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Abstract

Robust Markov decision processes (r-MDPs) extend MDPs
by explicitly modelling epistemic uncertainty about transition
dynamics. Learning --MDPs from interactions with an un-
known environment enables the synthesis of robust policies
with provable (PAC) guarantees on performance, but this can
require a large number of sample interactions. We propose
novel methods for solving and learning r-MDPs based on fac-
tored state-space representations that leverage the indepen-
dence between model uncertainty across system components.
Although policy synthesis for factored r-MDPs leads to hard,
non-convex optimisation problems, we show how to reformu-
late these into tractable linear programs. Building on these,
we also propose methods to learn factored model representa-
tions directly. Our experimental results show that exploiting
factored structure can yield dimensional gains in sample effi-
ciency, producing more effective robust policies with tighter
performance guarantees than state-of-the-art methods.

Code — https://zenodo.org/records/17580296
Extended version — https://arxiv.org/abs/2508.00707

1 Introduction

Markov decision processes (MDPs) are the standard mod-
elling framework for sequential decision-making under un-
certainty. However, real-world dynamics are often complex
and not fully known. In safety-critical settings, it is there-
fore essential to reason about epistemic uncertainty, due to
incomplete knowledge of the environment, and to construct
robust policies that provide provable performance guaran-
tees on the unknown environment they operate in.

Robust Markov decision processes (r-MDPs) (Wiese-
mann, Kuhn, and Rustem 2013) extend MDPs by not re-
quiring every transition probability to be known precisely
but only restricting them to lie in a given uncertainty set.
These uncertainty sets are typically derived from data, e.g.,
observed interactions with the unknown system, as in re-
inforcement learning (RL). Learning for --MDPs, however,
does not optimise for expected performance alone; rather,
it enables the synthesis of policies that are robust with re-
spect to the current epistemic uncertainty in the transition
dynamics and provides provable Probably Approximately
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Correct (PAC) guarantees on performance with high con-
fidence (Strehl and Littman 2005; Suilen et al. 2022).

Unlike robust RL approaches, that often focus on heuristic
or empirical training for difficult scenarios (Morimoto and
Atkeson 2002; Pinto et al. 2017), --MDP learning operates
on explicit uncertainty sets learned from data and yields for-
mal anytime guarantees on worst-case performance under
the true but unknown transition model.

A practical limitation of r-MDP learning and policy syn-
thesis, however, is that, to achieve high-confidence per-
formance guarantees, the overall confidence level must be
distributed across all transition distributions (Strehl and
Littman 2005) or individual transition probabilities (Suilen
et al. 2022) being learnt. In large-scale environments, this
enforces stringent confidence requirements, requiring a high
number of samples to construct tight uncertainty sets that
yield effective robust policies with meaningful guarantees.

Many real-world domains come with structural knowl-
edge that permits distinct features of the state space to be
modelled independently, giving rise to the model of factored
MDPs (f-MDPs) (Koller and Parr 1999; Boutilier, Dean, and
Hanks 1999). RL algorithms have been extended to exploit
this factored structure (Kearns and Koller 1999; Guestrin,
Patrascu, and Schuurmans 2002; Strehl 2007), often yielding
exponential improvements in sample efficiency over learn-
ing in the flat (non-factored) representation. While these
methods come with PAC guarantees, ensuring that a near-
optimal policy is learned with high probability in time poly-
nomial in the factored representation, existing work focuses
on expected performance and convergence rather than pro-
viding provable guarantees on worst-case performance.

In this work, we introduce a robust factored MDP frame-
work, which leverages structural independence to construct
uncertainty sets for each state factor rather than for a flat
model. We show that robust policy synthesis in this set-
ting leads to intractable non-convex optimisation problems,
but that for standard uncertainty classes, such as confidence
intervals, L; balls and general polytopes, these problems
admit exact convex reformulations. To address the compu-
tational challenges of the resulting, potentially exponential
constraint sets, we leverage convex relaxations that preserve
tight performance guarantees while enabling efficient solu-
tion. We show that our method synthesises more effective
robust policies with high-confidence performance guaran-



tees that are substantially tighter than those of prior factored
MDP learning approaches. Furthermore, we show that ex-
ploiting the factored structure can improve the sample ef-
ficiency of robust policy learning by orders of magnitude
compared to state-of-the-art methods in flat representations.

2 Problem Formulation

The set of all probability distributions over a finite set Y is
denoted by A(Y) = {p: Y — [0,1] | X2, oy pu(y) = 1}
For convenience, we also represent distributions as vectors
in the probability simplex, (p1,... 7p‘y|) € A}y, where
p; = p(y;) under a fixed ordering of the elements of Y.

2.1 MDPs and Factored MDPs

A Markov decision process (or MDP) is a tuple M =
(S,A,T,r), where S and A are finite sets of states and ac-
tions, T: S x A — A(S) is a transition probability func-
tion, and r: S x A — R is a reward function. A policy is a
mapping 7: (S X A)* x S — A(A) that resolves the non-
determinism by selecting a distribution over actions based
on the current state and past interactions. The interaction be-
tween a policy and an MDP induces infinite sequences (or
paths) of the form s9a%stal. .., where at each step, the next
action is drawn from the dlstrlbution assigned by the policy,
given the current history prefix, and the next state is drawn
from the transition distribution T'( - |s, a).

A factored MDP (or f~-MDP) is an MDP in which states
are represented as vectors of n components. Each factor ¢
(also referred to as a state variable or state marginal) takes
values from a finite domain D;. Hence, states are tuples s =
(81,...,8n), with s; € D;. To capture the (in-)dependence
between factors, we adopt the framework of Strehl (2007).
Given an arbitrary set Z of dependency identifiers, a function
D;: S x A — Tis adependency function for factor i. The
transition function is then defined as

(8'|s,a) = HP (st Di(s,a)), (D

where s, denotes the i-th component of the next state s” and
each P(-|D;(s,a)) € A(D;) specifies the marginal proba-
bility distribution of the respective factor.

Example 1. A classic example of a factored MDP is
the System Administrator domain (Guestrin, Patrascu, and
Schuurmans 2002), where an administrator controls a total
of n machines or factors, each of which can be either oper-
ational or in a failure state. Each machine is connected to a
subset of the others, and its probability of failing at the next
step depends on whether its connected neighbours are oper-
ational, but is independent of all other machines. The depen-
dency identifiers for machine ¢ thus capture the current state
of the machine itself and those of its connected neighbours:
if one or more of these neighbours are in a failure state, the
marginal probability that machine ¢ fails increases.

2.2 Robust Factored MDPs

Robust factored MDPs (or rf-MDPs) (Delgado et al. 2009;
Liu, Wiesemann, and Yue 2024) extend factored MDPs

to incorporate epistemic uncertainty about transition dy-
namics. They generalise fixed marginal transition distribu-
tions P(-|D;(s,a)) € A(D;) to marginal uncertainty sets
P(D;(s,a)) € A(D;). The overall uncertainty set of possi-
ble transition distributions at (s, ) is then defined as:

:®mmM» )

where ® denotes the outer product (or Kronecker product)
of distributions, extended to sets. Specifically, for sets P C
A(D;) and Q C A(D;), the product is defined as

PRO={PRQ|PcP,Qca}, 3
where for distributions P = (p1,...,pm) and Q =
(q1,---,qr), their outer product is given by

(P®Q)ij=pi-q, 1<i<m,1<j<k &
Hence, 7 (s, a) comprises all product distributions over the
factor-wise uncertainty sets, providing a structured represen-
tation of the uncertainty over the full state space S.

As in standard robust MDPs (Nilim and Ghaoui 2005;
Iyengar 2005; Wiesemann, Kuhn, and Rustem 2013), rf-
MDPs introduce an additional step in the evolution of the
process: at a given state s, before the next state is determined
following the selection of action a, an environment policy T
selects, for each factor ¢, a marginal distribution from the
corresponding uncertainty set P(D;(s,a)). These combine
into a product distribution, as per Eq. (1), which lies in the
overall uncertainty set 7 (s,a) and defines the probability
distribution from which the successor state is drawn.

Objectives. An objective is a mapping R that assigns a re-
turn to each infinite path p = s%a%s'a'. .. in an rf-MDP M.
Given a pair of agent and environment policies 7 and 7, we

denote by ET" the induced expectation over paths starting

in state s (Wolff Topcu, and Murray 2012). The value of s
under 7 and 7 with respect to objective R is defined as

Vi (s) = B[R] )

Unless stated otherwise, our results are agnostic to the spe-
cific choice of objective. The most common objective is the
discounted cumulative reward:

(p) =D _A'r(s',a"), 6)
t=0

for some discount factor 0 < v < 1. However, our re-
sults readily extend to other objectives, such as undiscounted
rewards (Schwartz 1993; Puterman 1994; Meggendorfer,
Weininger, and Wienhoft 2025a) or reachability goals fo-
cussing on the probability of eventually reaching a target set
of states, possibly whilst avoiding certain undesirable states.

Robust Values and Policies  The optimal robust policy
in an rf-MDP M is the policy that achieves, in every state,
the optimal robust value V£, (s), which is the best possible

value under the worst-case environment policy. Formally:
Vi (s) = supme "(s), and 7

7" = argsup inf VM (s). (8)



In this paper, we implicitly assume that the agent aims to
maximise the objective while the environment adversari-
ally seeks to minimise it. All results remain valid under the
dual case with reversed roles (Nilim and Ghaoui 2005). It
is straightforward to verify that the policy 7* guarantees at
least the value VIEI(S) on any concrete f-MDP obtained by
fixing specific distributions from the uncertainty sets.

Next, in Section 3, we present novel methods for ef-
ficiently and accurately solving rf-MDPs, i.e., computing
optimal robust values and policies, assuming polytopic
marginal uncertainty sets, such as the commonly used L1,
L balls and general L,, balls. Then, in Section 4, we lever-
age these methods to efficiently learn robust policies with
provable performance guarantees in unknown f-MDPs.

3 Solving Robust Factored MDPs

As for standard robust MDPs, the optimal value function
VA’Z and a corresponding robust policy for an rf-MDP can be
computed with robust value iteration (Iyengar 2005; Nilim
and Ghaoui 2005). Assuming rectangular uncertainty sets,
meaning that each state—action pair has an independent un-
certainty set over which the environment can act adversari-
ally, the global problem decouples into a local optimisation
at every state. For any state s, the agent selects an action
a € A that maximises the worst-case expected return over
all transition kernels in 7 (s, a), yielding the robust Bellman
equation, where V* (s) equals:

i , T(s'|s,a) VE(s)]. (9
mE B 00+ 2 TE V(). ©)

Inner Optimisation

The inner optimisation captures the environment’s adversar-
ial choice of a transition kernel within 7 (s, a). For standard
(non-factored) robust MDPs, this is tractable when 7 (s, a)
has a favourable geometry: e.g., an Ly or L, ball, which is
solvable via bisection in time linear-logarithmic in the sup-
port size (Strehl and Littman 2005), or a polytope described
by a number of vertices or half-spaces that can be solved via
linear programming (Nilim and Ghaoui 2005).

rf-MDPs, however, induce uncertainty sets 7 (s, a) as the
multilinear product of marginal sets (see Equation (2)). Even
if every marginal P(D;(s, a)) is convex, convexity is in gen-
eral not preserved under the product; consequently, 7 (s, a)
can in general be non-convex (see Figure 1), rendering the
inner optimisation hard and often intractable.

We show that when the marginals are polytopes, the asso-
ciated non-linear problem admits an exact linear reformula-
tion whose constraints follow directly from the polytopic de-
scriptions of the marginals. However, the number of result-
ing constraints can grow rapidly for many common classes
of uncertainty sets. To retain tractability, we construct tight
linear overapproximations of 7 (s, a), yielding robust Bell-
man updates that allow for an efficient and accurate solution.

3.1 Exact Products of Polytopic Uncertainty Sets

We consider polytopic marginal uncertainty sets P defined
as the convex hull of finitely many extreme distributions,
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(b) Product States
and Uncertainty Set

(a) Marginal States
and Uncertainty Sets

Figure 1: Part (a) shows two factors of an rf-MDP, with con-
vex marginal uncertainty sets P and Q, which are line seg-
ments in the two-dimensional probability simplex. The re-
sulting product uncertainty set P ® Q in (b) is non-convex.

ie, P = conv{PW, ... P} = {37 \NPO|N >
0, >oi%, A; = 1}. We first prove that the resulting inner op-
timisation problem in (9), taken over the non-convex prod-
uct uncertainty set 7 (s, a), admits an exact linear reformu-
lation. In contrast to prior approaches for solving robust fac-
tored MDPs (Delgado, Sanner, and de Barros 2011), this re-
sult allows us to avoid the invocation of an expensive and po-
tentially approximate non-linear solver. It builds on two key
observations: first, by the bilinearity of the Kronecker prod-
uct ® (Horn and Johnson 1991), the convex hull of 7 (s, a)
is a polytope whose extreme points are precisely the pair-
wise products of the extreme distributions of the marginal
polytopes (Horst and Tuy 1996), and second, the inner op-
timisation is linear in the transition probabilities and thus
attains its optimum at a vertex of the convex hull.

Theorem 1. Let P = conv{P(l)7 .. ,P(m)} C Ay and
Q = conv{QW,...,Q®} C Ay be polytopic marginal
uncertainty sets. Then the corresponding non-linear inner
optimisation problem in Equation (9) attains its optimum at
one of the products of the marginal extreme distributions:

{P(i)®Q(j)‘1§i§m, 1§j§k}-

The full proofs for all presented results are provided in
the extended version. Theorem 1 inductively extends to any
number of marginals and offers a direct approach to solving
the inner optimisation problem exactly by enumerating the
product vertices induced by the marginal uncertainty sets of
each factor. However, the number of such vertices can grow
rapidly, rendering explicit enumeration computationally in-
feasible, even for standard classes of uncertainty sets arising
from statistical estimation (Suilen et al. 2024). For example,
when the marginal sets are defined as Ly or L., balls cen-
tred around a nominal distribution, the number of vertices
per marginal can grow exponentially in the support size. A
detailed construction can be found in the extended version.

3.2 Efficient Solutions through Relaxations

To mitigate the potential intractability of the exact inner op-
timisation, we use relaxations, i.e., overapproximations of



the uncertainty set 7 (s, a) that trade exactness for tractabil-
ity. Since the relaxed set is a superset of the true one, the
value returned by the relaxed Bellman operator is a lower
bound on the exact robust value, guaranteeing that the result-
ing policy never underperforms against any transition kernel
in the original uncertainty set. This sound, worst-case guar-
antee distinguishes our approach from earlier methods for
rf-MDPs, which rely on approximate value-function fitting
over a fixed basis (Delgado et al. 2009; Delgado, Sanner,
and de Barros 2011; Liu, Wiesemann, and Yue 2024). Such
schemes provide no formal bound on the policy’s perfor-
mance and therefore cannot in general provide safety guar-
antees as required in robust learning.

We aim for tight relaxations, admitting as few spurious
distributions (i.e., distributions not in the true set) as pos-
sible. An overly loose relaxation can lead to a pessimistic
bound, and result in an unnecessarily conservative policy.

We first consider marginal uncertainty sets that take the
form of boxes (or hyper-rectangles) intersected with the
probability simplex, which are generalisations of L, balls.

These arise naturally when individual transition probabil-
ities are estimated from observed data using confidence in-
tervals (Strehl and Littman 2005; Suilen et al. 2022). A box
is defined by lower and upper bounds p,p € [0, 1] on each
component of a probability distribution, with p, < p; forall
1 <4 < N, yielding the uncertainty set

Po={(,....on) € Ax|p, < <B )} (10)

Robust MDPs defined in this way are called interval or
bounded-parameter MDPs (Givan, Leach, and Dean 2000).

Interval-Arithmetic Relaxation. A natural relaxation for
products of distributions in interval MDPs is to use interval
arithmetic. In fact, this approach is taken in the modelling
language of the PRISM tool (Kwiatkowska, Norman, and
Parker 2011), which supports compositional modelling of
interval MDPs. Given two box-type uncertainty sets Pp C
Ay and Qp C Ay with respective bounds p,p € [0, 1]
and ¢, € [0,1]", the corresponding interval-arithmetic re-
laxation R;, € Apy.n is defined as

Rio={H € Auw |p,a, <hiy <Bi7, . (D)

While the interval-arithmetic relaxation is tight with respect
to each component individually, it fails to capture depen-
dencies across components and can therefore introduce a
large amount of spurious distributions (Hashemi, Hermanns,
and Turrini 2016; Mathiesen, Haesaert, and Laurenti 2025).
In particular, it admits spurious extreme points, potentially
leading to overly conservative solutions in the inner optimi-
sation problem, as we demonstrate in the following example.

Example 2. Consider the two box-type uncertainty sets:
P ={(p,1 —p) € Ay |p€[0.2,0.6]},and
O ={(¢;1—¢q) € Ay | ¢€[0.1,0.3]}.

Their interval-arithmetic product relaxation R, is:

[0.02,0.18] x [0.14, 0.54] x [0.04, 0.24] x [0.28, 0.72] N Ay.
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Figure 2: Projections of the interval-arithmetic (blue) and
McCormick (pink) relaxations for the product of box-type
uncertainty sets (coloured curve). The McCormick relax-
ation is tighter and has fewer spurious extreme distributions.

Now consider H = (0.18, 0.14, 0.24, 0.44) € R;,. We
can verify that H is a vertex of R;,, as three bounds are
tight. Since h; = 0.18 = pgq, the box constraints imply that
p = 0.6 and ¢ = 0.3. But then it must be that:

(p(1 = q), (1 =p)g, (1 =p)(1—q)) = (042, 0.12, 0.28),

so the only valid product distribution with pg = 0.18 is
(0.18,0.42,0.12,0.28) # H. Thus H is not contained in
the actual product uncertainty set Pp ® Op.

McCormick Relaxation. In order to tackle the issue of
spurious distributions in interval-arithmetic relaxations, and
the conservative solutions to the inner optimisation problem
in (9) that may result, we draw on results from non-linear
global optimisation and employ McCormick envelopes (Mc-
Cormick 1976). These provide tight convex relaxations of
multilinear products through a polynomial number of linear
constraints, yielding a tractable linear program that closely
approximates the original non-linear formulation.

For two variables p € [p,p] and g € [g, g, the McCormick
envelopes are defined by the following linear inequalities:

h>pq+qp—rpg, (12a)
h >pq+qp—Ppg, (12b)
h<pq+qp—Dy, (12¢)
h<pq+qp—pq (124d)

Each inequality arises from combining the bounds on p and
q. For instance, since p > P and g > q, we have

(P—plg—q) =0
Expanding and substituting h = pq gives

pq—pq—qp+pq=>0 = h>pqg+qp—pg,

which is precisely Equation (12a). Despite their simplicity,
these inequalities suffice to exactly characterise the convex
hull of a single bilinear product h = pg (McCormick 1976).

When applied to the inner optimisation in Equation (9)
over a product uncertainty set as per Equation (2), each bilin-
ear term p;q; is replaced by an auxiliary variable h;;, which



is constrained by the four McCormick inequalities in (12).
We then impose the global simplex constraint > irj hij =1,
ensuring that the auxiliaries {%;;}; ; define a valid proba-
bility distribution. This reformulation linearises the original
non-linear inner optimisation. Figure 2 illustrates how the
McCormick relaxation excludes many of the spurious ex-
treme points admitted by the interval-arithmetic relaxation,
thus resulting in less conservative solutions and more effec-
tive (whilst still robust) policies. Furthermore, since each h;;
contributes to exactly four McCormick constraints, the to-
tal number of constraints grows only polynomially with the
marginal supports, yielding a tractable inner linear program.
Full details of this construction and its extension to products
of more than two marginal uncertainty sets (obtained by re-
cursive applications) are provided in the extended version.

Relaxations for L, Uncertainty Sets. The constructions
above enable the exact composition of polytopic uncertainty
sets and provide tight-yet-tractable relaxations for box-type
uncertainty sets. We now also consider uncertainty sets that
are L,, norm balls centred at a nominal distribution Pe Ay,
which are typically estimated from observed data as:

Py(P,e) ={P €Ay |||P - P, <e}).

These sets are generally not polytopic, for 1 < p < co. We
hence extend a result from Strehl (2007), originally formu-
lated for the composition of L; balls, to arbitrary L, norms:

Theorem 2. Let P,(P, 1) and P,(Q, e2) be two L,, uncer-
tainty sets for some 1 < p < oco. Then:

Pp(P,e1) @ Pp(Q,e2) C Pp(P ®Q,e1 + £2).

This result offers an approach to solving non-polytopic rf-
MDPs, complementing the constructions presented in Sec-
tion 3.2. When applied to L; uncertainty sets, it directly
extends the PAC analysis of Strehl (2007) to robust policy
synthesis. In Section 5, we compare the various relaxations,
showing that our constructions yield substantially tighter un-
certainty sets, enable more sample-efficient learning, and de-
liver robust policies with stronger performance guarantees.

4 Robust Policy Learning in Factored MDPs

We now introduce a novel learning approach that integrates
factored model estimation with accurate and tractable ro-
bust planning, generating policies that are provably robust
for unknown f-MDPs. Based on agent interactions with the
environment, we derive marginal uncertainty sets, such as
confidence intervals or L; balls, which induce a polytopic
rf-MDP. Leveraging the solution methods in the previous
section, we exploit this factored structure to achieve dimen-
sional gains in sample efficiency compared to existing robust
learning methods in flat models, as we demonstrate in our
experimental evaluation. Crucially, our approach provides a
finite-sample, anytime PAC guarantee: after any number of
interactions, we can bound the worst-case performance in
the unknown MDP with high confidence.

We consider a factored MDP M with known state space
but unknown (marginal) transition distributions. For clarity,

we assume that the reward function is known, but all re-
sults extend to the case of unknown reward functions (Strehl
and Littman 2005). Our algorithm has access to agent-
environment interactions in the form of a dataset of tran-
sition samples C = {(ss, a¢, $})}+, Where a; is the action
taken in state s; under some exploration policy and s} is the
observed successor state. We remain agnostic to the precise
sampling mechanism and assume that the sample set C is
given. In Section 5, we describe the specific sampling pro-
cedure used in our evaluation.

From the definition of a factored MDP, we first identify
the relevant transition components that must be estimated.
For a state—action pair (s, a), the relevant dependencies are

Deo={j€T|3i.j=Di(s,a)}.
Aggregating over all state—action pairs yields the set of rel-

evant transition components: @ = U uyesxa Dsas

so that |Q| counts the number of marginal transition dis-
tributions to be estimated. The total number of unknown
transition probabilities is the sum of the supports of the
marginals: U = ZjEQ|supp(P(~|j))|. For a sample
dataset C = {(s¢, at, s}) }+, we define the realisation counts:

Z ]l(Di(s,a):j A 82:%‘),

(s,a,s")eC

and the component counts:

> > 1(Di(s,a) =),

(s,a,8")EC 1

n(j) =

for z; € D; and j € Z. Here, n(j) is the total number
of encountered transitions whose transition probability dis-
tribution involves a marginal with dependency identifier 7,
while n(z;, j) records how often such transitions lead to the
marginal state component ;. From this we can derive the
empirical estimates of the marginal distributions as

n(s}, D;(s,a)) .

n(Di(s, a))

While this empirical estimate becomes increasingly accurate
with more data, it provides no quantification of uncertainty.
We aim to synthesise a policy that, after any fixed number of
samples, comes with a guaranteed lower bound on its per-
formance in the unknown f-MDP. To achieve this, we inflate
each point estimate into a high-confidence uncertainty set
over the marginal distribution, thereby defining an rf-MDP.

P(s}|D;(s,a)) = (13)

4.1 Uncertainty Set Construction

We consider two established methods for constructing un-
certainty sets. The first builds exact binomial confidence
intervals for each transition probability, treating each out-
come s; under dependency j = D;(s,a) as a Bernoulli
trial (Suilen et al. 2022; Meggendorfer, Weininger, and
Wienhoft 2025b). Given x = n(s},j) “successes” in n =
n(7) trials and an error probability § € (0, 1), the true tran-
sition probability P(s] | j) lies in the interval:

CP(s},j) = [B(%;x, n—z—i—l), B(l—g;x—l—l, n—:c)]



with probability at least 1 — &, where B(«; u, v) denotes the
a-quantile of the Beta(u, v) distribution (Clopper and Pear-
son 1934). Applying these bounds independently to each
transition component defines the box-type uncertainty sets

P(j) = { P' € A(D) | P'(s) € CP(s], ) Vst },

to which our rf-MDP solution techniques apply directly.
Throughout, we assume n(j) > 0. When n(j) = 0, we
set the uncertainty sets as the entire probability simplex.

The second approach centres on an L;-norm ball around
the empirical marginal distribution P(-| 7). For each rele-
vant dependency identifier j = D;(s,a) € Q, we set

P() = { P e AD) | IP'() = P(- |7l <<},

where ¢ follows from Weissman et al. (2003) as

\/ 2[In(2% — 2) — In(6)]
E =

n(j) ’
This ensures that the true marginal lies in P(j) with proba-
bility at least 1 — §. This underpins the native PAC-learning
results for both factored and standard MDPs (Strehl and
Littman 2005; Strehl 2007). Moreover, it yields polytopic
uncertainty sets, as the intersection of an L; ball with the
probability simplex is a polytope, thus permitting exact com-
position via Theorem 1. However, L; balls do not integrate
naturally into the McCormick relaxation without further
overapproximating them as boxes. As we show in the ex-
tended version, overapproximating L balls by their smallest
enclosing box yields a looser uncertainty set than applying
the box-type construction directly. Consequently, the radius-
sum result of Theorem 2 is the natural choice when compos-
ing L, marginal sets with a large number of vertices.

a = |supp(P(- | 4))|-

4.2 Provably Robust Policy Synthesis

To obtain a provably robust policy with quantifiable perfor-
mance guarantees in the unknown f-MDP M, we construct
an rf-MDP M using the uncertainty sets described above.
For the guarantees to be meaningful, we must ensure that
the unknown MDP M is contained in M (denoted M € M)
with high, user-specified confidence. This means that every
marginal distribution P(-|j) for j € Q must lie within its
corresponding uncertainty set P(j).

Given a desired overall confidence probability 1 — 3, we
follow the standard approach of Strehl (2007) and distribute
the total error probability 5 € (0,1) across all learnt dis-
tributions/transitions. Under the L., scheme, this results in
d = /U, and under the L; scheme, in § = 5/|Q|. By the
union bound, this ensures that M € M with probability at
least 1 — (3, regardless of the number of observed samples.

When solving the learned rf-MDP M using a robust, i.e.,
either exact or relaxation-based method from Section 3, the
following performance guarantee for the resulting robust
policy on the true, unknown f-MDP M follows immediately:

Theorem 3. Let M be an f-MDP and M an rf-MDP such
that Pr[M € M| > 1 — (3 for some 8 > 0. Let ©* be the

policy obtained by solving M with a robust solution method,
and let VA’; (8) denote its corresponding robust value. Then,

Pr[V]C[*(S) > V(s > 1-8 (14)

In other words, with probability at least 1 — (3, the learned
robust policy * achieves a value in every state of the true f-
MDP that is no worse than its computed value in the learned
rf-MDP. This PAC-style guarantee based on the novel ro-
bust solution methods distinguishes our approach from prior
methods (Delgado, Sanner, and de Barros 2011; Liu, Wiese-
mann, and Yue 2024), which cannot guarantee a valid lower
bound, thus forfeiting such a performance guarantee.

5 Experiments

We integrated our methods into the PRISM solver for prob-
abilistic models (Kwiatkowska, Norman, and Parker 2011),
which offers a modular language for specifying factored
MDPs. We augment PRISM with our algorithms for solving
and learning robust factored MDPs and employ the Gurobi
optimiser with default parameters for all linear programs.

5.1 Evaluation: Solving rf-MDPs

We evaluate the three methods for solving rf-MDPs with
box-type uncertainty sets: vertex enumeration, interval-
arithmetic relaxations, and McCormick relaxations, across
a range of benchmark environments. These include classic
f-MDP domains such as the System Administrator domain
discussed in Example 1 (Guestrin, Patrascu, and Schuur-
mans 2002), as well as established r-MDP case studies with
inherent factored structure, including multi-agent scenarios
like the Aircraft Collision Avoidance domain (Kochenderfer
2015). Detailed descriptions of each domain are provided
in the extended version. For each domain, we obtain an rf-
MDP by perturbing a nominal transition kernel with an L
uncertainty radius of 0.025 (see the extended version for ad-
ditional levels of uncertainty), yielding box-type marginal
uncertainty sets for each factor.

Results. Table 1 summarises the outcomes. For each
method, we report: (i) the robust value of the optimal pol-
icy in the rf-MDP; (ii) the runtime to solve the rf-MDP; and
(iii) for relaxation-based methods, the relative gap to the ex-
act result obtained by vertex enumeration, quantifying the
additional conservatism introduced by over-approximating
the product uncertainty sets.

Notably, McCormick relaxations preserve the tightness of
vertex enumeration while remaining computationally effi-
cient. Interval-arithmetic relaxations, though generally fast,
yield looser bounds due to spurious extreme distributions.
Overall, McCormick relaxations strike the best balance be-
tween solution tightness and runtime. We present the com-
plete set of experiments, including analyses across varying
uncertainty radii in the extended version.

5.2 Evaluation: Robust Policy Learning in f-MDP
We next compare four methods for robust policy learning:
(i) standard r-MDP learning in the flat model with box-type
uncertainty sets; (ii) rf-MDP learning with L; uncertainty



Vertex Enumeration

Interval-Arithmetic McCormick

Domain |S| |T|
\ Robust Value Time [s] \ Robust Value Rel. Gap Time [s] \ Robust Value Rel. Gap Time [s]
Aircraft (1) 11153 1262099 0.73 2535.8 0.65 11% 6.1 0.73 0% 43.7
Drone (1) 262144 21694720 0.69 2125.8 0.63 10% 90.2 0.69 0% 190.7
Stock Trading (1) 12481 5362624 25.43 67.6 17.60 31% 16.0 25.43 0% 67.5
SysAdmin (1) 15873 9332587 50.70 66.7 46.66 8% 34.1 50.70 0% 64.1
Chain ({) 100 3136 331.34 778.1 451.28 36% 0.6 331.34 0% 7.6
Frozen Lake (]) 50625 1866556 216.01 1018.4 242.05 12% 67.7 216.01 0% 105.9
Herman (J) 2048 177148 20.64 11.0 23.82 15% 2.8 20.64 0% 8.1

Table 1: Results for solving rf-MDPs. Arrows (1/),) indicate optimisation directions. |\S| and |T'| denote the number of states
and transitions. The relative gap is |Vyg — Vg|/Vr, where Vi and Vg are the robust results from vertex enumeration and
respective relaxation. The complete set of experiments, with varying uncertainty radii, can be found in the extended version.
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Figure 3: Results for robust policy learning. The plots show objective value against processed fixed-length trajectories. Dashed
curves show the robust guarantee for the learned robust policy, solid curves show its actual performance on the true model. The
complete experimental results, including additional domains and total runtimes, are provided in the extended version.

sets solved using the radius-sum result from Theorem 2,
which is the direct extension of the PAC analysis of Strehl
(2007) to robust policy learning and represents the only
available baseline for rf-MDPs; (iii) & (iv) rf-MDP learn-
ing with box-type marginal uncertainty sets solved via either
interval-arithmetic or McCormick relaxation.

To build the transition dataset C, we iteratively sample
fixed-length trajectories that restart in the initial state. To
balance exploration and exploitation, we follow the opti-
mism in the face of uncertainty principle (Munos 2014), se-
lecting actions that are optimal under the most favourable
transition model within the current uncertainty sets. Note
that this choice of sampling procedure is arbitrary: the result-
ing robustness guarantees hold under any alternative sam-
pling strategy, such as random action selection.

Across all domains, we fix the overall confidence level
for the inclusion of the true, unknown MDP in the learned
r-MDP to 1 — 8 = 0.9999, (see Equation (14)). Each exper-
iment is repeated with 10 distinct random seeds, and we re-
port the average results along with standard deviation bands.

Results. Figure 3 presents robust policy learning results
across various domains. For each method, we plot the robust
value of the learned policy (dashed lines) and its nominal
performance on the true, hidden model (solid lines) against
the number of processed trajectories. While true-model per-
formance provides useful validation, our focus lies on the
robust values, i.e., the performance that can be guaranteed
with high confidence on the unknown environment.

The results demonstrate significant gains in sample ef-
ficiency by exploiting factored structures. Specifically, far

fewer fixed-length trajectory samples are required to achieve
equivalent robust performance guarantees compared to
state-of-the-art methods on flat models. Furthermore, rf-
MDP learning with box-type uncertainty sets, derived from
exact confidence intervals and solved via convex relaxations,
consistently outperforms approaches based on L; uncer-
tainty sets and the radius-sum method. McCormick relax-
ations need about half the number of samples of interval-
arithmetic relaxations for the same robust guarantees. This
advantage is particularly crucial in domains where data col-
lection is inherently limited, costly, or challenging.

Figure 3a (red line) shows the number of samples needed
to match the performance guarantee from flat learning on
the Aircraft domain after 108 trajectories. Factored learning
with L; uncertainty sets reduces this to 3 - 10°. Interval-
arithmetic relaxation further decreases it to 10%, and Mc-
Cormick relaxation is the most efficient, requiring only
6-10? trajectories. This gap becomes even more pronounced
in other domains. We provide the full set of experiments in-
cluding additional domains, total runtimes and detailed com-
parisons of sample efficiency in the extended version.

6 Conclusion

We have presented novel methods for solving robust fac-
tored MDPs, facilitating exact solutions and optimal robust
policies for polytopic uncertainty sets. Utilising global op-
timisation techniques, we developed relaxation-based ap-
proaches that balance accuracy and computational tractabil-
ity. Our experimental results show that these methods
markedly improve accuracy in solving rf-MDPs and enable
significantly more sample-efficient robust policy learning.
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