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Abstract

Probabilistic circuits (PCs) are a class of

tractable probabilistic models, which admit ef-

ficient inference routines depending on their

structural properties. In this paper, we intro-

duce md-vtrees, a novel structural formulation

of (marginal) determinism in structured decom-

posable PCs, which generalizes previously pro-

posed classes such as probabilistic sentential de-

cision diagrams. Crucially, we show how md-

vtrees can be used to derive tractability condi-

tions and efficient algorithms for advanced in-

ference queries expressed as arbitrary composi-

tions of basic probabilistic operations, such as

marginalization, multiplication and reciprocals,

in a sound and generalizable manner. In par-

ticular, we derive the first polytime algorithms

for causal inference queries such as backdoor

adjustment on PCs. As a practical instantiation

of the framework, we propose MDNets, a novel

PC architecture using md-vtrees, and empirically

demonstrate their application to causal inference.

1 INTRODUCTION

Probabilistic circuits (PC) (Choi et al., 2020) are a broad

family of tractable probabilistic models that are known

for their ability to perform exact and efficient probabilis-

tic inference. For example, in contrast to neural prob-

abilistic models such as variational autoencoders (VAE)

(Kingma and Welling, 2013), generative adversarial net-

works (GAN) (Goodfellow et al., 2014), and normalizing

flows (NF) (Rezende and Mohamed, 2015), linear-time ex-

act algorithms on PCs are available for important inference

tasks such as computing marginal probabilities, or the max-

imum probability assignment of variables, for certain types

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

of PCs. Meanwhile, probabilistic circuit structures have

recently been shown to scale to high-dimensional datasets

such as CelebA (Peharz et al., 2020a).

A distinguishing feature of the PC framework is the ability

to trade off expressive efficiency for tractability by impos-

ing various properties on the PC. Broadly, these properties

can be divided into scope properties, such as decompos-

ability and structured decomposability (Pipatsrisawat and

Darwiche, 2008), and support properties, such as deter-

minism, strong determinism (Pipatsrisawat and Darwiche,

2010), and marginal determinism (Choi et al., 2020). As

we impose more properties on a PC, more inference tasks

become tractable (i.e. computable in polynomial time), but

we also lose some expressive efficiency and generality.

In this paper, we aim to extend the boundaries of advanced

inference queries that can be tackled with PCs. In partic-

ular, we consider probabilistic inference queries specified

as compositions of basic operations such as marginaliza-

tion, products, and reciprocals, building upon the approach

of Vergari et al. (2021). We find that current PC classes

are not sufficient to analyze arbitrary compositions of these

operations, and thus propose a novel class of circuits (md-

vtrees & MDNet) and accompanying rules (MD-calculus)

to derive in a sound and generalizable manner tractability

conditions and algorithms for such compositions. Exploit-

ing this, we design the first efficient exact algorithms for

causal inference on probabilistic circuits.

Our first contribution is to introduce a unifying formulation

of support properties in structured decomposable circuits

using md-vtrees. We show that md-vtrees generalize previ-

ously proposed PC families such as probabilistic sentential

decision diagrams (PSDD) (Kisa et al., 2014) and struc-

tured decomposable and deterministic circuits (Dang et al.,

2020; Di Mauro et al., 2021). Notably, we also show that

PSDDs are not optimal in that we can impose weaker sup-

port properties while maintaining tractability for the same

inference tasks.

Next, as a practical instantiation of the framework, we

propose MDNets, a novel architecture for PCs which can

be easily configured to conform to any md-vtree. Cru-

http://arxiv.org/abs/2304.08278v1


Compositional Probabilistic and Causal Inference using Tractable Circuit Models

cially, this allows us to enforce arbitrary support properties

needed for tractable inference, including those not covered

by existing PC architectures. We show how to learn MD-

Nets simply and efficiently using randomized structures

and parameter learning (Peharz et al., 2020b,a; Di Mauro

et al., 2021).

Finally, for inference, we derive a set of rules for analyzing

arbitrary compositions of basic operations using md-vtrees,

which we call the MD-calculus. In particular, MD-calculus

rules can be applied backward through a given composi-

tion, to derive sufficient conditions for tractability on the

inputs to the query, which we can enforce during learning

through our MDNets. As an application, we demonstrate

how the MD-calculus can be applied to derive tractability

conditions and algorithms for causal inference estimands

on PCs, including the backdoor and frontdoor formulae and

(an extension of) the napkin formula.

1.1 Related Work

Support Properties The property of determinism was

first introduced in the context of Boolean circuits, specifi-

cally, those in negation normal form (Darwiche, 2001; Dar-

wiche and Marquis, 2002), before being naturally extended

to arithmetic/probabilistic circuits (Darwiche, 2003). Later,

a stronger property known as strong determinism was intro-

duced (Pipatsrisawat and Darwiche, 2010; Darwiche, 2011;

Kisa et al., 2014) as a convenient means of enforcing deter-

minism in structured decomposable circuits by tying deter-

minism to the scope decomposition, resulting in the (prob-

abilistic) sentential decision diagram (SDD). Oztok et al.

(2016) further introduced the notion of constrained vtrees,

which restricts the structure (scopes, and thus support) of

the SDD vtree in order to solve problems on weighted

Boolean formulae. Finally, Choi et al. (2020) recently in-

troduced a more general support property called marginal

determinism, which applies to general probabilistic circuits

and is not directly tied to the scope decomposition; our

work shows how to construct marginal deterministic cir-

cuits, previously considered an intractable task (Choi et al.,

2022). Marginal determinism is sufficient for tractability of

some marginal MAP queries (Huang et al., 2006).

Causality and Probabilistic Circuits The relation-

ship between probabilistic circuits and causality has its

roots in the seminal compilation methods of Darwiche

(2003), which described an inference approach for (causal)

Bayesian networks that involved compiling their graphs

into tractable arithmetic circuits; subsequent work has fur-

ther examined causality and compiled circuits (Butz et al.,

2020; Wang et al., 2021; Darwiche, 2021; Chen and Dar-

wiche, 2022). However, obtaining an exact causal inter-

pretation of more general, learned probabilistic circuits has

remained an open problem (Zhao et al., 2015; Papantonis

and Belle, 2020). The only practical prior causal inference

method for such circuits is the neural parameterization of

Zecevic et al. (2021), but this lacks exactness guarantees

and is only applicable to fully observed settings. In con-

trast, we consider exact causal inference using do-calculus,

where circuits encode the observed probability distribu-

tion.

2 PRELIMINARIES

Notation We use uppercase to denote a random variable

(e.g., V ) and lowercase for an instantiation of a variable

(e.g., v). Sets of variables (and their instantiations) are de-

noted using bold font (e.g., V ,v), and we use val for the

set of all instantiations of a set of variables (e.g., val(V )).

Probabilistic circuits (PC) (Choi et al., 2020) are computa-

tional graphs which encode a non-negative function over a

set of variables; in particular, they are often used to model

(possibly unnormalized) probability distributions.

Definition 1 (Probabilistic Circuit). A circuit C over vari-

ables V is a parameterized rooted graph, consisting of

three types of nodesN : leaf L, sum T and product P . Leaf

nodes L are leaves of the graph, while each internal node

(sum or product) N has a set of children, denoted ch(N).
Sum nodes have a parameter/weight θi ∈ R

≥0 associated

with each of their children Ni.

Each leaf node L encodes a non-negative function pL :
φ(L)→ R

≥0 over a subset of variables φ(L) ⊆ V , known

as its scope. The function encoded by each internal node

N is then given by:

pN (V ) :=

{

∏

Ni∈ch(N) pNi
(V ) if N is a product1

∑

Ni∈ch(N) θipNi
(V ) if N is a sum

The function encoded by the circuit, pC(V ), is defined to

be the function encoded by its root node R. The size of a

circuit, denoted |C|, is defined to be the number of edges in

the circuit.

Definition 2 (Scope and support of PC node). The scope

of an internal node N is the set of variables pN spec-

ifies a function over, recursively defined by φ(N) :=
⋃

Ni∈ch(N) φ(Ni). The support of any node N is the set

of all instantiations of its scope s.t. pN is positive, defined

as supp(N) := {w ∈ val(φ(N)) : pN (w) > 0}.

The tractability of probabilistic circuits depends on the

scope and support properties they satisfy. A PC is de-

composable if the children of a product node have distinct

scopes (and thus partition the scope of the product node),

and is smooth if the children of a sum node have the same

scope. Decomposability and smoothness together enable

1We assume in this paper that each product node has exactly
two children; this does not lose generality as any product node
can be converted into a sequence of binary products.
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tractable marginal inference; that is, for any subset W ⊆
φ(N) of the scope of a node N , we can compute pN(W )
efficiently, where pN (W ) :=

∑

φ(N)\W pN(φ(N)) is the

marginal of the function. A stronger version of decom-

posability known as structured decomposability (Pipatsri-

sawat and Darwiche, 2008; Kisa et al., 2014) requires the

scope of product nodes to decompose according to a vtree.

Structured decomposability enables efficient computation

of additional operations/queries, notably the product of two

circuits respecting the same vtree (Pipatsrisawat and Dar-

wiche, 2008; Shen et al., 2016). As for support properties,

a PC is deterministic if, for every instantiation w of the

scope of a sum node, at most one of its children Ni eval-

uates to a non-zero value pNi
(w) (equivalently, the sup-

ports of the children are distinct). Determinism enables

tractability of the MAP inference query, i.e. computing

maxV \E pN (V \ E, e) for some instantiation e of a set

of evidence variables E ⊆ V .

3 A UNIFYING FRAMEWORK FOR

SUPPORT PROPERTIES IN

STRUCTURED DECOMPOSABLE

CIRCUITS

In this section, we describe our md-vtree framework, which

integrates support properties into the vtree formulation of

structured decomposable circuits. Using this unifying per-

spective, we derive a trade-off between the generality of

md-vtree circuit classes and tractability, and necessary con-

ditions for optimality of this trade-off.

3.1 Structured Decomposability

The property of structured decomposability is defined with

respect to a variable tree known as a vtree.

Definition 3 (Vtree). A vtree v = (M,E) for a set of vari-

ables V is a rooted binary tree with nodesM and edgesE,

whose leaves m each correspond to a subset φ(m) ⊆ V ,

such that the subsets for all leaves form a partition of V .

We define the scope of a leaf m to be φ(m), and the scope

of any other node to be φ(m) = ∪mi∈ch(m)φ(mi). Further,

we write vm = (Mm, Em) to denote the vtree rooted at m.

Intuitively, a vtree specifies how the scope of product nodes

decompose in a circuit. However, our definition of struc-

tured decomposability differs from typical recursive defini-

tions (Pipatsrisawat and Darwiche, 2008; Darwiche, 2011;

Shih et al., 2019) in that the key condition is on the scopes

of the sum/leaf nodes, without directly placing conditions

on the product nodes (besides decomposability):

Definition 4 (PC respecting vtree). Let C be a PC and v =
(M,E) be a vtree, both over variables V . We say that C

respects v if (1) C is smooth2 and decomposable; and (2)

2A structured decomposable circuit can be smoothed in near-

for every leaf node and non-trivial3 sum nodeN ∈ C, there

exists a vtree node m ∈M such that φ(N) = φ(m).

Definition 5 (Structured Decomposability). A PC C is

structured decomposable if it respects some vtree v.

Structured decomposability enables tractable products of

circuits respecting compatible vtrees, i.e. those which have

the same structure when projected onto their common vari-

ables C := V (1) ∩ V (2) (see Appendix for details). In

the next subsection, we will show how support properties,

which are also specified on the sum nodes in the circuit,

can be neatly integrated into vtrees.

3.2 Structured Marginal Determinism

Our new definition of structured decomposability based on

sum nodes provides the basis for us to specify a novel

systematic characterization of support properties in struc-

tured decomposable circuits, which we call structured

marginal determinism. First, we reformulate the definitions

of marginal determinism from Choi et al. (2020).

Definition 6 (Restricted Scope). For a PC node N (resp.

vtree nodem), and given a set C ⊆ V , the restricted scope

is defined as φC(N) := φ(N) ∩ C (resp. φC(m) :=
φ(m) ∩C).

Definition 7 (Marginalized Support). For any PC node N

and subset of variables Q ⊆ V , we define the marginalized

support of N with respect to Q as suppQ(N) := {q ∈
val(Q) : pN (q) > 0}.

Note that Q can contain variables outside of φ(N); in a

slight abuse of notation, we write pN (q) for pN (q∩φ(N)).

Definition 8 (Marginal Determinism). A sum node is

marginal deterministic with respect to a subset Q ⊆ V

(written Q-deterministic) if the children of the sum node

have distinct marginalized support, i.e. suppQ(Ni) ∩
suppQ(Nj) = ∅ for Ni, Nj distinct children of T .

Definition 9 (Marginal Determinism of PC). A PC is

marginal deterministic with respect to a subset Q ⊆ V

(written Q-deterministic) if for every sum node T , either:

• φ(T ) does not overlap with Q, i.e. φQ(T ) = ∅; or

• The sum node T is Q-deterministic.

For example, normal determinism is equivalent to C being

marginal deterministic with respect to V . In general, there

is no straightforward relation between Q-determinism and

Q′-determinism for different sets Q,Q′. In particular, nei-

ther determinism (i.e. V -determinism) nor Q-determinism

imply each other in general; for example, a circuit can be

Q-deterministic but not deterministic if there exist some

linear time (Shih et al., 2019).
3A sum node is non-trivial iff it has more than one child.
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{V1, V2, V3, V4}

{V1, V2} {V3, V4}

{V1} {V2} {V3} {V4}

(a) vtree with scope function φ

{V1, V2}

{V1} {V3}

{V1} {V2} {V3} {V4}

(b) vtree with label ψ(psdd)

{V1, V2, V3, V4}

{V1, V2} {V3, V4}

{V1} {V2} {V3} {V4}

(c) vtree with label ψ(det)

{V1, V2}

{V1, V2} {V3}

{V1} {V2} {V3} {V4}

(d) Optimal labels for PSDD

Figure 1: Example of md-vtree with scope function, and three different labelling functions.

sum nodes with φQ(T ) = ∅. Thus, we useQ(C) to denote

the set of all sets Q ⊆ V such that C is Q-deterministic;

this provides a characterization of the support properties of

the circuit.

Now, for a given PC C, and any sum node T in that PC, let

ψ(T ) be the set of all sets Q such that T is Q-deterministic;

we call this a labelling function. Note that the label func-

tionψ is a specification of marginal determinism for the cir-

cuit; that is, it is sufficient to deduce Q(C). We make two

observations that allow us to simplify the labelling func-

tion, one straightforward, and one more subtle. Firstly, we

note that Q-determinism for the circuit imposes the same

requirement on all nodes with the same scope; thus we re-

strict ψ to have the same value for all sum nodes with the

same scope. For structured decomposable circuits, we can

thus write ψ(m) as a function of the vtree node m.

The second observation is that, under some assumptions,

we can actually specify ψ(m) using a single set Q ⊆ V .

Proposition 1 (Conflicting Q-Determinisms for Sum

Nodes). Let C be a PC, and let Q,Q′ ⊆ V such that

neither is a subset of the other. Suppose that there exists

a non-trivial sum node T in C that is Q-deterministic and

Q′-deterministic, but not (Q∩Q′)-deterministic. Then the

circuit rooted at T , CT , cannot have full support.

Proposition 1 says that, if we want ψ(m) to contain two

sets Q,Q′ which are not subsets of each other, then this

necessarily restricts the support of the circuit. While it can

be beneficial to enforce a restricted support on a PC if we

have prior knowledge (Kisa et al., 2014), it is undesirable in

our case where restricting support comes as a side effect of

enforcing tractability, as this can result in bias when learn-

ing. As such, we only consider labellings ψ(m) where, for

every Q,Q′ ∈ ψ(m), we have Q ⊆ Q′ or Q′ ⊆ Q.

Proposition 2 (Superset Q-Determinisms for Sum Nodes).

Suppose that a sum node T is Q-deterministic. Then it is

also Q′-deterministic for any Q ⊆ Q′ ⊆ V .

Using Proposition 2, it now follows that ψ(m) must take

the form {Q′|Q ⊆ Q′ ⊆ V } for some Q. As a result, we

can just label our vtree node m with Q, i.e. ψ(m) = Q.

This motivates our characterization of structural marginal

determinism based on the concept of a md-vtree, which

provides a means of specifying the support properties that

a structured decomposable circuit satisfies.

Definition 10 (md-vtree). A md-vtree w = (v, ψ) for a set

of variables V consists of a vtree v = (M,E) over V ,

together with a labelling function ψ.

The labelling function maps a vtree node m ∈ M to some

element in P(φ(m)) ∪ {U}, where U is the universal set.4

Definition 11 (PC respecting md-vtree). LetC be a PC and

w = (v, ψ) be a md-vtree, both over variables V . Then we

say thatC respectsw if 1)C respects v; and 2) for any sum

unit T ∈ C, T is marginally deterministic with respect to

ψ(m), where m is the vtree node such that φ(T ) = φ(m).

We denote the class of circuits respecting w by Cw.

Intuitively, md-vtrees capture both structured decompos-

ability, as well as a marginal determinism “pattern” that the

circuit must follow:

Definition 12 (ImpliedQ-Determinisms). For any set Q ⊆
V , we say that Q-determinism is implied by a md-vtree w

if, for every vtree node m ∈ M such that φ(m) ∩Q 6= ∅,
it is the case that Q ⊇ ψ(m). We write Q(w) to denote the

set of all sets Q s.t. Q-determinism is implied by w.

Proposition 3 (Validity of Implied Q-Determinisms). For

any PC C respecting md-vtree w, both over V , and any

Q ⊆ V s.t. w implies Q-determinism, it follows that C is

Q-deterministic.

Notice that there is a trade-off between generality (expres-

sivity) of the PC class, and the support properties it sup-

ports. Increasing the size of the labelling sets will improve

the former, but hurt the latter.

Theorem 1 (Generality-Tractability Tradeoff). Let w =
(v, ψ) and w′ = (v, ψ′) be two md-vtrees, such that

ψ′(m) ⊇ ψ(m) for all m ∈ M . Then we have that

Q(w) ⊇ Q(w′), and Cw ⊆ Cw′ .

It is worth commenting on the two extremes of possible

labels; namely, the universal set, and the empty set. The

role of the universal set label U is to indicate that no Q-

determinism properties hold (including normal determin-

ism). On the other hand, the empty set indicates that any

sum node T corresponding to m can only have one child

4The universal set satisfies, for any set S, U ⊇ S, U 6⊆ S
(unless S is U ), U ∩ S = S, and U ∪ S = U .
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Ni which is not zero, i.e. pNi
≡ 0; thus the sum node

must be trivial. In practice, this means that it must repre-

sent a factorized distribution with factors corresponding to

the scopes of the children of m.

Examples To the best of our knowledge, the only con-

crete type of probabilistic circuit proposed in the litera-

ture that imposes non-trivial marginal determinism con-

straints (i.e., not just normal determinism) is the proba-

bilistic sentential decision diagram (PSDD) (Kisa et al.,

2014). PSDDs satisfy structured decomposability and a

property known as strong determinism. In the language

of md-vtrees, this corresponds to requiring that, for any

non-leaf vtree node m, and children m1,m2 of m, the

label ψ(m) is either φ(m1) or φ(m2) (which is then re-

ferred to as the left child). For example, for the vtree over

V = {V1, V2, V3, V4}, shown in Figure 1a together with

the scopes for each vtree node, the label function ψ(psdd) is

given on the right in Figure 1b.

Despite implementing strong determinism, recent work

has shown that almost all of the tractable queries and

operations that PSDDs support require only structured

decomposability and determinism (Dang et al., 2020).

This raises the question of whether strong determinism

adds anything. To analyse this, in Figure 1c we show

the labelling function ψ(det) which defines a determinis-

tic circuit. With these representations, we can deduce

the Q-determinism properties that any PSDD, or struc-

tured decomposable and deterministic circuit, must sat-

isfy, by finding the set Q(w) of sets Q which its md-

vtree implies. In this example, by enumerating all sets

Q ⊆ V and checking the condition, we can see that

Q(wpsdd) = {{V1, V2}, {V1, V2, V3}, {V1, V2, V3, V4}},
while Q(vdet) = {{V1, V2, V3, V4}}. This shows that PS-

DDs do have additional Q-determinisms, which means,

for example, that they are more tractable with regards to

MMAP queries. In fact, in the particular case of (P)SDDs,

the implied Q-determinisms Q(wpsdd) coincide with the

definition of Q-constrained vtrees (Oztok et al., 2016).

3.3 Regular md-vtrees

Given the trade-off between expressivity and tractability

for md-vtrees, one might ask how to choose the labelling

function in practice. One reasonable strategy would be to

enforce some marginal determinism properties that we re-

quire for tractability of some inference task, and optimize

for expressivity within this constraint.

Problem 1 (Labelling Selection). Given a vtree v, and a set

S of subsets Q ⊆ V , choose a labelling function ψ such

that w = (v, ψ) implies Q-determinism for all Q ∈ S, i.e.

Q(w) ⊇ S, while maximizing expressivity.

We propose a simple algorithm to tackle this problem (Al-

gorithm 1), which directly enforces the necessary labels for

Algorithm 1: Optimal Labelling

Input: vtree v = (M,E), required set of marginal

determinisms S

Result: labelling function ψ for v

1 for m ∈M do

2 ψ(m)← U

3 for Q ∈ S do

4 if Q ∩ φ(m) 6= ∅ then

5 ψ(m)← ψ(m) ∩Q

6 if ψ(m) 6= U then

7 ψ(m)← ψ(m) ∩ φ(m)

8 Return w = (v, ψ)

each vtree nodes; it can be seen that it is optimally expres-

sive, in the sense that increasing the size of any labelling set

will result in some losing Q-determinism for some Q ∈ S.

It turns out that such labelling functions have a very spe-

cific structure:

Definition 13 (Regular md-vtree). We say that a md-vtree

w = (v, ψ) is regular if for every non-leaf node m, and

its children m1,m2, it holds that either ψ(m) = ψ(m1),
ψ(m) = ψ(m2), or ψ(m) = ψ(m1) ∪ ψ(m2).

Proposition 4 (Regularity of Algorithm 1). The output of

Algorithm 1 is a regular md-vtree.

The following Theorem shows that regular md-vtrees are

optimal in the sense that for any given marginal determin-

ism requirement S, (one of) the most expressive md-vtree

is always a regular md-vtree. This means that we can re-

strict our attention to the much smaller space of regular md-

vtrees. In particular, the labelling function of a regular md-

vtree is entirely determined by the labelling of each leaf

node ψ(mleaf), and a ternary variable over values {f, s, b}
for each non-leaf node, indicating whether the label de-

pends on the label of the first child, second child, or both.

Theorem 2 (Optimal md-vtrees). Let w = (v, ψ) be any

md-vtree. Then there exists a regular md-vtreew′ = (v, ψ′)
such thatQ(w) = Q(w′), and Cw′ ⊇ Cw.

While Algorithm 1 always returns an optimal labelling for a

given vtree satisfying the required marginal determinisms,

the expressivity of the circuit class may differ depending

on the vtree. For example, for some vtrees, Algorithm 1

may output a labelling function such that ψ(m) is empty

for some vtree nodes m, i.e. a factorized distribution. We

leave designing optimally expressive vtrees for a given set

S of marginal determinisms as an open problem.

Examples Let us return to the PSDD example from Fig-

ure 1. It can be easily checked that the corresponding md-

vtree wpsdd in Figure 1b is not regular. Following Algo-

rithm 1, we therefore construct in Figure 1d an regular md-

vtree wopt that retains the same Q(wopt) = Q(wpsdd) =
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{{V1, V2}, {V1, V2, V3}, {V1, V2, V3, V4}}. We should pre-

fer wopt over wpsdd as it imposes less constraints/more cir-

cuits respect wopt. In other words, PSDDs impose more

constraints than they “need to” to obtain their marginal de-

terminism properties.

4 MDNETS: A PRACTICAL

ARCHITECTURE FOR MD-VTREES

In this section, we show how to construct and learn a prob-

abilistic circuit that respects a particular md-vtree. It is

worth noting that, as special cases of md-vtrees, we can use

existing architectures and learning algorithms for PCs such

as PSDDs (Liang et al., 2017) and structured decompos-

able and deterministic circuits (Dang et al., 2020; Di Mauro

et al., 2021). However, we have seen that PSDDs are not

optimally expressive, and to enforce tractability, we may

need to target md-vtrees which do not fall into these exist-

ing categories, such as those generated from Algorithm 1.

We thus propose a novel PC architecture, MDNet, which

enforces a given regular md-vtree by design.

The key component of MDNets is the node group, which

is a vector of sum nodes with the same scope (i.e. corre-

sponding to the same vtree node m) with the property that

the nodes in the group have disjoint marginalized support

suppψ(m)(N). Intuitively, the sum nodes in a group pro-

vide a partition of the domain of ψ(m), which we use as

an invariant in order to enforce the required marginal de-

terminisms throughout the circuit. More formally, suppose

that we have a non-leaf vtree node m, and let ml,mr be

its children. We refer to all sum nodes corresponding to a

vtree node as being a layer, and assign G groups T1, ...TG

to the layer for vtree node m, and similarly T
(l)
1 , ...T

(l)
Gl

,

T
(r)
1 , ...T

(r)
Gr

to the layers for ml,mr. For regular md-

vtrees, the label ψ(m) is either equal to ψ(ml) or ψ(mr),
or is their union. We handle these cases separately, as mix-

ing and synthesizing layers.

Mixing Layer If ψ(m) = ψ(ml) or ψ(mr), we imple-

ment a mixing layer. W.l.o.g. we assume ψ(m) = ψ(ml).
For each groupTi = (Ti,1, ..., Ti,k), and for each sum node

Ti,k in the group, we assign a set of product nodes Pi,k to

Ti,k. Each product node has two children; the left child

being a node from T
(l)
1 , ...T

(l)
Gl

and the right child being

a node from T
(r)
1 , ...T

(r)
Gr

. We place the following restric-

tion: the left children of the product nodes ∪kPi,k must all

be distinct, and all come from a single group. This ensures

that all of the sum nodes are ψ(m) = ψ(ml)-deterministic,

and further that each group Ti satisfies the invariant.

Synthesizing Layer If ψ(m) = ψ(ml) ∪ ψ(mr), we as-

sign product nodes Pi,k to each sum node Ti,k as before,

but with a different restriction; we now require that both the

left children and right children of the product nodes ∪kPi,k

Operation Requirements Output Encodes

MARG(C;W ) -
∑

W pC(V )
INST(C;w) - pC(w,V \W )

PROD(C1, C2) Cmp. Vtrees pC1(V )× pC2(V )

POW(C;α) Det pC(V )α|supp(C)

MAX(C) Det maxV pC(V )
LOG(C) Det log pC(V )|supp(C)

Table 1: Definitions of basic operations.

are nodes coming from a single group from their respective

layers, and that each product node has a unique combina-

tion of children from these groups.

Intuitively, mixing layers achieve their marginal determin-

ism by “copying” the marginal determinism of one of their

child layers, while mixing over groups in the other child

layer. On the other hand, synthesizing layers enforce

marginal determinism by combining, or synthesizing, the

marginal determinism properties of both of their children.

For simplicity, we propose to learn MDNets exploiting re-

cent advancements in random structures for PC learning

(Peharz et al., 2020a,b; Di Mauro et al., 2021): in partic-

ular, we propose to choose the MDNet structure randomly

within the constraints, and then learn the parameters us-

ing standard MLE estimation if the md-vtree implies (V -

)determinism, or use EM otherwise (Peharz, 2015).

5 COMPOSITIONAL INFERENCE

USING STRUCTURED MARGINAL

DETERMINISM

In this section, we will describe a methodology that ex-

ploits our md-vtree framework as a language for deriving

tractability conditions for arbitrary compositions of basic

operations on probabilistic circuits. In particular, we build

upon the work of Vergari et al. (2021), showing how to ex-

tend their analysis to compositional queries which include

marginalization (integration) operations at arbitrary points

in the pipeline, and allow for maximization queries (e.g.

marginal MAP).

5.1 Support Properties in Compositional Inference

In Table 1, we define the basic probabilistic inference

operations, including marginalization, products, instanti-

ation, powers, maximization, and logarithms, along with

the properties (requirements) under which there exist ef-

ficient (polytime) algorithms for computing them on PCs

(Vergari et al., 2021); note that we assume decomposabil-

ity and smoothness by default. These operations produce

a circuit encoding the specified function (or scalar in the
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case of MAX). We use |supp(C) to denote the restricted

power/logarithm, as these functions are not defined at 0:

f(pC(V ))|supp(C) :=

{

f(pC(V )) if pC(V ) > 0

0 otherwise

We refer to the basic operations in the bottom half of the

table as deterministic operations, as their tractability de-

pends on the input circuit being deterministic; they are NP-

complete (MAX) or #P-hard (POW,LOG) otherwise (Choi

and Darwiche, 2017; Vergari et al., 2021).

Many complex inference queries can be expressed as com-

positions of these basic operations; we show a selection of

examples in Table 2. We can interpret such compositions

as pipelines, or computational graphs, which specify an al-

gorithm for computing the query that uses the efficient al-

gorithms for each basic operation. To show tractability of a

pipeline for given input circuits, one needs to show that the

inputs to intermediate operations satisfy the requirement

for tractability of that operation. For this purpose, Vergari

et al. (2021) derive input-output conditions for basic opera-

tions, which specify a pair of properties such that the output

of the operation is guaranteed to satisfy the output property

if the input satisfies the input property. This allows prop-

erties to be soundly propagated through the pipeline, from

the input circuits.

However, there remains a significant unresolved challenge

for analyzing general compositions of basic operations;

namely, analyzing how operations affect support proper-

ties of the circuit beyond just determinism. For exam-

ple, the marginal MAP problem (MMAP) (Huang et al.,

2006; Choi et al., 2020) in Table 2 is a canonical infer-

ence task that can be decomposed into a composition of a

MARG operation
∑

V \W pC(W ,V \W ), and a MAX oper-

ation maxw pC(W ). The MAX operation maxw pC(W )
is known to be tractable for any deterministic input cir-

cuit. Unfortunately, however, ensuring that the output of

MARG(C;V \W ) is deterministic is known to be NP-hard

(Shen et al., 2016), even if C is deterministic. For sim-

ilar reasons, any compositional inference task in which a

deterministic operation appears after a marginalization op-

eration cannot be currently analyzed, notable examples of

which we show in the lower half of Table 2.

5.2 Operations on md-vtrees

To tackle these challenges, we apply our md-vtree frame-

work as a unified language for scope and support in struc-

tured decomposable circuits. The first problem that we

would like to address is that of determining whether a

pipeline is tractable for given input md-vtrees:

Problem 2 (Forward Problem). Given a query expressed

as a pipeline of basic operations, and md-vtree(s) that the

input circuits respect, determine if the pipeline is tractable.

To solve this problem, we propose to derive input-output

conditions in terms of md-vtrees. In other words, if we have

input circuit(s) that respect some given md-vtree(s), can we

obtain a md-vtree that the output of a basic operation is

guaranteed to respect? In the Appendix, we detail a set of

algorithms for each of the operations in Table 1, which take

as input md-vtree(s) and return an output md-vtree that pro-

vides exactly such a guarantee, based upon the correspond-

ing algorithms on circuits. Then, given any pipeline, and

input md-vtree(s), we can determine if the compositional

query is tractable, simply by propagating md-vtree(s) for-

ward through the pipeline, and checking that the input md-

vtree(s) to any intermediate operation satisfy the require-

ments in Table 1. Importantly, this can be done without

doing the computation of the query pipeline itself ; all of

our algorithms run in polytime in the number of variables

|V |, which is much smaller than the circuits themselves.

5.3 The MD-calculus

The forward problem allows us to reason about tractability

if we already have the input circuits. However, when learn-

ing circuits from data, we have the freedom to choose the

md-vtree(s) in order to enable tractable inference:

Problem 3 (Backward Problem). Given any query ex-

pressed as a pipeline of basic operations, derive input md-

vtree(s) such that the pipeline is tractable.

To this end, in Table 3 we show a set of input-output con-

ditions called the MD-calculus. These are sufficient condi-

tions on the input(s) to an operation to guarantee that the

output is Q-deterministic. The MD-calculus forms a set of

rules that we can apply backwards from deterministic op-

erations (which require V -determinism), in order to deter-

mine a sufficient set of marginal determinisms S for each

intermediate circuit. Finally, we can enforce those marginal

determinisms on the input md-vtree(s) using Algorithm 1.

We defer proofs of the MD-calculus rules to the Appendix.

Theorem 3 (MD-calculus). The conditions in Table 3 hold.

We show examples of compositional queries in the bottom

half of Table 2, with the marginal determinism condition on

the input circuitC derived using this approach. For MMAP,

for the MAX operation, we require MARG(C;V \W ) to be

W -deterministic. Using the MD-calculus rule for MARG,

we can see that it is sufficient for C to also be W -

deterministic. For mutual information, applying a similar

approach we obtain that C should be both X-deterministic

and Y -deterministic, but we have seen in Proposition 1 that

this is not possible without restricting support.

6 APPLICATION: CAUSAL INFERENCE

In this section, we use our md-vtree framework to anal-

yse tractability conditions for exact causal inference for



Compositional Probabilistic and Causal Inference using Tractable Circuit Models

Task Computation Operations Condition

Cross-Entropy −
∑

V pC(1)(V ) log(pC(2)(V )) MARG,PROD,LOG C(1), C(2) Cmp.; C(2) Det.

Var. Elim.
∑

W pC(1)(V )pC(2)(V ) MARG,PROD C(1), C(2) Cmp.

MMAP maxw
∑

V \W pC(w,V \W ) MARG,MAX C Mdet. wrt. W

Mut. Inf. pC(X,Y ) log pC(X,Y )
pC(X)pC(Y ) MARG,PROD,LOG,POW -

BD Adj.
∑

Z pC(Y |X,Z)pC(Z) MARG,PROD,POW C Mdet. wrt. X ∪Z; Str. Dec.

Table 2: Examples of complex inference tasks expressed as compositions of basic operations.

Operation Requirement Input Condition Output Condition

MARG(C;W ) - Q-det Q-det

INST(C;w) - ∃W ′ ⊆W : (Q ∪W ′)-det Q-det

PROD(C(1), C(2))
C(1), C(2) respect ∃Q(1),Q(2) : Q(1)-det,Q(2)-det, and:

Q-detcompatible vtrees • Either (a) Q ⊆ V (1) ∩ V (2) and Q(1) = Q(2) = Q;

• Or (b) Q(1),Q(2) ⊇ V (1) ∩ V (2) and Q = Q(1) ∪Q(2)

POW(C;α) Det Q-det Q-det

MAX(C) Det N/A N/A (scalar output)

LOG(C) Det - -

Table 3: MD-calculus: sufficient input-output conditions for each basic operation

X

Z

Y

(a) Backdoor

W Z

K

X Y

(b) Extended Napkin

Figure 2: Examples of causal diagrams

PCs. The typical setup in causal inference is that we

have access to an observed distribution p(V ), and some

domain assumptions, often conveniently expressed using

a causal diagram (Pearl, 2009), and we are interested in

computing some interventional distribution pX(Y ), where

X,Y ⊆ V are disjoint subsets of the observed variables.

pX(Y ) is said to be identifiable if the assumptions are suf-

ficient for it to be uniquely determined; and if it is identifi-

able, a causal formula/estimand can be obtained using the

do-calculus (Pearl, 1995; Shpitser and Pearl, 2006).

6.1 Hardness of Backdoor Adjustment on Circuits

We assume that the observed data distribution is modelled

by a PC C (perhaps learned from data), and we wish

to compute some causal query. One of the most com-

mon cases where the interventional distribution is identi-

fiable is when there exists a valid backdoor adjustment set

Z ⊆ V \(X∪Y ) (also known as the conditional exchanga-

bility/ignorability assumption), an example of which is il-

lustrated in Figure 2a. Whenever such a set exists, the in-

terventional distribution pC,X(Y ) is given by the backdoor

adjustment formula5:

∑

Z

pC(Z)pC(Y |X,Z) =
∑

Z

pC(Z)
pC(Y ,X,Z)

pC(X,Z)

Unfortunately, we now show that the backdoor adjustment

is not tractable for existing classes of probabilistic circuits:

Theorem 4 (Hardness of Backdoor Query). The backdoor

query for decomposable and smooth PCs is #P-hard, even

if the PC is structured decomposable and deterministic.

We can also view this result as placing a theoretical bar-

rier on interpreting probabilistic circuits as causal models

(Zhao et al., 2015; Papantonis and Belle, 2020); namely

that, even if such an interpretation exists, it is not possible

to tractably perform causal inference with the causal PC.

Thus, whether we interpret a PC as itself expressing causal-

ity, or merely a model of the observational probability dis-

tribution, new PC classes are required. In the following, we

take the latter perspective, employing our md-vtrees.

6.2 MD-calculus for Causal Formulae

We now employ the MD-calculus to derive tractability

conditions for the backdoor query, given C(V ) as input.

Note that there is only one deterministic operation, namely

the reciprocal POW(·;−1). The input to this operation is

5As commonly done in causal inference we assume positivity,
i.e. pC(V ) ≥ 0 such that the conditional is well defined.
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C(X,Z), which we thus require to be deterministic, that

is, (X ∪Z)-deterministic. We then have that C(X,Z) =
MARG(C(V );V \ (X ∪ Z)), so, using the MD-calculus

rule for MARG, it is sufficient for C(V ) to be (X ∪ Z)-
deterministic. Given a vtree, we can then use Algorithm 1

to derive an md-vtree for the input circuit C(V ).

It is worth noting that, unlike typical causal inference ap-

proaches which derive a scalar pC,x(y) (or some causal

effect) for a particular intervention X = x, the output of

the backdoor query here is a circuit over variables X,Y

encoding pC,X(Y ). This means that we can do further

downstream reasoning over different values of X,Y .

As a second example, consider the extended napkin causal

diagram in Figure 2b. We can use the do-calculus to derive

the following expression for pC,X(Y ) in this case 6:

∑

K

f(C,K)

∑

W pC(X,Y |K, z,W )pC(W ,K)
∑

W pC(X|K, z,W )pC(W ,K)

For this formula, we can try to apply the MD-

calculus as usual. The denominator (input to the

POW(·;−1) operation) is a function of {X,K}; thus,

passing through the marginalization operation, we re-

quire PROD(C(X|K, z,W ), C(W ,K)) to be (X ∪K)-
deterministic. However, if we then look at the conditions

for the PROD operation, we see this cannot be achieved.

In particular, C(X|K, z,W ) and C(W ,K) are circuits

over V (1) = {X,K,W } and V (2) = {K,W } respec-

tively, and there are no possible Q(1),Q(2) such that con-

dition (a) or (b) holds.

However, we can derive a tractable pipeline for pC,x(Y )
where we commit to a specific intervention X = x. In

this case, the new denominator is a function of just K ,

and so we require PROD(C(x|K, z,W ), C(W ,K)) to be

(X ∪K) \ (X) = K-deterministic. This can be achieved

by choosing Q(1) = Q(2) = {K}, which satisfies condi-

tion (a) for PROD. By analyzing the rest of the formula,

we can derive a set S of marginal determinisms for C(V )
that is sufficient for the extended napkin query, and apply

Algorithm 1; we defer the full derivations (and analysis of

the frontdoor formula) to the Appendix.

7 EMPIRICAL EVALUATION

In this section, we empirically evaluate our tractable algo-

rithm for backdoor adjustment derived using MD-calculus.

We generate datasets by sampling 1000 datapoints from the

(discrete variable) Bayesian network (BN) models in the

bnrepository (Scutari, 2022), and learn a MDNet over all

variables V from data. For each Bayesian network (causal

graph), we select a single treatment variable X and single

6Here, z can be any instantiation of Z, and f(C,K) is a ex-
pression over C,K that we omit here for clarity.

Dataset |Z|
Error Time

MD Counting MD Counting

Asia 4 0.269 0.0143 0.5 1.0

Sachs 4 0.180 0.0219 1.7 0.7

Child 13 0.0802 0.135 1.9 0.9

Win95pts 59 0.0044 0.0511 3.2 0.9

Andes 202 0.0382 0.0982 7.9 1.3

Table 4: Backdoor Estimation (averaged over 10 runs)

outcome variable Y , as well as a set of variables Z form-

ing a valid backdoor adjustment set for (X,Y ), and seek to

estimate
∑

Z p(Y |X,Z)p(Z). We manually select a vtree

which splits the scope into (X ∪Z) and Y at the root, and

thereafter generates the rest of the vtree randomly. Given a

vtree, we use Algorithm 1 to generate a labelling, i.e. regu-

lar md-vtree. The required tractability properties for back-

door adjustment are then enforced through the structure of

the corresponding MDNet.

The results are shown in Table 4; for comparison, we show

also results for the counting approach, where we estimate

p(Y |X,Z) as
NY,X,Z

NX,Z
, where N refers to the number of

datapoints with the subscripted assignment of variables

(this is set to 0 if NX,Z = 0). It can be seen that, while

the counting approach is generally more robust in lower di-

mensions, the advantage in terms of learning a full model

becomes apparent with the higher-dimensional adjustment

sets, as shown by the lower error on the Win95pts and An-

des datasets. Remarkably, as the size of the adjustment set

Z increases, the time taken for the algorithm based on the

MD-calculus increases only approximately linearly in the

dimension. This illustrates the attractiveness of tractable

probabilistic modelling, in that we can systematically con-

trol the computational cost of exact inference by restricting

the size of the PC model.

8 CONCLUSION

In summary, we introduced the md-vtree framework for

support properties in structured decomposable circuits,

and showed how it can be employed for reasoning about

tractability of compositional inference queries using our

MD-calculus rules. Our unifying framework naturally

provides insight into the properties of previously pro-

posed PC classes such as PSDDs, as well as inspiring our

newly designed MDNet architecture. Nonetheless, there

remain a number of interesting challenges for future work.

For example, for more challenging datasets, how can we

also learn the vtree and/or MDNet structure from data

while maintaining tractability? For what other inference

queries can we derive tractability conditions using the MD-

calculus? We hope that our work will help lay the theoreti-

cal foundations for tackling these questions.
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A Md-vtree Proofs

In this section, we provide proofs of the results in Section 3 regarding md-vtrees.

A.1 Q-determinism Results

We begin with the results regarding (structured) marginal determinism.

Proposition 1 (Conflicting Q-Determinisms for Sum Nodes). Let C be a PC, and let Q,Q′ ⊆ V such that neither is a

subset of the other. Suppose that there exists a non-trivial sum node T in C that is Q-deterministic and Q′-deterministic,

but not (Q ∩Q′)-deterministic. Then the circuit rooted at T , CT , cannot have full support.

Proof. Since the sum node T is non-trivial, it has at least two children. Let N1, N2 be two distinct children of T . Let I1, I2
be the sets of values q of Q such that pN1(q) > 0, pN2(q) > 0 respectively. Define I ′1, I

′
2 similarly for Q′. Note that, by

Q-determinism and Q′-determinism, I1, I2 are disjoint, and similarly I ′1, I
′
2 are disjoint.

Now, we claim that there exists values q ∈ I1 and q′ ∈ I ′2 such that they agree over the intersection Q ∩Q′. If not, then

pN1 and pN2 are non-zero for disjoint subsets of values of (Q ∩ Q′), which implies (Q ∩ Q′)-determinism, which is a

contradiction of the assumption of the Proposition. Now consider the value q ∪ q′ of Q ∪ Q′. pN1(q ∪ q′) = 0 since

pN1(q
′) = 0 (by the disjointness of I ′1, I

′
2), and similarly pN2(q ∪ q

′) = 0 since pN2(q) = 0. For any other child N3 of T ,

we have that I1 and I3 are disjoint by Q-determinism, so pN3(q) = 0 and we get pN3(q ∪ q′) = 0. Putting it all together,

pT (q ∪ q′) = 0 and thus the circuit CT does not have full support.

An important corollary of this result is that any circuit that is Q-deterministic andQ′-deterministic cannot have full support,

as the root sum node R of the circuit must be Q-deterministic and Q′-deterministic.

Proposition 2 (Superset Q-Determinisms for Sum Nodes). Suppose that a sum node T is Q-deterministic. Then it is also

Q′-deterministic for any Q ⊆ Q′ ⊆ V .

Proof. By definition, a sum node T is Q-deterministic if for any instantiation q of Q, at most one of its childrenNi evaluate

to a nonzero output under q. If Q′ ⊇ Q, then any instantiation q′ of Q′ will imply a specific instantiation of q, and so at

most one of the children of T evaluate to a nonzero output under q′. More formally, pNi
(q) =

∑

Q′\Q pNi
(q,Q′ \Q) =

0 =⇒ pNi
(q′) = 0.

Proposition 3 (Validity of Implied Q-Determinisms). For any PCC respecting md-vtreew, both over V , and any Q ⊆ V

s.t. w implies Q-determinism, it follows that C is Q-deterministic.

Proof. SinceC respectsw, every sum unit T ∈ C has scope φ(T ) = φ(m) for somem ∈M , and T is ψ(m)-deterministic.

Further, since w implies Q-determinism, we have that φ(m) ∩Q = ∅, or else Q ⊇ ψ(m). Combining these statements,

we see that for all sum units T ∈ C, either φ(T ) ∩ Q = ∅, or else T is ψ(m)-deterministic and thus (by Proposition 2)

Q-deterministic. This shows that C is Q-deterministic.

The following theorem justifies the intuition that having smaller labels ψ(m) corresponds to a stronger restriction on the

circuit, such that less circuits respect the md-vtree, but more marginal determinisms are implied:

Theorem 1 (Generality-Tractability Tradeoff). Let w = (v, ψ) and w′ = (v, ψ′) be two md-vtrees, such that ψ′(m) ⊇
ψ(m) for all m ∈M . Then we have thatQ(w) ⊇ Q(w′), and Cw ⊆ Cw′ .

Proof. For the first part, suppose Q ∈ Q(w′). Then for all m ∈M , it holds that φ(m)∩Q = ∅, or else Q ⊇ ψ′(m). Since

ψ′(m) ⊇ ψ(m), it holds that φ(m) ∩Q = ∅, or else Q ⊇ ψ(m) also, so Q ∈ Q(w). This shows thatQ(w) ⊇ Q(w′).

For the second part, suppose that C ∈ Cw. Then, for any sum unit T ∈ C, there is an m ∈ M that T is marginally

deterministic w.r.t. ψ(m). As ψ′(m) ⊇ ψ(m), this means that T is also marginally deterministic w.r.t. ψ′(m). Thus C

respects w′ also, i.e. C ∈ Cw′ .
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A.2 Regular and Optimal md-vtrees

We now move to the results regarding regular and optimal md-vtrees. Recall that Algorithm 1 is designed to return a

labelling of a given vtree that satisfies some desired set of marginal determinisms. We begin with a formal correctness

proof of Algorithm 1, i.e. that it does indeed return an md-vtree which implies the given set S of marginal determinisms:

Proposition 5 (Correctness of Algorithm 1). For any input vtree v = (M,E) and set of marginal determinisms S,

Algorithm 1 returns an md-vtree that implies Q-determinism for all Q ∈ S.

Proof. We need to show that, for each m ∈M and Q ∈ S, if φ(m) ∩Q 6= ∅, then Q ⊇ ψ(m).

This can be seen by inspection of the Algorithm. For every m ∈ M , and every Q ∈ S, if φ(m) ∩Q 6= ∅, then in line 5

of the Algorithm, we intersect the label with the Q. At each iteration of the loop in lines 3-5, no elements can be added to

ψ(m) as we are taking an intersection, and in lines 6-7 we also take an intersection (with the scope). Thus, it follows that

for all Q ∈ S such that φ(m) ∩Q 6= ∅, the label at the end of the outer loop will satisfy Q ⊇ ψ(m).

Now, we move on to properties of Algorithm 1. We begin by showing that the output md-vtree is regular; that is, the

labelling function satisfies a certain structure as defined in Definition 13 and reproduced below.

Definition 13 (Regular md-vtree). We say that a md-vtree w = (v, ψ) is regular if for every non-leaf node m, and its

children m1,m2, it holds that either ψ(m) = ψ(m1), ψ(m) = ψ(m2), or ψ(m) = ψ(m1) ∪ ψ(m2).

Proposition 4 (Regularity of Algorithm 1). The output of Algorithm 1 is a regular md-vtree.

Proof. By examining the Algorithm, we can see that the label of each vtree node node is given by:

ψ(m) =

{

U if Q ∩ φ(m) = ∅ ∀Q ∈ S

φ(m) ∩ (
⋂

Q∈S:Q∩φ(m) 6=∅Q) otherwise
(1)

For any non-leaf vtree-node m, let its children be m1,m2, and note that by definition, φ(m) = φ(m1) ∪ φ(m2) with

φ(m1), φ(m2) disjoint. Firstly, if ψ(m) = U , this means that no Q ∈ S has non-empty intersection with φ(m), and since

the scopes of the children are subsets of φ(m), we must also have ψ(m1) = ψ(m2) = U and the regularity condition is

satisfied.

Otherwise, we have that ψ(m) = φ(m) ∩ (
⋂

Q∈Sm
Q), where have written Sm := {Q ∈ S : Q ∩ φ(m) 6= ∅} to denote

the subset of S that has non-empty intersection of φ(m). Note that Sm is non-empty. Since φ(m) = φ(m1) ∪ φ(m2), it

must be the case that every Q ∈ Sm also intersects with at least one of φ(m1), φ(m2). More formally, Sm = Sm1 ∪Sm2 .

We consider three cases separately:

• If Sm2 is empty, then we must have Sm = Sm1 . Thus Sm1 is non-empty, meaning that ψ(m1) = φ(m1) ∩
(
⋂

Q∈Sm1
Q) in the definition. We can then derive that ψ(m1) = φ(m1)∩ (

⋂

Q∈Sm1
Q) = φ(m1)∩ (

⋂

Q∈Sm
Q) =

φ(m) ∩ (
⋂

Q∈Sm
Q) = ψ(m1), where the second-to-last equality follows since all Q ∈ Sm have empty intersection

with φ(m2). This satisfies the regularity condition.

• If Sm1 is empty, by similar reasoning we have that ψ(m2) = ψ(m).

• If neither Sm1 ,Sm2 is empty, then we have that ψ(m) = φ(m) ∩ (
⋂

Q∈Sm
Q) =

(

φ(m1) ∩ (
⋂

Q∈Sm
Q)

)

∪
(

φ(m2) ∩ (
⋂

Q∈Sm
Q)

)

=
(

φ(m1) ∩ (
⋂

Q∈Sm1
Q)

)

∪
(

φ(m2) ∩ (
⋂

Q∈Sm2
Q)

)

. Since both Sm1 ,Sm2 are non-

empty, we have that ψ(m1) = φ(m1) ∩ (
⋂

Q∈Sm1
Q) and φ(m2) ∩ (

⋂

Q∈Sm2
Q) in the definition. Combining, we

have that ψ(m) = ψ(m1) ∪ ψ(m2), which satisfies the regularity condition.

Thus we have shown that the output md-vtree is regular.

In the following theorem, we show that the significance of regularity, in that regular md-vtrees are “optimally expressive”

among all md-vtrees with the same vtree.
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Theorem 2 (Optimal md-vtrees). Let w = (v, ψ) be any md-vtree. Then there exists a regular md-vtree w′ = (v, ψ′) such

thatQ(w) = Q(w′), and Cw′ ⊇ Cw.

We will prove this Theorem explicitly by constructing a regular md-vtree with these properties. To do this, we prove two

Lemmas which define operations which do not change Q(w), while keeping the same or increasing the set Cw; the result

of iterative application of the two operations being a regular md-vtree.

Definition 14 (Expand Child Labels). Given a md-vtree w = (v, ψ), and any vtree nodes mpa∗ ,mch∗ such that mch∗ is a

child of mpa∗ , the operation ECL(w,mpa∗ ,mch∗) returns a new md-vtree w′ = (v, ψ′), defined as follows:

ψ′(m) =

{

ψ(mch∗) ∪ (ψ(mpa∗) ∩ φ(mch∗)) if m = mch

ψ(m) otherwise
(2)

Lemma 1. The output w′ = ECL(w,mpa∗ ,mch∗) satisfies Q(w′) = Q(w), and Cw ⊆ Cw′ .

Proof. The only difference between w and w′ is the label of mch∗ . Suppose that Q ∈ Q(w), then we have that either

φ(mch∗) ∩Q = ∅, or else Q ⊇ ψ(mch∗). In the former case, since the vtrees and thus scopes are the same between w,w,

it follows that Q ∈ Q(w′) also. In the latter case, since the scope of the parent φ(mpa∗) ⊇ φ(mch∗), Q overlaps with

the parent scope as well, implying that that Q ⊇ ψ(mpa∗). Thus we have that Q ⊇ ψ(mch∗) ∪ ψ(mpa∗) ⊇ ψ(mch∗) ∪
(ψ(mpa∗) ∩ φ(mch∗)) = ψ′(mch∗). Thus, Q ∈ Q(w′) also. That is, Q(w) ⊆ Q(w′).

To complete the result, note that ψ(m) ⊆ ψ′(m) for all vtree nodes m. Thus by Theorem 1, it follows thatQ(w) ⊇ Q(w′)
and Cw ⊆ Cw′ . Combining with the paragraph above we have shown thatQ(w) = Q(w′).

Intuitively, this operation ”pushes down” elements of ψ(mpa∗) to its children. If we apply this operation to all pairs of

parent/child vtree nodes (mpa,mch), then it can be seen that the new labels will have the property that all elements of the

parent label that are contained in the scope of a child, will be in the label of that child. More formally, ψ′(mpa)∩φ(mch) =
ψ′(mpa) ∩ ψ′(mch). This is the starting point for the next operation:

Definition 15 (Expand Parent Labels). Let w = (v, ψ) be a md-vtree such that ψ(mpa) ∩ φ(mch) = ψ(mpa) ∩ ψ(mch)
holds for all pairs of parentsmpa and childrenmch. Then, given any non-leaf vtree nodempa∗ , the operation EPL(w,mpa∗)
returns a new md-vtree w′ = (v, ψ′), defined as follows:

ψ′(m) =

{

⋃

mch∗∈Mactive
ψ(mch∗) if m = mpa

ψ(m) otherwise
(3)

where we define Mactive = {mch∗ |mch∗ ∈ Mch∗ , ψ(mch∗) ∩ ψ(mpa∗) 6= ∅} to be the set of all children whose labellings

have non-empty intersection with the labelling of the parent.

Lemma 2. The output w′ = EPL(w,mpa∗) satisfiesQ(w′) = Q(w), and Cw ⊆ Cw′ .

Further, the property that ψ′(mpa) ∩ φ(mch) = ψ′(mpa) ∩ ψ′(mch) holds for all pairs of parents mpa and children mch in

w′ (i.e. is maintained in w′).

Proof. Firstly, we show that ψ(mpa∗) ⊆ ψ′(mpa∗). This follows by taking a union over children

of both sides of the assumption ψ(mpa∗) ∩ φ(mch∗) = ψ(mpa∗) ∩ ψ(mch∗), where the LHS becomes
⋃

mch∗∈Mch∗
(ψ(mpa∗) ∩ φ(mch∗)) = ψ(mpa∗) ∩

⋃

mch∗∈Mch∗
φ(mch∗) = ψ(mpa∗) ∩ φ(mpa∗) = ψ(mpa∗), and the RHS

becomes
⋃

mch∗∈Mch∗
(ψ(mpa∗) ∩ ψ(mch∗)) =

⋃

mch∗∈Mactive
(ψ(mpa∗) ∩ ψ(mch∗)) = ψ(mpa∗) ∩

⋃

mch∗∈Mactive
ψ(mch∗) ⊆

ψ′(mpa∗). Thus ψ(m) ⊆ ψ′(m) for all vtree nodes m, and by Theorem 1, it follows thatQ(w) ⊇ Q(w′) and Cw ⊆ Cw′ .

Now suppose Q ∈ Q(w). We consider two cases. Firstly, if φ(mpa∗) ∩ Q = ∅, then since vtrees and scopes are the

same between w,w′, we have Q ∈ Q(w′). Otherwise, we have φ(mpa∗) ∩ Q 6= ∅ and Q ⊇ ψ(mpa∗). Now, for

those children in Mactive, we have that ψ(mch∗) ∩ ψ(mpa∗) 6= ∅ and so since Q ⊇ ψ(mpa∗) and φ(mch∗) ⊇ ψ(mch∗),
we have Q ∩ φ(mch∗) 6= ∅. The marginal determinism property on these children then implies that Q ⊇ ψ(mch∗) for

all mch∗ ∈ Mactive; and so Q ⊇
⋃

mch∗∈Mactive
ψ(mch∗) = ψ′(mpa∗). This shows that Q ∈ Q(w′) also. This gives

Q(w) ⊆ Q(w′), and combined with the previous result,Q(w) = Q(w′).

Finally, we show that the property that ψ′(mpa) ∩ φ(mch) = ψ′(mpa) ∩ ψ′(mch) holds for all pairs of parents mpa and

children mch in w′. The only label which has changed is that of mpa, so we need only consider the pairs (mpa,mch) with

either (a) mpa = mpa∗ and mch is a child of mpa∗ or (b) mch = mpa∗ and mpa is the parent of mpa∗ .



Benjie Wang, Marta Kwiatkowska

Operation Requirement Input Condition Output Condition

MARG(C;W ) - Q-det Q-det

INST(C;w) - ∃W ′ ⊆W : (Q ∪W ′)-det Q-det

PROD(C(1), C(2))
C(1), C(2) respect ∃Q(1),Q(2) : Q(1)-det,Q(2)-det, and:

Q-detcompatible vtrees • Either (a) Q ⊆ V (1) ∩ V (2) and Q(1) = Q(2) = Q;

• Or (b) Q(1),Q(2) ⊇ V (1) ∩ V (2) and Q = Q(1) ∪Q(2)

POW(C;α) Det Q-det Q-det

MAX(C) Det N/A N/A (scalar output)

LOG(C) Det - -

Table 5: MD-calculus: sufficient input-output conditions for each basic operation

• In case (a), by definition we have that ψ′(mpa) = ψ′(mpa∗) =
⋃

mch∗∈Mactive
ψ(mch∗), and ψ′(mch) = ψ′(mch). Ifmch

is an active child of m∗
pa, then we have that the LHS of the property ψ′(mpa) ∩ φ(mch) =

⋃

mch∗∈Mactive
ψ(mch∗) ∩

φ(mch) = ψ(mch), and the RHS of the property ψ′(mpa) ∩ ψ′(mch) =
⋃

mch∗∈Mactive
ψ(mch∗) ∩ ψ′(mch) = ψ(mch).

If mch is not an active child of m∗
pa, then both sides of the property correspond to the empty set.

• In case (b), by definition we have ψ′(mpa) = ψ(mpa), and ψ′(mch) = ψ′(mpa∗). We have shown above that

ψ(mpa∗) ⊆ ψ′(mpa∗), so ψ(mch) ⊆ ψ′(mch). By the precondition for applying the EPL operation, we have

that ψ(mpa) ∩ φ(mch) = ψ(mpa) ∩ ψ(mch). Substituting, we get ψ′(mpa) ∩ φ(mch) = ψ′(mpa) ∩ ψ(mch) ⊆
ψ′(mpa) ∩ ψ′(mch). The other direction ψ′(mpa) ∩ φ(mch) ⊇ ψ′(mpa) ∩ ψ′(mch) is immediate as the label of a node

is contained in its scope.

Thus, we have shown that ψ′(mpa) ∩ φ(mch) = ψ′(mpa) ∩ ψ′(mch) holds for all pairs of parents mpa and children mch in

w′, concluding the proof.

Intuitively, this operation ”pulls up” elements ψ(mch) of the active children to the parent. After applying this operation to

all nodes, we obtain a regular md-vtree, which has the same set Q of marginal determinisms, and is at least as expressive.

More formally:

Proof. (of Theorem) Starting fromw, apply the ECL operation to each pair of parent and child nodes, in a topological order

starting from the root. For eachmpa,mch pair, we have thatψ′(mpa) = ψ(mpa) andψ′(mch) = ψ(mch)∪(ψ(mpa)∩φ(mch))
by definition of the operation. Then ψ′(mpa) ∩ ψ′(mch) = ψ(mpa) ∩ (ψ(mch) ∪ (ψ(mpa) ∩ φ(mch))) = (ψ(mpa) ∩
ψ(mch)) ∪ (ψ(mpa) ∩ φ(mch)) = ψ(mpa) ∩ φ(mch) = ψ′(mpa) ∩ φ(mch), which is the required property for applying the

EPL operation. As we proceed in a topological order, and the operation only modifies the label of the child, it follows that

the property ψ′(mpa) ∩ ψ
′(mch) = ψ′(mpa) ∩ φ(mch) holds for all parent/children pairs at the end.

This allows us to apply the EPL operation. We apply this operation to every non-leaf node, in a reverse topological order

from the leaves to the root. The precondition for applying the operation holds at all points due to the result of Lemma 2.

This operation only modifies the label of the parent, and so after we have modified all the labels, we have the property that

ψ′(mpa) =
⋃

mch∈Mactive
ψ(mch) for every non-leaf node mpa. That is, it satisfies the conditions to be a regular md-vtree,

i.e. ψ′(mpa) = ψ′(m1), ψ
′(m2), or ψ′(m1) ∪ ψ

′(m2), where m1,m2 are the children of mpa.

B Operations and MD-Calculus

In this section, we provide further details on the results in Section 5 regarding inference on md-vtrees. First, for the

forward problem, we describe algorithms for soundly propagating the md-vtree forward under each basic circuit operation,

as mentioned in Section 5.2. Then, for the backward problem, we analyze these algorithms to prove the MD-calculus for

propagating marginal determinisms backwards through operations.
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B.1 Algorithms and the Forward Problem

For each of the basic operations, there exist efficient (polynomial time) algorithms for computing them on probabilistic

circuits satisfying the requirement column in Table 5 (Choi et al., 2020; Vergari et al., 2021). In this section, we will also

describe, for each basic operation, an algorithm for computing the operation on md-vtrees w, that is a sound abstraction of

the corresponding algorithm on circuits. By sound, we mean that, given an input md-vtreew and the output of the md-vtree

algorithmw′, it is guaranteed for any input PC respecting w, the output of the corresponding PC algorithm will respect w′.

The construction of these md-vtrees algorithms is based upon the corresponding PC algorithm. Thus, we present the

algorithms as applying to both the md-vtree and PC. For convenience, we assume that the PC satisfies the following

condition, which we call exactly respecting a md-vtree:

Definition 16 (PC exactly respecting md-vtree). A PC C exactly respects a md-vtree w if (1) it respects w and (2) the

children of any sum node T corresponding to a non-leaf vtree node m are all product nodes P , where P has two children

which are sum nodes, each corresponding to a child of m.

PC architectures are typically designed with these alternating sum and product nodes, where the product nodes are binary;

for example, both MDNets and PSDDs satisfy this property. Further, any PC which respects a md-vtree can be transformed

into an equivalent PC which exactly respects the md-vtree, as follows. For every sum node T which has a sum node child

T ′, we can directly attach the children of the T ′ to T (with the appropriate combination of weights). Then, for every

product node P which has a product node child P ′, we can replace P ′ with a new single-child sum node T ′, which has P ′

as its child. The resulting circuit still encodes the same function, and has the same marginal determinisms as the original

circuit.

Given that a PC exactly respects a md-vtree, for each non-leaf vtree node m, we can represent the corresponding PC

layer simply as a vector of sum nodes Tm with length Km := |Tm|, and a weight/parameter matrix θm with shape

(Km,Km1 ,Km2), with the semantics that pTm,i
(V ) =

∑

jk θm,ijkpTm1,j
(V )pTm2,k

(V ) (where m1,m2 are the children

of m). Note that for any pair of sum nodes Tm1,j , Tm2,k for which there isn’t a product in the PC connected to Tm,i, we

can simply set the weight θm,ijk to zero7. For leaf vtree nodes, the corresponding layer can consist of both sum and leaf

nodes (with the sum nodes being mixtures over the leaf nodes, e.g. 0.71X=0 + 0.31X=1). In this case, we represent the

sum and leaf nodes as a vector Tm with length Km := |Tm|, and θm, and a weight matrix θm, with θm,ij > 0 iff Tm,j is a

leaf node that is a child of sum node Tm,i.

This characterization of a PC as a pair ρ(m) := (Tm, θm) for each vtree node , which we call the parameter function,

allows us to efficiently describe algorithms for the basic operations. Thus, in the algorithms below we will represent C

exactly respecting some md-vtree using the triple C = (v, ψ, ρ), where v is the vtree, ψ is the labelling function, and ρ the

parameter function.

MARG(·;W ) The marginalization algorithm is depicted in Algorithm 2. For the marginalization operation, we can take

advantage of the fact that marginalization commutes with both product and sum nodes in a decomposable and smooth PC

(which is the basis of tractable marginal inference).

∑

W

pP (φ(P )) =
∑

W

pN1(φ(N1))pN2(φ(N2)) = (
∑

W

pN1(φ(N1)))(
∑

W

pN2(φ(N2))) (4)

∑

W

pT (φ(T )) =
∑

W

∑

Ni∈ch(T )

θipNi
(φ(Ni)) =

∑

Ni∈ch(T )

θi(
∑

W

pNi
(φ(Ni))) (5)

where the last equality on the first line holds because φ(N1)∩φ(N2) = ∅ by decomposability. This means that, in order to

marginalize a circuit, we simply need to marginalize the leaf nodes. In Algorithm 2, we show the (recursive) procedure of

marginalizing a circuit represented as (v, ψ, ρ). In lines 3-5 we marginalize out W from the leaf nodes in the PC, and in

lines 6-12, we handle non-leaf vtree nodes simply by copying the existing circuit. To update the md-vtree, in line 13, we

update the scope of the vtree node, removing the marginalized variables, and in lines 14-17, we assign a label to the new

vtree node m′.

7While this is sufficient to represent any PC exactly respecting an md-vtree, it may be inefficient to represent θm,ijk as a dense matrix
if the connections in the PC are sparse, i.e. θm,ijk = 0 for many i, j, k. In the evaluation of a sum vector as a function of its child sum
vectors, we only require the sum

∑
jk
θm,ijkpTm1,j

pTm2,k
to be computed, so this can be implemented in a sparse manner if that is

more appropriate. Similar reasoning applies to the product algorithm.
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Algorithm 2: MARG(C,W )

Input: Input circuit C = (v = (M,E, φ), ψ, ρ); set of variables to be marginalized W

Result: Output circuit C′ = (v′, ψ′, ρ′)
1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then // Update vtree structure and parameter function (leaf)

4 v′ ← createvtree(m′); // create vtree with single node

5 ρ′(m′)← (MARG(L;W ) for L ∈ Tm, θm); // marginalize leaf PC nodes

6 else // Update vtree structure and parameter function (non-leaf)

7 ml,mr ← children(m);
8 v′l, ψ

′
l, ρ

′
l ← MARG((vml

, ψ, ρ),W );
9 v′r, ψ

′
r, ρ

′
r ← MARG((vmr

, ψ, ρ),W );
10 v′, ψ′, ρ′ ← v′l ∪ v

′
r, ψ

′
l ∪ ψ

′
r, ρ

′
l ∪ ρ

′
r; // combine the vtrees/labelling fn/param fn

11 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′,root(v′l),root(v
′
r));

12 ρ′(m′)← ρ(m);

13 φ′(m′)← φ(m) \W ; // Update scope function

14 if ψ(m) ∩W = ∅ then // Update labelling function

15 ψ′(m′)← ψ(m);

16 else

17 ψ′(m′)← U ;

18 Return (v′, ψ′, ρ′)

The new label is justified as follows. Suppose we have a sum node T ∈ Tm, with children N1, ..., Nn; by definition, T

is marginally deterministic with respect to ψ(m). After marginalization, the function encoded by each child N ′
i satisfies

pN ′
i
(q) =

∑

W pNi
(q) for any value q of ψ(m) by definition. Now:

• If ψ(m) ∩W = ∅, then this is just proportional to pNi
(q) and so the marginalized support will remain the same for

each child, and T ′ will maintain ψ(m)-determinism.

• On the other hand, if ψ(m)∩W 6= ∅, then we do not have any such guarantee; in fact, we cannot be sure that T ′ will

be Q-deterministic for any Q, so we assign the universal set.

INST(·;w) For the instantiation operation, we have Algorithm 3. At first glance, this seems to be very similar to the

marginalization operation; it changes the scope in the same way, and the changes to the circuit can be implemented through

the leaf nodes. However, the crucial difference is in the label function.

The new label of ψ′(m) = ψ(m) \W is justified as follows. Suppose that we have a sum node T ∈ Tm, with children

N1, ..., Nn, with T marginally deterministic with respect to ψ(m). After instantiation (of W with the value w), the

function encoded by each child N ′
i satisfies pN ′

i
(q \W ) = pNi

(w, q \W ), for any value q of ψ(m) by definition8.

Now, we claim that N ′
i is (ψ(m) \W )-deterministic, i.e. N ′

i , N
′
j have distinct marginalized support suppψ(m)\W (N ′

i),
suppψ(m)\W (N ′

j) for i 6= j. Suppose for contradiction there exists a value q∗\W of (ψ(m)\W ) such that pN ′
i
(q∗\W ) >

0 and pN ′
j
(q∗ \W ) > 0. Then we have

pN ′
i
(q∗ \W ) > 0 and pN ′

j
(q∗ \W ) > 0 (6)

pNi
(w, q∗ \W ) > 0 and pNj

(w, q∗ \W ) > 0 (7)
∑

W\Q

pNi
(W \Q,w ∩Q, q∗ \W ) > 0 and

∑

W \Q

pNj
(W \Q,w ∩Q, q∗ \W ) > 0 (8)

pNi
(w ∩Q, q∗ \W ) > 0 and pNj

(w ∩Q, q∗ \W ) > 0 (9)

The second line follows by definition of the instantiation algorithm, the third line is a sum of non-negative terms including

a positive term from the previous line (when W \ Q = w \ Q), and the fourth line rewrites the sum. Now we have

8Note that we write q \W to represent the value of ψ(m) \W given by q restricted to this variable set.
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Algorithm 3: INST(C,w)

Input: Input circuit C = (v = (M,E, φ), ψ, ρ); instantiation w of some subset of variables W

Result: Output circuit C′ = (v′, ψ′, ρ′)
1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then // Update vtree structure and parameter function (leaf)

4 v′ ← createvtree(m′); // create vtree with single node

5 ρ′(m′)← (INST(L;w) for L ∈ Tm, θm); // instantiate leaf PC nodes

6 else // Update vtree structure and parameter function (non-leaf)

7 ml,mr ← children(m);
8 v′l, ψ

′
l, ρ

′
l ← INST((vml

, ψ, ρ),w);
9 v′r, ψ

′
r, ρ

′
r ← INST((vmr

, ψ, ρ),w);
10 v′, ψ′, ρ′ ← v′l ∪ v

′
r, ψ

′
l ∪ ψ

′
r, ρ

′
l ∪ ρ

′
r; // combine the vtrees/labelling fn/param fn

11 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′,root(v′l),root(v
′
r));

12 ρ′(m′)← ρ(m);

13 φ′(m′)← φ(m) \W ; // Update vtree scope function

14 ψ′(m′)← ψ(m) \W ; // Update labelling function

15 Return (v′, ψ′, ρ′)

a value q := (w ∩ Q, q∗ \W ) of ψ(m), such that pNi
(q) > 0 and pNj

(q) > 0, which is a contradiction as T is

ψ(m)-deterministic.

PROD(·, ·) Now, we consider the product of two circuits exactly respecting compatible vtrees.

Definition 17 (Vtree Compatibility). Let v(1) = (M (1), E(1), φ(1)) and v(2) = (M (2), E(2), φ(2)) be two vtrees, with

root nodes m(1),m(2) respectively. Define C := φ(1)(m(1)) ∪ φ(2)(m(2)) to be the common variables. Then we say that

v(1), v(2) are compatible if any of the following hold:

1. There are no common variables, C = ∅;

2. Both of m(1),m(2) are leaf vtree nodes;

3. One of the root nodes has the same restricted scope on C as one of the children of the other root node, and the vtrees

rooted at these nodes are compatible. For example, φ
(1)
C (m(2)) = φ

(1)
C (m

(1)
r ), and v

(2)

m(2) and v
(1)

m
(1)
r

are compatible.

4. The children of the root nodes have matching restricted scopes, and are compatible. For example, φ
(1)
C (m

(1)
l ) =

φ
(2)
C (m

(2)
l ) and v

(1)

m
(1)
l

, v
(2)

m
(2)
l

are compatible, and φ
(1)
C (m

(1)
r ) = φ

(2)
C (m

(2)
r ) and v

(1)

m
(1)
r

, v
(2)

m
(2)
r

are compatible.

This recursive definition allows for products of circuits not necessarily respecting the same vtree, but merely vtrees which

“essentially have the same structure” over the shared variables. Intuitively, there are four cases that allow us to maintain

(structured) decomposability in the output circuit, illustrated in Figure 3. The first two are base cases where the product is

directly tractable: namely, when the root vtree nodes have disjoint scopes, or when they are both leaves. Note, in particular,

that the product of a leaf region and a non-leaf region that have overlapping variables is considered intractable here (unless

condition 3. holds). The last two are cases where we can recursively call the product algorithm on the children of the root

vtree nodes. Each of the four cases above correspond to a slightly different algorithm for computing the product of the

corresponding PC sum nodes, which we will explain next.9

The product algorithm, depicted in Algorithm 4, (recursively) constructs a circuit C = (v′, ψ′, ρ′) that is the product of

the input circuits C(1) = (v(1), ψ(1), ρ(1)) and C(2) = (v(2), ψ(2), ρ(2)) respectively. In particular, at each recursive step,

it computes the root node m′ of the new vtree, its label ψ′(m′), and the parameter function value ρ′(m′) = (Tm′ , θm′) of

that node10. We consider each of the four compatibility cases separately:

9The notion of compatibility between vtrees is somewhat similar to the notion of compatibility between circuits (Vergari et al., 2021),
but acts at the level of groups of circuit nodes with the same scope (i.e. a vtree node) rather than individual circuit nodes.

10Consider the root nodes of the input vtrees m(1),m(2), and their parameter function values ρ(1)(m(1)) =
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A

A1 A2

B

B1 B2

(a) No shared variables

A ∪C B ∪C

(b) Leaf vtrees

A ∪C

C A

B ∪C

B1 ∪C1 B2 ∪C2

(c) Matching parent + child

A ∪C

A1 ∪C1 A2 ∪C2

B ∪C

B1 ∪C1 B2 ∪C2

(d) Matching children

Figure 3: Examples of (possibly) compatible vtrees, where A ∩B = ∅, and C are the shared variables

1. Firstly, if there are no common variables, i.e. C = ∅, then we can simply introduce product nodes for each pair of

sum nodes, while maintaining decomposability, as in Figure 4a.

• Vtree node: We create a vtree node m′ with (m′
l = m(1), m′

r = m(2)) as children.

• Parameter function: The parameter function value for the new node ρ′(m′) = (Tm′ , θm′) is given as follows.

For each pair of sum nodes Tm(1),j ∈ Tm(1) , Tm(2),k ∈ Tm(2) , we create a sum node Tm′,i(1)i(2) , representing the

product of Tm(1),j , Tm(2),k. To achieve this, the weights θm′,i(1)i(2)jk are defined to be 1 if i(1) = j and i(2) = k,

and 0 otherwise. Note that j, k only have a single index as the children m′
l,m

′
r correspond to the input circuits,

which only have a single dimension.

• Md-vtree labelling: The label is set to be ψ′(m′) := ∅; this is since all sum nodes only effectively have a single

child, so they are trivially Q-deterministic for any Q. An example can be seen in Figure 4a.

2. Secondly, if both m(1),m(2) are leaves, then the PC nodes corresponding to these vtree nodes are also either leaves,

or simple mixtures (sum nodes) of leaves. To compute the product of two sum nodes, we expand all combinations of

the children of the sum nodes, as shown in Figure 4c.

• Vtree node: We create a leaf vtree node m′.

• Parameter function: The parameter function value for the new node ρ′(m′) = (Tm′ , θm′) is given as follows.

For each pair of nodes Nm(1),j ∈ Tm(1) , Nm(2),k ∈ Tm(2) , we create a sum/leaf node Nm′,i(1)i(2) , representing

the product of Nm(1),j, Nm(2),k. The weights are defined as θm′,i(1),i(2),j(1),j(2) := θm′,i(1),j(1)θm′,i(2),j(2) .

• Md-vtree labelling: The label is set to be ψ(m′) := ψ(1)(m(1))∪ψ(2)(m(2)). This is best seen with an example;

in Figure 4c, we see an example of the product of two sum nodes with leaf node children, where one node

is A-deterministic and the other is B-deterministic. The resulting sum node in the output circuit has children

corresponding to (the product of) each combination of the children of the original two sum nodes; as a result,

each child of the output sum node corresponds to a different value of (A,B), and so the output sum node is

{A,B}-deterministic.

3. Thirdly, if one of the nodes has the same restricted scope as a child of the other node, e.g. φ
(1)
C (m(2)) = φ

(1)
C (m

(1)
r ),

we “defer” the product as shown in Figure 4b.

• Vtree node: We create a vtree node m′ with (m′
l = m

(1)
l , m′

r = PROD(v
(1)

m
(1)
r

, v
(2)

m(2))) as children.

• Parameter function: The parameter function value for the new node ρ′(m′) = (Tm′ , θm′) is given as follows.

For every pair of sum nodes Tm(1),i(1) ∈ Tm(1) , Tm(2),i(2) ∈ Tm(2) , we create a sum node Tm′,i(1)i(2) . The

weights are defined as θm′,i(1)i(2)j(1)k(1)k(2) := θm(1),i(1)j(1)k(1)1i(2)=k(2) . Note that the index j only has a single

index as the left child m′
l = m

(1)
l , and so the sum nodes Tm′

l
are copies of the sum nodes from T

m
(1)
l

.

• Md-vtree labelling: The label is set to be ψ′(m′) := ψ(1)(m(1)), as the marginalized support of the children of

the output sum nodes is a subset of the marginalized support of the corresponding sum node from m(1), as can

be seen in Figure 4b.

4. Finally, in any other case, the children of m(1),m(2) have matching restricted scopes, e.g. φ
(1)
C12

(m
(1)
l ) = φ

(2)
C12

(m
(2)
l )

and φ
(1)
C (m

(1)
r ) = φ

(2)
C (m

(2)
r ), we expand all combinations:

• Vtree node: We create a vtree node m′ with (m′
l = PROD(m

(1)
l ,m

(2)
l ), m′

r = PROD(m
(1)
r ,m

(2)
r )) as children.

(Tm(1) , θm(1) ), ρ(2)(m(2)) = (Tm(2) , θm(2) ). In every case, Tm′ will contain one node Tm′,i(1),i(2) corresponding to every pair
of nodes Tm(1),i(1) ∈ Tm(1) , Tm(2),i(2) ∈ Tm(2) ; we thus notate it with two dimensions. Correspondingly, in general, θm′ will contain
one weight θm′,i(1)i(2)j(1)j(2)k(1)k(2) for every combination of nodes Tm′,i(1),i(2) ∈ Tm′ , Tm′

l
,j(1),j(2) ∈ Tm′

l
, Tm′

r ,k
(1),k(2) ∈ Tm′

r
,

where m′

l and m′

r are the left and right children of m′ in the new md-vtree.
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+

ψ = {A}

L

A = 0

L

A = 1

×
+

ψ = {B}

L

B = 0

L

B = 1

+

ψ = {}

×

+

L

A = 0

L

A = 1

+

L

B = 0

L

B = 1

(a) Direct Product

+

ψ = {A}

× ×

L

A = 0

L

C = 0, 1, 2

L

A = 1

L

C = 0, 1, 2

×
+

ψ = {C}

L

C = 0

L

C = 1

+

ψ = {A}

× ×

L

A = 0

L

C = 0, 1

L

A = 1

L

C = 0, 1

(b) Deferred Product

+

ψ = {A}

L

AB = 00,01

L

AB = 10,11

×
+

ψ = {B}

L

AB=00,10

L

AB=01,11

+

ψ = {A,B}

L

AB=00

L

AB=01

L

AB=10

L

AB=11

(c) Product by Expansion

Figure 4: Examples of product of the two sum nodes on the top half, with the result shown in the bottom half. The root

sum node is labelled with the corresponding vtree node label, while the leaves are labelled with their support.

• Parameter function: The parameter function value for the new node ρ′(m′) = (Tm′ , θm′) is given as follows.

For every pair of sum nodes Tm(1),i(1) ∈ Tm(1) , Tm(2),i(2) ∈ Tm(2) , we create a sum node Tm′,i(1)i(2) . The

weights are defined as θm′,i(1)i(2)j(1)j(2)k(1)k(2) := θm(1),i(1)j(1)k(1)θm(1),i(2)j(2)k(2) .

• Md-vtree labelling: The label is set to be ψ(m′) := ψ(1)(m(1)) ∪ ψ(2)(m(2)), for similar reasons to the product

of two leaf vtree nodes above.

With this, we have shown how to each recursive step of the product algorithm. Now, taking a step back, we consider the

entire run of the recursive algorithm. Starting from md-vtrees v(1), v(2) over variables V (1),V (2), with common variables

Cglobal := V (1) ∩V (2), in each recursive call, we reduce the common variables, until either we reach two vtree nodes that

do not have common variables, or we reach leaf vtree nodes. One property of the algorithm, which will be important for

the proof of the MD-calculus rule below, is that at each recursive step of the product algorithm, the two input vtree nodes

have the same restricted scope over Cglobal.

Proposition 6. At each recursive step of Algorithm 4, we have that φ
(1)
Cglobal

(m(1)) = φ
(2)
Cglobal

(m(2)).

Proof. Proof is by inspection; in each recursive case (3, 4), we have that C = φ
(1)
Cglobal

(m(1)) = φ
(2)
Cglobal

(m(2)), and match

up the common variables among the recursive call(s).

POW(·;α) For the power operation, we have Algorithm 5. This algorithm simply inverts all the weights/parameters

of the circuit, as well as replacing the leaves with their reciprocals. Provided that the input circuit is deterministic, the

output circuit faithfully represents the reciprocal of the input circuit (Vergari et al., 2021). As the transformation is simply

numerical (i.e. not affecting the support of any node), the labels of all nodes remain the same.

MAX(·;α) This operation returns a scalar.

LOG(·) This operation returns a circuit which respects the same vtree, but does not have (marginal) determinism (Vergari

et al., 2021).

B.2 MD-calculus and the Backward Problem

The algorithms for each of the basic operations above allow us to derive a md-vtree for the output circuit, given the md-

vtree that the input circuit respects. The MD-calculus in Table 3 (repeated for convenience in Table 5) turns these results

into a series of straightforward rules that can easily be applied to derive sufficient (but possibly not necessary) conditions

for tractability of compositions of operations.

Theorem 3 (MD-calculus). The conditions in Table 3 hold.
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Proof. To state the result more formally, we claim that if the input circuit(s) respect md-vtrees(s) implying the input con-

dition, then the result of the operation applied to the input circuit(s) will respect a md-vtree implying the output condition.

MARG(·;W ) For the marginalization operation, the output md-vtree is over variables V \W . Thus, let Q be any subset

of V \W .

• Input Condition: The input condition requires that the input md-vtree w implies Q-determinism; that is, for every

vtree node m, either φQ(m) = ∅, or else Q ⊇ ψ(m).

• Algorithm: In Algorithm 2, every vtree node m′ in the output md-vtree corresponds to a vtree node m′ in the input

md-vtree, such that φ′(m′) = φ(m) \W , and ψ′(m′) = ψ(m) if ψ(m) ∩W = ∅, or ψ′(m′) = U otherwise.

• Proof for Output Condition: For each vtree node m′, if φ′Q(m′) 6= ∅, then, we have that:

φQ(m) \W 6= ∅ (by effect of algorithm)

=⇒ φQ(m) 6= ∅ (weaker statement)

=⇒ ψ(m) ⊆ Q (by input condition)

=⇒ ψ′(m′) ⊆ Q

The last line follows since Q ∩W = ∅, so ψ(m) ∩W = ∅, and so we are in the algorithm case where the label is

”copied”. Thus, we have shown that the output md-vtree implies Q-determinism, as required.

INST(·;w) For the instantiation operation, the output md-vtree is over variables V \W . Thus, let Q be any subset of

V \W .

• Input Condition: The input condition requires that the input md-vtree w implies (Q ∪W ′)-determinism for some

W ′ ⊆W ; that is, for every vtree node m, either φQ∪W ′(m) = ∅, or else Q ∪W ′ ⊇ ψ(m).

• Algorithm: In Algorithm 3, every vtree node m′ in the output md-vtree corresponds to a vtree node m′ in the input

md-vtree, such that φ′(m′) = φ(m) \W , and ψ′(m′) = ψ(m) \W .

• Proof for Output Condition: For each vtree node m′, if φ′Q(m′) 6= ∅, then, we have that:

φQ(m) \W 6= ∅ (by effect of algorithm)

=⇒ φQ(m) 6= ∅ (weaker statement)

=⇒ φQ∪W ′(m) 6= ∅ (weaker statement)

=⇒ ψ(m) ⊆ Q ∪W ′ (by input condition)

=⇒ ψ′(m′) ⊆ Q

Here, the last line follows since the new label ψ′(m′) = ψ(m) \W removes all elements of W , and thus W ′, from

ψ(m). Thus, we have shown that the output md-vtree implies Q-determinism, as required.

PROD(·, ·) For the product operation, the output md-vtree is over variables V (1) ∪ V (2). Thus, let Q be any subset of

V (1) ∪ V (2).

• Input Condition: The input condition requires that the first input md-vtree w(1) implies Q(1)-determinism, and the

second input md-vtree w(2) implies Q(2)-determinism, where one of the following holds:

(a) Q ⊆ V (1) ∩ V (2) and Q(1) = Q(2) = Q;

(b) Q(1),Q(2) ⊇ V (1) ∩ V (2) and Q = Q(1) ∪Q(2)

• Algorithm: In Algorithm 4, every vtree node m′ in the output md-vtree corresponds to a pair m(1),m(2) in the input

md-vtrees respectively, such that φ′(m′) = φ(1)(m(1))∪φ(2)(m(2)). There are four cases of the algorithm to consider,

in which the label is:

1. ψ′(m′) = ∅.



Compositional Probabilistic and Causal Inference using Tractable Circuit Models

2. ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2))

3. ψ′(m′) = ψ(1)(m(1))

4. ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2))

• Proof for Output Condition: We need to show that for each case 1-3 of the algorithm, and for either input condition (a),

(b), that the condition for implied Q-determinism holds on m′; that is, if φ′Q(m′) 6= ∅, then ψ′(m′) ⊆ Q. Assuming

that φ′Q(m′) 6= ∅, we have that

φ′Q(m′) 6= ∅

=⇒ φ′(m′) ∩Q 6= ∅ (by definition of restricted scope)

=⇒ (φ(1)(m(1)) ∪ φ(2)(m(2))) ∩Q 6= ∅ (by effect of algorithm)

=⇒ φ
(1)
Q (m(1)) ∪ φ

(2)
Q (m(2)) 6= ∅ (rewriting)

However, this does not in general imply that φ
(1)

Q(1)(m
(1)) 6= ∅ or φ

(2)

Q(2)(m
(2)) 6= ∅. Thus, we look at the special cases

defined by (a) and (b), and the algorithm variations 1, 2, 3, 4.

(a1, a2, a3, a4) In case (a), we have Q(1) = Q(2) = Q ⊆ Cglobal.

φ
(1)
Cglobal

(m(1)) = φ
(2)
Cglobal

(m(2)) (by Proposition 6)

=⇒ φ
(1)
Cglobal

(m(1)) ∩Q = φ
(2)
Cglobal

(m(2)) ∩Q

=⇒ φ
(1)
Cglobal∩Q(m(1)) = φ

(2)
Cglobal∩Q(m(2))

=⇒ φ
(1)
Q (m(1)) = φ

(2)
Q (m(2)) (as Q ⊆ Cglobal)

=⇒ φ
(1)
Q (m(1)) 6= ∅, φ

(2)
Q (m(2)) 6= ∅ (as φ

(1)
Q (m(1)) ∪ φ

(2)
Q (m(2)) 6= ∅)

=⇒ φ
(1)

Q(1)(m
(1)) 6= ∅, φ

(2)

Q(2)(m
(2)) 6= ∅ (as Q(1) = Q(2) = Q)

Thus, we have that Q ⊇ ψ(1)(m(1)) and Q ⊇ ψ(2)(m(2)), and so Q ⊇ ψ(1)(m(1)) ∪ ψ(2)(m(2)). Finally, in

each of the cases 1-4, we have Q ⊇ ψ′(m′), so the output md-vtree implies Q-determinism as required.

(b1) In case (b), we need to consider the cases of the algorithm separately. In case 1, ψ′(m′) ⊆ Q holds trivially as

ψ′(m′) = ∅, so we are done.

(b2, b3, b4) We have that Q(1),Q(2) ⊇ Cglobal and Q = Q(1) ∪Q(2). The key observation is that, as we are not in

case 1 of the Algorithm, C = φ(1)(m(1)) ∩ φ(2)(m(2)) must be non-empty.

C 6= ∅

=⇒ φ
(1)
C (m(1)) 6= ∅, φ

(2)
C (m(2)) 6= ∅ (by definition of C)

=⇒ φ
(1)

Q(1)(m
(1)) 6= ∅, φ

(2)

Q(1)(m
(2)) 6= ∅ (as Q(1),Q(2) ⊇ Cglobal ⊇ C)

Thus, we have that Q(1) ⊇ ψ(1)(m(1)) and Q(2) ⊇ ψ(2)(m(2)), and so Q = Q(1) ∪ Q(2) ⊇ ψ(1)(m(1)) ∪
ψ(2)(m(2)). In each of the cases 2-4, we have Q ⊇ ψ′(m′), so the output md-vtree implies Q-determinism as

required.

POW Since the reciprocal algorithm retains the same labelling function in the output as the input, it follows that a Q-

deterministic input circuit will result in a Q-deterministic output circuit.

MAX This operation returns a scalar.

LOG This operation does not have any marginal determinism conditions.
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Figure 5: Examples of causal diagrams

C Causal Inference

In this section, we provide further background on causal inference for interested readers, the proof of our hardness result

for backdoor adjustment, and then provide the full derivations of our tractability results for the backdoor, frontdoor and

extended napkin formulae.

C.1 Background on Causal Inference

We use the framework of structural causal models (SCMs) (Pearl, 2009) to define the task of causal inference. SCMs pro-

vide a formal model of the underlying reality of a data-generating system over variables V . In particular, each variable has

an associated causal mechanism, which is a deterministic function of other variables in V and a set of exogenous variables

U . The exogenous variables represent the “external state of the world”, or in other words, the source of randomness in

generated data.

Definition 18 (Structural Causal Model). A SCMM is a tuple (U ,V ,F , p(U)) where:

• U is a set of exogenous (i.e. outside the model) random variables, which are typically unobserved;

• V = {V1, .., Vd} is a set of endogenous (i.e. inside the model) random variables;

• F = {F1, ..., Fd} is a set of causal mechanisms (functions). In particular, each endogenous variable Vi has an

associated function Fi which is a mapping from (the domain of) some subset pa(Vi) ⊆ U ∪ (V \ {V }) to (the domain

of) Vi. Members of pa(Vi) are referred to as parents of V , and can be split into exogenous parents Ui and endogenous

parents Pai.

• p(U) is a probability distribution over the exogenous variables.

Definition 19 (Semi-Markovian SCM). A SCM is said to be semi-Markovian if the causal diagram induced by the SCM

does not contain directed cycles. In such a case, for each variable V ∈ V we write V (u) to denote the unique value of V

given a particular value u of the exogenous variables U .

For semi-Markovian SCMs, we define a causal graph/diagram G over the endogenous variables V , as follows. For each

variable V ∈ V , we add a directed edge to this variable from any endogenous parents of V . Then, for each exogenous

variable which is a parent of two endogenous variables V1, V2, we add a bidirected edge between the variables. Intuitively,

directed edges represent direct/functional relationships between observed variables, while bidirected arrows represent un-

observed confounding. Examples of causal diagrams are shown in Figure 5.

A semi-Markovian SCM naturally induces a distribution p(V ) on the observed variables, through the distribution on

exogenous variables p(U). However, we can also use it to define the semantics of interventions, or actions on a system:

Definition 20 (Intervention). Given a SCMM, and any subset X ⊆ V , and an instantiation x of X , we can define an

intervention onM as producing a submodelMx.Mx differs fromM in that the functional relationshipsFX are replaced

with setting each variable to the fixed value x, i.e. FX = x.

The interventional distribution px(V ) (also written p(V |do(x))) is defined to be the distribution of V in the intervened

modelMx.
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While SCMs are powerful functional models, we rarely have access to the true underlying SCM for a system. Thus, we

often make the much weaker assumption of knowledge of the causal graph encoding the qualitative functional dependencies

between the endogenous variables. In particular, an important question is, given just a causal graph G, and observational

data p(V ) on the variables V , under what circumstances can we deduce (properties of) interventional distributions px(V )?
More formally, we say that an interventional distribution (query) px(Y ) (for some Y ⊆ V ) is identfiable with respect to

the causal graph G, if px(Y ) is uniquely computable from p(V ) for any SCMM that induces G.

The problem of causal identification can be solved constructively using the do-calculus (Pearl, 1995), which comprises a

set of rules for transforming a given interventional expression px(Y ) into a function the observational distribution p(V ),
given the causal graphG. In particular, it was later shown that the do-calculus is complete (Shpitser and Pearl, 2006), i.e., if

a query is identifiable, then the do-calculus can derive a formula (estimand), and there exists a polynomial time algorithm

for finding such a formula (Shpitser and Pearl, 2008). For example, for the backdoor causal graph (Figure 2a), we can

obtain a formula px(Y ) =
∑

Z p(Z)p(Y |x,Z).

C.2 Hardness of Causal Inference for Probabilistic Circuit Models

Now suppose we have a model p(V ) of the observational distribution, perhaps learned from data, and we would like to

compute px(Y ) in the identifiable backdoor case. Unfortunately, in high dimensions, naı̈ve computation of the do-calculus

formula px(Y ) =
∑

Z p(Z)p(Y |x,Z) is computationally intractable, as it involves a summation that is exponential in

the dimension |Z|. The natural question is then whether there exist probabilistic models in which we can compute the

backdoor query more efficiently. Unfortunately, despite the tractability of PCs for most probabilistic inference tasks, we

show that, if the observed data distribution is modelled by a probabilistic circuit, current structural and support properties

are not sufficient for exact causal inference:

Theorem 4 (Hardness of Backdoor Query). The backdoor query for decomposable and smooth PCs is #P-hard, even if

the PC is structured decomposable and deterministic.

Proof. We prove this in the case of binary variables for brevity of presentation, though the proof can be easily extended

to non-binary discrete variables. Our proof is based on a reduction from the problem of computing the expectation of a

logistic regression model, which was defined and shown to be #P-hard in Van den Broeck et al. (2022) and which we refer

to as the EXPLR problem. In particular, for any EXPLR problem over variables Z, with input size nZ = |Z|, we construct

a circuit in time and with size linear in Z and where computing the backdoor query px(y) =
∑

Z p(Z)p(y|x,Z) is

equivalent to solving the EXPLR problem.

The EXPLR problem is defined as computing the following quantity (where wi ∈ R):

EXPLR(w) =
∑

z

1

1 + e−(w0+
∑

i
wizi)

(10)

We will construct a circuit over variables V = {X,Y ,Z}, where the sets X = {X} and Y = {Y } each consist of a

single variable, and consider the backdoor query for instantiations x, y ofX,Y . We begin by defining a number of auxiliary

circuits/nodes for X,Y and Z individually, all structured decomposable, smooth and deterministic, which will be part of

the construction of the main circuit.

First, for Y we define the leaf nodes 1y,1¬y to encode the functions p1y
(Y ) := 1(Y = y), p1¬y

(Y ) := 1(Y = ¬y)
respectively. For X , we define 1x,1¬x to encode p1x

(X) := 1(X = x), p1¬x
(X) := 1(X = ¬x) (respectively) in a

similar manner. Finally, for Z, we define two circuits, 1Z and CZ , as follows. Let Z := {Z1, ..., ZnZ
} be an arbitrary

ordering of the variables in Z, and let Z≥i denote {Xi, ..., XnZ
} for any 1 ≤ i ≤ nZ . Then we define the circuit 1Z

recursively as follows, where 1Z := 1Z≥1
(where × indicates a product node with its arguments as children):

1Z≥i
:=

{

1Zi
× 1Z≥i+1

1 ≤ i < nZ

1Zi
i = nZ

(11)

This circuit consists of a series of product units, and leaf units 1Zi
for each Zi ∈ Z which we define to encode the function

p1Zi
(Zi) ≡ 1 (for all values of Zi). Thus, the circuit as a whole encodes p1Z

(Z) ≡ 1 for all values of Z. In terms of

structural and support properties, the circuit is trivially deterministic and smooth as it does not contain any sum nodes, and

is clearly also structured decomposable. Finally, it can also be seen that the size |1Z | (number of edges) of 1Z is O(nZ ).
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We now design a circuit CZ to encode the function e−(w0+
∑

i
wizi) as follows, where CZ := CZ≥1

:

CZ≥i
:=

{

CZi
× CZ≥i+1

1 ≤ i < nZ

CZi
i = nZ

(12)

where we define leaf nodesCZi
to encode pCZi

(Zi) := e−wiZi for 1 ≤ i < nZ and pCZi
(Zi) := e−(w0+wiZi) for i = nZ .

By recursion it can be seen that this circuit does indeed encode pCZ
(Z) = e−(w0+

∑
i
wizi). This circuit is deterministic

and smooth, and also decomposes in the same way as 1Z , i.e. they are structured decomposable with the same vtree. It

can also be seen that the size |CZ | of CZ is O(nZ ).

Now, consider the following probabilistic circuit over V = X ∪ Y ∪ Z (where ×,+ represent product, sum nodes

respectively):

C := 1y × (1x × 1Z + 1¬x × 1Z) + 1¬y × (1x × CZ + 1¬x × 1Z) (13)

C is structured decomposable as all of the product units with the same scope in the equation above decompose in the same

way, and we have seen that 1Z and CZ are structured decomposable with respect to the same vtree. It is also smooth and

deterministic as the individual circuits 1Z and CZ are smooth and deterministic, and the sum nodes in the equation satisfy

determinism by the fact that (1y,1¬y) and (1x,1¬x) have disjoint support. Finally, as the sizes of 1Z and CZ are O(nZ),
|C(V ))| is also O(nZ).

Now, we show that the backdoor query on C is equivalent to solving the corresponding EXPLR problem. First, we derive

expressions for all of the individual components of the backdoor formula on the circuit C, by evaluating according to

Equation 13:

pC(x, y, z) = p1y
(y)× (p1x

(x)× p1Z
(z) + p1¬x

(x)× p1Z
(z)) + p1¬y

(y)× (p1x
(x) × pCZ

(z) + p1¬x
(x) × p1Z

(z))

= 1× (1× 1 + 0× 1) + 0× (1× 1 + 0× 1)

= 1

pC(x, z) = pC(x, y, z) + pC(x,¬y, z)

= 1 + CZ(z)

pC(z) = pC(x, z) + pC(¬x, y, z) + pC(¬x,¬y, z)

= pC(x, z) + 1 + 1

= pC(x, z) + 2

The backdoor query for C can then be expressed as

px(y) =
∑

z

pC(z)pC(y|x, z) =
∑

z

(pC(x, z) + 2)
pC(x, y, z)

pC(x, z)
=

∑

z

[

1 +
2

1 + pCZ
(z)

]

= 2nZ + 2
∑

z

1

1 + e−(w0+
∑

i
wizi)

Thus, if we can compute the backdoor query for C, then we can compute the given EXPLR problem, completing the

reduction.

The significance of this result is that it implies hardness of causal inference for structured decomposable and deterministic

PCs whenever there is a valid backdoor adjustment (whether we use the backdoor formula or not), one of the simplest and

most common cases where the causal effect is identifiable.

Corollary 1. For any interventional query px(y) and causal diagram G such that the query is identifiable through a

backdoor adjustment, and the observational distribution p(V ) given as a decomposable and smooth circuit C encoding p,

computing px(y) is #P-hard, even if the circuit is structured decomposable and deterministic.

Proof. By the identifiability condition, we have that px(y) =
∑

z p(y|x, z)p(z) =
∑

z C(z)C(y|x, z), which is the

backdoor query. Hardness of computing the causal effect then follows from hardness of backdoor queries for the proba-

bilistic circuit.
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C.3 MD-calculus and Causal Inference

As sketched in the main paper, MD-calculus provides the tools for us to analyze what properties we need (to add to

structured decomposability and determinism) to enable tractable computation of causal queries. We now provide the full

derivations for the backdoor, frontdoor, and extended napkin cases. For convenience, in the following we will refer to

the intermediate circuits in a computation by the functions they encode, e.g. C(pC(X,Z)) for the circuit obtained from

applying the MARG(·;V \ (X ∪Z)) operation to C.

C.3.1 Backdoor

We begin with the backdoor query. In cases where there is a valid backdoor adjustment set, such as in Figure 2a, we have

the following formula for the interventional distribution:

pC,X(Y ) =
∑

Z

pC(Z)pC(Y |X,Z) =
∑

Z

pC(Z)
pC(Y ,X,Z)

pC(X,Z)

Before continuing, it is worth noting that the expression above is valid for any value of X,Y , though in causal inference

it is more typical that we are interested in evaluating pC,X(Y ) for specific values x of X , i.e. a specific intervention, or a

small set of interventions. This distinction is important as we will see, interestingly, that instantiating X makes the query

more tractable in the sense that the marginal determinism requirements for the circuit C are more relaxed.

To apply the MD-calculus, we first identify the deterministic operations in the pipeline. For the backdoor query, the only

deterministic operation is the POW(·;−1) operation, applied to C(pC(X,Z)) which requires a deterministic input circuit.

Then, we can work backwards through the pipeline from POW in order to derive tractability conditions on C.

1. Requirement: C(pC(X,Z)) is (X ∪Z)-deterministic.

2. MARG(·;Y ): C(pC(X,Y ,Z)) is (X ∪Z)-deterministic =⇒ C(pC(X,Z)) is (X ∪Z)-deterministic

3. MARG(·;V \ (X ∪Y ∪Z)): C(pC(V )) is (X ∪Z)-deterministic =⇒ C(pC(X,Y ,Z)) is (X ∪Z)-deterministic

4. Sufficient Condition: C = C(pC(V )) is (X ∪Z)-deterministic.

This simple derivation shows that it suffices for C to be (X ∪ Z)-deterministic to compute the backdoor query. Now, let

us consider the case in which we instantiate X with a value x:

pC,x(Y ) =
∑

Z

pC(Z)pC(Y |x,Z) =
∑

Z

pC(Z)
pC(Y ,x,Z)

pC(x,Z)

Here, employing the MD-calculus gives us the following:

1. Requirement: C(pC(x,Z)) is Z-deterministic.

2. MARG(·;Y ): C(pC(x,Y ,Z)) is Z-deterministic =⇒ C(pC(x,Z)) is Z-deterministic

3. MARG(·;V \ (X ∪ Y ∪Z)): C(pC(x,V \X)) is Z-deterministic =⇒ C(pC(x,Y ,Z)) is Z-deterministic

4. INST(·;x): C(pC(V )) is (X ′ ∪Z)-deterministic for some X ′ ⊆X =⇒ C(pC(x,V \X)) is Z-deterministic

5. Sufficient Condition: C is (X ′ ∪Z)-deterministic for some X ′ ⊆X .

Notice that in the requirement, due to the instantiation, the input to the POW operationC(pC(x,Z)) has scope Z, meaning

that we require it to be Z-deterministic rather than (X ∪Z)-deterministic. In the final step, we use the MD-calculus rule

for instantiation. This shows that the instantiated backdoor adjustment is tractable for a wider range of circuits than if we

insisted on a circuit encoding pC,X(Y ) as a function of X (and Y ).
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C.3.2 Frontdoor

Another common case where the causal effect is identifiable is the frontdoor causal diagram, shown in Figure 5b. Unlike

the backdoor case, there is unobserved confounding of X and Y , represented by the dashed bidirectional arrow. However,

the existence of the observed mediator Z nonetheless allows for identifiability, via the formula

pC,X(Y ) =
∑

Z

pC(Z|X)
∑

X′

pC(X
′)pC(Y |X

′,Z) (14)

We now employ the MD-calculus to derive tractability conditions. This time, looking at the conditionals, there are two

deterministic (POW) operations, as well as an auxiliary variable X ′ (that is summed out in the end), which has the same

joint distribution with V \X as X .

1. Requirement: C(pC(X)) is X-deterministic and C(pC(X,Z)) is (X ∪Z)-deterministic.

2. MARG(·;V \X): C(pC(V )) is X-deterministic =⇒ C(pC(X)) is X-deterministic.

3. MARG(·;V \ (X ∪Z)): C(pC(V )) is (X ∪Z)-deterministic =⇒ C(pC(X ∪Z)) is (X ∪Z)-deterministic.

4. Sufficient Condition: C is X-deterministic and (X ∪Z)-deterministic.

Now, let us consider instantiating X with value x. In this case, we have:

pC,x(Y ) =
∑

Z

pC(Z|x)
∑

X′

pC(X
′)pC(Y |X

′,Z) (15)

Note that in this case, the conditional pC(Z|x) does not impose any determinism requirements, since the input to the

POW operation is a scalar C(pC(x)). However, the requirements for the other conditional remain the same, as X ′ is an

auxiliary variable that is not tied to the intervention value x. Overall, we can conclude that C being (X ∪Z)-deterministic

is sufficient for the instantiated frontdoor formula, which is again weaker than in the non-instantiated case.

C.3.3 Extended Napkin

The extended napkin causal graph in Figure 2b is an extension of the so-called napkin causal graph (Pearl, 2009), which

is obtained by removing K from the graph. For this diagram, the do-calculus gives us the following formula for the

interventional distribution:

pC,X(Y ) =
∑

K





∑

W ,X′,Y ′

pC(X
′,Y ′|K, z,W )pC(W ,K)





∑

W pC(X,Y |K, z,W )pC(W ,K)
∑

W pC(X|K, z,W )pC(W ,K)

As described in the main paper, this is a case where we need to instantiate X for tractability, leading to the following

formula:

pC,x(Y ) =
∑

K





∑

W ,X′,Y ′

pC(X
′,Y ′|K, z,W )pC(W ,K)





∑

W pC(x,Y |K, z,W )pC(W ,K)
∑

W pC(x|K, z,W )pC(W ,K)

In this formula, there are four deterministic operations. Three of them relate to the conditionals in the formula, while the

final one is the POW(·;−1) operation applied to C(
∑

W pC(x|K, z,W )pC(W ,K)). To derive a sufficient tractability

condition on C, we work backward through the computation from each of these operations.

We first consider the conditionals in the formula. Through similar reasoning to the instantiated backdoor formula, all of

these can be computed efficiently as long as C is (K ∪W ∪Z ′)-deterministic, for some Z ′ ⊆ Z.

For the final deterministic operation POW(·;−1) applied toC(
∑

W pC(x|K, z,W )pC(W ,K)), note that the input circuit

has scope K , so the requirement is that it is K-deterministic. At this point, we can apply the rules for MARG and PROD:

1. Requirement: C(
∑

W pC(x|K, z,W )pC(W ,K)) is K-deterministic.
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2. MARG: C(pC(x|K, z,W )pC(W ,K)) is K-deterministic =⇒ C(
∑

W pC(x|K, z,W )pC(W ,K)) is K-

deterministic.

3. PROD: C(pC(x|K, z,W )), C(pC(W ,K)) both K-deterministic =⇒ C(pC(x|K, z,W )pC(W ,K)) is K-

deterministic, by rule (a), where Q = K .

4. MARG: C(pC(V )) is K-deterministic =⇒ C(pC(W ,K)) is K-deterministic

5. PROD: C(pC(x,K, z,W )), C(pC(K, z,W )−1) both K-deterministic =⇒ C(pC(x|K, z,W )) is K-

deterministic, by rule (a), where Q = K .

6. MARG: C(pC(x, z,V \ (X ∪Z))) is K-deterministic =⇒ C(pC(x,K, z,W )) is K-deterministic

7. INST: C(pC(V )) is (K ∪X ′ ∪Z ′)-deterministic for some X ′ ⊆X , Z ′ ⊆ Z =⇒ C(pC(x, z,V \ (X ∪Z))) is

K-deterministic

8. POW: C(pC(K, z,W )) is K-deterministic =⇒ C(pC(K, z,W )−1) is K-deterministic

9. MARG: C(pC(z,V \Z)) is K-deterministic =⇒ C(pC(K, z,W ) is K-deterministic

10. INST: C(pC(V )) is (K ∪Z ′)-deterministic for some Z ′ ⊆ Z =⇒ C(pC(z,V \Z)) is K-deterministic

11. Sufficient Condition: C is K-deterministic

We have underlined the individual conditions on C that have been derived. For the reciprocal to be tractable, we need

C to satisfy all of these. However, it can be seen that the first condition implies the other two (by taking X ′ = ∅,
Z ′ = ∅), giving the condition at the bottom of the derivation. Now, combining with the previous conditions due to the

conditional distributions, the overall sufficient condition for tractability of the (instantiated)extended napkin query is that

C is K-deterministic and (K ∪W ∪Z ′)-deterministic, for some Z ′ ⊆ Z.
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Algorithm 4: PROD(C(1), C(2))

Input: Input circuits C(1) = (v(1) = (M (1), E(1), φ(1)), ψ(1), ρ(1)), C(2) = (v(2) = (M (2), E(2), φ(2)), ψ(2), ρ(2))
Result: Output circuit C′ = (v′, ψ′, ρ′)

1 m(1),m(2) ← root(v(1)),root(v(2));

2 (m
(1)
l ,m

(1)
r ), (m

(2)
l ,m

(2)
r )← children(m(1)),children(m(2)); // null if m(1)/m(2) are leaf

3 m′ ← newvtreenode();

4 C ← φ(1)(m(1)) ∩ φ(2)(m(2));
5 if C = ∅ then

6 v′l, ψ
′
l, ρ

′
l ← v(1), ψ(1), ρ(1);

7 v′r, ψ
′
r, ρ

′
r ← v(2), ψ(2), ρ(2);

8 v′, ψ′, ρ′ ← v′l ∪ v
′
r, ψ

′
l ∪ ψ

′
r, ρ

′
l ∪ ρ

′
r; // combine the vtrees/labelling fn/param fn

9 ψ′(m′)← ∅; // Update label function

10 Tm′ ←
(

Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1) |, i(2) = 1, ...|Tm(2) |
)

;

11 θm′,i(1)i(2)jk ← 1i(1)=j,i(2)=k;

12 ρ′(m′)← (Tm′ , θm′) // Update parameter function

13 else if m(1) and m(2) are leaves then

14 v′, ψ′, ρ′ ← createemptyvtree();

15 ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2));

16 Tm′ ←
(

Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1) |, i(2) = 1, ...|Tm(2) |
)

;

17 θm′,i(1)i(2)j(1)j(2)k(1)k(2) ← θm(1),i(1)j(1)k(1)θm(1),i(2)j(2)k(2) ;

18 ρ′(m′)← (Tm′ , θm′) // Update parameter function

19 else if φ
(1)
C (m(2)) = φ

(1)
C (m

(1)
r ) then

20 v′l, ψ
′
l, ρ

′
l ← v

(1)

m
(1)
l

, ψ(1), ρ(1);

21 v′r, ψ
′
r, ρ

′
r ← PROD(m

(1)
r ,m(2));

22 v′, ψ′, ρ′ ← v′l ∪ v
′
r, ψ

′
l ∪ ψ

′
r, ρ

′
l ∪ ρ

′
r; // combine the vtrees/labelling fn/param fn

23 ψ′(m′) = ψ(1)(m(1)); // Update label function

24 Tm′ ←
(

Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1) |, i(2) = 1, ...|Tm(2) |
)

;

25 θm′,i(1)i(2)j(1)k(1)k(2) ← θm(1),i(1)j(1)k(1)1i(2)=k(2) ;

26 ρ′(m′)← (Tm′ , θm′) // Update parameter function

27 else if φ
(1)
C (m

(1)
l ) = φ

(2)
C (m

(2)
l ) and φ

(1)
C (m

(2)
r ) = φ

(1)
C (m

(2)
r ) then

28 v′l, ψ
′
l, ρ

′
l ← PROD(m

(1)
l ,m

(2)
l );

29 v′r, ψ
′
r, ρ

′
r ← PROD(m

(1)
r ,m

(2)
r );

30 v′, ψ′, ρ′ ← v′l ∪ v
′
r, ψ

′
l ∪ ψ

′
r, ρ

′
l ∪ ρ

′
r; // combine the vtrees/labelling fn/param fn

31 ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2));

32 Tm′ ←
(

Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1) |, i(2) = 1, ...|Tm(2) |
)

;

33 θm′,i(1)i(2)j(1)j(2)k(1)k(2) ← θm(1),i(1)j(1)k(1)θm(1),i(2)j(2)k(2) ;

34 ρ′(m′)← (Tm′ , θm′) // Update parameter function

35 else

36 Return fail (not compatible)

37 φ′(m′)← φ(1)(m(1)) ∪ φ(2)(m(2)); // Update scope function

38 v′ ← addnode(v′;m′);
39 v′ ← addchildren(v′;m′,root(v′l),root(v

′
r));

40 Return (v′, ψ′, ρ′)
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Algorithm 5: POW(C,α)

Input: Input circuit C = (v = (M,E, φ), ψ, ρ); power α

Result: Output circuit C′ = (v′, ψ′, ρ′)
1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then // Update vtree structure and parameter function (leaf)

4 v′ ← createvtree(m′); // create vtree with single node

5 ρ′(m′)← (POW(L;α) for L ∈ Tm, θm); // apply power to leaf PC nodes

6 else // Update vtree structure and parameter function (non-leaf)

7 ml,mr ← children(m);
8 v′l, ψ

′
l, ρ

′
l ← POW((vml

, ψ, ρ), α);
9 v′r, ψ

′
r, ρ

′
r ← POW((vmr

, ψ, ρ), α);
10 v′, ψ′, ρ′ ← v′l ∪ v

′
r, ψ

′
l ∪ ψ

′
r, ρ

′
l ∪ ρ

′
r; // combine the vtrees/labelling fn/param fn

11 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′,root(v′l),root(v
′
r));

12 ρ′(m′)← ρ(m);

13 φ′(m′)← φ(m); // Update scope function

14 ψ′(m′)← ψ(m); // Update labelling function

15 Return (v′, ψ′, ρ′)


