. The appeal of do-interventions is that they induce a
much smaller search space; whereas the set of all parametric
interventions can be of size 22|U| (in a binary BN), the set
of possible do-interventions is only of size 2|W |. The dif-
ferential semantics of do-interventions are discussed by Qin
[2015], who show that it is possible to efficiently compute the

effect of a do-intervention on a single variable in time linear
in the size of the AC.

In the CBN in Figure 1, PN (e) is maximized when
θmodel=lux|age=>25,· = 1 and θmodel=budget|age=<25,· = 1 (i.e.
when young people buy budget cars and old people buy lux-
ury cars, independent of their risk appetite), and when all
drivers take driving classes. While the latter change in the
distribution can be expressed as a do-intervention, the former
cannot. The value of model must be set to either 0 or 1 for
all drivers. As a result, the worst-case do-intervention sets
class to True and model to luxury. Under this interven-
tion Θ′, we see

PN [Θ′](e) = 0.0635 < 0.1 = ε

and so considering only do-interventions is again not suffi-
cient to answer the intervention robustness problem.

It should be noted that while both of these naive approaches
are inspired by recent work which performs efficient infer-
ence using arithmetic circuits, it is not fair to call either a
competing inference approach to our method, as the works
cited developed their tools for different objectives. Rather,
the purpose of this example is to highlight that many plausible
approximation methods to verify the robustness of a classifier
can fail on simple examples.

G Additional Circuit Evaluations
G.1 Size of compiled circuits
In Table 5, we show details from joint compilations on five
Bayesian networks and decision rules on those networks (fur-
ther details in Appendix H). First, we notice that the actual
size of the compiled ACs is much smaller than that given by
the worst case bound (which is exponential in treewidth), due
to optimizations in the C2D compiler. Second, notice also
that the size of the AC does not increase by 2d when adding
a decision rule to the classification: for instance, in win95pts,
the size increases by a factor of ∼ 400, while the decision
rule has 216 = 65536. Interestingly, for the insurance net-
work, the AC size actually decreases when compiling with
a small decision rule; this is likely due to good fortune with
the min-fill heuristic. Finally, when we enforce a topolog-
ical ordering, the size of the compilation increases, but not
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Net CSize Ord TW AC size Time
(s)

insurance 0 (0) N 29 362983 1.2
3 (41) N 24 167121 0.5
3 (41) T 31 794267 4
3 (41) S 33 1270075 8

child 0 (0) N 15 4935 0.007
8 (326) N 38 234914 0.7
8 (326) T 38 1004786 1

win95pts 0 (0) N 18 17682 0.04
16 (799) N 51 1210072 3
16 (799) T 58 52266950 77

hepar2 12 (946) N 53 8096874 49
12 (946) T 51 123108407 73
12 (946) S 51 123164181 75

andes 12 (95) N 41 24787127 272
12 (95) PT 43 60865146 778

Table 5: AC sizes and times (s) for the joint compilations used in
the UB and LB algorithms. Shown are the number of input features
d and the sizes of the Boolean circuits representing the classifier (0
indicates no classifier), ordering constraints (none, partial topolog-
ical, topological, or structural topological), treewidth of the com-
bined CNF encoding, and size and compilation time. We note that
the large increase in network treewidth when adding a classifier is
due to the treewidth of the classifier.

by more than ∼ 100. Remarkably, this allows us to upper
bound a marginal probability against parametric intervention
sets involving any number of intervenable nodes. Our re-
sults provide evidence that our methods can scale to fairly
large networks and classifiers, including with topological and
structural topological orderings.

The ordering types are defined as follows. Recall that, for
the correctness of the upper bounding algorithm, we require
Vj < Vi for all Vj ∈ pa(Vi), and for all Vi ∈ W . Par-
tial topological orderings impose these constraints Vj < Vi.
Topological orderings impose the constraints for all Vi ∈ V ,
rather than just Vi ∈ W . This is generally preferred if com-
putationally feasible, as it allows us to compute upper bounds
for any parameter intervention set, and further also tends to
produce better bounds. However, for the andes network, we
found that this was too computationally demanding. Struc-
tural ordering constraints contain topological constraints, and
further for every Vi ∈W , we add Vj < Vi for Vj ∈ paG′(Vi),
so that we can compute upper bounds on structural interven-
tion sets.

G.2 Tightness of Lower and Upper Bounds

We provide additional results on the tightness of our upper
and lower bounds on an expanded set of evaluations, in-
cluding both false positives and false negatives as evidence,
and considering a broader range of networks and intervention
sets. Results are detailed in Table 6.

H Experimental Details
In our experiments, we use two types of classifiers F . For the
child, win95pts, andes networks, we use Bayesian
network classifiers (BNC) trained on the respective net-
works, in order to predict a root node of the BN. For the
insurance, hepar2 network, since the chosen predic-
tion targets are not root nodes of the networks, we used a
Naı̈ve Bayes classifier where the conditional probs have been
extracted from BN. For insurance, hepar2, since the
prediction targets Y are not root nodes, we can test interven-
tions which change the distribution on Y . Decision functions
are obtained from the classifiers by applying a threshold.

To obtain Boolean circuits for the decision functions, we
use a BNC-to-ODD compiler [Shih et al., 2019], and then
convert the ODD into a Boolean circuit (NNF).

Classifiers
1. child

• Target: BirthAsphyxia
• Features: LVHreport, GruntingReport,
XrayReport, LowerBodyO2,
CardiacMixing, Age, RUQO2,
CO2Report

2. insurance

• Target: MedCost
• Features: Age, MakeModel, DrivHist

3. win95pts

• Target: PTROFFLINE
• Features: Problem3, Problem2,
PrtStatMem, PrtStatToner,
Problem6, PrtFile, PrtStatOff,
PrtIcon, Problem1, REPEAT,
HrglssDrtnAftrPrnt, TstpsTxt,
PSERRMEM, Problem5, Problem4,
PrtStatPaper

4. hepar2

• Target: Steatosis
• Features: alt, triglycerides, ggtp,
jaundice, alcohol, pain ruq,
cholesterol, ESR, hepatalgia,
ast, nausea, fat

5. Andes

• Target: TRY12
• Features: TRY15, SNode 14, SNode 19,
TRY13, TRY14, GOAL 99, SNode 46,
SNode 31, SNode 155, SNode 123,
SNode 40, TRY26

Intervention Sets
1. child

• P1: W = {GruntingReport}
• P2: W = {ChestXray, Sick, Grunting}
• P3: W = {LowerBodyO2, RUQO2, CO2Report}

2. insurance
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Network IntSet False Negatives False Positives

BeforeIntv LBound RBound ∆ BeforeIntv LBound UBound ∆

child P1 0.06922 0.07098 0.07098 0 0.1629 0.1947 0.1947 0
P2 0.06922 0.07325 0.07329 0.00004 0.1629 0.2762 0.3069 0.0307
P3 0.06922 0.06978 0.07127 0.00149 0.1629 0.1717 0.2009 0.0292

insurance P1 0.02453 0.1181 0.1276 0.0095 0.1981 0.4157 0.4161 0.0004
P2 0.02453 0.3275 0.3433 0.0158 0.1981 0.9123 0.9130 0.0007
P3 0.02453 0.02453 0.02453 0 0.1981 0.1981 0.1981 0
S1 0.02453 0.1181 0.1297 0.0116 0.1981 0.4157 0.4168 0.0011

win95pts P1 0.2106 0.2111 0.2111 0 0.005170 0.005416 0.005445 0.000029
P2 0.2106 0.2163 0.2191 0.0028 0.005170 0.007200 0.008665 0.001465
P3 0.2106 0.2972 0.2985 0.0013 0.005170 0.01430 0.01445 0.00015
P4 0.2106 0.2109 0.2117 0.0008 0.005170 0.05494 0.05674 0.00180

hepar2 P1 0.03673 0.09445 0.09445 0 0.2360 0.2408 0.2408 0
P2 0.03673 0.09585 0.09585 0 0.2360 0.9041 0.9041 0
P3 0.03673 0.1029 0.1029 0 0.2360 0.43758 0.43773 0.00015
S1 0.03673 0.1029 0.1029 0 0.2360 0.43758 0.43793 0.00035

andes P1 0.001400 0.001400 0.002540 0.001140 0 0 0 0
P2 0.001400 0.001400 0.002656 0.001256 0 0 0 0

Table 6: Analysis of the tightness of bounds (on probability of false negatives/false positives) produced by the UB and LB algorithms. For
each network, we have different intervention sets. We show the probability of false negatives/false positives in the original Bayesian network
(BeforeIntv), along with lower and upper bounds under each intervention set.

• P1: W = {MakeModel, Cushioning}
• P2: W = {SocioEcon, RiskAversion,
Theft, Mileage, MakeModel,
Cushioning}

• P3: W = {ThisCarDam, AntiTheft,
OtherCarCost}

• C1: W = {MakeModel, Cushioning},
C(MakeModel) = {Age, AntiTheft,
DrivHist, DrivingSkill,
GoodStudent, HomeBase, Mileage,
OtherCar, RiskAversion,
SeniorTrain, SocioEcon,
VehicleYear, },
C(MakeModel) = {Age, Airbag,
AntiTheft, Antilock, CarValue,
DrivHist, DrivQuality,
DrivingSkill, GoodStudent,
HomeBase, MakeModel, Mileage,
OtherCar, RiskAversion,
RuggedAuto, SeniorTrain,
SocioEcon, Theft, VehicleYear,
}

3. win95pts

• P1: W = {NetOK, NetPrint}
• P2: W = {AvlblVrtlMmry, DSApplctn,
DskLocal, HrglssDrtnAftrPrnt,
NtSpd, DeskPrntSpd, EPSGrphc,
PSGRAPHIC, FllCrrptdBffr }

• P3: W = {REPEAT}

• P4: W = {GDIIN, PC2PRT, PSGRAPHIC,
DS LCLOK, PSERRMEM, EMFOK,
DS NTOK}

4. hepar2
• P1: W = {alcoholism}
• P2: W = {alcoholism}
• P3: W = {alcoholism, hepatomegaly,
alcohol, itching, fatigue,
consciousness, hospital}

• C1: W = {alcoholism, hepatomegaly,
alcohol, itching, fatigue,
consciousness, hospital}
The context function C specifies additional
parents on top of those present in the original
BN. All W have age, sex, alcoholism
as additional parents. Further, fatigue,
consiciousness, hospital have
anorexia as additional parent.

5. andes
• P1: W = {GOAL 49, GOAL 61, SNode 26,
SNode 37}

• P2: W = {GOAL 49, GOAL 61, SNode 26,
SNode 37, GOAL 57, GOAL 149,
GOAL 153, SNode 74 }
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