
Reachability Analysis of Deep Neural Networks with Provable Guarantees

Wenjie Ruan1, Xiaowei Huang2, Marta Kwiatkowska1

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Liverpool, UK

{wenjie.ruan; marta.kwiatkowska}@cs.ox.ac.uk; xiaowei.huang@liverpool.ac.uk

Abstract
Verifying correctness of deep neural networks
(DNNs) is challenging. We study a generic reacha-
bility problem for feed-forward DNNs which, for a
given set of inputs to the network and a Lipschitz-
continuous function over its outputs, computes the
lower and upper bound on the function values.
Because the network and the function are Lips-
chitz continuous, all values in the interval between
the lower and upper bound are reachable. We
show how to obtain the safety verification prob-
lem, the output range analysis problem and a ro-
bustness measure by instantiating the reachability
problem. We present a novel algorithm based on
adaptive nested optimisation to solve the reachabil-
ity problem. The technique has been implemented
and evaluated on a range of DNNs, demonstrat-
ing its efficiency, scalability and ability to handle a
broader class of networks than state-of-the-art ver-
ification approaches.

1 Introduction
Concerns have been raised about the suitability of deep neu-
ral networks (DNNs), or systems with DNN components, for
deployment in safety-critical applications, see e.g., [Amodei
et al., 2016; Sun et al., 2018]. To ease this concern and gain
users’ trust, DNNs need to be certified similarly to systems
such as airplanes and automobiles. In this paper, we propose
to study a generic reachability problem which, for a given
DNN, an input subspace and a function over the outputs of
the network, computes the upper and lower bounds over the
values of the function. The function is generic, with the only
requirement that it is Lipschitz continuous. We argue that this
problem is fundamental for certification of DNNs, as it can be
instantiated into several key correctness problems, including
adversarial example generation [Szegedy et al., 2013; Good-
fellow et al., 2014], safety verification [Huang et al., 2017;
Katz et al., 2017; Ruan et al., 2018b], output range analy-
sis [Lomuscio and Maganti, 2017; Dutta et al., 2017], and
robustness comparison.

To certify a system, a certification approach needs to pro-
vide not only a result but also a guarantee over the re-
sult, such as the error bounds. Existing approaches for

analysing DNNs with a guarantee work by either reduc-
ing the problem to a constraint satisfaction problem that
can be solved by MILP [Lomuscio and Maganti, 2017;
Cheng et al., 2017; Bunel et al., 2017; Xiang et al., 2017],
SAT [Narodytska et al., 2017] or SMT [Katz et al., 2017;
Bunel et al., 2017] techniques, or applying search algo-
rithms over discretised vector spaces [Huang et al., 2017;
Wicker et al., 2018]. Even though they are able to achieve
guarantees, they suffer from two major weaknesses. Firstly,
their subjects of study are restricted. More specifically, they
can only work with layers conducting linear transformations
(such as convolutional and fully-connected layers) and simple
non-linear transformations (such as ReLU), and cannot work
with other important layers, such as the sigmoid, max pool-
ing and softmax layers that are widely used in state-of-the-art
networks. Secondly, the scalability of the constraint-based
approaches is significantly limited by both the capability of
the solvers and the size of the network, and they can only
work with networks with a few hundreds of hidden neurons.
However, state-of-the-art networks usually have millions, or
even billions, of hidden neurons.

This paper proposes a novel approach to tackle the generic
reachability problem, which does not suffer from the above
weaknesses and provides provable guarantees in terms of the
upper and lower bounds over the errors. The approach is in-
spired by recent advances made in the area of global optimisa-
tion [Gergel et al., 2016; Grishagin et al., 2018]. For the input
subspace defined over a set of input dimensions, an adaptive
nested optimisation algorithm is developed. The performance
of our algorithm is not dependent on the size of the network
and it can therefore scale to work with large networks.

Our algorithm assumes certain knowledge about the DNN.
However, instead of directly translating the activation func-
tions and their parameters (i.e., weights and bias) into lin-
ear constraints, it needs a Lipschitz constant of the network.
For this, we show that several layers that cannot be directly
translated into linear constraints are actually Lipschitz contin-
uous, and we are able to compute a tight Lipschitz constant
by analysing the activation functions and their parameters.

We develop a software tool DeepGO1 and evaluate its per-
formance by comparing with existing constraint-based ap-
proaches, namely, SHERLOCK [Dutta et al., 2017] and Re-

1Available on https://github.com/trustAI/DeepGO.



luplex [Katz et al., 2017]. We also demonstrate our tool on
DNNs that are beyond the capability of existing tools.

2 Related Works
We discuss several threads of work concerning problems
that can be obtained by instantiating our generic reachability
problem. Their instantiations are explained in the paper. Due
to space limitations, this review is by no means complete.
Safety Verification There are two ways of achieving safety
verification for DNNs. The first is to reduce the problem into
a constraint solving problem. Notable works include, e.g.,
[Pulina and Tacchella, 2010; Katz et al., 2017]. However,
they can only work with small networks with hundreds of
hidden neurons. The second is to discretise the vector spaces
of the input or hidden layers and then apply exhaustive search
algorithms or Monte Carlo tree search algorithm on the dis-
cretised spaces. The guarantees are achieved by establish-
ing local assumptions such as minimality of manipulations in
[Huang et al., 2017] and minimum confidence gap for Lips-
chitz networks in [Wicker et al., 2018].
Adversarial Example Generation Most existing works,
e.g., [Szegedy et al., 2013; Goodfellow et al., 2014; Nguyen
et al., 2014; Moosavi-Dezfooli et al., 2016; Carlini and Wag-
ner, 2016], apply various heuristic algorithms, generally us-
ing search algorithms based on gradient descent or evolution-
ary techniques. [Papernot et al., 2015] construct a saliency
map of the importance of the pixels based on gradient descent
and then modify the pixels. In contrast with our approach
based on global optimisation and works on safety verifica-
tion, these methods may be able to find adversarial examples
efficiently, but are not able to conclude the nonexistence of
adversarial examples when the algorithm fails to find one.
Output Range Analysis The safety verification approach can
be adapted to work on this problem. Moreover, [Lomuscio
and Maganti, 2017] consider determining whether an output
value of a DNN is reachable from a given input subspace,
and propose an MILP solution. [Dutta et al., 2017] study the
range of output values from a given input subspace. Their
method interleaves local search (based on gradient descent)
with global search (based on reduction to MILP). Both ap-
proaches can only work with small networks.

3 Lipschitz Continuity of DNNs
This section shows that feed-forward DNNs are Lipschitz
continuous. Let f : Rn → Rm be a N -layer net-
work such that, for a given input x ∈ Rn, f(x) =
{c1, c2, ..., cm} ∈ Rm represents the confidence values
for m classification labels. Specifically, we have f(x) =
fN (fN−1(...f1(x;W1, b1);W2, b2); ...);WN , bN ) where Wi

and bi for i = 1, 2, ..., N are learnable parameters and
fi(zi−1;Wi−1, bi−1) is the function mapping from the out-
put of layer i − 1 to the output of layer i such that zi−1 is
the output of layer i − 1. Without loss of generality, we nor-
malise the input to lie x ∈ [0, 1]n. The output f(x) is usually
normalised to be in [0, 1]m with a softmax layer.
Definition 1 (Lipschitz Continuity) Given two metric
spaces (X, dX) and (Y, dY ), where dX and dY are the met-
rics on the sets X and Y respectively, a function f : X → Y

is called Lipschitz continuous if there exists a real constant
K ≥ 0 such that, for all x1, x2 ∈ X:

dY (f(x1), f(x2)) ≤ KdX(x1, x2). (1)

K is called the Lipschitz constant for the function f . The
smallest K is called the Best Lipschitz constant, denoted as
Kbest.

[Szegedy et al., 2013] show that deep neural networks
with half-rectified layers (i.e., convolutional or fully con-
nected layers with ReLU activation functions), max pooling
and contrast-normalization layers are Lipschitz continuous.
They prove that the upper bound of the Lipschitz constant
can be estimated via the operator norm of learned parameters
W .

Next, we show that the softmax layer, sigmoid and Hyper-
bolic tangent activation functions also satisfy Lipschitz con-
tinuity. First we need the following lemma [Sohrab, 2003].

Lemma 1 Let f : Rn → Rm, if ||∂f(x)/∂x|| ≤ K for all
x ∈ [a, b]n, then f is Lipschitz continuous on [a, b]n and K is
its Lipschitz constant, where ||∗|| represents a norm operator.

Based on this lemma, we have the following theorem.

Theorem 1 Convolutional or fully connected layers with the
sigmoid activation function s(Wx + b), Hyperbolic tangent
activation function t(Wx + b), and softmax function p(x)j
are Lipschitz continuous and their Lipschitz constants are
1

2
‖W‖,‖W‖, and supi,j(‖xi‖+

∥∥xixj∥∥), respectively.

Proof 1 First of all, we show that the norm operators of their
Jacobian matrices are bounded.

(1) Layer with sigmoid activation s(q) = 1/(1+e−q) with
q = Wx+ b:∥∥∥∥∂s(x)

∂x

∥∥∥∥ =

∥∥∥∥∂s(q)∂q

∂q

∂x

∥∥∥∥ ≤∥∥∥∥∂s(q)∂q

∥∥∥∥∥∥∥∥ ∂q∂x
∥∥∥∥

≤
∥∥s(q) ◦ (1− s(q))

∥∥‖W‖ ≤ 1

2
‖W‖

(2)

(2) Layer with Hyperbolic tangent activation function
t(q) = 2/(1 + e−2q)− 1 with q = Wx+ b:∥∥∥∥∂t(x)

∂x

∥∥∥∥ =

∥∥∥∥∂t(q)∂q

∂q

∂x

∥∥∥∥ ≤∥∥∥∥∂t(q)∂q

∥∥∥∥∥∥∥∥ ∂q∂x
∥∥∥∥

≤
∥∥1− t(q) ◦ t(q))∥∥‖W‖ ≤‖W‖ (3)

(3) Layer with softmax function p(x)j = exj/(
∑n
k=1 e

xk)
for j = 1, ...,m and n = m (dimensions of input and output
of softmax are the same):∥∥∥∥∂p(x)j

∂xi

∥∥∥∥ =

{
xi(1− xj), i = j
−xixj , i 6= j

≤ sup
i,j

(‖xi‖+
∥∥xixj∥∥)

(4)

Since the softmax layer is the last layer of a deep neural net-
work, we can estimate its supremum based on Lipschitz con-
stants of previous layers and box constraints of DNN’s input.

The final conclusion follows by Lemma 1 and the fact that
all the layer functions are bounded on their Jacobian matrix.



4 Problem Formulation
Let o : [0, 1]m → R be a Lipschitz continuous function statis-
tically evaluating the outputs of the network. Our problem is
to find its upper and lower bounds given the set X ′ of inputs
to the network. Because both the network f and the function
o are Lipschitz continuous, all values between the upper and
lower bounds have a corresponding input, i.e., are reachable.

Definition 2 (Reachability of Neural Network) Let X ′ ⊆
[0, 1]n be an input subspace and f : Rn → Rm a network.
The reachability of f over the function o under an error tol-
erance ε ≥ 0 is a set R(o,X ′, ε) = [l, u] such that

l ≥ inf
x′∈X′

o(f(x′))− ε and u ≤ sup
x′∈X′

o(f(x′)) + ε. (5)

We write u(o,X ′, ε) = u and l(o,X ′, ε) = l for the upper
and lower bound, respectively. Then the reachability diame-
ter is

D(o,X ′, ε) = u(o,X ′, ε)− l(o,X ′, ε). (6)
Assuming these notations, we may write D(o,X ′, ε; f) if we
need to explicitly refer to the network f .

In the following, we instantiate o with a few concrete func-
tions, and show that several key verification problems for
DNNs can be reduced to our reachability problem.

Definition 3 (Output Range Analysis) Given a class label
j ∈ [1, ..,m], we let o = Πj such that Πj((c1, ..., cm)) = cj .

We write cj(x) = Πj(f(x)) for the network’s confidence
in classifying x as label j. Intuitively, output range [Dutta
et al., 2017] quantifies how a certain output of a deep neural
network (i.e., classification probability of a certain label j)
varies in response to a set of DNN inputs with an error tol-
erance ε. Output range analysis can be easily generalised to
logit 2 range analysis.

We show that the safety verification problem [Huang et al.,
2017] can be reduced to solving the reachability problem.

Definition 4 (Safety) A network f is safe with respect to an
input x and an input subspace X ′ ⊆ [0, 1]n with x ∈ X ′,
written as S(f, x,X ′), if

∀x′ ∈ X ′ : arg max
j
cj(x

′) = arg max
j
cj(x) (7)

We have the following reduction theorem.

Theorem 2 A network f is safe with respect to x and X ′ s.t.
x ∈ X ′ if and only if u(⊕, X ′, ε) ≤ 0, where⊕(c1, ..., cm) =
maxi∈{1..m}(Πi(c1, ..., cm) − Πj(c1, ..., cm)) and j =
arg maxj cj(x). The error bound of the safety decision prob-
lem by this reduction is 2ε.

It is not hard to see that the adversarial example generation
[Szegedy et al., 2013], which is to find an input x′ ∈ X ′ such
that arg maxj cj(x

′) 6= arg maxj cj(x), is the dual problem
of the safety problem.

The following two problems define the robustness compar-
isons between the networks and/or the inputs.

2Logit output is the output of the layer before the softmax layer.
The study of logit outputs is conducted in, e.g., [Papernot et al.,
2015; Dutta et al., 2017].

Definition 5 (Robustness) Given two homogeneous3 net-
works f and g, we say that f is strictly more robust than g
with respect to a function o, an input subspace X ′ and an
error bound ε, written as Ro,X′,ε(f, g), if D(o,X ′, ε; f) <
D(o,X ′, ε; g).

Definition 6 Given two input subspaces X ′ and X ′′ and a
network f , we say that f is more robust on X ′ than on X ′′
with respect to a statistical function o and an error bound ε,
written as Rf,o,ε(X ′, X ′′), if D(o,X ′, ε) < D(o,X ′′, ε).

Thus, by instantiating the function o, we can quantify the
output/logit range of a network, evaluate whether a network
is safe, and compare the robustness of two homogeneous net-
works or two input subspaces for a given network.

5 Confidence Reachability with Guarantees
Section 3 shows that a trained deep neural network is Lips-
chitz continuous regardless of its layer depth, activation func-
tions and number of neurons. Now, to solve the reachability
problem, we need to find the global minimum and maximum
values given an input subspace, assuming that we have a Lip-
schitz constant K for the function o·f . In the following, we
let w = o ·f be the concatenated function. Without loss of
generality, we assume the input space X ′ is a box-constraint,
which is clearly feasible since images are usually normalized
into [0, 1]n before being fed into a neural network.

The computation of the minimum value is reduced to solv-
ing the following optimization problem with guaranteed con-
vergence to the global minimum (the maximization problem
can be transferred into a minimization problem):

min
x

w(x), s.t. x ∈ [a, b]n (8)

However, the above problem is very difficult since w(x) is
a highly non-convex function which cannot be guaranteed to
reach the global minimum by regular optimization schemes
based on gradient descent. Inspired by an idea from optimi-
sation, see e.g., [Piyavskii, 1972; Torn and Zilinskas, 1989],
we design another continuous function h(x, y), which serves
as a lower bound of the original function w(x). Specifically,
we need

∀x, y ∈ [a, b]n, h(x, y) ≤ w(x) and h(x, x) = w(x) (9)

Furthermore, for i ≥ 0, we let Yi = {y0, y1, ..., yi} be a
finite set containing i+ 1 points from the input space [a, b]n,
and let Yi ⊆ Yk when k > i, then we can define a function
H(x;Yi) = maxy∈Yi

h(x, y) which satisfies the following
relation:

H(x;Yi) < H(x;Yk) ≤ w(x),∀i < k (10)

We use li = infx∈[a,b]n H(x;Yi) to denote the minimum
value of H(x;Yi) for x ∈ [a, b]n. Then we have

l0 < l1 < ... < li−1 < li ≤ inf
x∈[a,b]n

w(x) (11)

3 Here, two networks are homogeneous if they are applied on the
same classification task but may have different network architectures
(layer numbers, layer types, etc) and/or parameters.
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Figure 1: A lower-bound function designed via Lipschitz constant

Similarly, we need a sequence of upper bounds ui to have

l0 < ... < li ≤ inf
x∈[a,b]n

w(x) ≤ ui < ... < u0 (12)

By Expression (12), we can have the following:

lim
i→∞

li = min
x∈[a,b]n

w(x) and lim
i→∞

(ui − li) = 0 (13)

Therefore, we can asymptotically approach the global min-
imum. Practically, we execute a finite number of iterations
by using an error tolerance ε to control the termination. In
next sections, we present our approach, which constructs a se-
quence of lower and upper bounds, and show that it can con-
verge with an error bound. To handle the high-dimensionality
of DNNs, our approach is inspired by the idea of adaptive
nested optimisation in [Gergel et al., 2016], with significant
differences in the detailed algorithm and convergence proof.

5.1 One-dimensional Case
We first introduce an algorithm which works over one dimen-
sion of the input, and therefore is able to handle the case of
x ∈ [a, b] in Eqn. (8). The multi-dimensional optimisation al-
gorithm will be discussed in Section 5.2 by utilising the one-
dimensional algorithm.

We define the following lower-bound function.

h(x, y) = w(y)−K|x− y|
H(x;Yi) = max

y∈Yi

w(y)−K|x− y| (14)

where K > Kbest is a Lipschitz constant of w and H(x;Yi)
intuitively represents the lower-bound sawtooth function
shown as Figure 1. The set of points Yi is constructed re-
cursively. Assuming that, after (i − 1)-th iteration, we have
Yi−1 = {y0, y1, .., yi−1}, whose elements are in ascending
order, and sets

w(Yi−1) = {w(y0), w(y1), .., w(yi−1)}

Li−1 = {l0, l1, ..., li−1}
Ui−1 = {u0, u1, ..., ui−1}
Zi−1 = {z1, ..., zi−1}

The elements in sets w(Yi−1), Li−1 and Ui−1 have been de-
fined earlier. The set Zi−1 records the smallest values zk
computed in an interval [yk−1, yk].

In i-th iteration, we do the following sequentially:

• Compute yi = arg infx∈[a,b]H(x;Yi−1) as follows.
Let z∗ = minZi−1 and k be the index of the interval
[yk−1, yk] where z∗ is computed. Then we let

yi =
yk−1 + yk

2
− w(yk)− w(yk−1)

2K
(15)

and have that yi ∈ (yk−1, yk).
• Let Yi = Yi−1 ∪ {yi}, then reorder Yi in ascending

order, and update w(Yi) = w(Yi−1) ∪ {w(yi)}.
• Calculate

zi−1 =
w(yi) + w(yk−1)

2
− K(yi − yk−1)

2
(16)

zi =
w(yk) + w(yi)

2
− K(yk − yi)

2
(17)

and update Zi = (Zi−1 \ {z∗}) ∪ {zi−1, zi}.
• Calculate the new lower bound li = infx∈[a,b]H(x;Yi)

by letting li = minZi, and updating Li = Li−1 ∪ {li}.
• Calculate the new upper bound ui = miny∈Yi w(y) by

letting ui = min{ui−1, w(yi)}.
We terminate the iteration whenever |ui − li| ≤ ε, and let

the global minimum value be y∗ = minx∈[a,b]H(x;Yi) and
the minimum objective function be w∗ = w(y∗).

Intuitively, as shown in Fig. 1, we iteratively generate
lower bounds (by selecting in each iteration the lowest point
in the saw-tooth function in the figure) by continuously refin-
ing a piecewise-linear lower bound function, which is guar-
anteed to below the original function due to Lipschitz conti-
nuity. The upper bound is the lowest evaluation value of the
original function so far.

Convergence Analysis
In the following, we show the convergence of this algorithm
to the global minimum by proving the following conditions.

• Convergence Condition 1: lim
i→∞

li = min
x∈[a,b]

w(x)

• Convergence Condition 2: limi→∞(ui − li) = 0

Proof 2 (Monotonicity of Lower/Upper Bound Sequences)
First, we prove that the lower bound sequence Li is strictly
monotonic. Because

li = minZi = min{(Zi−1 \ {z∗}) ∪ {zi−1, zi}} (18)

and li−1 = minZi. To show that li > li−1, we need to prove
zi−1 > z∗ and zi > z∗. By the algorithm, z∗ is computed
from interval [yk−1, yk], so we have

z∗ =
w(yk) + w(yk−1)

2
− K(yk − yk−1)

2
(19)

We then have

zi−1 − z∗ =
w(yi)− w(yk)−K(yi − yk)

2
(20)

Since yi < yk and K > Kbest, by Lipschitz continuity we
have zi−1 > z∗. Similarly, we can prove zi > z∗. Thus
li > li−1 is guaranteed.

Second, the monotonicity of upper bounds ui can be seen
from the algorithm, since ui is updated to min{ui, w(yi)} in
every iteration.



Proof 3 (Convergence Condition 1)
Since Yi−1 ⊆ Yi, we have H(x;Yi−1) ≤ H(x;Yi). Based
on Proof 2, we also have li−1 < li. Then since

li = inf
x∈[a,b]

H(x;Yi) ≤ min
x∈[a,b]

w(x) (21)

the lower bound sequence {l0, l1, ..., li} is strictly monotoni-
cally increasing and bounded from above by minx∈[a,b] w(x).
Thus limi→∞ li = minx∈[a,b] w(x) holds.

Proof 4 (Convergence Condition 2)
Since limi→∞ li = minx∈[a,b] w(x), we show limi→∞(ui −
li) = 0 by showing that limi→∞ ui = minx∈[a,b] w(x). Since
Yi = Yi−1∪{yi} and yi ∈ X = [a, b], we have limi→∞ Yi =
X . Then we have limi→∞ ui = limi→∞ infy∈Yi w(y) =
inf w(X). SinceX = [a, b] is a closed interval, we can prove
limi→∞ ui = inf w(X) = minx∈[a,b] w(x).

Dynamically Improving the Lipschitz Constant
A Lipschitz constant closer to Kbest can greatly improve the
speed of convergence of the algorithm. We design a practical
approach to dynamically update the current Lipschitz con-
stant according to the information obtained from the previous
iteration:

K = η max
j=1,...,i−1

∣∣∣∣∣w(yj)− w(yj−1)

yj − yj−1

∣∣∣∣∣ (22)

where η > 1. We emphasise that, because

lim
i→∞

max
j=1,...,i−1

η

∣∣∣∣∣w(yj)− w(yj−1)

yj − yj−1

∣∣∣∣∣ = η sup
y∈[a,b]

dw

dy
> Kbest

this dynamic update does not compromise the convergence.

5.2 Multi-dimensional Case
The basic idea is to decompose a multi-dimensional optimiza-
tion problem into a sequence of nested one-dimensional sub-
problems. Then the minima of those one-dimensional min-
imization subproblems are back-propagated into the original
dimension and the final global minimum is obtained.

min
x∈[ai,bi]n

w(x) = min
x1∈[a1,b1]

... min
xn∈[an,bn]

w(x1, ..., xn)

(23)
We first introduce the definition of k-th level subproblem.

Definition 7 The k-th level optimization subproblem, written
as φk(x1, ..., xk), is defined as follows: for 1 ≤ k ≤ n− 1,

φk(x1, ..., xk) = min
xk+1∈[ak+1,bk+1]

φk+1(x1, ..., xk, xk+1)

and for k = n,

φn(x1, ..., xn) = w(x1, x2, ..., xn).

Combining Expression (23) and Definition 7, we have that

min
x∈[ai,bi]n

w(x) = min
x1∈[a1,b1]

φ1(x1)

which is actually a one-dimensional optimization problem
and therefore can be solved by the method in Section 5.1.

However, when evaluating the objective function φ1(x1) at
x1 = a1, we need to project a1 into the next one-dimensional
subproblem

min
x2∈[a2,b2]

φ2(a1, x2)

We recursively perform the projection until we reach the n-th
level one-dimensional subproblem,

min
xn∈[an,bn]

φn(a1, a2, ..., an−1, xn)

Once solved, we back-propagate objective function values to
the first-level φ1(a1) and continue searching from this level
until the error bound is reached.

Convergence Analysis
We use mathematical induction to prove convergence for the
multi-dimension case.

• Base case: for all x ∈ R, limi→∞ li = infx∈[a,b] w(x)
and limi→∞(ui − li) = 0 hold.

• Inductive step: if, for all x ∈ Rk, limi→∞ li =
infx∈[a,b]k w(x) and limi→∞(ui − li) = 0 are satisfied,
then, for all x ∈ Rk+1, limi→∞ li = infx∈[a,b]k+1 w(x)
and limi→∞(ui − li) = 0 hold.

The base case (i.e., one-dimensional case) is already proved
in Section 5.1. Now we prove the inductive step.

Proof 5 By the nested optimization scheme, we have

min
x∈[ai,bi]k+1

w(x) = min
x∈[a,b]

Φ(x)

Φ(x) = min
y∈[ai,bi]k

w(x,y)

Since miny∈[ai,bi]k w(x,y) is bounded by an interval error
εy, assuming Φ∗(x) is the accurate global minimum, then we
have

Φ∗(x)− εy ≤ Φ(x) ≤ Φ∗(x) + εy
So the k + 1-dimensional problem is reduced to the one-
dimensional problem minx∈[a,b] Φ(x). The difference from
the real one-dimensional case is that evaluation of Φ(x) is not
accurate but bounded by |Φ(x) − Φ∗(x)| ≤ εy,∀x ∈ [a, b],
where Φ∗(x) is the accurate function evaluation.

Assuming that the minimal value obtained from our method
is Φ∗min = minx∈[a,b] Φ∗(x) under accurate function eval-
uation, then the corresponding lower and upper bound se-
quences are {l∗0, ..., l∗i } and {u∗0, ..., u∗i }, respectively.

For the inaccurate evaluation case, we assume Φmin =
minx∈[a,b] Φ(x), and its lower and bound sequences are, re-
spectively, {l0, ..., li} and {u0, ..., ui}. The termination cri-
teria for both cases are |u∗i − l∗i | ≤ εx and |ui − li| ≤ εx,
and φ∗ represents the ideal global minimum. Then we have
φ∗ − εx ≤ li. Assuming that l∗i ∈ [xk, xk+1] and xk, xk+1

are adjacent evaluation points, then due to the fact that
l∗i = infx∈[a,b]H(x;Yi) we have

φ∗ − εx ≤ l∗i =
Φ∗(xk) + Φ∗(xk+1)

2
− L(xk+1 − xk)

2

Since |Φ(xi)− Φ∗(xi)| ≤ εy,∀i = k, k + 1, we thus have

φ∗ − εx ≤
Φ(xk) + Φ(xk+1)

2
+ εy −

L(xk+1 − xk)

2



Based on the search scheme, we know that

li =
Φ(xk) + Φ(xk+1)

2
− L(xk+1 − xk)

2
(24)

and thus we have φ∗ − li ≤ εy + εx.
Similarly, we can get

φ∗ + εx ≥ u∗i = inf
y∈Yi

Φ∗(y) ≥ ui − εy (25)

so ui−φ∗ ≤ εx+εy. By φ∗−li ≤ εy+εx and the termination
criteria ui− li ≤ εx, we have li−εy ≤ φ∗ ≤ ui+εy, i.e., the
accurate global minimum is also bounded.

The proof indicates that the overall error bound of the
nested scheme only increases linearly w.r.t. the bounds in
the one-dimensional case. Moreover, an adaptive approach
can be applied to optimise its performance without compro-
mising convergence. The key observation is to relax the strict
subordination inherent in the nested scheme and simultane-
ously consider all the univariate subproblems arising in the
course of multidimensional optimization. For all the gener-
ated subproblems that are active, a numerical measure is ap-
plied. Then an iteration of the multidimensional optimization
consists in choosing the subproblem with maximal measure-
ment and carrying out a new trial within this subproblem. The
measure is defined to be the maximal interval characteristics
generated by the one-dimensional optimisation algorithm.

5.3 Proof of NP-compleness
We prove NP-completeness of our method. For space reasons
we only describe the proof idea; for the full proof see [Ruan
et al., 2018a]. For the upper bound, we first show that finding
the optimal value for the one-dimensional case can be done
in polynomial time with respect to the error bound ε. Then,
for the multi-dimensional case, we have a non-deterministic
algorithm to first guess a subset of dimensions and then con-
duct the one-dimensional optimisation one by one. The entire
procedure can be done in polynomial time with a nondeter-
ministic automaton, i.e., in NP.

For the lower bound, we show a reduction from the 3-SAT
problem. For any instance ϕ of 3-SAT, we can construct a
network f and an evaluation function o, such that the satisfia-
bility of ϕ is equivalent to non-reachability of value 0 for the
function w = o · f .

6 Experiments
6.1 Comparison with State-of-the-art Methods
Two methods are chosen as baseline methods in this paper:

• Reluplex [Katz et al., 2017]: an SMT-based method for
solving queries on DNNs with ReLU activations; we ap-
ply a bisection scheme to compute an interval until an
error is reached

• SHERLOCK [Dutta et al., 2017]: a MILP-based method
dedicated to output range analysis on DNNs with ReLU
activations.

Our software is implemented in Matlab 2018a, running on
a notebook computer with i7-7700HQ CPU and 16GB RAM.

Figure 2: Comparison with SHERLOCK and Reluplex

Since Reluplex and SHERLOCK (not open-sourced) are de-
signed on different software platforms, we take their experi-
mental results from [Dutta et al., 2017], whose experimental
environment is a Linux workstation with 63GB RAM and 23-
Cores CPU (more powerful than ours) and ε = 0.01. Follow-
ing the experimental setup in [Dutta et al., 2017], we use their
data (2-input and 1-output functions) to train six neural net-
works with various numbers and types of layers and neurons.
The input subspace is X ′ = [0, 10]2.

The comparison results are given in Fig. 2. They show that,
while the performance of both Reluplex and SHERLOCK is
considerably affected by the increase in the number of neu-
rons and layers, our method is not. For the six benchmark
neural networks, our average computation time is around 5s,
36 fold improvement over SHERLOCK and nearly 100 fold
improvement over Reluplex (excluding timeouts). We note
that our method is running on a notebook PC, which is signif-
icantly less powerful than the 23-core CPU stations used for
SHERLOCK and Reluplex.

6.2 Safety and Robustness Verification by
Reachability Analysis

We use our tool to conduct logit and output range analysis.
Seven convolutional neural networks, represented as DNN-
1,...,DNN-7, were trained on the MNIST dataset. Images are
resized into 14×14 to enforce that a DNN with deeper layers
tends to over-fit. The networks have different layer types,
including ReLu, dropout and normalization, and the number
of layers ranges from 5 to 19. Testing accuracies range from
95% to 99%, and ε = 0.05 is used in our experiments.

We randomly choose 20 images (2 images per label) and
manually choose 4 features such that each feature contains 8
pixels, i.e.,X ′ = [0, 1]8. Fig. 3 (a) illustrates the four features
and the architecture of two DNNs with the shallowest and
deepest layers, i.e., DNN-1 and DNN-7.
Safety Verification Fig. 4 (a) shows an example: for DNN-
1, Feature-4 is guaranteed to be safe with respect to the im-
age x and the input subspace X ′. Specifically, the reacha-
bility interval is R(Π0, X

′, ε) = [74.36%, 99.98%], which
means that l(Π0, X

′, ε) = 74.36%. By this, we have
u(⊕−0, X ′, ε) ≤ (1 − 0.7436) < 0.7436 = l(Π0, X

′, ε).
Then, by Theorem 2, we have S(DNN-1, x,X ′). Intuitively,
no matter how we manipulate this feature, the worst case is
to reduce the confidence of output being ‘0’ from 99.95% (its
original confidence probability) to 74.36%.
Statistical Comparison of Safety Fig. 4 (b) compares the ra-
tios of safe images for different DNNs and features. It shows
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Figure 3: (a) The four features and the architecture of DNN-1 and DNN-7. (b) Left: boxplots of confidence reachability diameters for 7
DNNs, based on 4× 20 analyses of each DNN. Right: boxplot of confidence reachability diameters for 4 features, based on 7× 20 analyses
of each feature. The red line represents the median value: a lower value indicates a more robust model or feature.

that: i) no DNN is 100% safe on those features: DNN-6 is
the safest one and DNN-1, DNN-2 and DNN-3 are less safe,
which means a DNN with well chosen layers are safer than
those DNNs with very shallow or deeper layers; and ii) the
safety performance of different DNNs is consistent for the
same feature, which suggests that the feature matters – some
features are easily perturbed to yield adversarial examples,
e.g., Feature-1 and Feature-2.
Statistical Comparison of Robustness Fig. 3 (b) compares
the robustness of networks and features with two boxplots
over the reachability diameters, where the function o is Πj for
a suitable j. We can see that DNN-6 and DNN-5 are the two
most robust, while DNN-1, DNN-2 and DNN-3 are less ro-
bust. Moreover, Feature-1 and Feature-2 are less robust than
Feature-3 and Feature-4.

We have thus demonstrated that reachability analysis with
our tool can be used to quantify the safety and robustness of
deep learning models. In the following, we perform a com-
parison of networks over a fixed feature.
Safety Comparison of Networks By Fig. 4 (c), DNN-4
and DNN-6 are guaranteed to be safe w.r.t. the subspace de-
fined by Feature-3. Moreover, the output range of DNN-7 is
[1.8%, 100.0%], which means that we can generate adversar-
ial images by only perturbing this feature, among which the
worst one is as shown in the figure with a confidence 1.8%.
Thus, reachability analysis not only enables qualitative safety
verification (i.e., safe or not safe), but also allows benchmark-
ing of safety of different deep learning models in a principled,
quantitive manner (i.e., how safe) by quantifying the ‘worst’
adversarial example. Moreover, compared to retraining the
model with ‘regular’ adversarial images, these ‘worst’ adver-
sarial images are more effective in improving the robustness
of DNNs [Kolter and Wong, 2017].
Robustness Comparison of Networks The bar chart in
Fig. 4 (c) shows the reachability diameters of the networks
over Feature-3, where the function o is Πj . DNN-4 is the
most robust one, and its output range is [94.2%, 100%].

6.3 A Comprehensive Comparison with the
State-of-the-arts

This section presents a comprehensive, high-level compari-
son of our method with several existing approaches that have

been used for either range analysis or verification of DNNs,
including SHERLOCK [Dutta et al., 2017], Reluplex [Katz
et al., 2017], Planet [Ehlers, 2017], MIP [Cheng et al., 2017;
Lomuscio and Maganti, 2017] and BaB [Bunel et al., 2017],
as shown in Fig. 5.

Core Techniques Most existing approaches (SHERLOCK,
Reluplex, Planet, MIP) are based on reduction to constraint
solving, except for BaB which mixes constraint solving with
local search. On the other hand, our method is based on
global optimization and assumes Lipschitz continuity of the
networks. As indicated in Section 3, all known layers used in
classification tasks are Lipschitz continuous.

Workable Layer Types While we are able to work with
all known layers used in classification tasks because they
are Lipschitz continuous (proved in Section 3 of the paper),
Planet, MIP and BaB can only work with Relu and Maxpool-
ing, and SHERLOCK and Reluplex can only work with Relu.

Running Time on ACAS-Xu Network We collect running
time data from [Bunel et al., 2017] on the ACAS-Xu net-
work, and find that our approach has similar performance to
BaB, and better than the others. No experiments for SHER-
LOCK are available. We reiterate that, compared to their ex-
perimental platform (Desktop PC with i7-5930K CPU, 32GB
RAM), ours is less powerful (Laptop PC with i7-7700HQ
CPU, 16GB RAM). We emphasise that, although our ap-
proach performs well on this network, the actual strength of
our approach is not the running time on small networks such
as ACAS-Xu, but the ability to work with large-scale net-
works (such as those shown in Section 6.2).

Computational Complexity While all the mentioned ap-
proaches are in the same complexity class, NP, the complex-
ity of our method is with respect to the number of input di-
mensions to be changed, as opposed to the number of hidden
neurons. It is known that the number of hidden neurons is
much larger than the number of input dimensions, e.g., there
are nearly 6.5× 106 neurons in AlexNet.

Applicable to State-of-the-art Networks We are able to
work with state-of-the-art networks with millions of neurons.
However, the other tools (Reluplex, Planet, MIP, BaB) can
only work with hundreds of neurons. SHERLOCK can work
with thousands of neurons thanks to its interleaving of MILP
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Figure 4: (a) Left: an original image (logit is 11.806, confidence of output being ‘0’ is 99.95%), where area marked by dashed line is the
feature. Middle: an image on the confidence lower bound. Right: an image on the confidence upper bound; for the output label ‘0’, the
feature’s output range is [74.36%, 99.98%], and logit reachability is [7.007, 13.403]. (b) Ratios of safe images for 7 DNNs and 4 features. (c)
A detailed example comparing the safety and robustness of DNNs for image ’9’ and Feature-3: the top number in the caption of each figure
is logit and the bottom one is confidence; the unsafe cases are all misclassified as ‘8’; the last bar chart shows their confidence reachability
diameters.

with local search.
Maximum Number of Layers in Tested DNNs We have
validated our method on networks with 19 layers, whereas
the other approaches are validated on up to 6 layers.

In summary, the key advantages of our approach are as
follows: i) the ability to work with large-scale state-of-the-
art networks; ii) lower computational complexity, i.e., NP-
completeness with respect to the input dimensions to be
changed, instead of the number of hidden neurons; and iii) the
wide range of types of layers that can be handled.

7 Conclusion
We propose, design and implement a reachability analysis
tool for deep neural networks, which has provable guaran-
tees and can be applied to neural networks with deep layers
and nonlinear activation functions. The experiments demon-
strate that our tool can be utilized to verify the safety of deep
neural networks and quantitatively compare their robustness.
We envision that this work marks an important step towards
a practical, guaranteed safety verification for DNNs. Future
work includes parallelizing this method in GPUs to improve
its scalability on large-scale models trained on ImageNet, and
a generalisation to other deep learning models such as RNNs
and deep reinforcement learning.
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