
Symbolic Causal Inference via Operations on
Probabilistic Circuits

Benjie Wang
Department of Computer Science

University of Oxford

Marta Kwiatkowska
Department of Computer Science

University of Oxford

Abstract

Causal inference provides a means of translating a target causal query into a causal
formula, which is a function of the observational distribution, given some assump-
tions on the domain. With the advent of modern neural probabilistic models, this
opens up the possibility to perform accurate and tractable causal inference on realis-
tic, high-dimensional data distributions, a crucial component of reasoning systems.
However, for most model classes, the computation of the causal formula from the
observational model is intractable. In this work, we hypothesize that probabilistic
circuits, a general and expressive class of tractable probabilistic models, may be
more amenable to the computation of causal formulae. Unfortunately, we prove
that evaluating even simple causal formulae is still intractable for most types of
probabilistic circuits. Motivated by this, we devise a conceptual framework for an-
alyzing the tractability of causal formulae by decomposing them into compositions
of primitive operations, in order to identify tractable subclasses of circuits. This
allows us to derive, for a specific subclass of circuits, the first tractable algorithms
for computing the backdoor and frontdoor adjustment formulae.

1 Introduction

The problem of causal inference is to estimate a given causal query on a data-generating system,
given some assumptions on the system and available data generated from that system. The graphical
framework of Pearl [15] provides an intuitive means of specifying these assumptions as a causal
graph over observed variables, and a calculus [14] for translating a causal query into an expression
involving probability distributions over observed variables (called a causal estimand or formula),
given the causal graph. Consider, for example, the causal graphs in Figure 1. These represent
causal assumptions on the domain; in particular, they show how observed variables are related
qualitatively, and the presence of unobserved confounders (represented by bidirected arrows). Given
these assumptions, the goal is then to estimate the interventional distribution pX(Y ). For the graph
in Figure 1a, this is given exactly by the well-known backdoor adjustment formula.

However, in practice, for complex, high-dimensional distributions p, there remain significant chal-
lenges to estimating (statistics of) the interventional distribution. The first challenge is to obtain
accurate probabilistic models for the observational distribution, perhaps learned from data; fortunately,
modern machine learning provides a plethora of expressive generative model classes. However, even
given an exact model for the observational distribution, a second computational challenge remains:
to compute the function given by the causal formula. For example, in the backdoor case, this involves
computing an intractable summation/integral (exponential in the dimension of Z) of a product; as
a result, we must resort to an approximate or heuristic algorithm such as a Monte Carlo estimate.
For other causal formulae, the situation is even more complex as the approximation may have to be
hand-designed and/or come with little or no guarantees; for example, for the frontdoor formula in
Figure 1b, effective estimators have only very recently been developed [8, 11].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



X

Z

Y

(a) BD pX(Y ) =
∑

Z p(Z)p(Y |X,Z)

X Z Y

(b) FD pX(Y ) =
∑

Z p(Z|X)
∑

X′ p(X
′)p(Y |X ′,Z)

Figure 1: Example causal graphs and their associated identifying formulae

In this paper, we propose an alternative question and approach to the computational problem: namely,
are there interesting model classes for which exact computation of causal formulae is tractable?
This question is of clear practical interest, as any such sufficiently expressive model class could be
used as a representation to perform causal inference reliably with guarantees on the exactness of the
result. As a logical starting point, we consider the framework of probabilistic circuits (PC) [3], a
general class of probabilistic models which are notable for the ability to perform exact and efficient
probabilistic inference with respect to the model. Unfortunately, our first result is that, for almost
all existing types of probabilistic circuits, causal inference is #P-hard, even for the simplest case of
backdoor adjustment. Nonetheless, we propose a method for analysing their tractability based on
decomposing the causal formula via the do-calculus. This allows us to characterize a subclass of
probabilistic circuits which admit tractable algorithms for computation of frontdoor and backdoor
adjustment formulae; namely, structured-decomposable and strongly deterministic PCs.

Related Work The relationship between probabilistic circuits and causality has its roots in the
compilation methods in the seminal work of [5], which described an inference approach for (causal)
Bayesian networks that involved compiling their graphs into tractable arithmetic circuits; subsequent
work has further examined the relationship between compiled arithmetic circuits and causal models
[1, 6, 2]. Recent trends, however, have increasingly moved towards general probabilistic circuits,
which are defined by their structural properties and can be learned directly from data [17, 4, 21, 7].
However, obtaining an exact causal interpretation of general probabilistic circuits has proved much
less successful [23, 13]. The only practical prior causal inference method for such circuits is the neural
parameterization of Zecevic et al. [22], but this lacks exactness guarantees and is only applicable to
fully observed settings. In contrast, our paper aims to characterize the complexity of and propose
methods for exact causal inference for general probabilistic circuits.

2 Preliminaries

A probabilistic circuit C over a set of variables V is a computational graph (rooted DAG) consisting
of three types of nodes: leaf, sum and product nodes. The circuit encodes a function C : V → R≥0,
which can be interpreted as a probability distribution. In particular, each leaf node L represents a
function over some subset ϕ(L) of the variables, each product node P multiplies the functions given
by its children, i.e., P =

∏
Ni∈ch(P ) Ni, while each sum node T is defined by a weighted sum of its

children, i.e., T =
∑

Ni∈ch(T ) θiNi. We assume (w.l.o.g.) in this paper that each product node has
exactly two children. The weights θi ∈ R≥0 of the sum nodes are referred to as the parameters of
the PC. The scope of a node N denotes the set of variables N specifies a function over, and can be
defined recursively for each product or sum node N as ϕ(N) = ∪Ni∈ch(N)ϕ(Ni). Finally, the size
of a circuit, denoted |C|, is defined to be the number of edges in the circuit.

The tractability properties of probabilistic circuits depend on the structural properties they satisfy.
A PC is decomposable if the children of a product node have distinct scopes (and thus partition the
scope of the product node), is smooth if the children of a sum node have the same scope, and is
deterministic if, for every instantiation w of the scope of a sum node, at most one of its children Ni

evaluates to a non-zero value Ni(w). Decomposability and smoothness together enable tractable
marginal inference; that is, for any subset W ⊆ ϕ(N) of the scope of a node N , we can compute
N(W ) :=

∑
ϕ(N)\W N(ϕ(N)) efficiently. In this paper, we will need an additional property, called

structured decomposability [16, 12], which intuitively means that the scopes of all product nodes in
the PC decompose (partition) in the same way. More formally, a PC is structured decomposable if
it respects some vtree v. A vtree v = (M,E) for a set of variables V is a full, rooted binary tree

2



with nodes M and edges E whose leaves are in one-to-one correspondence with the variables in V .
For any leaf node m in the vtree, we define the scope ϕ(m) to be the singleton set containing the
corresponding variable, and for any other node, we define ϕ(m) = ϕ(mL)∪ ϕ(mR), where mL,mR

are the left and right children of m. A PC C respects a vtree if every product node P in C has a
node m in the vtree with the same scope, and decomposes (partitions) in the same way. We show an
example of a structured decomposable, smooth, and deterministic circuit in Figure 3a.

3 Tractability of Backdoor Adjustment

In this section, we begin by considering the basic case of computing causal effects of the form px(y),
where X,Y ⊆ V are disjoint subsets of the observed variables, and x,y are instantiations of X,Y .
One of the most common cases where the causal effect is identifiable is when there exists a valid
backdoor adjustment set Z ⊆ V \(X∪Y ) (also known as the conditional exchangability/ignorability
assumption). In particular, Z is a valid adjustment set iff it satisfies a graphical condition known as
the backdoor criterion with respect to X,Y on the causal diagram G. Whenever such a set exists,
the causal effect px(y) is given by the backdoor adjustment formula

px(y) =
∑
z

p(z)p(y|x, z) (1)

Now suppose that we have a probabilistic model M representing the distribution p over observed
variables, i.e. M(V ) ≡ p(V ), perhaps learned from data. Despite the apparently simplistic setup,
computing (1) is not straightforward for many probabilistic models M . In particular, notice that
both the expressions p(z) and p(y|x, z) require the other variables in the model to be marginalized
out, which is generally not tractable for probabilistic models. Notably, however, even if the model
allows for tractable marginal evaluation, and thus the computation of the probabilistic expressions
for specific values (x,y, z) of (X,Y ,Z), the summation is computationally intractable as it takes
exponential time in the dimension of Z.

It is thus a natural question whether there exist interesting classes of probabilistic models for which
causal inference is tractable. A natural starting point is to look at (decomposable and smooth) tractable
probabilistic circuits, but we have seen that tractable marginal inference alone is not sufficient. The
tractability of answering causal inference queries exactly for probabilistic circuits, where exactness
is a hallmark and extremely desirable property of probabilistic circuit queries, has remained an
important open question. Unfortunately, we answer in the negative in the following result:

Theorem 1. The backdoor query for decomposable and smooth circuits is #P-hard, even if the circuit
is structured decomposable and deterministic.

This implies hardness of causal inference for PCs whenever there is a valid backdoor adjustment:

Corollary 1. For any causal effect px(y) and causal diagram G such that the query is identifiable
through a backdoor adjustment, and the observational distribution p(V ) given as a decomposable
and smooth circuit C(V ) ≡ p(V ), computing px(y) is #P-hard, even if the circuit is structured
decomposable and deterministic.

This is a rather sobering result, as structured decomposability and determinism are some of the
strongest properties that we can impose on a circuit for tractability, and demonstrates the gap between
causal and probabilistic inference (which only required decomposability and smoothness). It places
causal queries in the small group of queries on a single circuit for which these properties do not
suffice; to the best of our knowledge, the only other such type of query studied in literature is the
marginal MAP query (MMAP) [9, 3]. In addition, we can view this result as placing a theoretical
barrier on interpreting probabilistic circuits as causal models [23, 13]; namely that, even if such an
interpretation exists, it is not possible to tractably perform causal inference with the causal PC.

4 Symbolic Causal Inference via Operations

Pearl [14] derived a set of rules known as the do-calculus that enable one to transform between
interventional and observational distributions, by reasoning about the properties of the causal graph.
Later, it was shown that the do-calculus is complete; that is, for any identifiable causal effect, it is

3



p(V )

Marg(V \Z)

Cond(X ∪Z)

Marg(V \ (X ∪ Y ∪Z))

Product

Marg(Z)

pX(Y )

(a) Backdoor Formula

p(V \ {X} ∪ {X ′})

Marg(V \X ′)

Cond(X ′ ∪Z)

Marg(V \ (X ′ ∪ Y ∪Z))

Product

Marg(X ′)

p(V )

Cond(X)

Marg(V \ (X ∪Z))Product

pX(Y )

(b) Frontdoor Formula

Figure 2: Compositional pipelines for the backdoor and frontdoor formulae

possible to derive a formula for the effect via do-calculus [19, 10]. In particular, the ID algorithm
derives a formula by composing the following primitive operations on probability distributions:

Definition 1 (Marginalization). MARG(·;W ) is a unary operation that takes as input a probability
distribution p over variables V and outputs the probability distribution p(V \W ) =

∑
W p(V ).

Definition 2 (Conditioning). COND(·;W ) is a unary operation that takes as input a probability
distribution p over variables V and outputs the probability distribution p(V \W |W ) = p(V )

p(W ) .

Definition 3 (Product). PROD(·, ·) is a binary operation with parameters that takes as inputs two
probability distributions p, p′ over variables V ,V ′ and outputs the probability distribution p× p′

over variables V ∪ V ′.

This can be used to systematically decompose a causal formula into a composition of primitive
operations. Such a decomposition can be visualized as a symbolic compositional pipeline [21]; for
example, in Figure 2, we show pipelines for the backdoor and frontdoor formulae. It can be seen that
this provides a sufficient condition for tractability: if we can show that all of the individual operations
through the pipeline are tractable for a particular model class, then it follows that the causal formula
is tractable. Further, if we have tractable algorithms for each of the operations, then the pipeline
provides a tractable algorithm for evaluating the formula. We now show how this framework can be
used to analyze the tractability of the backdoor and frontdoor formulae.

Tractable Conditioning Both pipelines require an application of COND(·;X ∪Z) to the observa-
tional distribution p(V ) (and COND(·;X) also for frontdoor), for which no algorithms or tractability
results currently exist for PCs. We find that the key property needed for tractability is strong deter-
minism1. Intuitively, strong determinism requires that, for every sum node T , there is a subset of
variables WL ⊂ ϕ(T ) such that the value of WL "determines" which child of T "is active". For
example, the root sum node in Figure 3a has scope ϕ(T ) = {X,Y, Z}, and WL := {X,Z}. Notice
that the two children of T partition the possible values of WL. The sum node can thus be interpreted
as conditioning on the value of WL.

The canonical example of a strongly deterministic circuit is the probabilistic sentential decision
diagram (PSDD) [12], and there exist other circuits which effectively enforce strong determinism,
in particular structured decomposable and deterministic XPCs [7]. Crucially, strong determinism is
not just a theoretical property; there exist algorithms for learning both PSDDs and such XPCs. We
now show that we can tractably apply conditioning to a strongly deterministic PC, but only for some
conditioning sets W , which depends on its vtree.

Definition 4 (Tractable Conditioning Sets). Given a vtree v, let Mv be the sequence of vtree nodes
obtained by starting at the root and iteratively picking the right child, and define Mv(i) to be the
subsequence of Mv consisting of the first i elements. Then we define Q(v) = {

⋃
m∈Mv(i)

ϕ(mL)|i =
1, ..., |Mv|} to be the tractable conditioning sets for v.

1We provide a formal definition of strong determinism in Appendix B.2.

4



+
× ×

+ + + +

× ×
Y Ȳ

X Z X̄ Z̄

× ×
Y Ȳ

X Z̄ X̄ Z

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(a) Circuit representing p(X,Y ,Z)

+

× × × ×
+

+

+

+

+

+

+

+X X̄

Y Ȳ

X X̄

Y Ȳ

X X̄

Y Ȳ

X X̄

Y Ȳ

0.7
0.7 0.3

0.3

0.9 0.1

0.2 0.8

0.1 0.9

0.6 0.4

0.75 0.25

0.2 0.8

0.25 0.75

0.6 0.4

(b) Circuit representing
∑

Z p(Z)p(Y |X,Z)

Figure 3: Example of a structured decomposable and strongly deterministic circuit, and the circuit
that results from applying backdoor adjustment as in Theorem 2.

Proposition 1 (Tractable Conditioning). Given a structured decomposable (respecting vtree v),
smooth and strongly deterministic circuit C, then if W ∈ Q(v), COND(C;W ) can be computed in
O(|C|) time as a structured decomposable (respecting v), smooth and deterministic circuit.

Tractable Marginals and Products Having resolved the conditioning operation, we now turn to
the marginalization and product operations.
Proposition 2 (Tractable Marginals). Given a structured decomposable (respecting vtree v) and
smooth circuit C, then MARG(C;W ) can be computed in O(|C|) time as a structured decomposable
(respecting vtree v) circuit.

Proposition 3 (Tractable Products). [18, 21] Given two structured decomposable (both respecting
vtrees v) and smooth circuits C1, C2, then PROD(C1, C2) can be computed in O(|C1||C2|) time as a
structured decomposable (respecting vtree v) circuit.

Looking at the pipelines as a whole, the previous results can be combined to characterize the
conditions for tractability and complexity of computation for the backdoor and frontdoor formulae:
Theorem 2 (Tractable Backdoor and Frontdoor Adjustment). Suppose that we have a circuit C
representing p(V ) that is structured decomposable (respecting vtree v) and strongly deterministic
such that X ∪Z ∈ Q(v). Then the backdoor formula can be computed exactly in O(|C|2), and if
additionally Z ∈ Q(v), the frontdoor formula can be computed exactly in O(|C|3) time.

In Figure 3, we can apply backdoor adjustment to the structured decomposable and strongly deter-
ministic circuit in Figure 3a since {X,Z} is a tractable conditioning set. The resulting circuit in
Figure 3b represents the interventional distribution pX(Y ) in the backdoor case.

We conclude this section with two comments. Firstly, if we are interested in backdoor/frontdoor
computation for specific sets X,Z, then we will have to choose the vtree such that the tractability
conditions hold, though we have some flexibility in this choice. Secondly, we note that the output of
the algorithm (e.g. Figure 3b) is actually a structured-decomposable and smooth probabilistic circuit
representing pX(Y ). That is, we obtain a tractable circuit that enables evaluation for arbitrary values
of X,Y , as well as arbitrary marginal and conditional inference on the interventional distribution.

5 Conclusion

Recent advances in the modelling capabilities of probabilistic circuits have opened up the alluring
possibility of tractable high-dimensional causal inference. However, in contrast to probabilistic
inference, the theoretical basis for exact causal inference on circuits has remained unclear. We
provide the first theoretical results in this direction, showing that, unfortunately, many commonly
used classes of probabilistic circuits are insufficient. Nonetheless, for strongly deterministic circuits,
we show that the situation is different and derive, remarkably, polynomial-time algorithms for
backdoor and frontdoor adjustment. At the core of our approach is the extensible representation of
causal formulae as a compositional pipeline, allowing us to reduce the analysis to primitive operations.
We thus hope that our approach will provide a foundation for future work on tractable causal inference,
which could examine tractability for broader classes of causal formulae or probabilistic circuits, or
design practical schemes for performing causal inference from data.

5



Acknowledgements

This project was funded by the ERC under the European Union’s Horizon 2020 research and
innovation programme (FUN2MODEL, grant agreement No.834115).

References
[1] Butz, C., S. Oliveira, J., and Peharz, R. (2020). Sum-product network decompilation. In Jaeger, M. and

Nielsen, T. D., editors, Proceedings of the 10th International Conference on Probabilistic Graphical Models,
volume 138 of Proceedings of Machine Learning Research, pages 53–64. PMLR.

[2] Chen, Y. and Darwiche, A. (2022). On the definition and computation of causal treewidth. In Proceedings
of the 38th Conference on Uncertainty in Artificial Intelligence.

[3] Choi, Y., Vergari, A., and Van den Broeck, G. (2020). Probabilistic circuits: A unifying framework for
tractable probabilistic models. arXiv preprint.

[4] Dang, M., Vergari, A., and Van den Broeck, G. (2020). Strudel: Learning structured-decomposable
probabilistic circuits. In Jaeger, M. and Nielsen, T. D., editors, Proceedings of the 10th International
Conference on Probabilistic Graphical Models, volume 138 of Proceedings of Machine Learning Research,
pages 137–148. PMLR.

[5] Darwiche, A. (2003). A differential approach to inference in bayesian networks. Journal of the ACM
(JACM), 50(3):280–305.

[6] Darwiche, A. (2021). Causal inference using tractable circuits. In NeurIPS Workshop on Causal Inference
and Machine Learning: Why Now? (WHY21).

[7] Di Mauro, N., Gala, G., Iannotta, M., and Basile, T. M. (2021). Random probabilistic circuits. In de Campos,
C. and Maathuis, M. H., editors, Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial
Intelligence, volume 161 of Proceedings of Machine Learning Research, pages 1682–1691. PMLR.

[8] Fulcher, I. R., Shpitser, I., Marealle, S., and Tchetgen Tchetgen, E. J. (2020). Robust inference on population
indirect causal effects: the generalized front door criterion. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 82(1):199–214.

[9] Huang, J., Chavira, M., and Darwiche, A. (2006). Solving map exactly by searching on compiled arithmetic
circuits. In Proceedings of the 21st National Conference on Artificial Intelligence - Volume 2, AAAI’06, page
1143–1148. AAAI Press.

[10] Huang, Y. and Valtorta, M. (2006). Pearl’s calculus of intervention is complete. In Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial Intelligence, UAI’06, page 217–224, Arlington,
Virginia, USA. AUAI Press.

[11] Jung, Y., Tian, J., and Bareinboim, E. (2020). Estimating causal effects using weighting-based estimators.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34.

[12] Kisa, D., Van den Broeck, G., Choi, A., and Darwiche, A. (2014). Probabilistic sentential decision
diagrams. In Proceedings of the 14th International Conference on Principles of Knowledge Representation
and Reasoning (KR).

[13] Papantonis, I. and Belle, V. (2020). Interventions and counterfactuals in tractable probabilistic models:
Limitations of contemporary transformations. arXiv preprint, abs/2001.10905.

[14] Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4):669–688.

[15] Pearl, J. (2009). Causality. Cambridge University Press, Cambridge, UK, second edition.

[16] Pipatsrisawat, K. and Darwiche, A. (2008). New compilation languages based on structured decomposabil-
ity. In AAAI, pages 517–522. AAAI Press.

[17] Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture. In Conference on
Uncertainty in Artificial Intelligence.

[18] Shen, Y., Choi, A., and Darwiche, A. (2016). Tractable operations for arithmetic circuits of probabilistic
models. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 29.

6



[19] Shpitser, I. and Pearl, J. (2006). Identification of joint interventional distributions in recursive semi-
markovian causal models. AAAI’06, page 1219–1226. AAAI Press.

[20] Van den Broeck, G., Lykov, A., Schleich, M., and Suciu, D. (2022). On the tractability of shap explanations.
J. Artif. Int. Res., 74.

[21] Vergari, A., Choi, Y., Liu, A., Teso, S., and Van den Broeck, G. (2021). A compositional atlas of tractable
circuit operations for probabilistic inference. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 13189–13201.

[22] Zecevic, M., Dhami, D. S., Karanam, A., Natarajan, S., and Kersting, K. (2021). Interventional sum-
product networks: Causal inference with tractable probabilistic models. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems.

[23] Zhao, H., Melibari, M., and Poupart, P. (2015). On the relationship between sum-product networks and
bayesian networks. In Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 116–124, Lille, France.
PMLR.

7



Figure 4: Computation time for backdoor and frontdoor formulae for probabilistic circuits

A Empirical Validation

We perform preliminary experiments to validate the performance of the following task: given a
probabilistic circuit representing some distribution p(V ), compute pback

x (y) =
∑

Z p(Z)p(y|x,Z)
and pfront

x (y) =
∑

Z p(Z|x)
∑

X′ p(X ′)p(y|X ′,Z) for specific values x,y. We compare our
algorithms, which we call BACKPC and FRONTPC, to the naïve exact algorithms which compute the
backdoor/frontdoor formula by explicitly performing the summations, which we call BACKSUM and
FRONTSUM. In Figure 4, we see that, as the dimension of the variables increases, BACKPC and FRONTPC
perform the exact computation much more efficiently than the explicit methods, as expected.

B Proofs

B.1 Proof of Theorem 1

Theorem 1. The backdoor query for decomposable and smooth circuits is #P-hard, even if the circuit
is structured decomposable and deterministic.

Proof. We prove this in the case of binary variables for brevity of presentation, though the proof
can easily be extended to non-binary discrete variables. Our proof is based on a reduction from the
problem of computing the expectation of a logistic regression model, which was defined and shown to
be #P-hard in Van den Broeck et al. [20] and which we refer to as the EXPLR problem. In particular,
for any EXPLR problem over variables Z, with input size nZ = |Z|, we construct a circuit in time
and with size linear in Z and where computing the backdoor query is equivalent to solving the EXPLR
problem.

The EXPLR problem is defined as computing the following quantity (where wi ∈ R):∑
z

1

1 + e−(w0+
∑

i wizi)
(2)

We will construct a circuit over variables V = {X,Y ,Z}, where the sets X = {X} and Y = {Y }
each consist of a single variable, and consider the backdoor query for instantiations x, y of X,Y . We
begin by defining a number of auxiliary circuits/nodes for X,Y and Z individually, all structured
decomposable, smooth and deterministic, which will be part of the construction of the main circuit.

First, for Y we define the leaf nodes 1y(Y ) := 1(Y = y) and 1¬y(Y ) := 1(Y = ¬y). We then
define 1x(X) := 1(X = x) and 1¬x(X) := 1(X = ¬x) for X in a similar manner. Finally, for Z,
we define two circuits, 1Z(Z) and CZ , as follows. Let Z := {Z1, ..., ZnZ

} be an arbitrary of the
variables in Z, and let Z≥i denote {Xi, ..., XnZ

} for any 1 ≤ i ≤ nZ . Then we define the circuit
1Z(Z) recursively as follows, where 1Z(Z) := 1Z≥1

(Z≥1):

1Z≥i
(Z≥i) :=

{
1Zi

(Zi)× 1Z≥i+1
(Z≥i+1) 1 ≤ i < nZ

1Zi
(Zi) i = nZ

(3)

8



This circuit consists of a series of product units, and leaf units for each Zi ∈ Z which are defined to
take the value 1Zi(zi) ≡ 1 for all values zi of Zi. Thus, the circuit as a whole satisfies 1Z(Z) ≡ 1
for all values z of Z. In terms of structural properties, the circuit is trivially deterministic and smooth
as it does not contain any sum nodes, and is clearly also structured decomposable. Finally, it can also
be seen that the size |1Z(Z)| (number of edges) of 1Z(Z) is O(nZ).

We now design a circuit CZ(Z) to represent the function e−(w0+
∑

i wizi).

CZ≥i(Z ≥ i) :=

{
CZi(Zi)× CZ≥i+1

(Z≥i+1) 1 ≤ i < nZ

CZi
(Zi) i = nZ

(4)

where we define leaf nodes CZi
(Zi) = e−wizi for 1 ≤ i < nZ and e−(w0+wizi) for i = nZ . This

circuit is deterministic and smooth, and also decomposes in the same way as 1Z(Z), i.e. they are
structured decomposable with the same vtree. It can also be seen that the size |CZ(Z)| of CZ(Z) is
O(nZ).

Now, consider the probabilistic circuit over V = X ∪ Y ∪Z given by
C(V ) = 1y(Y )× (1x(X)× 1Z(Z) + 1¬x(X)× 1Z(Z)) (5)

+ 1¬y(Y )× (1x(X)× CZ(Z) + 1¬x(X)× 1Z(Z)) (6)

C is structured decomposable as all of the product units with the same scope in the equation above
decompose in the same way, and we have seen that 1Z(Z) and CZ(Z) are structured decomposable
with respect to the same vtree. It is also smooth and deterministic as the individual circuits 1Z(Z)
and CZ(Z) are smooth deterministic, and the sum nodes in the equation satisfy determinism by
the fact that (1y(Y ),1¬y(Y )) and (1x(X),1¬x(X)) have disjoint support. Finally, as the sizes of
1Z(Z) and CZ(Z) are O(nZ), |C(V ))| is also O(nZ).

Now, we show that the backdoor query on C(V ) is equivalent to solving the corresponding EXPLR
problem. First, we derive expressions for all of the individual components of the backdoor formula.

C(x, y,z) = 1y(y)× 1x(x)× 1Z(z)

= 1

C(x, z) =
∑
y′

C(x, y′, z)

= 1y(y)× 1x(x)× 1Z(z) + 1¬y(¬y)× 1x(x)× CZ(z)

= 1 + CZ(z)

C(z) =
∑
x′

C(x′, z)

= C(x, z) +
∑
y′

C(¬x, y′, z)

= C(x, z) + 1y(y)× 1¬x(¬x)× 1Z(z) + 1¬y(¬y)× 1¬x(¬x)× 1Z(z)

= C(x, z) + 2

The backdoor query for C can then be expressed as∑
z

C(z)C(y|x, z) =
∑
z

(C(x, z) + 2)
C(x, y,z)

C(x, z)

=
∑
z

[
1 +

2

1 + CZ(z)

]
= 2nZ + 2

∑
z

1

1 + e−(w0+
∑

i wizi)

Thus, if we can compute the backdoor query for C, then we can compute the given EXPLR problem,
completing the reduction.

9



Corollary 1. For any causal effect px(y) and causal diagram G such that the query is identifiable
through a backdoor adjustment, and the observational distribution p(V ) given as a decomposable
and smooth circuit C(V ) ≡ p(V ), computing px(y) is #P-hard, even if the circuit is structured
decomposable and deterministic.

Proof. By the identifiability condition, we have that px(y) =
∑

z p(y|x, z)p(z) =∑
z C(z)C(y|x, z), which is the backdoor query. Hardness of computing the causal effect then

follows from hardness of backdoor queries for the probabilistic circuit.

B.2 Proof of Proposition 1

Proposition 1 (Tractable Conditioning). Given a structured decomposable (respecting vtree v),
smooth and strongly deterministic circuit C, then if W ∈ Q(v), COND(C;W ) can be computed in
O(|C|) time as a structured decomposable (respecting v), smooth and deterministic circuit.

We begin with a more precise definition of strong determinism, which generalizes the definition of
Kisa et al. [12] to general probabilistic circuits (rather than just PSDDs). In order to define this,
we first note that every sum/leaf node in a structured decomposable and smooth circuit will have a
"corresponding" vtree node which has the same scope.

Lemma 1. Let C be a structured decomposable (respecting vtree v) and smooth circuit which
contains at least one product node. Then for every sum or leaf node N in the circuit, there exists a
vtree node m in v such that ϕ(N) = ϕ(m).

Proof. For every sum/leaf node which has a product node parent, this follows by the definition of
structured decomposability. If the root is a sum node, then by smoothness we can note that all
descendants of the root "before reaching a product node" must have the same scope, and so the root
itself must have the same scope as any reached product nodes (by assumption, there exists at least
one product node in the circuit). Finally, for every sum/leaf node which has a sum node parent, then
the result follows by iteratively considering its parent, until we reach a sum node with a product node
parent, or the root.

Definition 5 (Strong Determinism). A structured decomposable and smooth circuit (w.r.t. vtree v) is
strongly deterministic if for every sum node T , and for every instantiation wL of the scope of the left
child of the corresponding vtree node, at most one of the children Ni of T evaluates to a non-zero
value Ni(wL) > 0.

Intuitively, strong determinism implies that each child of a sum node T has disjoint support over
WL ⊂ ϕ(T ). In the case of PSDDs, this is achieved by assigning to each child mutually exclusive
logical formulae over WL (which are themselves represented by PSDDs). Meanwhile, in the case
of structured decomposable and deterministic XPCs [7], this is achieved by assigning to each child
distinct logical conjunctions over the variables in WL.

Now, recall the definition of the tractable conditioning sets Q(v):

Definition 4 (Tractable Conditioning Sets). Given a vtree v, let Mv be the sequence of vtree nodes
obtained by starting at the root and iteratively picking the right child, and define Mv(i) to be the
subsequence of Mv consisting of the first i elements. Then we define Q(v) = {

⋃
m∈Mv(i)

ϕ(mL)|i =
1, ..., |Mv|} to be the tractable conditioning sets for v.

Intuitively, the reason for this definition is that if W =
⋃

m∈Mv(i)
ϕ(mL) ∈ Q(v), then for any

instantiation w of W , strong determinism ensures that for any sum node corresponding to a vtree
node in Mv(i) only one child is "active". This allows us to interpret such sum nodes as conditioning
on W . In fact, we can extend this to all sum/leaf nodes, which either also have only one active
child under w, or else have scope entirely disjoint from W and thus are essentially not affected by
conditioning on W .

Lemma 2. Let C be a structured decomposable PC respecting v, and suppose W is an element of
Q(v). Let N be any sum/leaf node in C, with corresponding vtree node m. Then it holds that either
ϕ(mL) ⊆ W (or ϕ(m) ⊆ W if m is a leaf in the vtree), or else ϕ(N) ∩W = ∅.

We define NW to be the set of all sum/leaf units satisfying the former condition, and N¬W the latter.

10



Proof. Since W ∈ Q(v), it is a union of the scopes of the left children of Mv(i) for some i. Define
Mv,L(i) := {mL : m ∈ Mv(i)} to be the set of all such left children. Also, define mv,R(i) to
be the right child of the last (ith) node in the sequence Mv(i), which has scope ϕ(mv,R(i)) =
V \

⋃
m∈Mv(i)

ϕ(mL) = V \W .

Now, every node m in the vtree is either in Mv(i), a descendant of some node in Mv,L(i), or a
descendant of mv,R(i). In the first case, ϕ(mL) ⊆

⋃
m∈Mv(i)

ϕ(mL) = W follows by definition.
In the second case, note that ϕ(m) ⊆ W as it is a descendant of some left child of Mv(i), so
ϕ(mL) ⊂ ϕ(m) ⊆ W follows (or, if m is a leaf in v, ϕ(m) ⊆ W holds). Finally, in the third case,
m is a descendant of mv,R(i), so ϕ(m) ⊆ V \W which implies ϕ(m) ∩W = ∅. The lemma then
follows by the fact that every sum/leaf node has a corresponding vtree node with the same scope.

We use this characterization to define an operation on the input circuit C, which we will show
faithfully represents the conditioning operation.
Definition 6 (Conditional Circuit). Let C be a structured decomposable (respecting vtree v) and
smooth PC, and let W ∈ Q(v). We define the conditional circuit Ccond(W ) of C to a copy of C, with
the following changes:

• For every sum node T ∈ NW , set θ′i := 1 for all weights θ′i of the new sum node T ′.

• For every leaf node L ∈ NW , set L′(ϕ(L)) ≡ 1ϕ(L)∈supp(L), where supp(L) = {l : L(l) >
0}

• For every sum node T ∈ N¬W , set θ′i :=
θiNi(∅)∑
j θjNj(∅) for all weights θ′i of the new sum node

T ′ (i.e. normalize the weights).

• For every leaf node L ∈ N¬W , set L′(ϕ(L)) ≡ L(ϕ(L))∑
ϕ(L) L(ϕ(L)) (i.e. normalize the leaf

nodes).

We now prove the proposition by showing that Ccond(W ) is indeed a circuit satisfying the required
conditions.

Proof. (of Proposition) Firstly, it is clear that we can compute the conditional circuit for C in
O(|C|) time, using a single forward pass through the circuit starting at the leaves (and keeping track
of the value of N(∅) at each node N ). Further, Ccond(W ) is structured decomposable (respecting the
same vtree) and smooth as the operations do not change the scope of any of the nodes, and is further
strongly deterministic as the support of the leaf nodes do not change in the operation.

It remains to show that Ccond(W ) faithfully represents the conditional, i.e. Ccond(W )(V ) ≡ C(V )
C(W ) .

Let v be an instantiation of V , and w the part of v corresponding to W . We prove this by
induction; namely, by showing that N ′(ϕ(N)) = N(ϕ(N))

N(w∩ϕ(N)) holds for all nodes N in C (and their
corresponding node N ′ in Ccond(W )).

For the base case, we consider leaf nodes. For any leaf node L ∈ NW (such that ϕ(L) ⊆ W ), we
have that L(ϕ(L))

L(w∩ϕ(L)) = L(w∩ϕ(L))
L(w∩ϕ(L)) = 1 = L′(ϕ(L)), as required. On the other hand, if L ∈ N¬W

(such that ϕ(L) ∩W = ∅), then L(ϕ(L))
L(w∩ϕ(L)) =

L(ϕ(L))
L(∅) = L(ϕ(L))∑

ϕ(L) L(ϕ(L)) = L′(ϕ(L)).

Now, consider sum nodes T . For any sum node T ∈ NW , we know that ϕ(mL) ⊆ W and thus,
by strong determinism, only one child Ni has a non-zero value under the instantiation w. Let θi
be the corresponding weight for this child in C. Then we have that T (ϕ(T ))

T (w∩ϕ(T )) =
θiNi(ϕ(Ni))

θiNi(w∩ϕ(Ni))
=

N ′
i(ϕ(N

′
i)) = θ′iT

′(ϕ(T ′)) = T ′(ϕ(T ′)). Here, the second equality follows by the inductive
hypothesis on N ′

i , while the third inequality follows as we have shown that the conditional circuit
retains strong determinism. Now, for sum nodes T ∈ N¬W , such that ϕ(T ) ∩ W = ∅, we have

T (ϕ(T ))
T (w∩ϕ(T )) =

∑
i θiNi(ϕ(Ni))∑

j θjNj(w∩ϕ(Nj))
=

∑
i θiNi(ϕ(Ni))∑

j θjNj(∅) =
∑

i θ
′
i
Ni(ϕ(Ni))

Ni(∅) =
∑

i θ
′
i

Ni(ϕ(Ni))
Ni(w∩ϕ(Ni))

=∑
i θ

′
iN

′
i(w ∩ ϕ(N ′

i)) = T ′(ϕ(T ′)).

Finally, consider product nodes P , which are not directly changed in the conditional circuit. If
N ′

i are the children of the new product node P ′, we have that P ′(ϕ(P )) =
∏

i N
′
i(ϕ(Ni)) =

11



∏
i

Ni(ϕ(Ni))
Ni(w∩ϕ(Ni))

=
∏

i Ni(ϕ(Ni))∏
i Ni(w∩ϕ(Ni))

by the inductive hypothesis. The numerator
∏

i Ni(ϕ(Ni)) =

P (ϕ(P )) by definition, while the denominator
∏

i Ni(w ∩ ϕ(Ni)) =
∏

i

∑
ϕ(Ni)\w Ni(ϕ(Ni)) =∑⋃

i ϕ(Ni)\w
∏

i Ni(ϕ(Ni)) =
∑

ϕ(P )\w P (ϕ(P )) = P (w ∩ ϕ(P )), where, crucially, we can
interchange the sum and product because ϕ(Ni) ∩ ϕ(Nj) = ∅ for any i ̸= j by decomposability.
This gives P ′(ϕ(P )) = P (ϕ(P ))

P (w∩ϕ(P )) , as required.

Thus, we have shown that N ′(ϕ(N)) = N(ϕ(N))
N(w∩ϕ(N)) for all nodes, and in particular, for the root, we

have that Ccond(W )(V ) ≡ C(v)
C(w) . This concludes the proof.

B.3 Proof of Proposition 2

Proposition 2 (Tractable Marginals). Given a structured decomposable (respecting vtree v) and
smooth circuit C, then MARG(C;W ) can be computed in O(|C|) time as a structured decomposable
(respecting vtree v) circuit.

Proof. The tractability of the marginalization operation essentially follows from the procedure for
marginal inference in decomposable and smooth circuits; namely, to sum out W by replacing each
leaf L(ϕ(L)) with L′(ϕ(L)\W ) :=

∑
ϕ(L)∩W L(ϕ(L)). However, this does not preserve structured

decomposability with the same vtree (as the scopes of the leaf nodes and thus product nodes will
change). To resolve this, we use a trick: we define L′ to instead be a function over ϕ(L), whose value
dues not depend on the variables ϕ(L) ∩W . This ensures that the scopes of all nodes remains the
same, such that the output circuit is structured decomposable with respect to the same vtree.

B.4 Proof of Theorem 2

Theorem 2 (Tractable Backdoor and Frontdoor Adjustment). Suppose that we have a circuit C
representing p(V ) that is structured decomposable (respecting vtree v) and strongly deterministic
such that X ∪Z ∈ Q(v). Then the backdoor formula can be computed exactly in O(|C|2), and if
additionally Z ∈ Q(v), the frontdoor formula can be computed exactly in O(|C|3) time.

Proof. In Figure 2, we see that both the backdoor and frontdoor formulae consist of conditioning
operations, followed by compositions of marginalization and product operations. Given that X∪Z ∈
Q(Z), then by Proposition 1 we can compute COND(C;X∪Z) in O(|C|) time, outputting a structured
decomposable circuit that is of O(|C|) size. A similar argument applies for the COND(C;X ∪Z) and
COND(C;X) operations, with the output of both operations respecting the same vtree.

The marginalization operations output a circuit of O(|C|) size respecting the same vtree as the input,
so we can discount them in our analysis. Finally, we note that the inputs to every product operation
are structured decomposable circuits with the same vtree, so the product operation is tractable in
O(|C1||C2|). The backdoor pipeline contains just a single product, while the frontdoor pipeline
consists of two products, leading to O(|C|2) and O(|C|3) complexity respectively.

The algorithm for computing the backdoor/frontdoor formulae follows simply by implementing the
COND, MARG and PROD operations (c.f. [21] for PROD), and composing the operations as shown in the
pipeline.

12


	Introduction
	Preliminaries
	Tractability of Backdoor Adjustment
	Symbolic Causal Inference via Operations
	Conclusion
	Empirical Validation
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 2


