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Abstract

Effective collaborations between humans and machines necessitate the modelling
of human cognitive processes and complex social attitudes such as trust, guilt
or shame. Robots can take an active role in reducing misuse if they are able to
detect human biases, inaccurate beliefs or overtrust, and make accurate predictions
of human behaviour.

To that end, we propose cognitive stochastic multiplayer games, a novel paramet-
ric framework for multi-agent human-like decision making, which aims to capture
human motivation through mental, as well as physical, goals. Our framework
enables expression of cognitive notions such as trust in terms of beliefs, whose
dynamics is affected by agent’s observation of interactions and own preferences.
Agents are modelled as soft expected utility maximisers, which allows us to capture
the full range of rationality, from imperfections characteristic of human rationality,
to fully rational robots. A key contribution is a novel formulation of the utility
function, which incorporates agent’s own, as well as other agents’, emotions and
takes into account their preference over different goals. Heuristics and mental
shortcuts that people use to approximate what they cannot observe are captured
in the framework as mental state estimation functions.

We implement the model using a probabilistic programming language called
WebPPL. Our tool supports encoding of cognitive models and simulating their
execution based on stochastic behavioural predictions it generates. Conversely, given
a set of data, the tool may be used to learn characteristics of agents using Bayesian
techniques. The software has been designed to be modular, so that probabilistic
models of affection developed by others may be integrated. We validate our tool
on a number of synthetic case studies, demonstrating that cognitive reasoning
can explain experimentally-observed human behaviour that standard, equilibria-
based analysis often overlooks.

To evaluate the framework in a human-robot interaction setting, we have designed
and conducted an experiment that has human participants playing the Trust Game
against a custom bot we developed. Participants in the game (humans or bots) are
randomly assigned the role of an investor or investee. Results of our study show
that predictions of human behaviour generated by our tool are on par with, and
in some circumstances superior to, the state of the art. Unlike other approaches,
our model integrates behavioural observations with prior beliefs and captures how
one agent’s behaviour affects actions of their opponent.
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1
Introduction

Contents
1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

The desire of humans to develop automated machines, or automata, can be
traced back to Ancient Greece and China. Those predecessors of today’s robots
often resembled humans or animals and were powered by water, steam or air
pressure. However, it was not until the second half of the twentieth century and the
emergence of industrial robots that automation began to significantly enhance human
productivity [1]. By the end of the century, widespread use of automated systems
in aviation, information retrieval, fire control and navigation has led researchers to
consider its negative aspects and ways in which humans misuse automation [2].

Presently, fuelled by rapid advancement in artificial intelligence (AI), we are
entering a new chapter of human-robot interactions, characterised by close part-
nerships and cooperation. Progress in machine learning promises to make robots
truly autonomous and put them on equal footing with humans. This transition
has the potential to transform the society in many positive ways. Home-assistive
robots may improve care of the elderly [3]; connected autonomous vehicles are
expected to greatly reduce the number of traffic accidents [4]; utilising AI-based
image recognition has been shown to improve diagnostic accuracy in skin cancer
detection [5]; and autonomous unmanned aerial vehicles show promise for enhancing
post-disaster search and assessment [6].

1



1. Introduction 2

However, with great power comes great responsibility. Stuart Russell, an
influential researcher in the field, argues AI poses existential threat to humanity [7].
While that claim is debatable [8], it is hard to ignore real-life examples of dangers
posed by autonomous machines. Numerous fatal crashes involving Tesla vehicles in
autopilot mode have been widely reported in the media [9–11]. Overtrust in robots
has been put forward as one of the causes of these accidents [12]. Considering
mental models of the drivers has been suggested as a way to prevent future failures
of autonomous vehicles [13]. Sheng et al. [14] propose how trust can be taken into
account when planning routes for automated vehicles. Another prominent topic is
the use of AI in military applications. If used appropriately, autonomous technology
can revolutionise warfare and save many lives. But first, troubling ethical issues
must be resolved, especially in light of recent reports of unmanned combat aerial
vehicles autonomously targeting humans for the first time [15, 16].

Ensuring smooth and safe collaboration between humans and robots will require
machines to understand our motivations and emotions and be able to mimic
them [17–21]. Affective computing [22] concerns itself with studying and developing
computational systems that understand human affects. It has recently been
suggested that probabilistic programming, which facilitates expression of stochastic
models and making inferences by supporting probabilistic constructs as part of a
programming language, is highly appropriate for expressing affective models [23].
It turns out that psychological theories of emotion can often be formulated as
generative models and implemented as probabilistic programs, which are modular
and easy to adopt, often compatible with deep learning libraries, and naturally
express uncertainty present in these models.

The work presented in this thesis aims to be one of the building blocks of
successful human-robot partnership of the future. We combine insights from
affective computing with standard methods of game theory to put forward a novel
model of human-like decision making intended for use in robots. Our formalism
draws from the theory of mind [24] by carefully representing what humans do, and
what they do not, know. Moreover, we utilise findings from cognitive sciences and
behavioural decision theory to capture limitations in reasoning of homo sapiens.
Our model is highly parametric, reflecting the wide, continuous spectrum of human
personalities. Finally, the framework is computational in nature, and we provide
a probabilistic programming implementation to validate the theory.

An emotion that we are particularly interested in is trust. Often described as the
glue of a healthy society, trust is widely recognised for facilitating economic growth
of societies [25], improving health and well-being of communities [26] and fostering
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better governance [27]. It is generally agreed that appropriately calibrating trust of
human users towards robots is vital in reducing misuse [28]. Hence, a prominent
feature of our decision-making model is a formal, novel definition of trust, inspired
by theoretical work of psychologists and political scientists.

1.1 Thesis Outline

We now give a brief overview of how the work described in the rest of this document
came about and what is to be expected in the subsequent chapters. The original
goal of our research was to formalise social trust and provide mechanisms for
reasoning about it. The first attempt at this task resulted in a framework called
autonomous stochastic multi-agent system (ASMAS) [29], described in detail in
Chapter 4, to which the author of this thesis contributed. ASMAS expresses
trust as a logical operator and provides model checking algorithms to evaluate
trust formulae. However, scrutiny of this formalism (see Section 4.6) reveals its
fundamental weaknesses and inappropriateness for use in robots.

To overcome these deficiencies, we set out to develop a more intuitive, imple-
mentable, data-driven framework. With formalisation of trust in mind, we had taken
a step back and considered what motivates humans and why they prefer one course of
action over another. This resulted in a more general model, capable of expressing not
only trust, but also other mental attitudes, such as guilt, satisfaction or surprise. We
call it cognitive stochastic multiplayer game (CSMG) – a computational framework
that models human-like decision-making process and generates behaviour predictions.
Its theoretical side is described in Chapter 5, whereas Chapter 6 describes our
implementation of the framework and a selection of case studies.

To validate this novel model, we have conducted a human study based on a
famous money-exchange scenario called trust game, details of which can be found
in Chapter 7. Finally, Chapter 8 identifies strengths and weaknesses of our work
and suggests possible directions of future research.

1.2 Contributions

Our high-level objective throughout this work has been to facilitate future inter-
actions of humans with autonomous robots. We postulate that machines must
understand people’s motivations and emotions for our relationships with robots
to thrive. This insight led us to investigate human decision-making process and
the way it is affected by emotions, with special emphasis on trust. In particular,
the main contributions of this thesis are:
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• Model checking algorithms for ASMAS (Section 4.5), which are based on
PCTL∗ model checking techniques, the key difficulty being the history-
dependence of ASMAS; it is overcome by considering a bounded subset
of the logic and computing finite prefixes that refute or validate a given
formula.

• Cognitive stochastic multiplayer game – an emotion-aware model of human-
like decision making (Chapter 5). It integrates existing behavioural theories
in a computational framework that aims to truthfully represent limitations of
human reasoning.

• A novel definition of trust formulated in the setting of CSMG (Section 5.4.4)
– our model is designed to allow expression of a variety of mental attitudes,
but trust plays a special role in the context of human-robot partnerships.

• A probabilistic programming implementation of the CSMG model that sup-
ports learning agent preferences from behavioural data (Chapter 6) – our
choice of paradigm follows a recent trend in affective computing, enabling
easier integration of existing models of emotion into our tool.

• An experiment with human subjects that evaluates the predictive power of
our framework and tests various hypotheses about human-robot partnerships
(Chapter 7) – what sets our study apart is the sophisticated decision-making
mechanism of the robot, time horizon of the interaction and the varying role
of the machine.
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This chapter sets the scene for describing our contributions with an overview of
relevant literature. We begin by summarising most notable models and logics of
trust in Section 2.1. We then give a synopsis of the problem of predicting decisions
of humans in Section 2.2. This fundamental issue has been studied across many
disciplines; in this chapter we focus on computational approaches that are relevant
in the context of our work. However, note that Section 3.5 supplements this with
a more general and high-level overview of the matter. Finally, in Section 2.3 we
outline human experiments based on the trust game [30] scenario carried out to
date, with special focus on those that feature robots as game participants.

2.1 Reasoning about Trust

Trust is an overloaded term, studied in a variety of disciplines and taking different
meanings depending on the context in which it is used. However, we delay discussing
such philosophical issues to Section 3.1; instead, below we overview the most notable
attempts to express and reason about trust in the context of computer science.

5
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2.1.1 Trust Model Types

Given the importance of trust for developing and preserving relationships between
agents, it should not come as a surprise that there exist several formal models of this
concept. Most of them, however, are specific to a particular domain and incorporate
a non-cognitive notion of trust. The type of trust they express generally falls into
one of two categories: credentials-based, adopted in security, where a user gains
access to a resource by supplying appropriate credentials; or experience-based, where
agent’s trustworthiness is determined from past interactions. Examples include: (i)
a Bayesian network model applicable to peer-to-peer networks (and possibly other
distributed systems) where trust is a proportion of successful interactions to total
interactions [31], (ii) a swarm dynamics model where trust is assumed to simply
mirror performance [32], and (iii) a formalisation which models trustworthiness
of information sources using argumentation theory [33].

Of more interest from the point of view of this thesis are models developed
to capture human’s trust towards a robot, or, more generally, automation – we
term this third type cognitive trust. An early example of such work models
temporal evolution of trust of human operators of semi-automatic machines [34].
Authors use autoregressive moving average vector form of time series analysis
to obtain a differential equation that describes how operator’s trust depends on
the performance and fault rate of automation. Recent approaches have focused
on the setting of humans and robots cooperating as part of the same team and
the arising need for appropriate trust. For example, Xu and Dudek [35] propose
OPTIMo which captures (i) the causal reasoning of how robot’s performance affects
human’s trust and (ii) evidential factor analysis that infers people’s trust levels
based on their actions with a Bayesian network. Floyd et al. [36] present an
algorithm for trustworthiness-aware robot action selection that uses case-based
reasoning methodology. Schaefer et al. [37] divide the trust process into three
parts: (i) trust development, (ii) trust outcomes and (iii) trust calibration. The
authors perform a meta-analysis to investigate trust formation and conclude that
human-related factors, particularly to do with emotions, as well as capability of
automation have an effect on trust-development.

Chen at al. [38] also consider how a model of human trust may be leveraged to
improve task performance of a human-robot team, but their approach is different.
Trust is modeled as a (discrete) latent variable whose evolution is described by a
linear Gaussian system. Supplementing that with a model of human behaviour
produces what authors call trust-POMDP (Partially Observable Markov Decision
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Process), characterised by the fact that execution histories are approximated by
trust values when synthesising strategies.

An aspect common to all the above models is that only a single value of trust
between a human and a robot is assumed to exist, regardless of what task is being
performed. Soh et al. [39] address that limitation by representing trust as a (latent)
function, rather than a variable, and modelling how it transfers between different
tasks. A neural model (RNN) and a Bayesian Gaussian process model are proposed
to capture how trust transfers between tasks and experimental evidence is given
that suggests both can be useful depending on the application.

However, this and other models mentioned above are limited to human-robot
cooperation scenarios and only focus on one side of that relationship, where human
is the trustor and robot the trustee. Crucially, lack of intentionality on the part of
the machine is assumed, which reduces human’s trust to an assessment of robots’s
competence. Wagner et al. [40] take a step back by proposing a conceptual framework
of human-robot trust that uses game-theoretic representations. In particular, the
authors consider games in normal form and put forward a mechanism for action
selection of the trustor based on the relationship between their risk aversion and
the risk associated to choosing the trusting action (computed based on the payoff
matrix of the game). Substantial experimental evidence is presented that tests
the hypotheses generated by the framework; some of the findings indicate that the
model is oversimplistic. Indeed, the formalism offers little in the way of concreteness
and authors themselves admit its main objective is to inspire future research.

2.1.2 Logics for Trust

Before we turn to logical languages designed to reason about trust, we first review
some formalisms that capture human attitudes. In particular, we mention the so-
called BDI logics, which are based on the theory of an American philosopher Michael
Bratman. In his influential book [41], he explores human decision-making processes
and identifies beliefs, desires and intentions (BDI) as its crucial components. He
argues that, while desires influence our actions only potentially, intentions control
our conduct directly and are essential for understanding the practical reasoning
of humans. Bratman’s theory gave rise to a number of modal logics [42–44].
They extend existing temporal or propositional logics with operators for reasoning
about mental attitudes, whose semantics is given in terms of certain accessibility
relations defined on the underlying transition system. Building on the above and
using Castelfranchi & Falcone’s theory [45], Herzig and Lorini propose a BDI-like
logic for reasoning about trust and reputation [46]. They successfully capture the
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cognitive notion of trust by defining a trust operator in terms of agent’s goals
and beliefs. However, their logic is qualitative in nature and hence insufficient
to accurately express quantitative trust.

2.2 Predicting Human Behaviour

Modeling decision making of humans is a universal problem, studied in a variety
of disciplines – its thorough review could easily outgrow this thesis. We split
our treatment of this topic into two parts. In Section 3.5, we outline how this
problem has been approached by computer scientists through a historical lens.
In this section, we take a more focused look at a selection of works that are
relevant to the solution we propose.

As described in Section 3.5, the first breakthrough in the modelling of human
behaviour involved the introduction of a utility function to model our preferences.
This quickly led to expected utility theory, which became the standard way of
resolving human behaviour. However, many researchers argued for inappropriateness
of this model [47–49], which ultimately culminated in the very influential prospect
theory, described briefly in Section 3.5, and its successor, cumulative prospect
theory, which alters the weight function to operate on cumulative, rather than
absolute, probabilities.

Certain behavioural models diverge from prospect theory; one such, called
BEAST [50], postulates sensitivity to expected values and to the probability of
experiencing regret (and four additional but less important mechanisms) dictates
human decisions. Other frameworks incorporate behavioural insights into machine
learning algorithms; an example is provided by a procedure dubbed psychological
forest [51], which uses handcrafted features based on theorised decision-making
mechanisms and predictions generated by BEAST as inputs to a learning procedure.

In any case, all those models are aimed at a particular setting common to
choice prediction competitions, namely, a (often binary) choice between lotteries.
Indeed, even though cumulative prospect theory was designed to handle decision
nodes of high multiplicity, it remains specialised to well-defined choices between
wealth-resembling quantities.

An alternative method of adapting traditional game theory to reflect human
intricacies involves proposing a novel formulation of the utility function. The most
prominent example are psychological games [52], which extend a standard concept
of a game by assuming that utility of agents depends not only on outcomes, but
also on beliefs that agents hold about the future behaviour of their opponents.
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This allows one to model how emotions of players influence their behaviour, with a
restriction that such emotions must be expressible in terms of one’s initial (possibly
nested) belief. However, psychological games, while admitting solution methods
based on standard game-based techniques such as backward induction and equilibria
computation, assume fixed payoff structure, do not support inference of beliefs from
data or belief updating, and have no associated software implementation.

Dynamic psychological games [53] address some of the limitations of the original
proposal by including a more robust belief structure and supporting non-equilibrium
analysis. However, a hierarchy of deeply nested beliefs is problematic from the
computational point of view. Moreover, the model ignores uncertainty and imperfect
information that humans face when making choices, and it does not support learning.

2.3 Trust Game Experiments

Trust game is a simple, money-exchange scenario proposed by Berg et al. [30] (see
Section 4.4 for details). It is generally accepted as a practical way to measure trust
based on behaviour, as opposed to self-reporting which is considered less reliable.
There have been over one hundred instances of trust game experiments with humans
performed in the past; see Johnson et al. [54] for a meta-analysis. The general
conclusion is that humans are trusting, trustworthy and cooperative.

Recently, some researchers set out to study trust of humans toward machines
by instantiating trust game with people and robots. We have identified three
publications where such experimental setup arises [55–57] (referred to below as
Oksanen, Schniter and Mota, respectively). Of those, two (Oksanen and Schniter)
are similar in that participants play a single-shot trust game with a machine in a
non-physical form (i.e., “bots”) and the main aim is to determine whether humans
trust machines differently than they trust humans.

In particular, Oksanen introduces six different types of opponents that vary
in how they are described (“robot”, “artificial intelligence” or no description) and
how they are called (“Michael” or “jdrx894”). The experiment is run with a large
sample size (N = 1077), where each participant is randomly allocated to one of
six conditions and asked to specify an investment amount (out of initial $1,000).
However, participants were not incentivised monetarily to select an optimal amount
as their remuneration was flat. The findings are that average investments are similar
in all conditions, but they are highest when the opponent is described as a “robot
named jdrx894”. The main conclusion is that opponent type has no statistically
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significant effect on trust. Trust is also found to be positively correlated with
technical education, online robot exposure and robot use self-efficacy.

Schniter reach similar conclusions, though their setup is slightly different. They
consider three conditions: (i) a human playing against another human, (ii) a human
playing against a robot and (iii) a human playing against a robot where any profit
of the robot is transferred to another human. Importantly, unlike Oksanen, who do
not consider the robot’s strategy and do not record the amount returned by the
machine, Schniter endow the robot with the following behaviour (which participants
are made aware of): the return amount is randomly selected from the set of returns
observed in condition (i) (human vs human). Participants play a single round of
the trust game with their opponent and their remuneration reflects their earnings
in the game. However, even though participants are motivated to carefully consider
their investment, the behaviour of the robot is over-simplistic and by assumption
human-like. In any case, the findings are consistent with Oksanen.

Finally, Mota differs from the above in that a physical, humanoid robot is used,
sample size is very small (N = 5) and two iterations of trust game are considered.
The robot is operated using a Wizard-of-Oz algorithm, i.e., controlled by a human.
A simple trust model consisting of an initial assessment and an iterative update
is used. It is found that trusting robots is similar to trusting other humans, in a
sense that the model underlying trust remains the same. However, authors observe
that it is more difficult for humans to form an initial assessment due to lack of
social clues from the machine. It is proposed that people fill this gap by either
leveraging or creating social experience.

In summary, all three experiments (i) involve robots that are not autonomous,
(ii) put the human in the role of the investor, and (iii) feature a very limited
horizon of the interaction. In contrast, in this thesis we describe a human study
that features an autonomous bot whose behaviour is driven by a sophisticated
decision-making mechanism, playing repeated trust game against humans who
take either role in the game.
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In this chapter, we give an overview of the standard theory that this thesis
builds upon. Any attempt to formalise trust must be preceded by a review of what
psychologists, sociologists and political scientists have already established; this is
summarised in Section 3.1. The models we propose are stochastic and probability
theory features heavily in this thesis; an overview of the most relevant aspects
can be found in Section 3.2. One of the models we propose is grounded in the
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theory of formal verification, outlined in Section 3.3. Analysing interactions of
self-interested agents has traditionally been the domain of game theory; relevant
concepts, which the other model we put forward builds upon, are introduced in
Section 3.4. Even though humans are generally self-interested, purely game-theoretic
approaches often fail to account for our behaviour. As a result, a significant body
of literature exists on computational approaches to modelling human decisions;
this is outlined in Section 3.5.

3.1 Trust Theory

We begin by giving an overview of trust itself; we quote the most noteworthy
definitions of this concept and mention its conjectured properties; we point at
ways in which trust can be measured, and list its attributes that have been
verified experimentally.

3.1.1 Cognitive Theory of Trust

Trust is inherently a common-sense, intuitive notion, used in a variety of disciplines,
and defined in multiple ways. One of the first attempts at formalising trust came in
1967 from an American psychologist Julian Rotter, who defined it as an “expectancy
held by an individual that the word, promise or written communication of another
can be relied upon” [58]. Another classic definition, by Diego Gambetta, formulates
trust as a “subjective probability with which an agent assesses that another agent
will perform a particular action, both before he can monitor such action and in a
context in which it affects his own action” [59]. Yet another definition, in fact one
of the most commonly accepted, states that trust is a “willingness of a party to
be vulnerable to the actions of another party based on the expectation that the
other party will perform a particular action important to the trustor, irrespective of
the ability to monitor or control that other party” [60]. The above formalisations
provide a taste of the diversity of trust definitions; depending on who you ask, trust
may take a form of a mental attitude, expectation, belief, willingness, intention or
even behaviour. It is often characterised by vulnerability and risk on the trustor’s
side, and a particular action of a trustee.

An attempt to unite all the different definitions and provide a general formulation
of trust has been undertaken by psychologists Cristiano Castelfranchi and Rino
Falcone [45]. They consider trust to be “a mental state, a complex attitude of
an agent A towards another agent B about the behaviour/action relevant for the
result (goal) g”. This definition requires A to be a cognitive agent, i.e. an agent
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endowed with goals and beliefs. It also emphasises that trust of agent A towards
B must be considered relative to a goal; otherwise, it is generally meaningless.
Furthermore, two crucial ingredients of the mental state of trust are identified: (i)
a competence belief: A believes that B is capable of taking the required action,
and (ii) a disposition belief: A believes that B is willing to execute the task. The
authors postulate also that trust is a quantitative notion and that its value should
be understood as a “subjective certainty of pertinent beliefs”.

3.1.2 Experimental Trust Studies

It is generally agreed that measuring trust is difficult. Traditionally, two different
methods have been utilised for that purpose - surveys and experiments. Early
examples of questionnaires put forward to estimate subjects’ propensity to trust
include Rotter’s Interpersonal Trust Scale [58], Rosenberg’s Faith in People Scale [61],
a trust scale by Rempel et al [62] or fragments of the General Social Survey1. They
typically involve a few dozens of trust-related statements, to which participants
associate a number from some small range (most commonly on a 5 or 7-point scale),
expressing to what extent they agree with it. More specific surveys exist, which
are applicable to a given area of research, to mention Muir’s questionnaire [63]
for automated systems, Human Computer Trust Rating Scale [64] for air traffic
control or a human-robot interaction trust scale measure [65]. In fact, most
experimental studies design their own questionnaires to measure specific, goal-
related trust (e.g. [66, 67]).

That brings us to the second standard method of measuring trust, which is
by observing actions performed by subjects in experiments. A classic example is
provided by studies in the area of economics, in particular the “investment game” [30]
(sometimes referred to as “trust game”). It involves two subjects A and B, first
of whom receives $10, which he or she may either keep, or send any proportion of
it to B. Any amount A chooses to invest will be tripled in transit. Finally, upon
receiving the sum, B may share any fraction of it with A. Contradictory to the
analysis based on Nash equilibria, which predicts A to keep all the money, vast
majority of human subjects decide to invest all, or some part, of their initial $10
with the other player [30]. It is generally agreed that A’s decision of whether to
share the money with B involves trust, and indeed that the more A trusts B, the
more he or she will invest. Glaeser et al [68] conducted an experimental study based
on the investment game, which aimed at verifying whether trust questionnaires

1GSS is a sociological survey created and regularly collected since 1972 by the National Opinion
Research Center at the University of Chicago.
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predict trusting behaviour. Questions were partially sourced from existing trust
surveys, such as that of Rosenberg and Rotter, or GSS, and partially designed by
the authors. The results of the study indicate that attitudinal questions generally
do not predict trusting behaviour, unless they are specific (in which case correlation
exists, but is weak). On the other hand, inquiries about participants’ past behaviour
were found to positively correlate with trusting behaviour in the experiment.

Recently, a new way of measuring trust has emerged from the field of neuroscience.
Functional brain imaging has been employed to assess brain activation accompanying
trust-related tasks. A common experimental setup in that community involves
subjects evaluating faces for trustworthiness [69]. Increased activity in brain regions
called amygdala and right insula was detected when participants viewed faces they
deemed untrustworthy [70]. On the other hand, judging faces trustworthy was
associated with enhanced signal change in right superior temporal sulcus (STS).
Another study, which used similar methodology, found that propensity to trust
can be associated with increased grey matter volume in certain brain regions [71].
Krueger et al. [72] monitored brain activity of humans playing the investment
game and identified two distinct brain regions, paracingulate cortex (PcC) and
septal area (SA), which underlie decisions to trust in that scenario. In yet another
study, Dimoka [73] found that brain activations associated with trust and distrust
better predict bids submitted in online auctions than survey-based measures. Even
though the results so far are promising and indicate brain imaging could provide an
objective, unbiased measure of trust, low availability and high cost of fMRI scans
remains a major obstacle for mainstream adoption of the technique.

An active area of experimental research on trust, and relevant from our point
of view, is that of human-robot interaction. For example, Desai et al. [74] studied
trust dynamics in presence of failures and found that periods of low reliability
of a robot earlier in the interaction reduce trust more than similar periods later
on, and furthermore, the recovery of trust in the former case is slower. However,
the authors discovered also that the decline of trust may be significantly slowed
down if the robot acknowledges its lack of ability by providing confidence feedback.
Finally, trust recovery after a period of low reliability was found to be a slower
process than normal development of trust in the absence of failures. Robinette
et al. discovered that humans tend to overtrust robots in emergency evacuation
scenarios [75]. In another study, trust repair was investigated, the conclusion being
that promises and apologies can be effective in repairing trust, but only if performed
at the right time; in particular, this needs to happen the next time reliance occurs,
rather than immediately after a breach of trust [67]. Sheng et al. [76] combine
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self-reports with physiological measurements to study the dynamics of human trust
in the setting of autonomous driving; they find that the pertinence of alarms that
the vehicle emits has a significant effect on trust.

3.2 Probability

Probability features heavily in this thesis. All the systems we consider are probabilis-
tic; our implementation uses probabilistic programming; various probability distri-
butions are used to model agents’ beliefs. Therefore, a probability primer is in order.

3.2.1 Probability & Measure Theory

The notion of probability has several interpretations, but the one most humans
are comfortable with revolves around quantifying chances of some event happening.
We evaluate the likelihood of rain on a given day, of getting a six in a roll of dice
or winning a lottery. This intuition is formalised with a notion of a probability
space, which is a triplet (Ω,F , µ), where Ω is the sample space (e.g., representing
the set of outcomes of an experiment), F is the set of events (each event being a
subset of Ω) and µ : F → [0, 1] is a probability measure that assigns probabilities
to events. This construction has roots in measure theory, which devises methods
of “measuring” sets. In fact, to ensure that the above definition satisfies basic,
desirable properties, we require that (Ω,F) is a measurable space. That, in turn,
requires that F is a σ-algebra on Ω, meaning that F is a collection of subsets of
Ω that includes Ω itself and is closed under complement and countable unions.
The collection F is often referred to as measurable sets. Moreover, for µ to be a
probability measure, it must be countably additive (i.e., µ(∪∞i=0Ai) = ∑∞

i=0 µ(Ai) for
a countable collection of pairwise disjoint sets {Ai}∞i=0 ⊆ F) and satisfy µ(Ω) = 1.
For more detail, we refer the reader to a standard textbook on measure theory,
such as the one by Billingsley [77].

In practice, one way to go about constructing a probability space is to start with
a set of outcomes Ω. One then selects subsets of Ω that are easy to assign probability
to and one shows that such assignment satisfies some standard properties. Any
collection of subsets of Ω that contains Ω itself can be extended to a σ-algebra.
Finally, one uses one of standard theorems of measure theory to uniquely extend the
partially defined probability assignment to a probability measure. Such construction
is common for transition systems and an example is given in Section 3.3.1.
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3.2.2 Bayes’ Theorem

One of the most influential theorems in probability theory is, in fact, also a contender
for the most basic one. It formalises the intuition of updating beliefs about the
world based on observations. For example, imagine you throw a pair of dice and you
are not allowed to see the outcome. With no additional information, you would be
right to assume a pair of threes is as likely as a pair of sixes. However, had someone
told you that the sum of dice outcomes is six, you would revise your expectations
and discard the pair of sixes (and most of other outcomes) as a possibility.

This type of reasoning is formalised through the notion of conditional probability.
Fix a sample space Ω, a σ-algebra F and a probability measure Pr. Given two
events A,B ∈ F such that Pr(B) 6= 0, the conditional probability of A given B is
denoted Pr(A|B) and defined as Pr(A∩B)

Pr(B) . Intuitively, given that B happened, the
universe of possible outcomes shrinks to those included in B.

Bayes’ Theorem relies on a very simple observation. As long as Pr(A) 6= 0, we
can apply the definition of conditional probability the other way round: Pr(B|A) =
Pr(B∩A)

Pr(A) . From there, basic algebraic manipulation yields the renowned theorem:

Pr(A|B) = Pr(B|A)Pr(A)
Pr(B) .

This incredibly simple result laid a foundation for a successful branch of statistics
(Bayesian Statistics) and it has infiltrated other areas of science, such as machine
learning or cognitive science. The application that is the most relevant from our
point of view is Bayesian inference, which postulates using Bayes’ Theorem to revise
beliefs having observed evidence. For example, assume you do not know which of
your two friends, Bob or Alan, is faster. They are both sporty and have similar
body shapes, so you think it is equally likely that either of them is faster than
the other. In the nomenclature of Bayesian inference, this initial hypothesis is
referred to as a prior. Then, you get to observe the two men participate in the same
race and Alan’s time is twenty seconds faster than Bob’s. You may ask yourself:
assuming Alan was the faster of the two, what are the chances that he would beat
Bob by twenty seconds? Pretty high, probably. This, in Bayesian jargon, is called
the likelihood (of evidence given the hypothesis). Given prior and likelihood, one
uses Bayes’ Theorem to compute the posterior, i.e., the updated belief.
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3.2.3 Probability Distributions

Certain probability spaces are so important that they are given a name. This
usually happens either because probability measure has desirable properties or
because it is a very good approximation of some natural phenomena (or both).
These “famous” probability spaces are usually referred to as probability distributions
and it has become customary to use this somewhat vague term in place of more
precise notions such as probability measure or probability space. Throughout this
thesis, when we say “probability distribution on a set S”, we refer to an assignment
of probabilities to elements of some σ-algebra (defined in Section 3.2.1) F on S,
where F itself is clear from the context. For example, when S is a finite set,
F = 2S and when S is an interval on R, F is the Borel σ-algebra, i.e., the smallest
σ-algebra that contains all the open intervals inside S. In what follows, for a set
S, D(S) denotes the set of probability distributions on S. Further, the set of
those distributions under which elements that are assigned a positive probability
form a countable subset of S is denoted Df (S). Also, for a distribution d ∈ D(S),
supp(d) = {s ∈ S | d(s) > 0} denotes the support of d.

Below, we briefly overview families of probability distributions that we make
extensive use of in this work. Reflecting the nature of the sample space Ω,
each probability distribution is either discrete or continuous. Discrete probability
distributions are characterised by a probability mass function (PMF) p : Ω→ [0, 1],
which assigns some mass to each point in the sample space. We require that∑
ω∈Ω p(ω) = 1. Continuous probability distributions are described by a probability

density function (PDF) f : Ω→ R, which assigns relative likelihoods to elements
(points) of Ω. We require that

∫
ω∈Ω f(ω) = 1.

For each family, we give the sample space Ω and the PMF or PDF, as appropriate.

Dirac Distribution Arguably the simplest of all probability distributions, Dirac
distribution (also called δ-distribution) can be defined on any discrete sample
space Ω and it assigns all probability mass to a selected element ω ∈ Ω. In
other words, the Dirac distribution on a countable set S centred on t ∈ S is
given by a PMF p such that

p(s) =
1 if s = t,

0 otherwise.

Categorical Distribution Whenever the sample space Ω is a finite set, any
probability distribution defined on Ω is an instance of the categorical distribution.
Letting n = |Ω| and assuming an order on elements of Ω, a categorical distribution
on Ω is given by a vector ~p = (p1, . . . , pn) of probabilities, where ∑n

i=1 pi = 1.
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Figure 3.1: The PDF of a standard Gaussian distribution (µ = 0, σ = 1)

Poisson Distribution Many real-life phenomena are characterised by events that
happen randomly and independently, but with some constant long-term frequency.
Examples include incoming calls in a call centre, people arriving at a bus stop or
traffic accidents occurring on a given intersection. The probability of a given number
of events happening in a fixed interval of time is described by a Poisson distribution,
characterised by a parameter λ > 0, with a PMF p : N → [0, 1] given by

p(k) = λke−λ

k!

Gaussian Distribution The first family of continuous probability distributions
we consider, and one that is very widely used in practice, is a Gaussian (or normal)
distribution. It describes distributions of various statistics of populations, notably
height, weight or intelligence. It is often described as a “bell curve” due to the
shape of its PDF when plotted in Cartesian coordinates (see Figure 3.1).

The general form of the probability density function of a Gaussian distribution is

f(x) = 1
2
√
π
e−

1
2(x−µσ )2

,

parameterised by its mean µ and standard deviation σ.

Uniform Distribution Another very common distribution is one that assigns
the same probability mass/density (hence its name - uniform distribution) to all
elements of sample space Ω. In the simplest case, when Ω is finite with |Ω| = n, each
element is assigned probability mass 1

n
, i.e., p(ω) = 1

n
for all ω ∈ Ω. Another case

relevant for this thesis is when sample space Ω is an interval, [a, b] say. Then the
PDF of uniform distribution on Ω is a constant function f(x) = 1

b−a for all x ∈ [a, b].
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Dirichlet Distribution Finally, we describe the most complex distribution yet,
which is not only continuous, but also multivariate, meaning that the sample space
Ω is multi-dimensional. Specifically, Ω = {(x1, . . . , xK) | ∑K

i=1 xi = 1}, where
K is one of the parameters of a Dirichlet. The second parameter is a vector
~α = (α1, . . . , αK) with αi > 0 for 1 ≤ i ≤ K. Given ~α, Dir(~α) is short for the
Dirichlet distribution with parameter ~α (with K given by the size of ~α). The
intuition about ~α is that αi is the “weight” of the ithdimension of Ω, in a sense
that the greater αi is, the greater will the value of xi be in expectation. In fact,
the expectation of the value of xi under Dir(~α) is

αi∑K
j=1 αj

.

The PDF of Dir(~α) is

f(x1, . . . , xK) = 1
B(α)

K∏
i=1

xai−1
i ,

where B(α) is a normalising constant (needed to ensure PDF integrates to 1 over the
sample space), whose definition is irrelevant for the purposes of this thesis.

3.2.4 Probabilistic Programming

Due to their usefulness for modelling uncertainty, probability distributions are
commonly used in models of random or not fully understood processes, such as
weather forecasting, predicting stock prices or, more recently, affective computing.
A typical workflow in which a probabilistic model is utilised involves feeding
observational data into it and generating predictions, be it a weather forecast,
stock price or a human emotion.

Because of high complexity of such models, the only practical approach is
to use computers to generate those predictions. One could employ a standard
programming language for this purpose, but that would require implementing
probability distributions and inference methods from scratch. Instead, many would
opt for a probabilistic programming language (PPL) that supports probabilistic
constructs out of the box.

Probabilistic programming languages typically build upon well-established
languages and can be thought of as external libraries; notable examples include
Pyro [78], built on top of Python, WebPPL [79], which extends a subset of Javascript,
and Anglican [80], which is integrated with Clojure. Some PPLs are self-contained,
most notably Stan. Any respectable probabilistic programming language provides
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two functionalities: (i) specification of probabilistic models and (ii) methods for
making inferences, typically based on observed data, using a specified model.

Stochastic models typically encode our understanding of some random processes.
For instance, flipping a fair coin may lead to two outcomes, heads or tails, both
of which are equally likely. This can be encoded as a trivial probabilistic model;
for example, Listing 1 shows how it may be implemented in WebPPL. It takes
the form of a function which returns ’H’ or ’T’ with equal probabilities, achieved
by using a predefined function flip, which samples from a uniform distribution
over {true, false}.

let coin = function() {
return flip() ? 'H' : 'T'

}

Listing 1: WebPPL model of a coin flip

A somewhat more involved, but still very basic, model is presented in Listing 2.
It represents the process of drawing a random card from a shuffled deck. It uses
a function uniformDraw that draws a sample from a uniform distribution over
the elements of an array passed to it.

let drawCard = function() {
let suit = uniformDraw([♥, ♠, ♣, ♦])
let rank = uniformDraw(
['2','3','4','5','6','7','8','9','10','J','Q','K','A']

)
return rank + suit

}

Listing 2: WebPPL model of drawing a card from a shuffled deck

A more complex example of a process that affects human life on a daily basis is
weather formation. Suppose you want to predict if it will rain on a given summer
day. A reasonable approach would be to study historical data to obtain the base
rate of rain depending on the month. However, suppose you have also observed
that, when it is cloudy in the morning, it is more likely to rain later in the day. You
could then formulate a probabilistic model such as the one presented in Listing 3,
where the function flip is now passed an argument p ∈ [0, 1] that specifies a
probability that flip will return true.

Formulating stochastic models as probabilistic programs is useful, but in many
cases one does not understand the underlying mechanism well. However, based on
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let rain = function(month, clouds) {
return

(month == 'june' && flip(0.11)) ||
(month == 'july' && flip(0.08)) ||
(month == 'august' && flip(0.05)) ||
(clouds && flip(0.3))

}

Listing 3: WebPPL model predicting if it will rain on a given day

observations and basic comprehension, certain causal links may be hypothesised
to exist. Then, the power of probabilistic programming allows one to infer the
model, provided enough data is available. As an example, consider the problem of
identifying what leads to lung cancer. It is currently well understood that smoking
is the primary cause of that disease, but genetics and exposure to certain chemicals,
particularly radon, plays a role too. However, assuming these causal links were
not known, probabilistic inference could help discover them.

Suppose several factors are hypothesised to contribute to lung cancer risk:
smoking, history of cancer in one’s family, exposure to radon and consumption of
meat. To investigate the effect of each of these factors, we could record this data
for a random (large enough) sample of deceased persons and feed it to a program
such as the one from Listing 4. It uses WebPPL’s Infer operator to compute
the risk of lung cancer in two hypothetical scenarios. Infer performs marginal
inference – the way it operates depends on the selected inference method (in this
case, “enumerate”), but it always accepts a stochastic computation as input and
returns a probability distribution on the return values of that computation.

Inference by enumeration involves exploring all possible execution paths of the
provided stochastic model, each associated to a unique resolution of randomness in
the model. Naturally, it is applicable only when there is a finite number of outcomes
at each random choice. This is the case in our lung cancer risk modelling, since the
data set is finite. To achieve the desired effect of computing cancer risk associated to
a set of values of some or all factors, we use conditioning. It is captured by a special
condition operator available in WebPPL, which can only be used in the scope of
Infer, and has an effect of discarding all executions for which the specified condition
(passed as argument to condition) does not hold. Therefore, the computation of
lung cancer risk for a meat eater (line 14) is equivalent to iterating over the elements
of data array, discarding those where meatEater is set to false, and returning
the distribution of values of cancer among the remaining data points. Computing
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1 // stores all the recorded data
2 let data = [
3 {
4 smokes: true,
5 familyHistory: true,
6 radonExposure: false,
7 meatEater: true,
8 cancer: true
9 }

10 // ,...
11 ]
12

13 // Does eating meat affect lung cancer risk?
14 let meatEaterRisk = Infer({method: 'enumerate'}, function() {
15 let d = uniformDraw(data)
16 condition(d.meatEater)
17 return d.cancer
18 })
19

20 // Suppose Bob does not smoke and does not eat meat, but has
21 // a history of cancer in the family and high levels of radon have
22 // been detected in their house. What's Bob's lifetime risk of
23 // developing lung cancer?
24 let bobRisk = Infer({method: 'enumerate'}, function() {
25 let d = uniformDraw(data)
26 condition(d.smokes)
27 condition(d.familyHistory)
28 condition(d.radonExposure)
29 condition(d.meatEater)
30 return d.cancer
31 })

Listing 4: WebPPL model that infers lung cancer risk from data

Bob’s risk of cancer (line 24) proceeds along the same lines, except that filtering of
data points is more discriminating, reflecting the presence of more conditions.

Finally, we mention that, even though inference by enumeration computes
an exact probability distribution, marginal inference is generally intractable and
approximate methods, such as Markov chain Monte Carlo (MCMC) or sequential
Monte Carlo (SMC), must often be employed. This happens either when there
are so many possible executions of the stochastic model that enumerating them
all is infeasible, or when sampling from continuous probability distributions is
involved and enumeration is impossible.
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3.2.5 Probabilistic Predictions

Section 3.2.4 showed how generative models can be encoded as probabilistic programs
and used to make predictions. To evaluate the constructed model, we would like
to compare its predictions with reality. For instance, the rain forecast generated
by our model from Listing 3 should be confronted with our observation of whether
it rained or not.

The measure we will use to evaluate such stochastic predictions, which are
represented by discrete probability distributions, is called mean squared prediction
error (MSPE), and it is a probabilistic version of a standard mean squared error
(MSE). Suppose a probabilistic prediction over a finite set of outcomes Ω is
represented by the probability mass function p : Ω→ [0, 1]. Then, upon observing
an outcome ω̄ ∈ Ω, the MSPE of p is given as

MSPE(p) =
∑
ω∈Ω

p(ω)(ω − ω̄)2.

Hence, MSPE(p) is an expected value of a mean squared error of a deterministic
prediction selected according to p.

3.3 Automated Verification

Automated verification concerns itself with checking algorithmically whether given
models satisfy specified properties. It has been applied to verify a variety of software,
hardware or biological systems against specifications formulated in a logical language.
This section provides an overview of the most common models, logics and verification
techniques employed in this field. Note that we focus our attention on probabilistic
verification, and so the models we consider are all stochastic.

3.3.1 Models

Markov Chain The models that lend themselves to (probabilistic) verification
techniques are generally variations of (probabilistic) transition systems. One of the
most basic such models, called (discrete-time) Markov chain (DTMC), is defined
as a tuple (S, sinit,T,L), consisting of a finite set of states S, of which sinit ∈ S is
designated as the initial state, the transition probability matrix T : S× S→ [0, 1]
and a labelling function L : S→ 2AP . An intuitive interpretation of a Markov chain
is that of a machine that starts in the initial state sinit and repeatedly transitions
to the next state according to T. In particular, from state s ∈ S, the probability
of moving to another state s′ ∈ S is T(s, s′). Transitions are assumed to occur
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at discrete time steps and each state s is labelled with a subset L(s) of atomic
propositions AP that hold in that state.

An execution of a Markov chain M is represented by an infinite path δ =
s0s1s2 . . . such that T(si, si+1) > 0 for all i ≥ 0 and s0 = sinit. A set of infinite
paths of M is denoted IPathM. Any non-empty prefix of an infinite path δ is a
finite path and FPathM denotes the set of all finite paths. Moreover, for a finite
path ρ = s0s1 . . . sn and an infinite path δ = t0t1 . . .: (i) |ρ| (= n) denotes the length
(i.e., number of transitions) of ρ, (ii) last(ρ) retrieves the last state of ρ, (iii) δ(i)
(= ti) denotes the ith state of δ, (iv) δ[0..m] = t0t1 . . . tm denotes a finite prefix of δ
of length m and (v) δ[m..∞] denotes an infinite suffix of δ. Often, it is useful to
consider paths that start in a given state s ∈ S which is not the initial state. The
set of such paths is denoted FPathM(s) (finite) or IPathM(s) (infinite).

To verify properties of Markov chains, one generally has to reason about
probabilities of reaching certain (appropriately labelled) states. This is made
rigorous by defining a probability measure PrM on the set of infinite paths IPathM

of a DTMC M. For a full construction of a probability space, we refer the reader
to Kemeny et al. [81]; what follows is an intuitive description. The first step is
to assign a probability to a finite path ρ = s0s1 . . . sn by multiplying transition
probabilities along the path: T(ρ) = T(s0, s1) · T(s1, s2) · . . . · T(sn−1, sn). With
that, given a finite path ρ, a cylinder set C(ρ) ∈ IPathM is defined as a set of all
infinite paths that have a prefix ρ: C(ρ) = {δ ∈ IPathM | ρ is a prefix of δ}. Based
on that, a family of measurable sets ΣIPathM is defined as the σ-algebra generated by
the cylinder sets and the probability measure PrM on ΣIPathM is given as the unique
measure that satisfies PrM(C(ρ)) = T(ρ) (existence and uniqueness is guaranteed
by a standard theorem from measure theory, see e.g. Theorem 11.3 from [77]).

Finally, we mention that each Markov chain M has an underlying directed graph,
whose nodes are states of M, with an edge from s to s′ present if T(s, s′) > 0.
Standard graph-theoretical concepts apply to that graph; in particular, a strongly
connected component (abbreviated SCC) of M denotes a set of states U such that
for each pair of states (s, s′) in U , there is a path from s to s′ with all states in U ,
and U has no proper superset which satisfies that property. Further, a bottom SCC
(BSCC in short) of M is an SCC U from which no state outside of U is reachable.
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Markov Decision Process Markov chains are suitable for modelling a variety
of natural phenomena and have found many applications in biology, chemistry or
physics. However, they are inherently probabilistic and hence not powerful enough
to express agency. For that, a Markov decision process (MDP) is introduced; it
extends Markov chains with nondeterminism by equipping the model with a set
of actions Act. A resulting tuple that defines MDPs is (S, sinit,Act,T,L), where S,
sinit and L are as before, but T : S× Act → D(S) is now a (partial) probabilistic
transition function. With MDPs, a transition can be thought of as a two-stage
process: from state s ∈ S, say, an action a is selected (nondeterministically), followed
by a probabilistic change to the next state according to probability distribution
T(s, a). Note that, given arbitrary s ∈ S and a ∈ Act, T(s, a) may be undefined;
with a slight abuse of notation, we define Act(s) = {a ∈ Act | T(s, a) is defined}
to be the set of actions available in s. Intuitively, different actions are available
in different states. Note that a Markov chain is a special case of an MDP with
a set of actions being a singleton.

Similarly as for Markov chains, formal reasoning about properties of MDPs
requires a probability space to be defined. Again, we refer the reader to Forejt
et al. [82] for formal treatment and present an intuitive view below. A notion of
a path has to be adapted to include not only states, but also actions taken in
each state. We refer to the set of infinite (resp. finite) paths in an MDP M as
IPathM (resp. FPathM) as before. To assign probabilities to paths, nondeterminism
arising from actions must be resolved; this is achieved by an action strategy σ :
FPathM → D(Act) that specifies a plan of action at each point of execution. Under
a strategy σ, an MDP M reduces to a DTMC Mσ, and its probability measure
PrMσ can be used to assign probabilities to measurable sets of paths of M (under
σ). The set of possible strategies is denoted Σ.

3.3.2 Logics

To allow for automatic verification of properties of models, one needs a formal
language that can express them. It is customary to use the language of logic
for this purpose. Each logic comes with a set of operators, a way to apply and
combine them, and the meaning of each operator. Sentences of a logical language
are made up of logical operators and atomic propositions and are referred to as
logical formulae. There are two types of formulae: a state formula, usually denoted
φ, that can be evaluated in a state (of a Markov chain or an MDP), and a path
formula, denoted ψ, that applies to paths, rather than states.
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CTL The first logic we consider is called Computational Tree Logic (CTL).
Its syntax is given by:

φ ::= true | p | ¬φ | φ ∧ φ | ∀ψ | ∃ψ
ψ ::= #φ | φUφ

A CTL formula is a state formula φ constructed according to the rules of the above
grammar. Besides standard propositional operators like negation ¬ and ∧, CTL
defines the universal quantifier ∀ and an existential quantifier ∃. Given a path
formula ψ and a state s, quantifiers allow formation of a state formula by stipulating
that ψ holds for all paths (in the case of ∀), or at least one (in the case of ∃) path,
starting in s. There are two types of path formulae. One is constructed using the
next operator #, which expresses that a given state formula φ holds in the second
(i.e., the next one after the initial one) state of the path it is being evaluated on.
The second type has the until operator U as its principal connective, which, when
applied to two state formulae φ1 and φ2 on a path δ, expresses that φ1 holds in all
the states of δ up to (and excluding) the first state in which φ2 holds.

The intuitive explanation above is formalised by specifying the semantics of the
logic, which gives meaning to every operator. Given a DTMC M = (S, sinit,T,L),
a state s (resp. an infinite path δ) and a state formula φ (resp. a path formula ψ),
we write M, s |= φ (resp. M, δ |= ψ) to denote that φ holds in state s (resp. ψ
holds on a path δ). The satisfaction relation is defined inductively as follows:

M, s |= true for all s ∈ S,

M, s |= p if p ∈ L(s),

M, s |= ¬φ if not M, s |= φ,

M, s |= φ1 ∧ φ2 if M, s |= φ1 and M, s |= φ2,

M, s |= ∀ψ if M, δ |= ψ for all δ ∈ IPathM(s),

M, s |= ∃ψ if M, δ |= ψ for some δ ∈ IPathM(s),

M, δ |= #φ if M, δ(1) |= φ,

M, δ |= φ1Uφ2 if there exists i ≥ 0 such that M, δ(i) |= φ2

and M, δ(j) |= φ1 for all 0 ≤ j < i.

Note how state formulae are evaluated relative to a state s ∈ S, while path formulae
are evaluated on a path δ ∈ IPathM. Note also that when expressing satisfaction
of a given formula φ in the initial state sinit of M, we may omit the state in the
satisfaction relation and write M |= φ.
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LTL CTL is referred to as a branching-time logic, reflecting the tree-like structure
of possible futures captured by the universal and existential quantifiers. An
alternative approach, termed linear-time, stipulates a “single-track” development
of events, where each point in time has a unique successor. This perspective is
employed by Linear Temporal Logic, defined by the following grammar:

ψ ::= true | p | ¬ψ | ψ ∧ ψ | #ψ | ψUψ

Hence, all formulae in LTL are path formulae and the semantics of the operators is
virtually the same as for CTL, but adapted to paths (see a standard textbook [83]).
While the introduction of LTL may at first appear to serve no purpose, since it
introduces no new operators, a closer look reveals that LTL is no less expressive
than CTL2. The crucial difference is that arbitrary path formulae are allowed as
arguments to # and U operators, permitting formulae such as pU#q or ##p,
which are not part of CTL’s syntax.

PCTL∗ Finally, we look at a logic that combines CTL with LTL and adds
probability, called PCTL∗. Its syntax is described by the following grammar:

φ ::= true | p | ¬φ | φ ∧ φ | P./qψ,

ψ ::= φ | ¬ψ | ψ ∧ ψ | #ψ | ψUψ.

The most important novelty of PCTL∗ is that quantifiers are replaced by the
probability operator P./q (where ./∈ {<,≤, >,≥}), which quantifies the probability
of the set of paths starting in some state s satisfying some path formula. The second
aspect that requires attention is greater freedom in forming formulae compared
to CTL, afforded by allowing state formulae to be used where a path formula
would normally be expected.

Specifying the semantics of PCTL∗ is, by and large, a matter of combining
semantics of CTL and LTL, with the exception of the probability operator, which
requires special treatment. To express the probability of satisfying a path formula
ψ starting in a state s of a DTMC M, we leverage the probability measure
PrM to define

ProbM,s(ψ) = PrM({δ ∈ IPathM(s) |M, δ |= ψ}).

2It is also no more expressive than CTL. The expressiveness of the two logics is incomparable.
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With that, given a DTMCM = (S, sinit,T,L), a state s ∈ S, state formulae φ, φ1 and
φ2 and a path formula ψ, the satisfaction relation |= for state formulae is as follows:

M, s |= true for all s ∈ S,

M, s |= p if p ∈ L(s),

M, s |= ¬φ if not M, s |= φ,

M, s |= φ1 ∧ φ2 if M, s |= φ1 and M, s |= φ2,

M, s |= P./qψ if ProbM,s(ψ) ./ q,

whereas for path formulae ψ1 and ψ2, and a path δ ∈ IPathM, the satisfaction
relation is given by:

M, δ |= φ if M, δ(0) |= φ,

M, δ |= ¬ψ if not M, δ |= ψ,

M, δ |= ψ1 ∧ ψ2 if M, δ |= ψ1 and M, δ |= ψ2,

M, δ |= #ψ if M, δ[1..∞] |= ψ,

M, δ |= ψ1Uψ2 if there exists i ≥ 0 such that M, δ[i..∞] |= φ2

and M, δ[j..∞] |= ψ1 for all 0 ≤ j < i.

Finally, we note that the above generalises easily to MDPs. However, care needs to be
taken to adapt the computation of the probability of a formula, since nondeterminism
must be resolved to apply the probability measure. This is typically resolved by
assuming implicit universal quantification over strategies. For example, formula P>qψ

holds if and only if the probability of satisfying ψ on a future path is greater than q for
any action strategy σ. Therefore, for an MDP M with a set of strategies Σ, we define

ProbminM,s(ψ) = inf
σ∈Σ

PrMσ({δ ∈ IPathMσ(s) |Mσ, δ |= ψ}),

P robmaxM,s(ψ) = sup
σ∈Σ

PrMσ({δ ∈ IPathMσ(s) |Mσ, δ |= ψ}),

so that the satisfaction relation for the probability operator is given by:

M, s |= P./qψ if Probopt(./)M,s (ψ) ./ q,

where
opt(./) =

{
min when ./∈ {≥, >},
max when ./∈ {≤, <}.
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3.3.3 Model Checking

Now for the interesting part. Given a DTMC M = (S, sinit,T,L) and a PCTL∗

formula φ, how does one check whether M |= φ?3 The process of answering that
question is known as model checking and very efficient methods of doing it have
been developed. We describe them below, starting with the very intuitive CTL
model checking algorithm, followed by more obscure LTL model checking and
culminating in PCTL∗ model checking techniques. Note that our treatment of the
subject throughout this section is by necessity informal – rigorous approach would
easily consume half of this thesis. We refer the reader to an excellent textbook by
Baier and Katoen [83] for proofs, derivations and formal definitions.

CTL The basic idea for checking whether a CTL formula φ is satisfied in an
initial state sinit of a DTMC M involves recursively computing satisfaction sets of
subformulae of φ until the satisfaction set of φ itself can be computed. In particular,
every CTL formula, say φ, is obtained by a repeated application of the grammar
given in Section 3.3.2. Reversing this process gives the parse tree of φ, whose nodes
are subformulae of φ (the root being φ itself) and leaves are atoms, such as true or p.
To model check φ, we traverse its parse tree bottom-up, at each node computing all
states in which a subformula φ1 that this node corresponds to is satisfied (called the
satisfaction set of φ1). For the leaves of the parse tree, this task is trivial. For the
nodes, the way the satisfaction set is computed depends on the principal connective
of the subformula that the node represents; we overview the possible cases below.
Once the satisfaction set H of subformula φ1 is computed, the corresponding node
may be turned into a leaf by introducing a new atomic proposition, which is true
precisely in states that belong to H. That way, every node can be treated uniformly.

We now consider the crucial ingredient of the algorithm, i.e., the recursive
step that computes the satisfaction set of a formula φ given satisfaction sets of its
subformulae. We overview the key points of the algorithm, but for a detailed, rigorous
treatment, we refer the reader to a standard textbook on model checking [83].

The course of action depends on the principal connective of φ. When this
top-level operator is a standard propositional one, such as ∧ or ¬, computing the
satisfaction set of φ boils down to performing a set complement or intersection. The
interesting case is when the principal connective is a quantifier, ∀ or ∃. Below we
focus on the latter case, i.e., CTL formulae of the form ∃#φ1 or ∃(φ1Uφ2).

3Recall that M |= φ is short for M, sinit |= φ
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φ = ∃#φ1 This is the simpler case of the two. Intuitively, states satisfying
φ are states that have a successor state which satisfies φ1. Formally, given a
DTMC M = (S, sinit,T,L), Sat(∃#φ1) = {s ∈ S | Post(s) ∩ Sat(φ1) 6= ∅}, where
Post(s) = {s′ ∈ S | T(s, s′) > 0} is the set of successors of s in M. This identity
yields a simple algorithm for computing the satisfaction set of φ: iterate over states
of M and, for each, check if it has a successor that belongs to Sat(φ1).

φ = ∃(φ1Uφ2) Due to the “infinite” semantics of the U operator, this case is
somewhat more involved. Computing the satisfaction set of φ takes the form of an
iterative procedure inspired by an equivalence ∃(φ1Uφ2) ≡ φ2 ∨ (φ1 ∧ ∃#∃(φ1Uφ2).
Intuitively, a state satisfies φ if either (i) it satisfies φ2 or (ii) it satisfies φ1 and
has a successor state that satisfies φ. This gives rise to an iterative algorithm that
starts with a set U = {s ∈ S | s ∈ Sat(φ2)} and at each step adds a state s′ ∈ S,
such that (i) s′ 6∈ U , but (ii) φ1 is satisfied at s′ and s′ has a successor in U .

The algorithms presented above can be easily adapted to handle CTL formulae
whose principal connective is a universal quantifier.

LTL Unfortunately, LTL formulae do not admit a simple, intuitive model checking
algorithm, as CTL formulae do. Instead, verifying an LTL formula ψ is reduced
to checking a reachability (computing the probability of paths that reach a state
in some target set) or persistence (computing the probability of paths that reach
and forever remain in some target set) property, or computing the probability of
accepting runs in a certain product Markov chain.

A key insight that makes this procedure work is that every LTL formula can be
represented by a deterministic Rabin automaton (DRA). In particular, given a set
of atomic propositions AP and an arbitrary LTL formula ψ, one can associate to
it a DRA A with alphabet Σ = 2AP , such that words accepted by A are precisely
the infinite paths satisfying ψ. Now, to model check ψ on a Markov chain M, one
constructs a DRA A corresponding to ¬ψ, followed by forming a product Markov
chain M⊗A. Intuitively, M⊗A simulates execution of M, additionally recording
the corresponding state of A. With that, M |= ψ is equivalent to nonexistence of
a path in M ⊗A satisfying the accepting condition of A (Algorithm 1).

Besides verifying an LTL formula ψ, it is often of interest to compute the
probability that ψ is satisfied on paths starting from a given state, i.e., to verify
formulae of the form P./qψ. This requires computation of accepting BSCCs in
the product Markov chain, along with their reachability probabilities. Then, the
probability of ψ being satisfied in M is the same as the probability of reaching
an accepting BSCC in M ⊗ A (Algorithm 2).



3. Background 31

Algorithm 1: LTL model checking algorithm [83]
input :Markov chain M, LTL formula ψ
output :M |= ψ

1 A← DRA corresponding to ¬ψ;
2 Construct a product Markov chain M⊗A;
3 if M⊗A has a path satisfying accepting condition of A then
4 return NO
5 else
6 return YES
7 end

Algorithm 2: Computing probability of an LTL formula [83]
input :Markov chain M, state s, LTL formula ψ
output :Prob(s, ψ)

1 A← DRA corresponding to ψ;
2 Construct a product Markov chain M⊗A;
3 Compute (accepting) BSCCs of M⊗A;
4 F ← ∪{s | s is in some accepting BSCC};
5 qs ← δ(q0, L(s)); // state of A corresponding to s
6 return ProbM⊗A((s, qs),3F );

PCTL∗ We now give an overview of PCTL∗ model checking, which builds upon
the techniques presented above. Formally, we consider the problem of, given a
Markov chain M and a PCTL∗ formula φ, deciding whether M |= φ holds. The
main procedure is similar to the one for CTL; it involves a bottom-up traversal of
the syntax tree of φ, which computes at each node the satisfaction set Sat(φ′) =
{s ∈ S | s |= φ′}, where φ′ is the state subformula of φ corresponding to that node.
Once Sat(φ′) is determined, φ′ is replaced in the original formula by a new atomic
proposition a′φ, such that a′φ ∈ L(s) iff s ∈ Sat(φ′).

As for CTL, the way Sat(φ′) is computed depends on its principal connective
and is trivial when it is a standard propositional operator. The interesting case
is when φ′ = P./qψ; it turns out we can use the technique presented above for
computing probabilities of LTL formulae.

Now, ψ will not in general be an LTL formula; however, with the replacement
specified above, it will. Intuitively, what causes a path formula ψ in PCTL∗ to not be
an LTL formula is the presence of the probability operator(s) P. Suppose φ′ = P./qψ′

is the innermost subformula of ψ that uses the P operator. Since ψ′ has no P
operator in its scope (by assumption), it is an LTL formula, whose probability can be
computed according to Algorithm 2. Upon replacing φ′ with an atomic proposition
aφ′ , we proceed recursively, eventually obtaining ψ with no P operators inside it.
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This idea is formalised with a notion of maximal proper state subformula of
a PCTL∗ formula φ, defined as a subformula of φ that differs from φ and is not
contained in any other proper state subformula of φ. Then, if we encounter a
formula of the form P./qψ as part of the model checking algorithm, we know that all
maximal proper state subformulae in ψ have been replaced by atomic propositions;
this follows from the bottom-up nature of the algorithm. Therefore, ψ is an LTL
formula and the satisfaction set of P./qψ can be computed using automata-based
approach. Algorithm 3 formalises the procedure outlined above.

Algorithm 3: PCTL∗ model checking algorithm [83]
input :Markov chain M, PCTL∗ formula φ
output : Sat(φ)

1 subs ← subformulae of φ ordered by formula length non-decreasingly;
2 foreach φ′ ∈ subs do
3 switch φ′ do
4 case true: Sat(φ′) = S;
5 case p: Sat(φ′) = {s ∈ S | p ∈ L(s)};
6 case ¬φ′′: Sat(φ′) = S \ Sat(φ′′);
7 case φ′1 ∨ φ′2: Sat(φ′) = Sat(φ′1) ∪ Sat(φ′2);
8 case ∀ψ: Sat(φ′) = SatLTL(ψ) where SatLTL(ψ) is determined by

LTL model checker;
9 case Pr./qψ: Sat(φ′) = {s ∈ S | Pr(s |= ψ) ./ q} where Pr(s |= ψ)

is determined by LTL model checker;
10 end
11 replace φ′ by aφ′ in φ where aφ′ ∈ L(s) iff s ∈ Sat(φ′);
12 end
13 return Sat(φ);

3.4 Game Theory

Game theory concerns itself with mathematical formalisation of interactions between
entities (be it people, computer agents, states or corporations) that pursue their
own interests (which may or may not be aligned). The work of Oskar Morgenstern,
John von Neumann [84] and John Nash [85], among others, has brought rapid
progress of this area in the latter half of the 20thcentury. It is now widely used
in economical models and has found a wealth of applications in computer science.
Below, we overview the basic building blocks of game theory.
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Player 2
D C

Player 1 D (−2,−2) (0,−3)
C (−3, 0) (−1,−1)

(a) Prisoner’s dilemma

Player 2
H T

Player 1 H (1,−1) (−1, 1)
T (−1, 1) (1,−1)

(b) Matching pennies

Figure 3.2: Basic one-shot games

3.4.1 Normal Form Games

The most basic game structure, called a normal form game, is a tuple (N,Σ, u),
where N = {1, . . . , n} is a set of players, Σ = {Σ1, . . . ,Σn} is a set of possible
(pure) strategies of each player and u = {u1, . . . , un} is a set of utility functions
of players, where ui : Σ1 × . . .× Σn → R for i ∈ N . The interpretation of such a
structure is a game in which each agent selects a single strategy, but their utility
depends also on what other players choose.

A tuple of strategies, one for each player, ~σ = (σ1, . . . , σn) ∈ Σ1 × . . . × Σn

is called a strategy profile. Each strategy profile defines a unique outcome of
the game. We also denote by ( ~σ−i, σ′i) a strategy profile obtained by replacing
the ithcomponent of ~σ with σ′i.

Since each agent selects their action once, normal form games are often referred
to as single-shot games. Additionally, when n = 2, i.e., there are only two players,
a single-shot game can be represented by its payoff matrix, examples of which are
displayed in Figure 3.2. Strategies are represented as names of rows and columns,
such as D and T , while utilities of each player corresponding to each outcome make
up the entries of the matrix. Utilities are often referred to as payoffs of the players.

Nash Equilibrium

The crucial question to ask about games such as those from Figure 3.2 is what
actions should players take to maximise their utility.

Pure-Strategy NE This matter is addressed by one of the most celebrated
concepts of game theory, that of Nash Equilibrium (NE). In its most basic form, it
distinguishes those outcomes of the game that are characterised by the property
stating that no player has an incentive to deviate from the chosen strategy. For
example, in the prisoner’s dilemma (Figure 3.2a), outcomes (D,C) and (C,D) both
satisfy that property. Formally, a (pure-strategy) Nash Equilibrium is a strategy
profile ~σ such that, for every player i ∈ N and a strategy σ′i ∈ Σi, ui(~σ−i, σ′i) ≤ ui(~σ).
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Mixed Strategy NE A natural question to ask at this stage is whether every
game features a Nash Equilibrium. Thanks to a famous result by Nash [86], we can
answer in the affirmative, as long as we generalise the above definition to mixed
strategies. To see why this is necessary, consider the game of matching pennies,
depicted in Figure 3.2b. Given any (pure) strategy profile, one of the players would
rather switch their strategy and obtain a higher payoff. Therefore, no pure-strategy
Nash Equilibrium exists. However, allowing mixed strategies, defined as probability
distributions over pure strategies, enables us to recover an equilibrium for such games.
In particular, equipping each player with a mixed strategy σ = 〈H → 0.5, T → 0.5〉
that plays H and T with equal probabilities results in a Nash Equilibrium.

3.4.2 Extensive Form Games

Many scenarios that call for strategic reasoning are not as simple as deciding on a
strategy and observing the outcome. More often, players repeatedly choose their
actions, make observations and revise plans. Most board games, diplomacy or
military conflicts follow this mechanism. As long as such a repeated game is finite,
it can be represented as a normal form game. It is much more practical, however, to
use an alternative representation, called extensive form game. While normal form
is synonymous with a (payoff) matrix, extensive form amounts to a tree.

Syntax A tree structure T = (V,E, v0) consists of a set of vertices V , a set
of edges E ⊆ V × V and a root v0 ∈ V . The leaves (or terminal nodes) of T ,
denoted leaves(T ) ⊆ V are nodes with no outgoing edges, i.e., leaves(T ) = {v ∈
V | (v, v′) 6∈ E for all v′ ∈ V }.

In its simplest form, an extensive form game G amounts to a tuple (N, T, {Vi}i∈N ,
ui), where N = {1, . . . , n} is a set of players, T = (V,E, v0) is a tree structure,
{Vi}i∈N is a partition on V \ leaves(T ) that assigns each node to one player and
ui : leaves(T ) → R represents payoffs of player i ∈ N . Nodes of the tree are
states of the game, while edges are actions that players take. We assume that a
single player takes action in every state (i.e., the game is turn-based), hence the
partitioning of V into sets Vi. For convenience, each edge (v, v′) is labelled with
an action a(v, v′) and, for v ∈ Vi, A(v) = {a(v, v′) | (v, v′) ∈ E} denotes the set of
actions available to player i in v. Moreover, Ai = ⋃

v∈Vi A(v) consists of all actions
available to a given player in all states that belong to them. An example of an
extensive form game is depicted in Figure 3.3; note how edges are labelled with
actions, and the partition of non-terminal game states is represented by colouring
the nodes (black for player 1, white for player 2).
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(0, 2)

L

(0,−1)

l

(3, 1)

r

R

Figure 3.3: A two-player extensive form game

Note that, if we pick some non-terminal node v ∈ V of a game G, the subtree
rooted at v represents a game in itself. Its components are easily defined by
restriction to the subtree and such a game is referred to as a subgame of G. For
example, game from Figure 3.3 has a single subgame rooted at the white node.

The basic model just presented comes in many varieties, depending on the
setting to which it is applied. Some major considerations are: (i) whether all players
know the mechanics of the game (games of complete vs incomplete information),
(ii) whether players can observe the current state of the game (imperfect vs perfect
information games), (iii) if there is randomness in the way the game develops, or
(iv) whether players can remember what happened in the past (perfect recall). For
the time being, we assume the basic variation of extensive form game as stated,
but we discuss most notable variations in Section 3.4.3.

Strategies A (pure) strategy σi : Vi → Ai of a player i dictates the action this
player takes on their turn at any point of the game. As before, Σi denotes the set
of pure strategies of i and Σ the set of strategy profiles. A mixed strategy is a
probability distribution over pure strategies; however, as long as perfect recall is
assumed, every mixed strategy α ∈ D(Σi) has an equivalent behavioural strategy
β : Vi → D(Ai). This is significant because behavioural strategies are much
more intuitive and easier to specify. Therefore, in what follows, we restrict our
attention to behavioural strategies.

Equilibria Naturally, the concept of Nash Equilibrium transfers over to extensive
form games. In fact, assuming perfect information, and thanks to the game being
turn-based, a pure-strategy Nash Equilibrium is guaranteed to exist for every
extensive form game. It can be computed using a very simple procedure called
Zermelo’s algorithm, or simpler, backward induction. The idea is to start at the
leaves and make one’s way up the tree, at each node selecting an optimal (i.e.,
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one that maximises utility) action for the player whose turn it is. Such a node
may then be replaced by the leaf corresponding to the chosen action. For example,
applying backward induction to the game from Figure 3.3 yields a Nash Equilibrium
〈R, r〉 (where the strategy of each player is succinctly represented as the action
they take at their unique decision node).

However, as we all know, “there ain’t no such thing as a free lunch”. In this
case, guarantee of existence of a (pure-strategy) Nash Equilibrium comes with
a cost of often having too many Nash Equilibria, especially when most of them
display undesirable properties. Even in our simple example, closer inspection reveals
that the strategy profile 〈L, l〉 is also a Nash Equilibrium. However, it relies on a
non-credible threat of player 1 selecting action l, which is not in their best interest.
Examples such as this one led Reinhard Selten to refine the notion of equilibrium
with the introduction of subgame-perfect equilibria [87]. It achieves the goal of
filtering unwanted equilibria by requiring that a strategy profile remains a Nash
equilibrium when restricted to any subgame of the game in question.

Further problems arise when one starts considering variations of extensive form
games, such as imperfect (or incomplete) information games. This lead various
authors to formulate further equilibria refinements, notably sequential equilibria [88]
or trembling hand perfect equilibria [89].

3.4.3 A Few Game Types

As mentioned above, many variations of extensive form, as well as normal form,
games arise once one starts relaxing some of the assumptions. This section overviews
the variations that are relevant from the point of view of this thesis.

Stochastic Games

Stochastic multiplayer games (SMG) generalise the concept of extensive form
games by dropping the requirement of the state graph being a tree, and allowing
probabilistic transitions and concurrency. Stochastic games share many features
with transition systems introduced in Section 3.3.1 and can be considered a model
bridging the gap between automated verification and game theory. A crucial novelty,
compared to DTMCs and MDPs, is presence of multiple agents, whose preferences
will be captured with a utility function. Due to unlimited time horizon and absence
of terminal nodes, payoffs in stochastic games are associated to taking actions and
visiting states. In particular, we define a stochastic multiplayer game (with rewards)
as a tuple (Ags, S, {Act}A∈Ags,T,R), where Ags is a (finite) set of agents; S is a
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(finite) set of states; ActA is a (finite) set of actions of agent A; T : S×Act → D(S)
is a (partial) probabilistic transition function, where Act =×A∈Ags ActA is a set of
global actions; and R = ⋃k

i=1{Ri} (for some k ∈ N) is a set of reward structures,
with Ri = {ri,A}A∈Ags and ri,A = (ra

i,A, rs
i,A), ra

i,A : S × Act → R (action rewards),
rs
i,A : S → R (state rewards).

Turns Recall that each global action a is a vector of local actions of each agent; we
use aA to denote the component of a corresponding to A’s local action. If an agent
does not perform an action at a given state, we set aA = ⊥. A gameG is turn-based if,
for all s ∈ S, there exists A ∈ Ags such that if T(s, a)(s′) > 0 for some a and s′, then
aB = ⊥ for all agents B 6= A. If that condition does not hold, then the game is called
concurrent. We introduce a function actions : S→ P(Act), which retrieves actions
available in a given state, defined by actions(s) = {a ∈ Act | T(s, a) is defined}.
Also, for turn-based games, we introduce a function owns : S → Ags, which
associates a state s to the unique agent that takes an action in s, so owns(s) = A

iff there exists an a ∈ Act such that T(s, a) is defined and aA 6= ⊥.

Paths Let FPath denote the set of finite paths, which we take to be sequences
of states interleaved with actions taken at those states, i.e., sequences of the form
s0a0s1 . . . sn, such that T(si, ai)(si+1) > 0 for all 0 ≤ i < n. We assume all paths
start and end in a state. For a path ρ ∈ FPath, we use last(ρ) to refer to the last
state of ρ, first(ρ) to refer to its first state and length(ρ) is its length, defined as
one less than the number of states in ρ. Moreover, if ρ = s0a0s1 . . . an−1sn, then
given 0 ≤ i < j ≤ n, ρ[i . . . j] denotes a fragment siai . . . sj of ρ. If δ ∈ FPath is
another finite path that satisfies δ[0 . . . n] = ρ, we say δ extends ρ or that ρ is a
prefix of δ. We also use ρs to denote the set of states in ρ and ρa to refer to the
set of actions taken along ρ. Finally, for a ∈ ρa, s(a) ∈ ρs is the state at which a
was taken (i.e., s(ai) = si). We allow single-state paths of length 0.

Utility Given an agent A ∈ Ags, cumulative utility function uA : FPath → R of
A ranks possible paths according to agent A’s preference, so that given ρ and ρ′,
uA(ρ) > uA(ρ′) if and only if A prefers ρ to ρ′. To reason about agent behaviour, it
is helpful to assume a certain structure on the utility function; for example, taking
it to be a linear combination of rewards is referred to as a linear utility. Then, given
a set of coefficients {λAi }1≤i≤k, utility gained by A in a state s is given by

us
A(s) =

k∑
i=1

λAi rs
i,A(s),
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while utility obtained when taking action a at s is expressed as

ua
A(s, a) =

k∑
i=1

λAi ra
i,A(s, a).

With that, cumulative utility gained by A along a path ρ ∈ FPath is given by

uA(ρ) =
∑
s∈ρs

us
A(s) +

∑
a∈ρa

ua
A(s(a), a).

Softmax Choice A benefit of numerical utility is that it allows one to define
decision making in the face of uncertainty. It is common to assume that agents
are soft expected utility maximisers. To clarify what that means, suppose that the
system is in a state s and it is agent’s A turn to take an action, selected from a set
A0 = actions(s). For a ∈ A0, let Ua denote expected utility of A when they take
an action a. Then, the probability of agent A taking some action a0 ∈ A0 is

exp(αAUa0)∑
a∈A0 exp(αAUa)

, (3.1)

where exp(x) = ex denotes the Euler’s number raised to power x. Thus, agents
aim to maximise their expected utility, i.e., select an action that yields such
a maximum, but do that with a certain amount of noise, measured by their
rationality parameter αA ∈ [0,∞).

Partially Observable Games

A widely studied generalisation of games involves relaxing the assumption that all
agents can observe the state of the game at all times. This is particularly justified
in competitive scenarios where global state is made up of local states of each agent
and an agent can’t observe local states of its opponents. This imperfect information
of players is typically captured by introducing for each agent a partition on the
states of the game, referred to as information sets. The idea is that an agent cannot
distinguish states belonging to the same information set. With that, care has to be
taken that strategies as well as payoffs of players are defined in a way that does not
allow an agent to distinguish between states in the same information set.

For games with large state spaces, explicitly specifying all information sets for
each agent might not be practical. A more succinct representation is commonly
used, whereby for each agent A ∈ Ags, a set of observations OA along with an
observation function obsA : S → OA is defined.
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Bayesian Games

A second type of games characterised by players’ lack of full information is referred
to as games of incomplete information. Unlike imperfect information, which only
concerns observability of game state, information incompleteness has to do with
the ”rules“ of the game. In particular, in games of incomplete information, a player
may not know the utility function of their opponent(s), the transition function,
the available strategies or even who the other players are. Hence, this category
of games is much more general than games of imperfect information and hence,
much more difficult to solve. Through some clever observations, all sources of
information incompleteness may be reduced to players not knowing each others’
utility functions, which is what we assume below.

A major complication arising from this lack of information of players are infinitely
nested expectations. Consider a two-person game in which players do not know
each other’s utility functions. To compute its course of action, player 1 will need
to consider what their opponent may do, which in turn necessitates player 1 to
consider player 2’s utility, captured by player 1’s first-order expectation. But
then, player 2 may be tempted to estimate what player 1 thinks about player 2’s
motivation – this is already second-order expectation. This kind of reasoning may
be continued ad infinitum and is highly problematic from the point of view of
efficient representation and computation of solutions concepts.

An alternative model was famously proposed by John Harsanyi in his three-part
paper [90–92]. His key contribution is a reduction of an incomplete information
game to an imperfect information game, which, albeit different from the original, is
game-theoretically equivalent to it. This is made possible by encoding the variability
of possible characteristics of players with a set of types. Then, each configuration
of player’s utility function or any other variability in their attributes corresponds to
a unique type of that player. Hence, assuming an assignment of types to players is
given, the uncertainty in the game is eliminated. With that, the aforementioned
reduction is achieved by assuming that initial transition of the game is preceded
by a move of nature that assigns a type to each player, according to a probability
distribution which is known to all players. Crucially, each player is assumed to
know their own type, but cannot generally observe types of their opponents, which
yields a game of imperfect information.



3. Background 40

3.5 Modelling Human Decision Making

Human decision making has been studied by economists, psychologists, social
scientists and philosophers for centuries [93]. An introduction of utility that
captures human preferences has enabled expressing the ideas mathematically
and led to expected utility maximisation principle, famously formalised by Von
Neumann and Morgenstern [84], and its refinements, such as Subjective Expected
Utility (SEU) [94]. However, numerous experiments involving human subjects
have contradicted predictions made by this theory. As a result, many alternative
formalisms have been devised to explain how humans make decisions.

Following a recent survey [95], modern models of human decision making can
be divided into expert-driven, data-driven and hybrid. The first category comprises
formalisms that are broadly based on expected utility principle, but modified to
reflect limitations of human cognitive processes. For example, quantal response [96]
assumes that agents compute expected utilities noisily and cognitive hierarchy [97]
models dictate that humans can only perform nested reasoning up to a certain depth.
Knowledge of a domain expert is usually required to devise an appropriate utility
function and agents’ parameters. Moreover, apparent deviations from rationality
have been widely studied in behavioural sciences and a number of cognitive biases
have been proposed based on results of experiments; this includes anchoring (over-
reliance on single piece of information), herding (following majority), loss aversion,
default bias (tendency to avoid decision making if default choice is provided) or
framing (making different decision in the same situation depending on description).

Prospect theory [98] formalises some of the above observations in a mathematical
model similar to expected utility theory. A crucial deviation from the standard
method is that alternative outcomes are weighted according to an appropriately
devised weight function, rather than their probabilities. This allows one to model
experimentally observed deviations from rationality such as overweighting small
probabilities or overweighting certain outcomes, resulting in a weight function
that is subadditive in the lower region, subcertain (π(p) + π(1 − p) < 1) and
subproportional. The second major contribution of the authors is the value function
which describes utility humans gain from changes in wealth or welfare. Informed
by experimental evidence, it is proposed that the value function be concave for
gains and convex for losses and steeper for losses than for gains. This reflects a
commonly observed property of human preferences, which dictates that a loss of
$100 is felt more strongly than earning $100, and the bigger the gain (or loss),
the less sensitive we become to variations.
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On the other hand, data-driven human decision-making models employ recent
advances in machine learning (ML) to predict people’s actions. Perhaps the most
notable application was AlphaGo [99], a deep (and reinforcement) learning-fuelled
AI agent that beat the best human players in the game of Go. Importantly,
predicting moves of its opponent is a vital step in how AlphaGo computes its
actions. Other notable data-driven models predict behaviour based on visual data,
be it YouTube videos [100] or recordings of humans driving [101]. However, success
of such models is dependent on training them with large amounts of data, which
is not available for most applications. While technological progress that brings
wearable devices into our lives is expected to alleviate that problem, widespread
adoption is a matter of years rather than months.

As a result, high hopes are placed on the third, hybrid approach, which promises
to combine the strengths and eliminate weaknesses of expert- and data-driven
paradigms. It typically comprises a machine learning model in which features
encode domain expert’s knowledge and insight. Often, those additional features
capture standard principles like utility maximisation or well-known cognitive
biases [51, 102]. Other examples include applications in negotiation theory [103]
and argumentation theory [104], and they have been shown to outperform purely
ML-based prediction models.
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The aim of this thesis is to develop a quantitative framework for reasoning
about trust. In this chapter, we present our first attempt at devising such a model.
We begin by giving a high-level outline of the framework (Section 4.1), followed
by a more detailed, formal treatment in Sections 4.2 and 4.3. The example given
in Section 4.4 puts theory into practice by modelling a famous money-exchange
scenario called trust game using our formalism. Section 4.5 continues the practical
theme by presenting algorithms for model checking logical formulae on instances
of our model. Finally, we conclude by taking a critical view of the framework,
pointing out its limitations and shortcomings (Section 4.6).

Sections 4.1 through 4.4 of this chapter are based on a published journal
article [29], coauthored by the writer of this thesis, along with Marta Kwiatkowska

42
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and Xiaowei Huang. In particular, major contributions include the running example,
formulation of stochastic multiplayer game with cognitive dimension, the induced
SMG concept, auxiliary transition function and belief ASMAS construction, with
minor contributions in the formulations of the logics, cognitive state and pro-
attitude synthesis.

4.1 Overview

Our framework aims to overcome the deficiencies of the approaches described in
Section 2.1. It combines a stochastic model derived from concurrent game and a
probabilistic logic based on PCTL∗. This setting enables us to define cognitive
trust in a quantitative manner, as a probabilistic belief, conditioned on agent’s
mental attitudes. This complex definition of trust is possible thanks to a conceptual
division of the model into two dimensions: physical, where agents take actions, and
cognitive, representing mental processes that lead to decisions. Inspired by BDI
theory [41], each agent is endowed with a set of goals and intentions. Moreover,
model checking of trust formulae is considered, and although the general problem
is shown undecidable, fragments of the logic are proposed for which tractable
model checking algorithms exist.

4.2 Model Description

We now proceed with a formal introduction of the framework. This section describes
the model, which is essentially a stochastic multiplayer game with added structure,
while Section 4.3 presents a logical language used to reason about properties
of systems and express concepts such as trust. Note that our description is by
necessity concise – a thorough treatment of the subject, including syntax and
semantics of the model and the logic, as well as complexity results, is available
in the original publication [29]

An autonomous stochastic multi-agent system (ASMAS) is defined by a tu-
ple (Ags, S, Sinit, {ActA}A∈Ags, T , L, {OA}A∈Ags, {obsA}A∈Ags, {ΩA}A∈Ags,
{λA}A∈Ags, {pA}A∈Ags). More precisely, it is a concurrent game with a finite
number of states S, starting in some s ∈ Sinit, involving agents Ags taking actions
from Act =×A∈AgsActA, which cause the system to move from one state to another
according to a stochastic transition function T : S × Act → D(S). Additionally,
partial observability is employed to model agents’ inability to fully observe the
system’s state; it takes the form of a set of observations OA and an observation
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function obsA : S → OA for each A ∈ Ags. Finally, AP is a set of atomic
propositions and L is a standard labelling function L : S → 2AP mapping each state
s to a subset of atomic propositions that hold in s. The novel cognitive notions
{ΩA}A∈Ags, {λA}A∈Ags, {pA}A∈Ags, described in detail below, enable one to reason
about agents’ motivations, beliefs and trust between them.

Cognitive State First of all, in ASMASs, agents are equipped with goals and
intentions, where the convention is that goals are (mostly) static mental attitudes,
such as politeness or reliability, while intentions are dynamic short-term plans of
action, e.g., sharing the money, going shopping or stopping at a red light. The set
of possible goals of an agent A is denoted GoalA, while the set of intentions is IntA.
At any given time, an agent may have multiple goals (representing its long-term
objectives), but only a single intention (representing its immediate plans). A set of
goals and an intention make up what we refer to as agent’s cognitive (or mental)
state, which is part of a global state of the system and determines agent’s behaviour.
In fact, in ASMASs, we assume the existence of a one-to-one mapping from intentions
to action strategies. Goals, on the other hand, affect agent’s behaviour indirectly, by
influencing its intentions. The convention that agent’s cognitive state determines its
behaviour is important enough that we give it a name - we call it the deterministic
behaviour assumption. In summary, every agent in an ASMAS is equipped with
a set of goals and, based on its understanding of the system behaviour and other
agents’ attitudes, they select an intention (which in turn determines an action
strategy) that maximises the probability of achieving those goals.

Cognitive Dimension In order to model agents changing their mental attitudes,
in ASMASs, we distinguish two types of transitions: (i) temporal, which represent
agents taking actions in the physical space, as in regular multi-agent systems, and
(ii) cognitive, representing goal (less common) or intention (more common) changes.
Given states s and s′ and an agent A, s−→a

T s
′ denotes a temporal transition via

action a, while s−→A.g.x
C s′ (resp. s−→A.i.x

C s′) denote a goal (resp. intention) change
of agent A. The standard definition of a path as a sequence of states interleaved
with temporal transitions is extended in an ASMAS to allow cognitive transitions.

An intuitive way of thinking about an ASMAS is as a collection of stochastic
multiplayer games (SMG), each corresponding to a fixed configuration of agents’
goals and intentions. A system then starts in one of those SMGs, reflecting the
initial mental attitudes of agents, and the execution proceeds by interleaving agents’
temporal actions, which preserve the current SMG, and cognitive transitions, which
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Table 4.1: Correspondence between game dimensions

Temporal Cognitive

ActA 〈GoalA, IntA〉
T {ΩA}A∈Ags
σA πA = 〈πgA, πiA〉

switch to a different SMG. In fact, as a result of the deterministic behaviour
assumption, each individual SMG is fully deterministic and can be viewed as a
Markov chain, thereby greatly simplifying computations. The multidimensional
visualisation described above gives rise to our division of ASMASs into a temporal
dimension, consisting of temporal transitions, and a cognitive dimension, which
comprises all mental changes. We often refer to the SMG that corresponds to a
mental configuration of agents as the induced SMG.

The conceptual division of ASMASs into temporal and cognitive dimensions
serves also as an aid to see the correspondence between the two. For an agent A,
its goals GoalA and intentions IntA may be viewed as a cognitive counterpart
of A’s set of actions ActA.

In the temporal dimension, the transition function T specifies which actions
are available at which states. In the cognitive dimension, a similar role is assumed
by the cognitive mechanism ΩA = 〈ωgA, ωiA〉, which defines legal goal and intention
changes of agents, thereby specifying rules of how the system can evolve along
the cognitive dimension. Legal goal function ωgA : S → P(P(GoalA)) of agent A
is a mapping from states S into sets of subsets of GoalA, where, for any state
s, ωgA(s) consists of those subsets of GoalA that A can take on in state s. Legal
intention function is defined analogously.

Finally, we mention that a standard action strategy σA of A has its equivalent in
the mental dimension, in the form of A’s cognitive strategy πA, consisting of a goal
strategy πgA : FPathM → D(P(GoalA)) and an intention strategy πiA : FPathM →
D(IntA). This correspondence between game dimensions is summarised in Table 4.1.

Partial Observability It should perhaps not be surprising that the notion of
partial observability is present in ASMASs. The main motivation for its inclusion
is the intrinsic nature of cognitive state, which in general is not observable to
others. We capture that concept by introducing a set of observations OA and an
observation function obsA : S→ OA for each agent A. We say states s and s′ are
indistinguishable for A iff obsA(s) = obsA(s′). Typically, if s and s′ differ only in
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Figure 4.1: Probability spaces as seen by A. All paths with prefixes of a given colour
belong to the same probability space. For readability, we only highlight two such, but
there are more.

the cognitive state of agent A, say, then obsB(s) = obsB(s′) for all agents B where
B 6= A. Of course, this might not hold true in certain cases, such as when agent A
gives away hints that reveal its intention, for example by turning red when it intends
to lie. We mention that the notion of observation extends to paths, with path
observation defined as a sequence of observations of states that make up the path.

Transition Type A crucial role in the ASMAS framework is played by the belief
functions, which represent each agent’s understanding of the current system state
and its execution history. Intuitively, based on observations made at each time step
of the system’s execution, agents maintain a set of possible execution histories. We
assume that agents remember both their past observations, as well as the number
of states on the path (formally known as synchronous perfect recall).

In order to define the belief function, which quantifies likelihoods of possible
paths, a probability space on the set of all paths is required. The challenge here is
to resolve nondeterminism in the cognitive dimension and still obtain a well-defined
probability measure. The difficulties are as follows: (i) agents may change their
mental attitudes at arbitrary points, (ii) any agent may make a cognitive transition
and (iii) a mental change could take the form of either goal or intention change.

To cope with the above issues, we distinguish five different types of transitions
as seen by each agent: a temporal transition, own goal/intention change and other
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agent’s goal/intention change. Formally, given an ASMAS M, a path ρ = s0s1s2 . . .

and an agent A, tpA(sk, sk+1) denotes the type of transition taken to move from
sk to sk+1. The five cases are as follows:

• tpA(sk, sk+1) = a if sk−→a
T sk+1 for some a ∈ Act,

• tpA(sk, sk+1) = A.g.x if sk−→A.g.x
C sk+1 for some x ⊆ ωgA(sk),

• tpA(sk, sk+1) = A.i.x if sk−→A.i.x
C sk+1 for some x ∈ ωiA(sk),

• tpA(sk, sk+1) = B.g if sk−→B.g.x
C sk+1 for another agent B ∈ Ags and x ⊆

ωgB(sk),

• tpA(sk, sk+1) = B.i if sk−→B.i.x
C sk+1 for another agent B ∈ Ags and x ∈

ωiB(sk).

Given a path ρ, tpA(ρ) = tpA(ρ(0), ρ(1))·tpA(ρ(1), ρ(2))·. . . denotes the type of ρ.
We assume that each agent can distinguish paths of different types; in particular, it
can observe its own mental changes (which should not come as a surprise) and it can
tell when other agents make a cognitive transition and whether it’s a goal or intention
change (but it generally does not know what the new set of goals or new intention is).

Probability Spaces Now, rather than defining one large probability space
spanning all the possible paths in an ASMAS, we define one for each type. Since all
the paths that an agent cannot distinguish from each other are guaranteed to be in
the same probability space, such construction is sufficient for our purposes. As an
example, imagine a simple two-agent ASMAS, in which agents start by setting their
goals (first A, then B), followed by a global temporal transition, where two actions
a1 and a2 are available. We use A.g.x to denote a cognitive transition in which A
sets its goals to x. We assume that a1 will be selected if both agents have goals x
and that a2 will be selected if both agents have goals y (in line with deterministic
behaviour assumption). We do not consider other goal configurations for simplicity.
In such a system, each agent has a unique set of probability spaces. Figure 4.1
illustrates the probability spaces as seen by A; for readability, we only highlight
two such (one in red, one in blue), but there are more, corresponding to choosing
action a2 in the left subtree or action a1 in the right subtree. Figure 4.2 shows how
the same system is perceived by B. Note that each of A’s cognitive transitions
belongs to both probability spaces, depending on which path it is considered part
of; hence, their colour is magenta, a mix of red and blue.
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Preference Functions What remains to be explained is how nondeterminism
in the cognitive dimension is resolved. For example, how does agent A assign
probabilities to different goal changes of B? To capture that mechanism, we
introduce the concept of preference functions, which represent agents’ predictions
of others’ mental attitudes. In particular, for an agent A, its family of preference
functions pA = {〈gpA,B, ipA,B〉 | B ∈ Ags and B 6= A} consists of, for each other
agent B, a goal preference function gpA,B : S → D(P(GoalB)) and an intention
preference function ipA,B : S→ D(IntB). These functions associate with each state
a probability distribution over possible goal/intention changes of B, as seen by A.
In other words, they represent A’s beliefs about mental attitudes of B.

With that, based on temporal transition function T and preference functions
{pA}A∈Ags, we define an auxiliary transition function TA of an agent A ∈ Ags

as follows for s, s′ ∈ S:

TA(s, s′) =



T (s, a)(s′) if tpA(s, s′) = a,
gpA,B(s)(x) if tpA(s, s′) = B.g and s−→B.g.x

C s′,

ipA,B(s)(x) if tpA(s, s′) = B.i and s−→B.i.x
C s′,

1 if tpA(s, s′) = A.g.x for some x ∈ ωgA(s)
or tpA(s, s′) = A.i.x for some x ∈ ωiA(s).

Hence, TA resolves the nondeterminism in both the temporal and cognitive dimen-
sions. To define a probability measure, we need one more component: an initial
distribution µ0 ∈ D(Sinit), representing common prior assumption on initial system
state. Then, given an ASMAS M, we define for each agent A a set of probability
spaces, one for every path type. Fixing type t, the sample space consists of infinite
paths of type t starting in one of the initial states, i.e., ΩM,t = ⋃

s∈S,µ0(s)>0{δ ∈
IPathM(s) | tpA(δ) = t}. We associate a probability to each finite path ρ = s0...sn

consistent with t via function PrA(ρ) = µ0(ρ(0)) ·∏0≤i≤|ρ|−2 TA(ρ(i), ρ(i+ 1)). We
then set FM to be the smallest σ-algebra generated by cylinders {Cylρ ∩ ΩM,t |
ρ ∈ FPathM} and PrMA to be the unique measure such that PrMA (Cylρ) = PrA(ρ).
It then follows that (ΩM,t,FM,PrMA ) is a probability space.

Belief Function At any point of system’s execution, there are in general multiple
possible execution histories that an agent cannot distinguish. Belief function
of an agent captures the likelihoods that the agent assigns to those paths. Let
OPathA = {obsA(ρ) | ρ ∈ FPathM} be the set of all finite observation histories
(path observations), and given a path observation o ∈ OPathA, let class(o) = {ρ ∈
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Figure 4.2: Probability spaces as seen by B. For readability, only two are highlighted
(red and blue). Note that initial transition is unobservable to B, hence belongs to both
probability spaces as part of different paths – this is reflected by its magenta colour.

FPathM | obsA(ρ) = o} denote the set of all paths that A observes as o. Then the
belief function beA : OPathA → D(FPathM) of an agent A is given by:

beA(o)(ρ) = PrMA (Cylρ |
⋃

ρ′∈class(o)
Cylρ′). (4.1)

Hence, given an observation o ∈ OPathA, agent A’s belief that the current path
is ρ ∈ class(o) is the probability of ρ conditioned on the fact that the current
path belongs to the set class(o).

4.3 Probabilistic Rational Temporal Logic

We now present the formal language used to express properties of ASMASs. In
what follows, let M = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags,
{ΩA}A∈Ags, {λA}A∈Ags, {pA}A∈Ags) be an instance of an ASMAS. The syntax of
PRTL∗ is as follows:
φ ::= p | ¬φ | φ ∨ φ | ∀ψ | P./qψ | GAφ | IAφ | CAφ | B./qA ψ | CT./qA,Bψ | DT

./q
A,Bψ

ψ ::= φ | ¬ψ | ψ ∨ ψ | #ψ | ψUψ

where p ∈ AP , A,B ∈ Ags, ./∈ {<,≤, >,≥}, and q ∈ [0, 1].
We first give intuitive interpretations of the novel operators and then define their

formal semantics, on which our algorithms are based. Standard PCTL∗ operators
were covered in Section 3.3.2, so we omit discussing them below.
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Cognitive Operators GAφ, IAφ and CAφ are referred to as cognitive operators
and they all express that agent A can ensure future satisfaction of φ by modifying
its cognitive state in some way. Before we get into the details of each operator,
we introduce some notation. Recall that, for any state s, ωgA(s) specifies goal
changes that agent A can legally make in a state s. We therefore call them legal
goal changes. On the other hand, πgA(s) specifies goal changes that are under A’s
consideration. We call these possible goal changes.

With that, GAφ states that φ will hold regardless of A’s possible goal changes.
In other words, whatever possible goal change A performs, φ will hold anyway.
Similarly, IAφ expresses that φ will hold regardless of A’s possible intention changes.
Finally, CAφ means that A has a legal intention, taking which will make φ true.
Formal semantics of those operators is as follows:

• M, ρs |= GAφ if ∀x ∈ supp(πgA(ρs))∃s′ ∈ S : s−→A.g.x
C s′ and M, ρss′ |= φ,

• M, ρs |= IAφ if ∀x ∈ supp(πiA(ρs))∃s′ ∈ S : s−→A.i.x
C s′ and M, ρss′ |= φ,

• M, ρs |= CAφ if ∃x ∈ ωiA(s)∃s′ ∈ S : s−→A.i.x
C s′ and M, ρss′ |= φ.

Note that the semantics is history-dependent, which is why full path ρs is used in
the satisfaction relation, rather than state s only, as would be the case for PCTL∗.
We say that a PRTL∗ formula, e.g., GAφ, is evaluated/verified “at ρ”, meaning that
it is being evaluated at a point of the system execution when execution history is ρ.

Moreover, we note that, when evaluating PCTL∗ operators, we assume that
agents keep their current mental attitudes, i.e., that the future path is purely
temporal. Formally, for an ASMAS M and execution history ρ, PCTL∗ operators
evaluated at ρ should be interpreted over the stochastic multiplayer game induced
from M with mental state as recorded in the last state of ρ. Furthermore, when
evaluating PRTL∗ formulas, we assume agents can change their goals and intentions
at any time. That ensures that the cognitive operators can be applied at any point of
execution, as well as meaningfully chained, nested or manipulated in any other way.

Belief and Trust Operators We now turn to the more complex belief and trust
operators. Before explaining their semantics, we introduce a concept which is present
in the definition of all three of the operators, namely belief-weighted expectation.
Recall that each agent is equipped with a belief function, which represents its belief
about the current execution history of the system. Suppose now that an agent A
wishes to evaluate a measurable function f : FPathM → [0, 1] at a given point of
execution of the system. Since they do not know what the current path is, the best



4. Autonomous Stochastic Multi-Agent Systems (ASMAS) 51

they can do is to use their belief function to find their subjective expectation of
f . Formally, we define the belief-weighted expectation of f as

EbeA [f ] =
∑

ρ∈FPathM

beA(ρ) · f(ρ).

With that, the belief and trust operators are defined as follows.

• M, ρ |= B./qA ψ if
EbeA [VB,M,ψ] ./ q,

where the function VB,M,ψ : FPathM → [0, 1] is such that

VB,M,ψ(ρ′) = PrM,ρ′(ψ)

• M, ρ |= CT./qA,Bψ if
EbeA [V ./

CT,M,B,ψ] ./ q,

where the function V ./
CT,M,B,ψ : FPathM → [0, 1] is such that

V ./
CT,M,B,ψ(ρ′) =


sup

x∈ωiB(last(ρ′))
PrM,B.i(ρ′,x)(ψ) if ./∈ {≥, >}

inf
x∈ωiB(last(ρ′))

PrM,B.i(ρ′,x)(ψ) if ./∈ {<,≤}.

• M, ρ |= DT./qA,Bψ if
EbeA [V ./

DT,M,B,ψ] ./ q,

where the function V ./
DT,M,B,ψ : FPathM → [0, 1] is such that

V ./
DT,M,B,ψ(ρ′) =


inf

x∈supp(πiB(ρ′))
PrM,B.i(ρ′,x)(ψ) if ./∈ {≥, >}

sup
x∈supp(πiB(ρ′))

PrM,B.i(ρ′,x)(ψ) if ./∈ {<,≤}.

Hence, the belief operator B./qA ψ expresses that, from the point of view of agent A,
the belief-weighted expectation of the probability of ψ being true is in relation ./
with q. Next, the competence trust operator CT./qA,Bψ states that A believes that
B is capable of implementing ψ (i.e., ensuring probability of ψ being true is in
relation ./ with q), where capability is understood as existence of a legal intention.
Or, more succinctly, A trusts B on its competence to implement ψ. On the other
hand, the disposition trust operator DT./qA,Bψ expresses that A believes that B is
willing to implement ψ, where willingness means that all B’s possible intentions
guarantee satisfaction of ψ with sufficient probability.
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The difference in semantics between competence and disposition trust boils down
to two aspects: (i) a trivial one, which is the scope of intentions under consideration
(legal vs. possible) and (ii) a more subtle one, which is the way supremum and
infimium are used depending on the relational symbol. In particular, when ./

is one of ≥, >, CT./qA,Bψ computes the maximum probability of implementing ψ,
while DT./qA,Bψ is defined as the minimum such probability. In other words, CT./qA,B
gives an upper bound on B’s capability, while DT./qA,B gives a lower bound on
B’s willingness, to implement ψ.

We note that the presented semantics is valid under the deterministic behaviour
assumption, in which case the probability of a formula can be determined directly,
without referring to action strategies. It is possible to give a more general semantics,
with respect to all possible action strategies. However, that adds complexity
in the PCTL∗ portion of the model checking algorithm, but does not affect the
verification of novel operators. Therefore, without loss of generality, we focus our
attention on the simplified semantics.

Pro-Attitude Synthesis Note that cognitive strategies {πA}A∈Ags of agents,
despite playing an important role in the framework and in the semantics of logical
operators, are not part of the ASMAS definition. That is because they generally
lack a finite representation, which is required for all components of the model. A
mechanism is therefore introduced that enables one to obtain the infinite structure
{πA}A∈Ags from a finite structure {λA}A∈Ags called the guarding mechanism. The
intuitive idea behind λA is to specify conditions, expressed in logic, under which
agent A takes on a given goal or intention. The assumption is that this resembles
reasoning of humans, who do not decide on their plans based on full “execution
history”, but rather using their current knowledge or beliefs about the system.

Therefore, a subset of PRTL∗ is defined, called LA(PRTL∗), which consists of
Boolean combinations of atomic propositions and belief and trust operators of
agent A. Note that LA(PRTL∗) allows the outermost operator to be of the form
B=?
A ψ or T./?A,Bψ (where T ranges over CT and DT), i.e., returning the numeric value

of A’s belief, or a lower/upper bound on its trust towards B. Then, a guarding
mechanism λA of A is defined as consisting of a goal guard function λgA : P(GoalA)→
LA(PRTL∗) and an intention guard function λiA : IntA × P(GoalA)→ LA(PRTL∗).
Thus, the guarding mechanism maps goals and intentions to conditions, which can
then be evaluated at each point of execution of the system to check whether a given
goal/intention is “enabled” or not. Intuitively, an agent’s plan of action (intention)
depends on their goals and their understanding of the state of the system.
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Formally, the synthesis of cognitive strategies from the guarding mechanism
is facilitated by the evaluation functions; a goal evaluation function evalgA, where
for x ⊆ P(GoalA), evalgA(x) : FPathM → [0, 1] is given by

evalgA(x)(ρ) =
{

M, ρ |= λgA(x) if x ∈ GoalA(last(ρ)),
0 otherwise,

and an intention evaluation function evaliA, such that for any x ∈ IntA, y ⊆
P(GoalA), evaliA(x, y) : FPathM → [0, 1] is given by

evaliA(x, y)(ρ) =
{

M, ρ |= λiA(x, y) if x ∈ IntA(last(ρ)),
0 otherwise.

Note that the expressions M, ρ |= B=?
A ψ and M, ρ |= T./?A,Bψ return their corre-

sponding probabilistic values, and M, ρ |= B./qA ψ and M, ρ |= T./qA,Bψ return the
value 0 or 1 depending on the verification result. Finally, using the evaluation
functions, cognitive strategy πA of A is synthesised as

πgA(ρ)(x) = evalgA(x)(ρ)∑
x∈ωgA(last(ρ)) eval

g
A(x)(ρ) ,

πiA(ρ)(x) = evaliA(x, y)(ρ)∑
x∈ωiA(last(ρ)) eval

i
A(x, y)(ρ) .

4.4 Trust Game Example

To put the ideas introduced above into practice, we use ASMAS to model a well-
known scenario called trust game. Introduced by Berg et al. [30] more than twenty
years ago, this experimental setup has been used numerous times to study trust
through economic interactions.

In this chapter, we consider a simplified version of the example, referred to as
basic trust game [105]. It involves two agents, Alice and Bob, entering a following
money-investing scenario. They start with $10 and $5, respectively. Then, Alice
may invest her $10 with Bob, or withhold the money. In the former case, Bob turns
the $15 into $40, which he can then share (equally) with Alice, or keep all for himself.

This simple interaction is commonly modelled as a stochastic multiplayer
game (SMG) T , with a set of agents Ags = {Alice,Bob}, with two actions
each ActAlice = {withhold, invest}, ActBob = {keep, share}. States and transitions
are as in Figure 4.3. Monetary exchanges are captured by a reward structure
r : S× Act → R consistent with payoffs associated to terminal nodes in Figure 4.3.

Standard analysis based on Nash equilibria reveals that it is optimal for Alice
to withhold her money and for Bob to keep his profits (in case Alice invests,
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s0

s1 s2

s3 s4

withhold invest

keep share(10,5)

(0,40) (20,20)

Figure 4.3: Simple trust game

Table 4.2: Payoffs of a simple trust game with trust as a decision factor

(Alice, Bob) Share Keep
Invest (20,20+5) (0,40-20)

Withhold (10,5) (10,5)

which she won’t, the theory goes...). Importantly, this conclusion is reached by
assuming agents are solely motivated by money and they are perfectly rational.
Arguably, the prediction is somewhat unsettling with regards to human nature
and the forecast outcome clearly undesirable in terms of social welfare. Not all
hope is lost, however, as humans have been shown to share the money more often
than the theory predicts [54]. This has led some authors to put forward alternative
formulations of the example, or new theoretical models aiming to explain agents’
behaviour. In one such attempt, payoffs of the game have been modified (see
Table 4.2) to reflect the changing value of trust resulting from different actions
taken by agents [105]. With updated utilities, the new Nash equilibrium dictates
Alice invests her money with Bob, who then shares his profits with Alice. This
works well for this particular example, but a more general approach is needed to
cover a wider range of scenarios. This is where ASMAS comes in.

We start with a basic model T defined above and extend it with a cognitive
dimension as follows. Recall that each agent in an ASMAS needs to be endowed
with goals and intentions. The framework does not formally enforce any structure or
constraints for goals and intentions, but an established convention dictates that goals
represent static personality traits, while intentions describe what agents do, and
can be identified with action strategies. In this case, we assign goals and intentions
as follows: GoalAlice = {passive, active}, IntAlice = {passive, active}, GoalBob =
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Table 4.3: Strategies for Alice and Bob

Strategy withhold invest keep share
σpassive 0.7 0.3
σactive 0.1 0.9
σshare 0.0 1.0
σkeep 1.0 0.0

{investor , opportunist}, IntBob = {share, keep}. Note that Alice’s intentions mirror
her goals; this stems from our (simplifying) assumption that her intentions are
solely determined by her goals. We also define action strategies corresponding
to agents’ intentions, summarised in Table 4.3.

The game is then augmented with a cognitive dimension, resulting in an extended
system depicted in Figure 4.4. We follow a convention where goals are set initially
and don’t change throughout the execution, while an agent determines their intention
before every action, which represents the process of decision making. However,
recall that agents may take cognitive transitions at any time; the figure shows
one possible interleaving. Note also that our assumption that Alice’s goals fully
determine her intention allows us to omit her intention-setting transitions. Finally,
we point out that physical transitions are annotated with probabilities, reflecting
the deterministic behaviour assumption which postulates a one-to-one mapping
of intentions to strategies.

Cognitive state of agents is part of the game’s state, which is a tuple

(aAlice, aBob, gsAlice, gsBob, isAlice, isBob),

where aAlice ∈ ActAlice ∪{⊥} is Alice’s last action (or ⊥ representing “silent” action,
i.e., lack of action), aBob ∈ ActBob∪{⊥} is Bob’s last action, gsAlice ⊆ GoalAlice∪{⊥}
is Alice’s set of goals (similarly for Bob) and isAlice ∈ IntAlice∪{⊥} is Alice’s intention
(similarly for Bob). For example, s4 = (⊥,⊥, passive, opportunist, passive,⊥) and
s13 = (withhold,⊥, active, opportunist, active,⊥).

Next, we give the guarding mechanism, which, when combined with pro-attitude
synthesis, yields intention strategies for agents. Note that goal strategies are not
required here as we assume goals are static. For Alice, the task is trivial, since
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Figure 4.4: Trust game with cognitive dimension

her intention is determined by her goals.

λiAlice(active, {active}) = >,

λiAlice(active, {passive}) = ⊥,

λiAlice(passive, {active}) = ⊥,

λiAlice(passive, {passive}) = >.

For Bob, the intention guard takes the following form:

λiBob(share, {investor}) = B>0.7
Bob activeAlice,

λiBob(keep, {investor}) = ¬B>0.7
Bob activeAlice,

λiBob(share, {opportunist}) = ⊥,
λiBob(keep, {opportunist}) = >.

(4.2)

Put another way, when Bob is an opportunist, he keeps the money for himself, but
when he is an investor, he shares the money if his belief in Alice being active
is sufficiently high.

For the agents to reason about the behaviour of their opponent, they need
to quantify the likelihood of adversary’s mental attitudes. This is represented
in the framework by preference functions. For example, Alice’s goal preference
function over Bob may be

gpAlice,Bob(sk) = 〈investor 7→ 1/2, opportunist 7→ 1/2〉 for k ∈ {1, 2}, (4.3)
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i.e., a uniform prior on Bob’s goal, which represents lack of knowledge. Her
intention preference function could be

ipAlice,Bob(sk) = 〈share 7→ 3/4, keep 7→ 1/4〉 for k ∈ {8, 12},
ipAlice,Bob(sk) = 〈share 7→ 0, keep 7→ 1〉 for k ∈ {10, 14}.

(4.4)

Note that the preference function as given above should be thought of as an
initial preference function. If more iterations of a given system are modelled,
agents’ preferences are updated, reflecting new information gained by agents. We
postpone the discussion of preference function update until later. For now, we
give Bob’s goal preference function:

gpBob,Alice(s0) = 〈passive 7→ 1/3, active 7→ 2/3〉. (4.5)

We also assume for simplicity that Bob knows that Alice’s intention is fully
determined by her goal, so he doesn’t need an intention preference function.

With that setup, beliefs of agents and, more importantly, trust values may be
computed. The framework supports evaluation of various logical formulae, the most
interesting ones being the belief, competence trust and disposition trust operators.

Let’s first consider competence trust operator. For example, we may be interested
in computing how much Alice trusts Bob’s competence to share the profit with
her, or how much Bob trusts Alice’s competence to invest her money with him.
Since both tasks require no skill, we expect the value of trust to be high in both
cases. We therefore consider a formula such as

CT./?Bob,Alice© (aAlice = invest),

(with ./ one of ≥ or ≤) evaluated in state s3, say (recall that © is the next state
operator). Note that we use an expression (aAlice = invest) as a shorthand for an
atomic proposition that holds true in states that satisfy that identity. We first note
that Alice has two legal intentions (we assume all possible intention changes are
legal for agents at all times) in state s3 – active and passive. Under active, the
probability of her investing is 0.9; under passive, it is 0.3. Note also that state s5

is indistinguishable from s3 for Bob, but Alice’s legal intentions are the same in
both states, so, letting ψ = ©(aAlice = invest), ρ1 = s0s1s3 and ρ2 = s0s2s5, the
value of V ./

CT,M,Bob,ψ(ρ) is the same for ρ = ρ1 and ρ = ρ2. In particular,

V ≥CT,M,Bob,ψ(ρ) = 0.9,

V ≤CT,M,Bob,ψ(ρ) = 0.3,
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where we used V ./
CT,M,Bob,ψ(ρ) to denote the common value of V ./

CT,M,Bob,ψ(ρ1) and
V ./
CT,M,Bob,ψ(ρ2). Therefore,

M, ρ |= CT≥0.9
Bob,Alice© (aAlice = invest)

M, ρ |= CT≤0.3
Bob,Alice© (aAlice = invest)

Similar reasoning leads us to compute Alice’s trust in Bob’s competence to share
his profit (letting ρ = s0s1s3s8):

M, ρ |= CT≥1
Alice,Bob© (aBob = share),

M, ρ |= CT≤0
Alice,Bob© (aBob = share).

Bob’s action strategies are pure, resulting in competence trust values of 0 and
1. Overall, as expected, the bounds on agents’ competence trust are quite wide,
reflecting the fact that actions in the trust game require no skill.

In this case, disposition trust is the more relevant of the two trust operators.
We now repeat the above computations, but with CT operator swapped for DT.
We note that the main difference in the evaluation of disposition trust, compared to
competence trust, is that the former is formulated in terms of (the support of the)
cognitive strategy of the trustee. Therefore, to evaluate DT./?Bob,Aliceψ, we need to
synthesise Alice’s intention strategy. Fortunately, this is an easy task, since Alice’s
intention is determined by her goal. Therefore, for ρ being any path of length 2,

evaliAlice(active, {active})(ρ) = 1,
evaliAlice(passive, {active})(ρ) = 0,
evaliAlice(active, {passive})(ρ) = 1,
evaliAlice(passive, {passive})(ρ) = 0,

and so

πiAlice(ρ1) = 〈active 7→ 1, passive 7→ 0〉 for ρ1 ∈ {s0s2s5, s0s2s6},

πiAlice(ρ2) = 〈active 7→ 0, passive 7→ 1〉 for ρ2 ∈ {s0s1s3, s0s1s4}.

With that, the V-functions are evaluated as follows:

V ./
DT,M,Alice,ψ(s0s1s3) = 0.3,
V ./
DT,M,Alice,ψ(s0s1s4) = 0.3,
V ./
DT,M,Alice,ψ(s0s2s5) = 0.9,
V ./
DT,M,Alice,ψ(s0s2s6) = 0.9,
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where ./ is any of >,≥, <,≤.
Bob’s belief is computed easily from his preference function, in particular, letting

o1 = obsBob(s0s1s3) = obsBob(s0s2s5) and o2 = obsBob(s0s1s4) = obsBob(s0s2s6),

beBob(o1, s0s1s3) = 1/3,
beBob(o1, s0s2s5) = 2/3,
beBob(o2, s0s1s4) = 1/3,
beBob(o2, s0s2s6) = 2/3.

Therefore, for ρ being any path of length 2,

M, ρ |= DT./0.7Bob,Alice© (aAlice = invest) for ./∈ {≤,≥}.

Because Alice’s intention strategy is pure, upper and lower bounds on Bob’s
disposition trust agree. In this case, a single value of trust may be given.

Let’s now see how Alice’s trust in Bob compares to the above. We consider
the formula DT./?Alice,Bob © (aBob = share) evaluated at paths ρ1 = s0s1s3s8 and
ρ3 = s0s2s5s12. Let us also denote path s0s1s4s10 by ρ2 and path s0s2s6s14 by ρ4.
We start by synthesizing Bob’s intention strategy. Recall that Bob’s intention
when he is an investor is guarded by an expression B>0.7

Bob activeAlice. Hence, we
must first compute Bob’s belief. Letting o1 = obsBob(ρ1) = obsBob(ρ3) and o2 =
obsBob(ρ2) = obsBob(ρ4), and using Bob’s goal preference function and the definition
of belief (Equation 4.1), we compute

beBob(o1, ρ1) = 1/7,
beBob(o1, ρ3) = 6/7,
beBob(o2, ρ2) = 1/7,
beBob(o2, ρ4) = 6/7.

Therefore, for ρ being any of ρ1, ρ2, ρ3, ρ4,

M, ρ |= B>0.7
Bob activeAlice,

and so

evaliBob(share, {investor})(ρ) = 1,
evaliBob(keep, {investor})(ρ) = 0,

evaliBob(share, {opportunist})(ρ) = 0,
evaliBob(keep, {opportunist})(ρ) = 1.



4. Autonomous Stochastic Multi-Agent Systems (ASMAS) 60

Hence, Bob’s synthesised intention strategy is as follows:

πiBob(ρ) = 〈share 7→ 1, keep 7→ 0〉 for ρ ∈ {ρ1, ρ3},

πiBob(ρ) = 〈share 7→ 0, keep 7→ 1〉 for ρ ∈ {ρ2, ρ4}.

With that, we compute the V-function as follows, letting ψ =©(aAlice = invest):

V ./
DT,M,Bob,ψ(ρ) = 1 for ρ ∈ {ρ1, ρ3} and ./∈ {≥,≤},

V ./
DT,M,Bob,ψ(ρ) = 0 for ρ ∈ {ρ2, ρ4} and ./∈ {≥,≤}.

Now, recalling Alice’s uniform goal preference function and, arising from it, uniform
belief, her disposition trust can be computed as

M, ρ |= DT./0.5Alice,Bob© (aBob = share) for ./∈ {≤,≥},

where ρ is any of ρ1, ρ2, ρ3, ρ4. Again, upper and lower bounds on the value
of trust agree, due to the intention strategy being pure. Alice’s trust in Bob
sharing the money upon her investment is equal to 0.5, reflecting her uncertainty
of Bob’s mental attitudes.

To wrap up the example, we consider an alternative mental approach of Bob,
characterised by the following intention guards:

λiBob(share, {investor}) = B=?
BobactiveAlice,

λiBob(keep, {investor}) = B=?
Bob¬activeAlice,

λiBob(share, {opportunist}) = ⊥,
λiBob(keep, {opportunist}) = >.

This is very similar to the previous setup, except that now guards are quantita-
tive, rather than qualitative, and take the value of Bob’s belief. The updated
evaluation functions are

evaliBob(share, {investor})(ρ) = 6/7,
evaliBob(keep, {investor})(ρ) = 1/7,

evaliBob(share, {opportunist})(ρ) = 0,
evaliBob(keep, {opportunist})(ρ) = 1,

which leads to slightly different intention strategy for Bob:

πiBob(ρ) = 〈share 7→ 6/7, keep 7→ 1/7〉 for ρ ∈ {ρ1, ρ3},

πiBob(ρ) = 〈share 7→ 0, keep 7→ 1〉 for ρ ∈ {ρ2, ρ4}.
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The important difference is that the support of Bob’s intention strategy when he
is an investor is larger now, giving rise to different trust evaluation. In particular,
the V-functions are now

V ≥DT,M,Bob,ψ(ρ) = 0 for ρ ∈ {ρ1, ρ3},

V ≤DT,M,Bob,ψ(ρ) = 1 for ρ ∈ {ρ1, ρ3},

V ./
DT,M,Bob,ψ(ρ) = 0 for ρ ∈ {ρ2, ρ4}.

With that, for ρ ∈ {ρ1, ρ2, ρ3, ρ4},

M, ρ |= DT≥0
Alice,Bob© (aBob = share),

M, ρ |= DT≤1/2
Alice,Bob© (aBob = share).

Hence, a small change in Bob’s mental reasoning mechanism results in a significant
change in the bounds on Alice’s trust provided by the framework. In fact, it is
easy to see that if Bob’s intention strategy when he is an opportunist was also
mixed, the upper bound on disposition trust would be 1, effectively rendering
the bounds useless. This suggests that in order to ensure dispositional trust
operator provides tight bounds, intention strategies should ideally be kept pure,
or at least have small supports.

4.5 Model Checking Algorithms

The general verification procedure for ASMASs starts by performing pro-attitude
synthesis to obtain cognitive strategies of agents, followed by model checking a
given formula φ on the updated system. Unfortunately, both the synthesis and the
model checking have been shown to be undecidable [29]. However, to counter the
undecidability results, three fragments of PRTL∗ are proposed for which a model
checking algorithm can be formulated. In what follows, we work with one such
subset, called BPRTL∗, and present an algorithm for model checking BPRTL∗

formulae against an instance of an ASMAS. It is based on the PCTL∗ model
checking algorithm presented in Section 3.3.3. However, the standard approach
must be adapted to deal with intricacies of ASMASs and to handle the new
operators PRTL∗ introduces.

4.5.1 Challenges

Below, we list the aspects of the framework that necessitate modification to
standard methods.
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Undecidability Intuitively, undecidability of PRTL∗ model checking stems from
the history-dependence of PRTL∗ semantics – to check whether a given belief or
trust formula eventually holds on a given path, an infinite number of checks might
have to be performed. Therefore, to ensure decidability, we work with a bounded
fragment of PRTL∗, called BPRTL∗, which replaces unbounded until operator with
a step-bounded one. As a result, one only needs to check a finite prefix of an infinite
path to decide whether it satisfies a given BPRTL∗ formula.

History Dependence Another consequence of the history dependence of PRTL∗

semantics is that the usual model checking approach of computing satisfaction sets
of formulae cannot be employed. Instead, our algorithm starts with a given path and
proceeds recursively in a top-down fashion. An important complication is the way
path formulae are handled. Recall from Section 3.3.3 that the standard approach
involves computing satisfaction sets of maximal state subformulae, allowing one to
treat each path formula as an LTL formula and use automata-based techniques.
However, due to history dependence, this method has to be altered.

Instead, we use boundedness of the BPRTL∗ fragment, which means that every
path formula can be shown to hold, or not, on an infinite path δ by inspecting its
finite prefixes. This enables us to define a function which takes (i) a finite execution
history ρ that has s as its last state and (ii) a path formula ψ as arguments, and
returns finite path fragments starting in s such that infinite paths starting in s

and satisfying ψ are precisely those that have one of the returned fragments as a
prefix. This recursive procedure is formally specified as Algorithm 4. It involves
a traversal of the parse tree of ψ, with execution history ρ appropriately updated
for every subformula being processed.

The procedure makes use of auxiliary functions complement, union and inter-
section that manipulate sets of prefixes. For example, complement accepts a set
of prefixes starting in some state s and returns another set of prefixes starting in
s such that every infinite path starting in s has as prefix an element of exactly
one of the sets. The complement of an input set of prefixes S is computed by a
procedure that maintains a list of prefixes l, initialised to consist of a trivial prefix
s, and processing them in order until no prefixes remain. At each step, first prefix
in the list, call it ρ0, is removed and there are three possibilities: (i) if ρ0 is equal
to some prefix in the input set S, continue to the next prefix in l; (ii) if ρ0 is a
proper prefix of some other prefix in the input set, add all the one-step extensions
of ρ0 to l; and (iii) otherwise, add ρ0 to the output set.
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Next, intersection operates on two input sets of prefixes, say A and B, and
returns a set of prefixes such that every infinite path generated by the resulting set
has a prefix in A and a prefix in B. The way this intersection of sets of prefixes
is computed is by iterating over both input sets, in turn, and adding a prefix ρ1

from one input set to the output set if there is a prefix ρ2 in the other output set
such that ρ2 is a prefix of ρ1. Finally, union of two sets of prefixes is computed by
taking the union of the sets and simplifying the result. The latter task is captured
by the function simplify which iterates over prefixes in the input set and, for each,
checks whether it can be replaced by a shorter prefix. Intuitively, this is the case if
the input set contains all the possible one-step extensions of the shorter prefix.

Partial Observability The next aspect which requires our close attention is
partial observability. It is known that strategy synthesis and many other decision
problems for POMDPs are undecidable [106]. However, in autonomous stochastic
multi-agent systems, strategies, which are identified with intentions, are given as
part of the system definition. It is important that those strategies are consistent
with partial observability, i.e., that they specify the same distributions on paths an
agent cannot distinguish. Nonetheless, when evaluating the formulae, we assume the
future execution of the system is deterministic, and therefore, partial observability
does not introduce any difficulties. It only comes into play when computing belief-
weighted expectation as part of model checking belief and trust formulae (see
Section 4.5.2). Note that the presented model checking algorithms operate on
sequences of states, rather than sequences of observations, even though agents
might not be able to distinguish them from other state sequences with the same
observation. This stems from the fact that we don’t make any assumptions regarding
the truth values of temporal formulae on indistinguishable paths. In other words,
we could have an atomic proposition that holds on one path and does not hold on
another, even though both paths have the same observation for a given agent. If
we replaced state sequences with observation sequences, such atomic proposition
could not be evaluated meaningfully. However, belief and trust formulae, which
intuitively represent agent’s subjective view of system’s execution, are consistent
with agent’s own partial observability and give the same result regardless on which
indistinguishable path they are evaluated (details in Section 4.5.2).
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Algorithm 4: Computing prefixes of paths satisfying a given path formula
input :ASMAS M, an execution history ρ in M, path formula ψ
output : set of prefixes of paths satisfying a given path formula

1 function findSatisfyingPrefixes(M, ρ, ψ):
2 s← last(ρ);
3 switch ψ do
4 case φ do

/* procedure modelCheck is given below */
5 return modelCheck(M, ρ, φ) ? {s} : ∅;
6 end
7 case ¬ψ′ do
8 return complement(findSatisfyingPrefixes(M, ρ, ψ′));
9 end

10 case ψ1 ∨ ψ2 do
11 return union(findSatisfyingPrefixes(M, ρ, ψ1),

findSatisfyingPrefixes(M, ρ, ψ2));
12 end
13 case #ψ′ do
14 result ← ∅;

/* post(s) is the set of successors of s */
15 foreach s′ ∈ post(s) do
16 foreach prefix ∈ findSatisfyingPrefixes(M, ρs′, ψ′) do
17 result ← result ∪ concat(s, prefix)
18 end
19 end
20 return result;
21 end
22 case ψ1U≤kψ2 do
23 result ← findSatisfyingPrefixes(M, ρ, ψ2);
24 if k = 0 then
25 return simplify(result);
26 end
27 ps1 ← findSatisfyingPrefixes(M, ρ, ψ1);
28 foreach s′ ∈ post(s) do
29 prefixes ← findSatisfyingPrefixes(M, ρs′, ψ1U≤k−1ψ2);
30 foreach prefix ∈ prefixes do
31 prefix ← concat(s, prefix);
32 end
33 result ← result ∪ intersection(ps1, prefixes);
34 end
35 return simplify(result);
36 end
37 end
38 end



4. Autonomous Stochastic Multi-Agent Systems (ASMAS) 65

Pro-Attitude Synthesis Most of the novel PRTL∗ operators are defined in
terms of cognitive strategies of agents, which are not part of the ASMAS definition.
However, in the algorithms described below, we take agents’ cognitive strategies as
given, since they are easy to compute using pro-attitude synthesis. In particular,
to get an agent’s intention strategy at a given point of execution, it suffices to
iterate over its legal intention changes and compute the weight of each using the
evaluation function for that agent. Given that the language used to express the
guarding mechanism is a subset of BPRTL∗, the weights are computed using model
checking techniques presented below. Then the probability of each intention change
is its weight divided by the total weight of all intention changes. The computed
distribution may be stored for future use.

The above assumes that a cognitive strategy of an agent for a given execution
history is computed only when required by the model checking algorithm. However,
for the sake of efficiency, a tool implementing the presented algorithms might start
computing cognitive strategies of all agents in advance, as soon as the model is
compiled. A separate background thread could be assigned specifically for that
purpose. The computation would proceed according to the length of the execution
history, i.e., starting by computing action distributions corresponding to the shortest
paths, and continuing on to longer ones. However, alternative heuristic is possible
and could be deployed if shown to be superior. We expect that most formulae of
the bounded fragment only need checking for a relatively short path, and therefore
we anticipate significant time savings by employing opportunistic ahead-of-time
computation of cognitive strategies.

4.5.2 The Algorithms

Hereinafter, we takeM = (Ags, S, Sinit, {ActA}A∈Ags, T, L, {OA}A∈Ags, {obsA}A∈Ags,
{ΩA}A∈Ags, {λA}A∈Ags, {pA}A∈Ags) to be an instance of an ASMAS, ρ a finite path
in M and A ∈ Ags. We want to model check a PRTL∗ formula φ0, i.e. decide
whether M, ρ |= φ0. The procedure has two possible outcomes, true and false,
indicating that M, ρ |= φ0 and M, ρ 6|= φ0, respectively.

The main model checking procedure is recursive in nature (Algorithm 5)
and specified on a case-by-case basis, in terms of the principal connective of
φ0. Propositional operators are straightforward to handle. For the universal
quantification and probability operator, we utilise findSatisfyingPrefixes. Since the
set of prefixes it returns is minimal, ∀ψ holds if and only if the last state of ρ,
last(ρ), is the sole prefix returned. It is also easy to compute the total probability
of paths satisfying ψ by summing up the probabilities of cylinder sets corresponding
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Algorithm 5: PRTL∗ model checking algorithm
input :ASMAS M, a path ρ in M, PRTL∗ formula φ0
output :M, ρ |= φ0

1 function modelCheck(M, ρ, φ0):
2 switch φ0 do
3 case true: return true;
4 case p: return p ∈ L(last(ρ)) ;
5 case ¬φ: return ¬modelCheck(M, ρ, φ);
6 case φ1 ∨ φ2: return

modelCheck(M, ρ, φ1) || modelCheck(M, ρ, φ2);
7 case ∀ψ: return findSatisfyingPrefixes(M, ρ, ψ) = {last(ρ)};
8 case P./qψ : return prob(findSatisfyingPrefixes(M, ρ, ψ)) ./ q;
9 case GAφ: return modelCheckAllGoals(M, A, ρ, φ);

10 case CAφ: return modelCheckAllIntentions(M, A, ρ, φ);
11 case IAφ: return modelCheckExistsIntention(M, A, ρ, φ);
12 case B./qA ψ: return

beliefWeightedExpectation(M, A, ρ, VB,M,ψ) ./ q;
13 case CT./qA,Bψ: return

beliefWeightedExpectation(M, A, ρ, VCT,M,B,ψ) ./ q;
14 case DT./qA,Bψ: return

beliefWeightedExpectation(M, A, ρ, VDT,M,B,ψ) ./ q;
15 end
16 end

to prefixes. This is what the function prob does. The way that novel cognitive
and trust operators are handled is described below.

Cognitive Operators Model checking formulae of the form GAφ, IAφ, CAφ is
mostly straightforward and follows a similar pattern for all three variants. For a
given path, the algorithm iterates over possible/legal goal/intention changes and, for
each, it model checks φ on a path obtained by appending that cognitive transition
to the existing path. Finally, it aggregates those model checking results into a single
outcome, depending on the type of quantification used in the operator semantics.

Case 1: φ0 = GAφ. First, the algorithm retrieves all the possible goal changes
of agent A using its synthesized goal strategy πgA(ρ). Then, for each of them, it
appends a cognitive transition representing that goal change to the current path ρ,
obtaining ρs for some state s ∈ S. With the extended path ρs, the algorithm model
checks φ, i.e., tests whether M, ρs |= φ. That step can be seen as a recursive call of
the model checking algorithm. If any of those checks results in a negative answer,
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the algorithm terminates with a false too. If all of them succeed, the procedure
outputs true. See Algorithm 6 for the formalised procedure.

Algorithm 6: Model checking a PRTL∗ formula of the form GAφ

input :ASMAS M, agent A, a path ρ in M and a PRTL∗ formula φ
output :M, ρ |= GAφ

1 function modelCheckAllGoals(M, A, ρ, φ):
2 goals ← synthesizeGoals(A, ρ);
3 foreach goal ∈ goals do
4 ρ′ ← A.g(ρ, goal); // ρ′ is ρ extended by A’s goal change
5 if ¬modelCheck(M, ρ′, φ) then
6 return false;
7 end
8 end
9 return true;

10 end

Case 2: φ0 = IAφ. This case is completely analogous to the above, with goals
replaced by intentions. Algorithm 7 formalises the steps required.

Algorithm 7: Model checking a PRTL∗ formula of the form IAφ
input :ASMAS M, agent A and a path ρ in M, PRTL∗ formula φ
output :M, ρ |= IAφ

1 function modelCheckAllIntentions(M, A, ρ, φ):
2 intentions ← synthesizeIntentions(A, ρ);
3 foreach intention ∈ intentions do
4 ρ′ ← A.i(ρ, intention); // ρ′ is ρ extended by A’s intention

change
5 if ¬modelCheck(M, ρ′, φ) then
6 return false;
7 end
8 end
9 return true;

10 end

Case 3: φ0 = CAφ. Model checking formulae of this form proceeds similarly to
the two other cognitive operators, with few simplifications. First of all, rather
than dealing with cognitive strategies, the algorithm operates on the legal intention
function, which is predefined in the system. Moreover, the semantics of the CA

operator include existential quantification, and therefore the algorithm operates in
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a slightly different mode. In particular, for each legal intention change (as given
by IntA), the algorithm model checks φ against the extended path obtained by
appending a cognitive transition to ρ. If that check is successful, the algorithm
returns true. Otherwise, it continues to the next legal intention change. If none
of the checks succeeds, the procedure outputs false.

Algorithm 8: Model checking a PRTL∗ formula of the form CAφ

input :ASMAS M, agent A, a path ρ and a PRTL∗ formula φ
output :M, ρ |= CAφ

1 function modelCheckExistsIntentions(M, A, ρ, φ):
2 foreach intention ∈ ωiA(last(ρ)) do
3 ρ′ ← A.i(ρ, intention); // ρ′ is ρ extended by A’s intention

change
4 if modelCheck(M, ρ′, φ) then
5 return true;
6 end
7 end
8 return false;
9 end

Trust Operators We now describe procedures for model checking belief and trust
operators. Note that all three operators are defined as belief-weighted expectation
of some V-function defined in terms of the probability of satisfying a formula ψ.
Therefore, in all cases, the algorithm starts by determining all paths ρ′ that have the
same observation as ρ, i.e., such that obsA(ρ′) = obsA(ρ). This can be done efficiently
as long as an appropriate data structure is used to store observation functions of
agents. An example would be made up of two dictionaries, one for efficient retrieval
of an observation corresponding to a given state, and the other for looking up
all the states mapped to a given observation. Then the algorithm computes the
belief-weighted expectation of an appropriate V-function, by initialising a running
sum to 0, followed by iterating over paths in the computed set, computing the value
of the V-function for each path, multiplying it by its weight (which is given by the
belief function) and adding it to the running sum (see Algorithm 9). After the loop is
finished, the algorithm compares the result to q specified in the operator and returns
true or false. Below, we describe how to compute the V-functions for each operator.

Case 1: φ0 = B./qA ψ. This is the simplest case, since the V-function is simply the
probability of the satisfaction of ψ, which is computed using findSatisfyingPrefixes
(Algorithm 10).
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Algorithm 9: Computing belief-weighted expectation of function V
input :ASMAS M, agent A, path ρ and a function V : FPathM → [0, 1]
output :EbeA [V ]

1 function beliefWeightedExpectation(M, A, ρ0, V ):
2 totalProbability ← 0;
3 foreach ρ ∈ {ρ | obsA(ρ) = obsA(ρ0)} do
4 totalProbability ← totalProbability + prob(ρ);
5 end
6 result ← 0;
7 foreach ρ ∈ {ρ | obsA(ρ) = obsA(ρ0)} do
8 result ← result + V (ρ) · prob(ρ)

totalProbability
;

9 end
10 return result;
11 end

Algorithm 10: Computing the value of function VB,M,ψ

1 function VB,M,ψ(ρ):
2 return prob(findSatisfyingPrefixes(M, ρ, ψ));
3 end

Case 2: φ0 = CT./qA,Bψ. This case is only a little more complicated, since it
involves iterating over legal intention changes of B and computing probability of
ψ for each, followed by taking the maximum or minimum, depending on what
./ is. Again, the complexity of that task reduces to the computation of the
probability of ψ (Algorithm 11).

Algorithm 11: Computing the value of function V ./
CT,M,B,ψ

1 function V ./
CT,M,B,ψ(ρ):

2 result ← (./ = > || ./ = ≥) ? 0 : 1;
3 foreach x ∈ ωiB(last(ρ)) do
4 ρ′ ← B.i(ρ, x); // ρ′ is ρ extended by B’s intention change
5 p← prob(findSatisfyingPrefixes(M, ρ′, ψ));
6 if p ./ result then
7 result ← p;
8 end
9 end

10 return result;
11 end
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Case 3: φ0 = DT./qA,Bψ. This case in analogous to the above, with the exception
that possible intention changes are used rather than legal ones, which does not
affect the algorithm significantly (Algorithm 12).

Algorithm 12: Computing the value of function V ./
DT,M,B,ψ

1 function V ./
DT,M,B,ψ(ρ):

2 result ← (./ = > || ./ = ≥) ? 1 : 0;
3 intentions ← synthesizeIntentions(B, ρ);
4 foreach intn ∈ intentions do
5 ρ′ ← B.i(ρ, intn); // ρ′ is ρ extended by B’s intention

change
6 p← prob(findSatisfyingPrefixes(M, ρ′, ψ));
7 if p ./ result then
8 result ← p;
9 end

10 end
11 return result;
12 end

4.5.3 The Algorithms in Action

We now put theory into practice by illustrating the execution of the model checking
algorithms just presented. The formulas we use are set in the trust game example
we introduced in Section 4.4. However, note that we do not strictly follow the state
diagram from Figure 4.4; evaluation of certain formulas may require a different
interleaving of temporal and cognitive transitions.

1. T , s0 |= GAliceGBobP≤0.93≤1(aAlice = invest) This first formula expresses that
regardless of Alice’s and Bob’s goals, the probability of her investing in the first
round is no greater than 90%. First step of model checking this formula involves
computing the support of Alice’s goal strategy. However, recall that we have
not given Alice’s goal strategy in Section 4.4 due to our assumption that goals
are static. The initial goal change acts as one-off setting of the goals, which
are assumed to remain the same for the remainder of the game. We assume
here that both players’ initial goal strategy is uniform, so all legal goal changes
are possible. Therefore, the model checking algorithm proceeds by verifying the
subformula GBobP≤0.93≤1(aAlice = invest) when execution history is s0s1 and s0s2,
and, subsequently, the subformula P≤0.93≤1(aAlice = invest) for all execution
histories of length two. Since Alice invests with probability 30% when she is
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passive and with probability 90% when she is active, the formula is true for every
execution history and hence the original formula is verified to hold.

2. T , s0 |= ¬GAlice¬GBobCBob∀2≤2¬richerBob,Alice The second formula we model
check expresses that Alice has a goal such that whatever mental state Bob chooses,
he will not become richer than Alice within two steps. The atomic proposition
richerBob,Alice is true in states where Bob has earned more money than Alice. The
algorithm starts in the same way as for the previous formula - by iterating over
Alice’s possible goal changes in the initial state (but this time the result will have to
be negated reflecting the presence of ¬ operator). We again assume that both goals
are in supp(()πgAlice(s0)). For each possible goal change, the algorithm continues
by considering possible goals of Bob (we assume both are possible) and his legal
intentions. The PCTL∗ formula ∀2≤2¬richerBob,Alice is evaluated at every path
obtained by combining all those cognitive transitions.

To process of evaluating that subformula boils down to finding prefixes that
satisfy 2≤2¬richerBob,Alice. Now, Bob is richer than Alice as soon as she invests her
money with him, so any path that has Alice investing will not satisfy the formula.
However, regardless of her goal, Alice’s action strategy assigns positive probability
to investing, meaning a state where richerBob,Alice holds can be reached within two
steps. Hence ∀2≤2¬richerBob,Alice is false at any execution history that has set
mental states of agents, which makes the original formula false.

2’. T , s0 |= ¬GAlice¬GBobCBobP≥0.72≤2¬richerBob,Alice Next, we briefly comment
on what changes if we replace the universal operator ∀ with a probability operator
P≥0.7. The model checking algorithm starts as before and the prefixes satisfying
2≤2¬richerBob,Alice are the same. However, this time, the probability of those
prefixes matters. Since paths satisfying the formula are ones where Alice withholds
the money, the probability of those prefixes is equal to the probability of Alice
selecting that action. This is equal to 0.7 when she is passive and 0.1 when she is
active, regardless of Bob’s mental state. Hence the formula is true.

3. T , ρ |= CT>0.5
Alice,Bob#(investAlice → #shareBob) We now turn our attention to

trust operators; we begin by considering Alice’s trust in Bob’s competence to share
the money upon investment. We assume atomic proposition investAlice is true in
states in which aAlice = invest (and similarly for shareBob). We also assume that
the formula is evaluated at a path ρ at which goals of agents are set. In particular,
we use the state diagram from Figure 4.4 and set ρ = s0s2s5, i.e. Alice is active
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while Bob is an investor – but Alice does not know that. Instead, she evaluates
the belief-weighted expectation of an appropriate V-function, where her belief is
given by her goal preference function. We assume it is the same as defined in
Section 4.4, i.e., uniform, yielding the following belief:

beAlice(ρ) = 1/2,

beAlice(ρ′) = 1/2,

where ρ′ = s0s2s6 is the path Alice cannot distinguish from ρ.
Let ψ = ©(investAlice → #shareBob). Then the value of V >0.5

CT,T,Bob,ψ(ρ) is
computed according to Algorithm 11, by considering each legal intention of Bob
in turn and computing the probability of ψ being satisfied. Since the relational
symbol is >, operator computes the upper bound, so the maximum probability is
recorded. The formula holds when Alice’s investment is followed by Bob sharing the
money; recalling Bob’s strategy given in Table 4.3, the probability of this is 1 when
Bob’s intention is to share and 0 otherwise. Hence V >0.5

CT,T,Bob,ψ(ρ) = 1. The value
of the V-function is the same at path ρ′ since both intentions are legal regardless
of Bob’s goal. Therefore, the formula is verified to hold at path ρ.

4. T , ρ |= DT>0.5
Alice,Bob#(investAlice → #shareBob) This time, we substitute

competence trust operator with disposition trust, which describes Alice’s belief
that Bob is willing to share the invested money. We set ρ = s0s2s5 as before.
The aspect that is different now is the V-function, which is now computed with
respect to possible, rather than legal, intentions. This necessitates an invocation of
Bob’s pro-attitude synthesis, as indicated in Algorithm 12. Recalling the guarding
mechanism given for Bob in Equations 4.2, synthesising Bob’s intention boils down
to computing his belief over Alice’s goal. Based on Bob’s goal preference function
(Equation 4.5), we compute his belief as

beBob(oBob, ρ) = 2/3,

beBob(oBob, ρ1) = 1/3,

where ρ1 = s0s1s3 is another path Bob cannot distinguish from ρ and oBob is the
common observation associated to both paths. Similarly,

beBob(o′Bob, ρ
′) = 2/3,

beBob(o′Bob, ρ
′
1) = 1/3,
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where ρ′ = s0s2s6 as before, ρ′1 = s0s1s4 is another path Bob cannot distinguish
from ρ′ and o′Bob is the common observation.

In any case, B>0.7
Bob activeAlice does not hold since Bob’s conviction that Alice is

active is not strong enough. Hence, Bob’s intention is synthesised as keep regardless
of his goals (when Bob is an opportunist, synthesis is trivial). Under that intention,
probability of satisfying paths is computed according to Algorithm 4 as 0. Formally,

V >0.5
DT,T ,Bob,ψ(ρ) = 0,

V >0.5
DT,T ,Bob,ψ(ρ′) = 0.

In fact, the result would be the same even if the > operator were replaced by <,
since only one intention is possible. Therefore, the formula does not hold at ρ; in
fact, Alice has no trust in Bob sharing his profits in case she invests.

4.6 Critique

We conclude this chapter by taking a critical look at the ASMAS framework.
This will partly serve as motivation for an alternative trust model we present
in this thesis (Chapter 5). We list the deficiencies of ASMASs below and give
a brief overview of each of them.

High Complexity The tuple defining ASMASs has eleven components, three
of which are novel. This presents a significant challenge to familiarising oneself
with the workings of the framework, as the reader of this thesis might have found
out the hard way. However, the problems do not end there. Once acquainted
with its mechanisms and keen to use the model in practice, one must specify all
the components first, as we do in Section 4.4. This involves assigning goals and
intentions to agents, a non-trivial task, which is not easily automated. Second,
for each intention, a corresponding action strategy must be given; no guidance
is given on how such a strategy should be determined. Additionally, preference
functions of agents must be provided; these could conceivably come from data,
although the actual mechanism is not immediately clear. Finally, pro-attitude
synthesis, a very elegant concept and one of the key elements of the framework, is
formulated in terms of custom rules (the guarding mechanism) which must be given
as input. Both action strategies and guarding functions involve numerical values
(probabilities of different actions and belief/trust thresholds) which are not easy
to reliably determine, but even small variations may lead to significant differences
in evaluations of logical operators, as we have seen towards the end of Section 4.4.
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The modelling of the cognitive dimension is subject to several conventions and
assumptions that are not strictly enforced; this includes the interpretation of what
goals are and their static nature, the fact that intention changes precede taking
actions and the way goals influence intentions. Moreover, the distinction of legal
and possible goals and intentions may be appropriate for certain robotic settings,
but, in most scenarios, it only serves to complicate an already complex model.

Deficient Trust Definitions Next, we analyse a key aspect of the framework,
namely, the definitions of trust operators. The mathematical formulation is very
complex and, arguably, hardly intuitive. Two different notions of trust are defined,
and the framework only supports the computation of lower and upper bounds on
trust values. As our trust game example shows, those bounds may often be quite
wide and not particularly useful. In any case, an upper bound can be interpreted
as the probability of an event (represented by a path formula) when trustee aims to
maximise it, while a lower bound expresses this probability when being minimised
by trustee. However, what is lacking is a quantitative indication of which of the
two paths the trustee is going to take. Also, the definitions may be described as
lacking robustness, in the sense that a small change in an agent’s intention strategy
may cause trust bounds to change significantly, as demonstrated as part of the
trust game example. We also point out a significant conceptual limitation, namely
that A’s disposition trust towards B is computed with respect to B’s intention
strategy. In reality, A will rarely possess such information, in particular not in a
competitive scenario such as the trust game. In the framework, this is rectified to
a degree by taking the support of the distribution, thereby providing only partial
information to the trustor. However, this results in the issues mentioned above,
such as the lack of robustness and uninformative bounds.

Human Incompatibility Several aspects of the framework make it inappropriate
for reasoning about the behaviour of humans. Firstly, as discussed above, the
semantics of trust operators rests on fairly dubious assumptions. One’s trust
towards another should be based purely on information available to them, which the
other agent’s plan of action is generally not. Second, the model is discrete in nature,
with a finite set of goals and intentions (and hence action strategies). However,
humans display a continuum of behaviour and personalities that cannot be captured
accurately with a discrete framework. Moreover, as Daniel Kahneman argues in
his book [107], homo sapiens rarely carry out fully strategic reasoning; rather, they
act on the spot, based on limited information they have. Using nomenclature
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introduced by the author, “System 1”, representing the fast, emotional, intuitive
thinking usually prevails over the effortful, logical deliberations characteristic of
“System 2”. Humans use mental shortcuts to make sense of complex issues and often
act irrationally. This process cannot be reduced to an action strategy.

Lack of Scalability Figure 4.4 shows how the addition of a cognitive mechanism
to a simple game increases its state space severalfold. The more soundly one wishes
to model a given system, the more goals, intentions and action strategies one
must define, further increasing the scale of state space expansion. Similarly, the
more actions there are available to agents, the more complex the action strategies
become and more intentions are required to model a range of behaviours. In fact,
the trust game serves as a good example of this shortcoming. In Section 4.4,
we have presented its basic version, characterised by binary decisions of agents.
However, in the literature, it is much more common to assume that agents can
send integer amounts of dollars not exceeding their endowment and that the game
lasts for several rounds. Attempting to model that variant with an ASMAS would
require a substantial number of intentions to be defined to represent the various
strategies agents may adopt.

4.7 Conclusion

In this chapter, we have presented autonomous stochastic multi-agent system,
a quantitative framework for reasoning about social trust. We have considered
the problem of model checking formulae built using novel logical operators and
proposed algorithms that allow one to verify (bounded) formulae automatically.
We have also identified weaknesses of ASMAS and argued that the definition of
trust proposed therein does not capture the human notion of trust well. We address
those weaknesses in Chapter 5.
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5.1 Motivation

The design choices behind CSMG are largely motivated by the deficiencies of
ASMAS. Recall that, in ASMAS, even though partial observability allows one to
model differences in knowledge of different agents, trust definitions are based on
implicit assumptions of one agent knowing another agent’s strategy. Therefore, in
CSMG, we are very careful to accurately model what an agent knows and what
they do not know. In the latter case, cognitively-inspired mechanisms are given
that model how agents estimate what they cannot observe.

Next, CSMG addresses the discreteness of ASMAS. We argue that human
personalities fall on a spectrum and cannot be captured reliably with a finite
set of goals and intentions. In the context of the trust game example, most
people cannot be categorised as an opportunist or an investor; rather, they will
be opportunistic to a certain extent. Therefore, CSMG postulates that each
(human) agent is driven by a variety of goals that compete with each other to
steer agent’s actions one way or another. What determines agent’s personality are
the relative weights that they assign to various goals; crucially, these are points
in a multidimensional, continuous space.

Further, having learned the lesson of ASMAS’s complexity spinning out of
control, our aim when designing CSMG was to keep things simple. Of course, human
mental processes are highly complex and one cannot avoid intricacy altogether.
However, a user-friendly framework should minimise the number of parameters
and inputs required to use it. We also strive to simplify the overall mechanism
of the model by separating an easy to comprehend base and more advanced,
but non-essential, components.

Despite our model being grounded in game theory, we deviate from the main-
stream approach of computing Nash equilibria to predict game outcomes. We
believe NE theory is better suited to highly strategic, often politically-inspired
interactions, characterised by high consequence and long deliberation. Examples
include Brexit negotiations, Cuban Missile Crisis or Russia’s invasion of Ukraine.
In contrast, we argue that everyday, casual decisions of humans are driven by
simpler, often approximate, reasoning. Given multiple sources of uncertainty,
computing a Nash equilibrium might be challenging for a machine, let alone a
homo sapiens. Moreover, Goeree et al. [108] show how simple modifications of
the payoff structure lead to large inconsistencies between theoretical, NE-based
predictions and observed human behaviour.

Moreover, we deemed it necessary that our framework be implementable, to allow
practical applications such as its use in robots. Due to the probabilistic nature of



5. CSMGs – Syntax & Semantics 78

human belief and reasoning process, probabilistic programming is highly appropriate
for realising theoretical formulations of our framework, as we show in Section 6.1.

Related to its implementability, in accordance with recent trends, our goal
was to support inference of agent parameters from data, a mechanism missing
from ASMAS. This is greatly facilitated by choosing a probabilistic programming
implementation, which comes with a powerful inference mechanism.

Further motivation for our framework is provided by a tournament for prediction
of human choices organised by Plonsky et al. [109]. The authors conclude that a
combination of descriptive, behavioural models and machine learning algorithms is
the most promising recipe for successfully predicting human behaviour. Further, they
suggest that quantitative models that integrate multiple behaviour-affecting mecha-
nisms are superior to frameworks that focus on specific aspects of decision making.

5.2 Overview

Having described the motivation for proposing our framework and our main design
choices, we now overview its key components and narrow down the setting our
model applies to.

Throughout any given day, week, month or year, humans make many decisions,
ranging from the trivial ones such as what to eat for breakfast or what socks to
wear, to the more serious ones, such as which car to buy or which university course
to apply to. Depending on the importance and consequence of a decision, a different
mechanism may be employed to select a course of action.

In this work, we restrict our attention to choices the are made on the spot, without
extended deliberation. We focus on atomic decisions, i.e., ones that involve a single
choice between well-defined alternatives, rather than necessitating a multi-stage plan.

Our framework builds on game theory, which has traditionally been used to
analyse interactions of rational agents. However, behavioural predictions offered
by standard game-theoretic models rest upon the notion of equilibrium. When
people find themselves in a given scenario for the first time, and have incomplete
knowledge about their opponents, arriving at an equilibrium is doubtful.

Instead, we postulate that agents make decisions by considering the available
alternatives, along with possible future developments, and evaluating each according
to their preferences, which are captured by a utility function. Now, this may
be considered a contentious assumption, given the body of work that supposedly
falsifies expected utility theory [98]. However, one of our main novel contributions
is the way that the utility of an agent is formulated; in particular, it captures



5. CSMGs – Syntax & Semantics 79

not only physical quantities such as money or other possessions, but also agents’
emotions, which strongly affect behaviour.

Besides that, reasoning limitations of homo sapiens, such as bounded rationality
and finite future outlook, are represented in our formalism. Hence, our framework
integrates existing behavioural models, such as quantal response [96] and Level-k
models [110], consistently with recommendations of Plonsky et al. [109]. Further,
our model supports encoding of heuristics people use to simplify and make sense of
reality [111, 112], particularly to estimate what they do not know about others.

5.3 Model Description

In this section, we formally give the definition of our model and describe in detail all
its components. We illustrate our construction with a following running example.

Example. Tic-tac-toe is a two-player pen and paper game played on a 3x3 grid in
which players take turns to insert an ‘X’ (the cross player) or an ’O’ (the nought
player) into an empty square. A goal of each player is to fill a full row, column or a
diagonal with their mark (‘X’ or ‘O’). Figure 5.1 shows a possible play of tic-tac-toe;
note that the cross player always starts.

There exist many strategies for either player which guarantee at least a draw,
and they are not hard to follow. Hence, a game of tic-tac-toe between two players
following optimal strategies will always end in a draw. In reality, however, this is
not always the case. Children, especially the younger ones, often find tic-tac-toe
challenging, as their cognitive limitations prevent them from playing perfectly.

In a matchup between a parent and their kid, the adult should be a clear
favourite. However, as some readers may know from experience, the outcome of
such a game is far from decided; in fact, the child wins more often than not. In
what follows, we use our framework to explain this apparent paradox.

A cognitive stochastic multiplayer game (CSMG) is a tuple (Ags, S, {Act}A∈Ags,

T,R,P, {~λA}A∈Ags, {be0
A}A∈Ags, {θA}A∈Ags, {est0

A}A∈Ags), where (Ags, S, {Act}A∈Ags,

T,R) is a turn-based SMG as introduced in Section 3.4.3. Standard concepts
introduced for SMGs, such as a set of finite paths FPath, functions actions
and owns, and path notations remain the same in CSMGs. Novel components
represent mental reasoning of agents; in particular, P is a mental counterpart
of the physical rewards structure R, {~λA}A∈Ags is a set of goal coefficients of
each agent, {be0

A}A∈Ags records initial beliefs of agents, {θA}A∈Ags are agents’
meta-parameters and {est0

A}A∈Ags represents agents’ initial estimations of their
opponents’ mental states.
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Figure 5.1: An example game of tic-tac-toe, developing (a) to (h)

Example. Tic-tac-toe between a parent and their child is modelled by setting
Ags = {kid, parent} (abbreviated to k and p in subscripts); the set of actions
ActA = {(x, y) | x, y ∈ {0, 1, 2}} of each player consists of nine elements, each
identifying a single position in the grid (e.g., Figure 5.1f adds an ‘X’ at position
(2, 0)); each state records the history of execution (e.g., state from Figure 5.1d is
[(1, 1), (2, 2), (0, 0)]); the transition function encodes the informal description of the
game (we assume kid is the cross player and goes first); there is one physical reward
structure R1 = {r1,k, r1,p} that assigns no action rewards, but allocates non-zero
rewards in states in which the game has ended: +1 for the winner and −1 for the
loser. Note that tic-tac-toe is a turn-based game.

In what follows, we introduce in detail the novel elements of the CSMG definition
and motivate them by referring to the running example.

Example. A standard approach to modelling players’ motivations in a game like
tic-tac-toe is to assign a positive reward for winning the game and a negative reward
for losing. However, it is clear that when parent plays against their child, something
else is at stake. One may be tempted to modify the reward structure by changing
the parent’s rewards to equal child’s rewards, so that the parent prefers losing
to winning. However, this would be too simplistic and might lead to unrealistic
behaviour, whereby the parent never defends against obvious threats and plays
unnatural moves.

Instead, we postulate that, rather than trying to increase the probability of
child winning, the parent wants to increase child’s satisfaction from playing the
game. The difficulty that arises is that, unlike the outcome of the game, satisfaction
constitutes private information of each player. Therefore, it cannot be captured by
the standard reward structure R1, which deterministically assigns rewards at each
state. Instead, we treat satisfaction, and other mental states, differently.
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5.3.1 Mental Rewards

In general, our observation is that humans are motivated not only by physical, easily
quantifiable quantities, such as money or time, but they are driven also by mental
goals. Examples include high-level desires such as developing relationships with
people, making others happy or causing an enemy to suffer, as well as emotional
considerations: avoiding guilt or shame, maximising trust and pride. Distinctive
features of these mental states are that they are difficult to measure and quantify
and typically not observable to others – which complicates things further, given
that an agent might be motivated by someone else’s mental state (e.g., I may
care how much you trust me).

To represent mental goals, we equip each agent with a set of mental variables
that are latent in a sense that other agents do not know their values. Each mental
variable represents a mental state or an emotion, such as anger, joy, regret or
pride. An agent knows how they feel, and so they can evaluate their mental
state at any point – such evaluation might take agent’s belief and personality into
account. On the other hand, mental states of others are unknown to an agent,
which necessitates estimation of their values. The intuition behind mental rewards
is to assign a numeric value to those feelings experienced by the agents, so that
they can be included in agent’s utility function.

Before diving into detail, a note about nomenclature: mental state is the emotion
we are considering (trust, guilt, shame etc.); mental goal is closely related, but
captures what an agent is trying to achieve with respect to some mental state (e.g.,
minimize guilt or increase trust); mental variable is purely syntactic – it identifies a
mental state of an agent; mental reward is a numerical value assigned to a mental
state, appropriate for inclusion in a utility function.

Formally, along with a set of reward structures R, which model physical rewards,
CSMG includes a set of mental reward structures P = ⋃l

i=1{Pi}, one for each mental
state we wish to model (we assume there are l such). Each mental reward structure
Pi is a tuple ({ηAi }A∈Ags, δi, ωi), where ηAi is the ith mental variable of an agent
A ∈ Ags, while δi and ωi are used to compute mental rewards.

In particular, δi : FPath × Act × Ags× Ags→ ([−1, 1]→ [−1, 1]) is a mental
state dynamics model, which encodes agents’ appraisal of mental states of others.
Given a path ρ ∈ FPath, a ∈ Act and A,B ∈ Ags, δi(ρ, a, A,B) is a dynamics
function that encodes a heuristic according to which A estimates how ith mental
state of B changes when action a is taken in the last state of ρ. For instance,
Bob may hypothesize that being late for his weekly meeting will deteriorate his
relationship with his supervisor, unless that relationship is already at a low point, in
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which case it may get better as he at least showed up. In some cases, the dynamics
model is constructed using common sense, while at other times research findings
from fields of psychology and cognitive sciences are utilised. It is also possible to
learn the dynamics function from data using machine learning techniques. Dynamics
functions are typically continuous (but we do not enforce it) and may be partial,
as some mental states only take nonnegative values (trust, for example).

On the other hand, mental state evaluation function, ωi : FPath×Ags→ [−1, 1],
captures the mechanism through which an agent experiences their own mental state.
For example, it may be that the supervisor has already given up on Bob due to his
past behaviour and the relationship cannot be recovered in her eyes. This may be
because the supervisor is unforgiving, which Bob might not be aware of. In general,
evaluation function ωi may take into account personality and beliefs of an agent
and its definition will often be informed by insights from relevant disciplines.

Example. Coming back to our tic-tac-toe example, satisfaction is the only mental
state we model, represented by mental variables ηk1 (child’s satisfaction) and ηp1

(satisfaction of the parent). The mechanism through which the parent makes
inferences about the value of ηk1 is the satisfaction dynamics function δ1. It encodes
a heuristic that dictates how satisfaction changes as the game develops and it
is specified in terms of forks and blunders, which are certain types of moves in
tic-tac-toe, easily explained with an example.

For a fork, see Figure 5.1f – the cross player now has two winning lines (left
column and a diagonal), which guarantees victory in the next move (assuming
optimal play). Hence, a fork is a move that creates two distinct winning opportunities
for oneself, while not giving any winning opportunity to an opponent. When it
comes to blunders, there are two types: (i) not defending against an obvious threat
(any move other than (3, 1) in the state from Figure 5.1e is a blunder of that type),
(ii) not taking an obvious winning opportunity (e.g., any move other than (1, 3) in
the state from Figure 5.1g).

With that, the heuristic captured by satisfaction dynamics postulates that
winning the game increases satisfaction, especially if the game was won as a
consequence of creating a fork; however, satisfaction is lower if opponent blundered.
On the other hand, losing the game brings about a decline in satisfaction and
the reduction is much steeper if losing is a result of own blunder. For a precise
specification, see Algorithm 13. Note that concrete numerical values are used to
represent changes of satisfaction as a result of various actions; in a real application,
these values would ideally come from data, but for the purposes of our example, we
have chosen them fairly arbitrarily.
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We omit a specification of satisfaction evaluation function, as it does not feature
in agents’ decision making (which is explained in what follows, once utility functions
of agents are introduced).

Algorithm 13: Satisfaction dynamics
input : state, action, estimator,estimatee,satisfaction
output : estimator ’s updated estimation of estimatee’s satisfaction after

action is taken in state
1 function updateSatEst(state, action, estimator, estimatee, satisfaction):

/* only model parent’s estimation of kid’s satisfaction */
2 if estimator 6= parent or estimatee 6= child then
3 return 0;
4 end

/* determine whose turn it is at state */
5 turn = owns(state);
6 if turn = kid then
7 if action is a fork then
8 return min(1, satisfaction + 0.7)
9 end

10 if action is a blunder then
11 return max(1, satisfaction - 1)
12 end
13 if action wins the game then
14 return min(1, satisfaction + 0.3)
15 end
16 else
17 if action is a blunder then
18 return max(-1, satisfaction - 0.5)
19 end
20 if action wins the game then
21 return max(-1, satisfaction - 0.3)
22 end
23 end
24 return satisfaction;
25 end

5.3.2 Agent Characteristics

So far, we have introduced one novel component of CSMGs, a set of mental reward
structures P that capture how emotions of agents affect their behaviour. The
intuition is that an agent generally receives various rewards, some of them physical
and some of them mental, but they value some more than others.
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To represent this, each agent in our framework is equipped with a vector of goal
coefficients, which provides subjective weights of various reward structures. This
vector, referred to also as agent characteristics and denoted ~λA (for agent A), gives
rise to the {~λA}A∈Ags component in our definition. Goal coefficients encode players’
preference over various rewards. Each vector ~λA consists of k + ln nonnegative real
numbers, where k ∈ N is the number of physical rewards (|R|), n ∈ N is the number
of agents (|Ags|) and l ∈ N is the number of mental states (see Section 5.3.1).
Intuitively, each agent cares about physical rewards as well as mental state of
every other agent, including themselves (Section 5.4.1 formalises this assumption).
Without loss of generality, we assume that entries of ~λA sum to 1.

5.3.3 Belief

A vector of goal coefficients, which reflects personality of a player, constitutes
private information of an agent. A discrepancy between actual characteristics of
an agent and opponents’ perception of these characteristics is captured by the
notion of belief. To express it, we introduce a probability space on the set of
possible goal coefficient vectors, Λ = {~λ | ∑

i λi = 1}, of agents and, for each
A ∈ Ags and a path ρ ∈ FPath, a belief function beρA : Λ → R, which acts as a
density function on Λ. Then, a probability space of agent A, after executing ρ,
is a triple (Λ,FA,PrρA), where the set of events FA is a standard Borel σ-algebra
generated by open balls in Λ and the probability measure PrρA : FA → [0, 1] is
given in terms of belief by PrρA(X) =

∫
X beρA(~λ)d~λ.

We assume agents update their belief in a Bayesian way every time their opponent
takes an action. That requires initial, i.e., prior, belief of every agent to be specified,
represented by the {be0

A}A∈Ags component of a tuple defining CSMGs. A formal
specification of belief update is deferred until Section 5.4.3, but the intuition is
that observing an action taken by an opponent provides an agent with an insight of
what values of opponent’s goal coefficients are more likely than others. This insight
is incorporated into agent’s current belief to produce an updated belief.

Example. In tic-tac-toe, the parent has two sources of motivation (each represented
by a reward structure): winning the game and maximising their child’s satisfaction.
Therefore, the parent’s characteristics is specified by a two element vector 〈λp1, λp2〉.
We assume that they assign significantly more importance to the latter incentive,
i.e., λp1 < λp2.

However, the child is not aware of what their parent is up to – if they were, the
game would not be entertaining for them. Hence, the child will think that λp1 = 1,
which can be formally captured using a Dirac distribution.
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5.3.4 Meta-Parameters

Apart from a vector of goal coefficients, each agent is characterised also by a set of
meta-parameters, so called because they control agents’ decision-making process
on a higher level. One such is lookahead β ∈ N, which determines how far into
the future a player looks when computing their action. Other meta-parameters
include rationality α ∈ [0,∞], which comes into play as a parameter of the softmax
choice formula introduced in Section 3.4.3, and discount factor γ ∈ (0, 1], which
defines how much an agent discounts future rewards. The set of all meta-parameters
is denoted Θ. The exact way meta-parameters regulate agents’ decision-making
process is described in Section 5.4.2.

Example. Lookahead is especially important in tic-tac-toe and popular board
games such as chess or Go. One of the distinctive characteristics of advanced players
is their ability to simulate the execution of the game multiple moves into the future,
allowing them to evaluate a given choice better. In tic-tac-toe, we would expect the
child to have a lookahead no greater than three, while for a parent a value of six
or seven would not be uncommon. Rationality would also differ significantly; we
expect the kid to err in their computations more often than their parent, which we
could model by setting αk = 5 and αp = 20. Finally, discounting is useful to reflect
the fact that players typically prefer to win the game sooner rather than later – any
value of γ smaller than one does the trick.

In our framework, nested reasoning of agents necessitates that they quantify the
likelihood of different configurations of meta-parameters of their opponent, captured
by the {θA}A∈Ags component in the definition. In particular, for each agent A ∈ Ags
and their opponent B ∈ Ags, we take ΘB = [0,∞] × N × (0, 1] to be the set of
possible meta-parameter tuples of B. Then, θA : ΘB → R satisfying∫

ΘB
θA(x)dx = 1

(i.e., θA is a probability density function in ΘB) describes A’s estimation of B’s
meta-parameters.

5.3.5 Mental State Estimation

Recall that a mental variable of an agent, such as ηk1 from our model of tic-tac-toe,
identifies that agent’s mental state (in this case, satisfaction of the child). At any
point of execution, the value of agent’s A ith mental state is denoted JηAi Kρ (for
current path ρ) and computed using the mental state evaluation function ωi(ρ,A).
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However, an agent cannot directly compute the value of their opponent’s
mental state. Instead, they start with an estimation (which takes the form of
a probability distribution) and they update it according to the dynamics model
as the execution progresses.

To express it formally, we introduce some additional notation. For a function
f : X → Y and an element y ∈ Y , f−1(y) denotes the preimage of y, i.e., the set
{x ∈ X | f(x) = y}. Further, for an agent B ∈ Ags, let HB = ⋃

1≤i≤l{ηBi } be the
set of mental variables of B. Then, for A,B ∈ Ags and ρ ∈ FPath, the mental
state estimation function estρA : HB → Df([−1, 1]) gives A’s estimation, expressed
as a probability distribution, of each mental state ηBi ∈ HB of B, upon executing
path ρ. Recall that Df([−1, 1]) denotes the set of probability distributions on
[−1, 1] with countable support.

Letting ρ = s0a0 . . . snansn+1 and fixing ηBi ∈ HB, estρA(ηBi ) is computed
recursively by A, starting from their initial estimations est0

A : HB → Df([−1, 1])
and using the dynamics function δi, as follows:

estρA(ηBi )(x) =
est0

A(ηBi )(x) if n+ 1 = 0,∑
y∈δi(ρ[0...n],an,A,B)−1(x) estρ[0...n]

A (ηBi )(y) otherwise.

Note that restricting the codomain of the mental state estimation function to
distributions with countable support ensures that a summation may be used
in the above identity. Otherwise, various restrictions would have to be placed
on the dynamics functions δi to ensure that sections of the estimation function
can be integrated. This would add unnecessary complexity to our framework –
as explained in Chapter 6, discrete probability distributions are preferred over
continuous ones anyway.

With that, agent’s A expectation of the value of ith mental state of B is
computed with respect to A’s estimation function as

EρA[ηBi ] =
∑

x∈supp(estρA(ηBi ))
x · estρA(ηBi )(x).

5.4 Model Semantics

Having introduced the components of our model, we now describe how they combine
to give its semantics, which boils down to a formal specification of agents’ decision-
making process. The first step in that direction is the definition of a cognitive
utility function. Then, a method of computing agent’s own, and their opponents’,
expected utility is given. However, due to multiple sources of partial observability,



5. CSMGs – Syntax & Semantics 87

which differ between agents, special care has to be taken to truthfully capture
their cognitive processes.

Note that our formulation of the decision-making process may be used in two
ways. Typically, we use our model “forwards” to generate behavioural predictions,
in the form of posterior predictive distribution over possible decisions. However,
it is also possible to use the framework “backwards”, to infer characteristics of
agents given behavioural data. We describe both of those modes of operation
in more detail in Section 6.1.

5.4.1 Utility Function

Cognitive utility function extends the standard one, defined in Section 3.4.3, with
mental rewards. Note that, due to the nature of mental rewards, we record their
values in states, but do not associate any mental rewards with actions. Therefore,
action utility remains the same in the cognitive model. Moreover, we allow for
nonlinearity of utility by introducing reward utility functions fi : R → R. Then,
for an agent A ∈ Ags, their opponent B ∈ Ags and a path ρ ∈ FPath with
last(ρ) = s, cognitive state utility function cus

A : FPath → R describes utility
gained by A in s as follows:

cus
A(ρ) =

k∑
i=1

λAi f
A
i (rs

i,A(s)) +
l∑

i=1
λA,Ai fA,Ai (JηAi Kρ) +

l∑
i=1

λA,Bi fA,Bi (EρA[ηBi ]).

Hence, utility obtained by an agent in a state is a weighted sum of their physical
rewards and mental rewards, where the latter are defined in terms of values of
agent’s own mental states and expected values of their opponent’s mental states.
Typically, some, if not most, of the mental goal coefficients λA,Ai and λA,Bi will be
equal to 0 and the corresponding component of the utility function may be omitted,
as the example below illustrates. Note also the the above definition applies when
there are only two agents in the system, A and B. For every additional agent,
another component corresponding to A’s estimations of that agent’s mental states
must be added to A’s cognitive utility function.

Example. In the tic-tac-toe example, parent’s cognitive state utility at a path ρ
whose last state is s is

cus
p(ρ) = λp1rs

1,p(s) + λp,k1 Eρp[ηk1 ],
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where, as before, ηk1 represents kid’s satisfaction and state reward function rs
1,p(s)

assigns rewards for winning the game. On the other hand, child’s utility lacks the
cognitive component as they only care about winning the game:

cus
k(ρ) = λk1rs

1,k(s).

It may seem counter-intuitive that satisfaction does not feature in child’s utility
function, but our reasoning is that, during the game, the kid only thinks about
winning, while satisfaction comes later, without the child fully realising the origin
of that sensation (due to cognitive limitations). It illustrates the difference between
the parent’s long-term and the child’s short-term thinking.

Things get a little more complicated when agent B attempts to compute their
opponent’s utility, i.e., the value of cus

A(ρ). First of all, B does not know the value
of A’s goal coefficients, maintaining a belief over their values instead. Second, B
does not know the values of A’s mental states and A’s estimations of B’s mental
states. Using the expectation operator liberally, we may express the expected
value of A’s utility in the last state of some path δ ∈ FPath, computed by B

after executing path ρ as

EρB[cus
A(δ)] =

k∑
i=1

EρB[λAi ]fAi (rs
i,A(s)) +

l∑
i=1

EρB[λA,Ai ]fA,Ai (EδB[ηAi ])

+
l∑

i=1
EρB[λA,Bi ]fA,Bi (EρB[EδA[ηBi ]]).

Note two different paths present in the above expression – here we require that δ
extends ρ (i.e., ρ is a prefix of δ), reflecting the fact that B computes future utility
of A as part of their decision-making process (see below).

While B’s expectations of A’s goal coefficients are easily computed with respect
to B’s belief and EδB[ηAi ] is computed with respect to B’s mental state estimation
function, nested expectation is more difficult to resolve. In fact, rather than
introducing a complex structure such as nested estimation, we assume agents
approximate nested expectation, such as EρB[EδA[ηBi ]], by taking the true value of
their mental state at ρ, JηBi Kρ, and using mental state dynamics from there.

Formally, letting δ = s0a0 . . . snansn+1, nested expectation is resolved as follows:

EρB[EδA[ηBi ]] =
JηBi Kρ if ρ = δ,

δi(δ[0 . . . n], an, A,B)(EρB[Eδ[0...n]
A [ηBi ]]) otherwise.
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5.4.2 Decision Making Equations

Recall that, in order to select an action according to the softmax choice rule, an
agent computes expected future utility corresponding to each available action. This
computation, in general, is recursive in nature, where the depth of the recursion is
given by an agent’s lookahead parameter β. The recursion explores the game tree,
computing expected utilities at each visited state, including states where the agent’s
opponents take actions. To predict actions of the other player, an agent computes
its expectation of their opponent’s future utility, which, combined with the softmax
choice rule, allows an agent to quantify the likelihood of different future paths.

To formally express this expected future utility for agent A, we define a family of
mutually recursive random variables Uρ,δ,h

A,A , Uρ,δ,h
A,B , Uρ,δ,h,a

A,A , Uρ,δ,h,a
A,B and P ρ,δ,h,a

A,B on the
space ΘB of B’s meta-parameters. The first four of those random variables express
different variants of expected (with respect to B’s mental characteristics) utility of
A or B (depending on the second subscript), accumulated over the next h steps,
starting in the last state of δ, computed by A (as denoted by the first subscript)
at a point of execution where current path is ρ. If an action a is specified in the
superscript, the random variable denotes expected utility assuming a is taken after
executing δ; otherwise, it is the expected utility in a state reached after executing
path δ. The last random variable, P ρ,δ,h,a

A,B , expresses the probability that agent B
takes an action a in the last state of δ, computed by A after executing ρ.

We present the definitions of those random variables below. We call this
set of equations decision making equations. To improve readability, we fix an
element 〈αB, βB, γB〉 ∈ ΘB and implicitly assume that all occurrences of the random
variables below are passed this element as an argument. We also assume that
the current path is ρ and δ is a finite future extension of ρ, with last(δ) = s.
The definitions are as follows:

Uρ,δ,h
A,A =

cus
A(δ) if h = 0,

cus
A(δ) + ∑

a P
ρ,δ,h,a
A,owns(s)U

ρ,δ,h,a
A,A if h > 0.

(5.1)

Uρ,δ,h
A,B =

EρA[cus
B(δ)] if h = 0,

EρA[cus
B(δ)] + ∑

a P
ρ,δ,h,a
A,owns(s)U

ρ,δ,h,a
A,B if h > 0.

(5.2)

Uρ,δ,h,a
A,A = cua

A(δ, a) + γA
∑
s′

T(s, a)(s′)Uρ,δas′,h−1
A,A (5.3)

Uρ,δ,h,a
A,B = EρA[cua

B(δ, a)] + γB
∑
s′

T(s, a)(s′)Uρ,δas′,h−1
A,B (5.4)
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P ρ,δ,h,a
A,B =

exp(αBUρ,δ,h,a
A,B )∑

a′∈actions(s) exp(αBUρ,δ,h,a′

A,B )
(5.5)

Hence, looking first at Equations 5.1 and 5.2, expected future utility computed
by an agent depends on the time horizon. When it is equal to 0, utility may be
computed directly; in Equation 5.1 it is simply an agent’s own cognitive state
utility, while in Equation 5.2 it is an expectation, computed with respect to
one’s own belief, of opponent’s cognitive state utility. Otherwise, expected utility
accumulated within the next h steps is equal to the cognitive state utility (or,
again, an expectation of opponent’s utility) gained in the current state plus a sum
of expected utilities corresponding to different actions available to an agent in
the current state (whichever agent owns that state), weighted by the probabilities
of taking those actions. That probability, in turn, is computed according to
Equation 5.5, where the expected utilities are expressed by random variables U .

Next, looking at Equations 5.3 and 5.4, expected utility corresponding to an
action a taken in a state s (where s = last(δ)) is simply action utility (in Equation 5.3,
or an expectation of opponent’s action utility in Equation 5.4), plus a discounted sum
of expected utilities in states reachable from s, weighted by transition probabilities.

Finally, the probability of B taking an action a (Equation 5.5) is based on the
softmax choice formula, adapted to the current notation. Note that we allow A = B,
which represents an agent computing their own action.

With that, we can express the probability of agent A taking action a when the
current path is ρ, computed by the system’s modeller, as Probρ(a) = Eρ[P ρ,ρ,βA,a

A,A ],
where A = owns(last(ρ)). Similarly, the probability of agent B taking action a
in the last state of δ, computed by agent A after executing path ρ, is simply an
expectation (computed with respect to A’s meta-parameter estimations of B) of the
value of random variable P ρ,δ,βB ,a

B,A , formally expressed as ProbρA(a) = EρA[P ρ,δ,βB ,a
B,A ].

Example. We briefly overview how the parent computes their action in the state
s0 = [(1, 1)] from Figure 5.2a. For simplicity, we assume βp = 3 (short lookahead),
αp → ∞ (perfect rationality) and γp = 1 (no discounting); moreover, we assume
the parent knows child’s meta-parameters: βk = 2, αk = 5 and γk = 0.7. We set
parent’s goal coefficients to 〈0.1, 0.9〉 – child’s satisfaction is the parent’s priority.

To decide on an action, an agent generally computes expected utilities corre-
sponding to each available action (Equation 5.5) and chooses probabilistically –
the higher the expected utility, the higher the chances of an action being picked.
In a special case of perfect rationality, only actions that yield maximal expected
utility are considered (usually there is only one such). The six actions available to
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X
X

O
(a) s0

X ap6 ap5
ap3 X ap4
ap2 ap1 O

(b)

X
X
O O

(c) s1

X ak5 ak4
ak3 X ak2
ak1 O O

(d)

X
X

X O O
(e) s2

Figure 5.2: Reference for illustration of the decision-making process

Table 5.1: Expected utilities and action likelihoods computed by the parent

(a)

ak1 ak2 ak3 ak4 ak5

Uρ,δ1,2,·
p,p 1.26 -0.17 -0.17 1.09 1.09

P ρ,δ1,2,·
p,k 0.74 0.06 0.06 0.06 0.06

(b)

ap1 ap2 ap3 ap4 ap5 ap6

Uρ,ρ,3,·
p,p 1.05 0.04 1.05 0.5 0.04 0.5

the parent in s0 are depicted in Figure 5.2b; Table 5.1b shows expected utilities
corresponding to each action, computed according to decision making equations.
We focus on ap1; in particular, letting ρ be the path taken to reach s0, we analyse
how U

ρ,ρ,3,ap1
p,p is computed.

In the absence of action rewards, expected utility for ap1 reduces to the expected
utility in a state reached after taking action ap1 (by Equation 5.3, given lack of
discounting) – call it s1 and the path taken to reach it δ1. Now, in s1, it is the
child who takes an action, so computing Uρ,δ1,2

p,p requires the parent to quantify the
likelihood of the child taking different actions (by Equation 5.1). Possible actions
for the kid in s1 are depicted in Figure 5.2d; to compute the probabilities of the
child taking each of them (P ρ,δ1,2,·

p,k ), the parent computes expected utilities of the
kid corresponding to each action, according to Equation 5.4 (it involves using belief
and meta-parameter estimations). It turns out that ak1 is deemed most likely by
the parent; specifically, P ρ,δ1,2,ak1

p,k ≈ 0.74 (recall that the kid is not perfectly rational,
so they choose their action noisily), which is reassuring, since any other move loses
the game for the kid (assuming optimal play on the parent’s side).

All that remains for the parent is to compute their expected utility corresponding
to each action of the child – the values are summarised in Table 5.1a. They are
not hard to compute using Equation 5.3 – in the absence of action rewards, each
U
ρ,δ,2,aki
p,p is simply a sum of rewards in the next two states, the first of which is given

by the transition function, while the second is easily determined by the parent.
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With that, the value of Uρ,ρ,3,ap1
p,p = Uρ,δ1,2

p,p (1.05) is given (according to Equation 5.2)
by the sum of expected utilities weighted by probabilities from Table 5.1a.

5.4.3 Belief Update

We now formally describe the mechanism by which agents update their beliefs. Note
that this section contains the abstract, conceptual treatment, while Section 6.1.5
goes into the details of how belief update is implemented.

Abstractly, agents update their belief in a Bayesian manner, upon observing
their opponent’s action. In other words, posterior belief is given as a product of
prior belief and the likelihood of their opponent taking the observed action. The
key aspect of this Bayesian update is the way the likelihood of a given action is
computed. Suppose that at some point of the system execution the current path is ρ
and it is A’s turn to take an action, one of a1, a2, . . . , ap. Intuitively, based on their
belief about A’s characteristics, B assesses which actions are more likely than others.
Then, upon observing the action taken by A, B’s belief will be refined to reflect newly
gained information. If the observed action had been deemed likely by B in the first
place, their belief will be reinforced. If, on the other hand, B had not been expecting
to see the action chosen by A, their belief may need to change substantially.

Formally, the likelihood of A taking action a, computed by B at a point of
execution where current path is ρ, given a set of A’s goal coefficients ~λ is expressed
using the random variable P defined in Equation 5.5 as follows:

Probρ,~λB (a) = EρB[P ρ,ρ,βA,a
B,A |~λA = ~λ].

Note that the conditional expectation is used somewhat informally here; the
expectation is computed with respect to B’s estimation of A’s meta-parameters,
while the condition ~λA = ~λ holds on a space ΛA of A’s goal coefficients. However,
computing that expectation generally involves evaluating expressions of the form
EρB[cus

A(δ)], which in turn necessitates computing B’s expectations of A’s goal
coefficients. Normally, these would be computed with respect to B’s belief, but,
in this case, A’s goal coefficients are conditionally given as ~λ.

Now, supposing that A has taken action ai (for some i ∈ {1, 2, . . . , p}) and the
system transitioned to a state s, B’s belief is updated as follows:

beρs
B (~λ) = beρB(~λ)

Probρ,~λB,A(ai)∫
ΛA Probρ,

~λ′

B,A(ai)d~λ′
(5.6)

Intuitively, having observed A take an action ai, B infers that mental char-
acteristics which maximise the likelihood of A taking action ai are more prob-
able than others.
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5.4.4 Trust and Trustworthiness

As outlined above, a key contribution of our framework is the inclusion of agents’
emotions in their decision-making process. In principle, any mental state can
be expressed in our model, as long as two mechanisms are specified: (i) an
evaluation function, which captures the nature of the emotion by setting out how
an agent experiences it at any point of execution (we assume it can be represented
numerically), and (ii) a dynamics function, which captures the heuristic agents use
to estimate the value of this mental state in others, which they cannot observe.

A mental state we are particularly interested in as part of this work is trust – a
complex mental attitude, generally understood as a subjective belief of a trustor
towards a trustee about an action relevant to some goal (see Section 3.1 for an
overview). In this section, we use trust as an example to illustrate the process of
modelling an emotion in CSMGs. We begin with a brief overview of assumptions
we make about the exact formulation of trust, followed by a formal definition in the
setting of CSMGs (which serves as a trust evaluation function) and trust dynamics.

In this thesis, while we support the view that trust is task dependent, we assume
that it has a universal component, which we call core trust. Inspired by social and
cognitive science research [45, 59, 113], we define it as a subjective belief of a trustor
over trustee’s willingness to go out of one’s way to help the trustor achieve their
goal, and measured on a 0− 1 scale. Core trust between two agents A and B may
be thought of as a measure of their mutual relationship – we would expect core
trust between A and B to be high if they are good friends or family relatives and
low if they had interacted previously with a disappointing outcome.

The concept of trust is very closely related to the notion of trustworthiness.
Intuitively, while the value of trust is based on subjective belief of a trustor, trust-
worthiness is attributed to the trustee and is based on their mental attributes, past
experience or preferences. We expect trust to change during repeated interactions,
while trustworthiness remains constant. In fact, we follow Russell Hardin [113]
in reducing trust to trustworthiness via agent’s belief.

Each agent is assumed to have a baseline core trust, which measures one’s
propensity to trust, i.e., the initial level of core trust between oneself and a complete
stranger. It is important to note that baseline core trust in most humans is a
positive number, reflecting a degree of blind faith in others [114]. Another property
of core trust is asymmetricity – A’s trust towards B will in general differ from
B’s trust towards A, although the two will often be positively correlated. Finally,
regarding the relationship between core trust and task-specific trust, we assume
that the former is necessary, but not sufficient, for the latter. In particular, we
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take it that task-specific trust κA,B(ψ) consists of core trust δA,B combined with
task competence γA,B via the following relationship

κA,B(ψ) = δA,B
∏

a∈actions(ψ)
γA,B(a),

where actions(ψ) are actions required to achieve task ψ. The representation of
task ψ and the computation of actions needed to achieve ψ is application-specific
and we do not cover it extensively at present. However, as suggested by the
notation we used to refer to a task, a logical language such as PRTL∗ (introduced
in Chapter 4) could be used for defining tasks.

Similarly, the way competence trust γA,B : Act → [0, 1] is specified will differ
between applications. We envisage an experience-based model, where previous
performance of B on actions equal or similar to a, observed by A, affects the value
of γA,B(a). Endowing A with some initial trust in B’s competence allows one to use
Bayesian methods to update A’s competence trust towards B, based on observations.
However, at present we do not concern ourselves with the competence model and
consider scenarios in which actions taken by agents do not require skill. Therefore,
below we use terms trust and core trust interchangeably.

Before presenting a definition of core trust, we make a note about notation and
nomenclature, intended to facilitate the reader’s comprehension. Trust is a mental
state, represented by a mental (latent) variable, e.g., trustA,B for A’s core trust
towards B. The actual trust that A feels towards B (known only to A), when
execution history is ρ, is expressed as JtrustA,BKρ and computed according to the
definition of trust given below. On the other hand, B will generally not know how
much A trusts them, i.e., the value of trustA,B, and will use the trust dynamics
model (also given below), along with their initial estimation of A’s trust, to compute
their expectation of A’s trust, denoted EρB[trustA,B], at path ρ.

Core Trust

To formally define core trust, we restrict our attention to two agents, A and
B, and focus on A’s trust towards B, represented by trustA,B. We note that
A has a λAτ fAτ (EρA[trustB,A]) component in their utility function, reflecting A’s
desire to be trusted by B. Intuitively, every agent is to some extent (or not at
all, when λτ = 0) motivated by maximising the value of core trust that their
opponent places upon them.

Our observation is that trust between A and B is a measure of their relationship,
and a desire of A to develop or maintain a relationship with B is equivalent to A
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making an effort to increase or preserve B’s trust. This desire is usually motivated
by an expectation of future reward associated with such relationship, or a gratitude
related to past events. In any case, the more A cares about their relationship
with B, the more trustworthy A should appear to B. In fact, A’s commitment to
building a relationship with B (in other words, A’s trustworthiness towards B),
expressed as a numerical value between 0 and 1, is equal to λAτ .

Hence, we define the trustworthiness of an agent as follows.

Definition 1. Let M be a cognitive stochastic multiplayer game, A and B be
agents in M, and let λA,Bτ be the goal coefficient of A corresponding to mental
reward associated to trustB,A mental variable. Then A’s trustworthiness (towards
B) is given by

τA,B = λA,Bτ ,

i.e., it is equal to the value of the goal coefficient.

A noteworthy consequence of this definition is that we cannot assign a single
trustworthiness score to an agent; it is only meaningful to talk of an agent’s
trustworthiness towards some other agent. This also explains why different people
may have different opinions about someone’s trustworthiness.

An important question that arises is the interpretation of a numeric value of
trustworthiness. Recall that the parameter λA,Bτ measures relative importance
that A assigns to maintaining a good relationship with B when making decisions.
Indeed, when λA,Bτ = 0, A is not concerned with their relationship with B at all;
correspondingly, A’s trustworthiness towards B is zero. Conversely, when λA,Bτ = 1,
A is solely motivated by strengthening their relationship with B, interpreted as the
maximum trustworthiness with value one. However, trustworthiness values between
0 and 1 are less clear-cut. In fact, due to potentially varying numerical ranges of
reward structures and the reward utility functions fi, intermediate values of λA,Bτ

can only be meaningfully interpreted given more context.
We are now ready to formally define core trust, which, recall, will be formulated

as A’s assessment (belief) of B’s trustworthiness towards A. In particular, for
each pair of agents A and B in a CSMG M, we introduce a random variable
TA,B : ΛA → [0, 1] on the space ΛA of A’s goal coefficients, given by TA,B(~λ) =
λA,Bτ . Hence, given a vector of goal coefficients of A, TA,B extracts trustworthiness
of A towards B. With that,
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Definition 2. Let A, B be agents in a CSMG M and ρ be the current path. Then,
A’s core trust towards B, denoted δρA,B, is defined as

δρA,B = EρA[TB,A],

where the expectation is computed with respect to A’s belief.

Note an important property of this definition – since trust is generally viewed as
a dynamic notion, a good formulation of trust should model this variation. Indeed,
due to the way agents’ beliefs are updated, an agent’s trust also changes as a result
of the opponent’s action. It is important to realise, however, that, while the value
of trust changes continuously, trustworthiness of agents remains constant (due to
our assumption of goal coefficients not changing).

Trust Dynamics

Having introduced the formal definition of core trust, we now describe the heuristics
that agents use to estimate how much their opponent trusts them. Before we do
that, we briefly mention why this heuristics is needed. An alternative approach
would involve an agent using the formal definition to compute their opponent’s
trust toward themselves. Since core trust of B towards A is defined in terms of
B’s belief, which in general is unknown to A, A would need to maintain a belief
over B’s belief in order to compute the expectation of B’s trust. But then, since B
generally needs to compute their expectation of A’s utility in order to compute their
own action, B would need to maintain a belief over A’s belief over B’s belief. When
reasoning over longer paths, this nesting grows ever deeper and is not maintainable
in practice. The trust dynamics model breaks this nesting and provides an efficient,
yet realistic, mechanism for trust estimation.

Before proceeding, we note that a trust dynamics model is generally model-
specific, as it is defined relative to actions available in a system. However, based on
basic properties of trust, we provide below a set of principles and a general form of
a trust dynamics model, which may be adapted to particular applications.

Normally, the first step of formulating a trust dynamics model involves identifying
actions that require or affect trust. In many models, this can be accomplished
using common sense, but alternative, more mechanistic approaches exist. One such
is proposed by Wagner et al. [40], who formulate trust as a “belief, held by the
trustor, that the trustee will act in a manner that mitigates the trustor’s risk in
a situation in which the trustor has put its outcomes at risk”, and based on that
definition, put forward four conditions necessary for trust considerations to arise
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in a given setting. These can be verified on a game-theoretic representation of an
analysed scenario, which integrates well with our framework.

Once conditions for trust are verified to hold, actions that put an agent at risk
are identified (so-called trusting actions, using terminology from [40]), followed by
finding actions of their opponent that maintain or violate trust placed on them.

Having identified the trust-related actions, each of them is then mapped to
the effect it has on trust. The maintain trust and violate trust actions increase
and decrease trustor’s trust, respectively. We suggest functions f(x) = ln(x + 1)
and g(x) = exp(x− 1) to represent the decrease and increase of trust, respectively.
They are simple to compute, take on values in the interval [0, 1] (for x ∈ [0, 1]),
are increasing and have a desired property of approaching h(x) = x at extremes
(as seen in Figure 5.3). This ensures that trust increases slowly when it is high
and decreases slowly when it is low.

Of course, not every action that maintains trust is equal and, in some cases, the
distinction between maintaining and violating trust may be difficult to pinpoint. In
such cases, the logarithm and exponential functions must be adapted to the unique
requirements posed by a given system. In fact, in Section 5.5 we show exactly how
that can be done, as part of modelling the trust game as a CSMG.

To sum up, we take task-specific trust to consist of two components: (i) task-
independent core trust, which measures the willingness of an agent to go out of one’s
way to carry out its commitment to another, and (ii) task-dependent competence
trust, which reflects the ability of an agent to carry our a given task and is based
on past performance and circumstances at the time. We assume A’s core trust
towards B is an estimation (by A) of B’s trustworthiness, which in turn is defined
with respect to B’s goal coefficients.
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Figure 5.4: One iteration of the trust game

5.5 The Trust Game Example

Similarly as for ASMASs, we put the theory into practice by considering the trust
game example. This serves not only as a demonstration of our framework, but
also as a comparison of CSMGs with ASMASs.

First thing to note is that we consider a different version of the trust game
than in Section 4.4. It is a variant much more commonly used in the literature. It
still involves two agents, Alice and Bob, who enter a money-exchange scenario. As
before, Alice is endowed with $10. However, instead of a binary choice between
investing and withholding, she can now share any integral part of her endowment
with Bob. Whatever amount she invests gets duplicated in transit before being
received by Bob, who can share any (integral) part of it with Alice. Note that Bob
receives no endowment in this variant. Figure 5.4 shows a graphical representation
of the game where the initial endowment of Alice is $4 (rather than $10) to help
readability. Note that states are subscripted with the sequence of actions taken up
to that point in the game. Also, in the figure, actions are represented as integers,
but we also denote them as a0 (action of transferring $0), a1 (action of transferring
$1) and so on, whenever it helps readability.

As mentioned in Section 4.4, standard game-theoretic analysis based on equilibria
predicts that no cooperation will arise in this scenario. However, a crucial assumption
needed to arrive at that conclusion is that players only care about money; then Bob
has no incentive to share any of his profits and Alice, anticipating Bob’s behaviour,
has no reason to invest with him. This reasoning may be applied iteratively, which
means that no cooperation is anticipated even in a repeated version of the trust
game. However, human experiments show that non-zero transfers occur in the
majority of interactions [54], contradicting the theoretical predictions. Evidently,
human decision making is not as simple as maximising monetary payoffs.
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Indeed, we postulate that personality of the agents and the trust between them
should be included in the analysis. Humans are social animals (an observation
that goes back to Aristotle) guided by social norms, such as reciprocity, and driven
by a desire to develop new, and preserve existing, interpersonal relationships. Or,
they may only care about the money, but use their awareness of social norms to
take advantage of more reciprocative humans. Therefore, trust will be modelled as
a mental state in our formalism, allowing us to capture how trust considerations
shape decision making of agents.

5.5.1 Game Setup

The standard components of the model are similar to those of the binary variant
of the game, but reflect the changes in game semantics.

First of all, the state of the game no longer contains the cognitive components
(goals and intentions of agents), but, to allow easy generalisation to the repeated
trust game, it now records all past investments and past returns of agents, along
with turn information1. For example,

sinit = (Alice, [], []),
s1 = (Bob, [a1], []),
s1,2 = (Alice, [a1], [a2]).

Other possible states include s3,5,3,4 = (Alice, [a3, a3], [a5, a4]) or s3,1,4,1,2 = (Bob,
[a3, a4, a2], [a1, a1]). In general, for a state sseq the subscript seq of s is a sequence
of actions taken by agents so far. Importantly, since states encode execution
histories, we may abuse the notation and use states whenever paths are required2.
In particular, expressions such as cus

A(s1,2), cua
A(s3,5,4,4, a2) or Es2,2

A [trustAlice,Bob]
will be treated as shorthand notation for corresponding expressions where states
are replaced by paths starting in sinit and ending in that state.

Transition function is formally given by

T((turn, invs, rets), a) =
(Alice, invs, a : rets) if turn = Bob,

(Bob, a : invs, rets) if turn = Alice,

where the notation a : rets denotes a list obtained by prepending an action a

to a list of past returns rets.
1We note that recording turn information is redundant, but helps readability and facilitates

notation.
2This is important to keep in mind, especially when relating formulas in this section to the

formal semantics.
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Physical Rewards

A single physical reward structure R = {rAlice, rBob} represents monetary incomes of
agents, where state and action rewards are defined in a natural way (formally
specified below).

rs
Alice(s) =

4 if s.turn = Alice,
0 otherwise.

rs
Bob(s) = 0 for all s.

ra
Alice(s, a) =

−a if s.turn = Alice,
a otherwise.

ra
Bob(s, a) =

2a if s.turn = Alice,
−a otherwise.

Therefore, initial endowments take the form of state rewards in state sinit. Transfers,
on the other hand, are naturally modelled as action rewards, with Alice’s transfer
duplicated in transit.

Mental Rewards

Having described the standard components of our model of the trust game, we
now move on to the novel elements, starting with mental rewards. As mentioned
above, we are interested in capturing the trust between agents, represented by
two latent variables, trustAlice,Bob and trustBob,Alice. Recall that a mental reward
structure consists of the mental variables themselves as well as an evaluation
function and a dynamics model for each mental state. In this case, we only have
one mental variable for each agent and the evaluation function is based on our
definition of trust from Section 5.4.4, which formulates it as an expectation of
another’s trustworthiness, computed with respect to agent’s belief. Hence, for an
agent A ∈ Ags and an execution history ρ

ωτ(ρ,A) = EρA[λB,Aτ ]

gives the value of A’s trust towards B, which only A knows.
It is the trust dynamics model that requires more effort. Recall that in

Section 5.4.4 we have presented a generic model of trust evolution and a basic
recipe for constructing the dynamics function for a given model. Below, we show
how to apply that procedure to the trust game.
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Trust Dynamics The first step involves identifying actions that give rise to trust
considerations. It is clear that Alice’s decision to share any part of her endowment
puts her at Bob’s mercy, i.e., makes her vulnerable. Her choice is a classic example
of an action that requires trust – by investing, she stands a chance to earn more
than she would had she not invested, but she also risks losing part of what she
was given. Assuming she invests, and Bob cooperates, her trust is rewarded and,
in most cases, increases. On the other hand, if Bob keeps most of the profit to
himself, Alice will likely regret her decision and lose trust in Bob.

Conversely, taking Bob’s point of view, depending on how much he trusts Alice,
he may have different expectations of her behaviour. Lack of cooperation (i.e., low
or nil investment) from Alice’s side denies Bob an opportunity to make a profit,
and hence we may expect Bob’s trust to decrease. On the other hand, if Alice is
unexpectedly generous in her investment, Bob will likely gain trust towards her.

However, trust considerations are further complicated by the wider range
of transfers available to agents (compared with the binary variant). Our trust
dynamics model must differentiate between low and high transfers – e.g., upon an
investment of $6 by Alice, a return of $4 by Bob will likely produce a different
trust response than a return of $7.

Finally, we note that trust evolution is not uniform with respect to time –
initially, agents have little knowledge about each other, so trust changes resulting
from behavioural observations are greater. In later rounds of the game, the value
of trust becomes more established and each subsequent action of an opponent
comes with less influence on trust. The evidence supporting this property has
been observed experimentally [35, 74].

In what follows, we assume that the multiplication factor of the game is 2,
i.e., the amount Alice sends to Bob gets duplicated in transit. Generalisations
to other values, in particular k = 3, are possible, but require small modification
to the methods presented below. On the other hand, the presented procedures
are independent of the size of Alice’s endowment.

The high-level structure of the update procedure is outlined in Algorithm 14. It
describes how one agent’s trust changes as a response to their opponent’s action. It
captures the non-uniformity of trust dynamics by decreasing the computed trust
change by a factor which increases as the game progresses. The action taken by
one of the agents might be an investment or a return, which, as described above,
have different nature and are treated separately by the algorithm.
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Algorithm 14: Trust dynamics function
input : prior trust t0, action a, execution history ρ
output : updated value of trust t

1 function updateTrust(t0, a, ρ):
2 n← current round number; /* 1,2,3,... computed using ρ */
3 d←

√
1/n;

/* determine if a is an investment using last state of ρ */
4 if a is an investment then
5 t← trustChangeAfterInvestment(t0, a, ρ) ; /* See Alg 15 */
6 else
7 inv ← most recent investment on ρ;
8 t← trustChangeAfterReturn(t0, inv, a) ; /* See Algorithm 17 */
9 end

10 return t0 + d(t− t0) ; /* discount updates as game progresses */
11 end

Algorithm 15: Dynamics of trust – update following an investment
input : old (prior) trust t0 of Bob towards Alice, Alice’s investment inv,

Alice’s endowment endow, game history ρ
output : updated trust of Bob towards Alice (perceived by Alice)

1 function trustChangeAfterInvestment(t0, inv, ρ):
2 p← inv as a proportion of Alice’s endowment;
3 t1 ← expCurve(p, t0) ; /* See Figure 5.5 */
4 niceBob ← computeBobNiceness(ρ);
5 niceAlice ← computeAliceNiceness(inv, ρ);
6 t2 ← trustChangeNiceness(niceBob, niceAlice, t0) ; /* Alg 16 */
7 w ← significance of niceness ; /* See Figure 5.8 */
8 return t1(1− w) + t2w;
9 end

Trust Change Following an Investment The meat of trust dynamics is
encoded in functions trustChangeAfterInvestment and trustChangeAfterReturn; we
begin with an overview of the former, outlined in Algorithm 15. It captures the
heuristics Alice uses to update her estimation of Bob’s trust upon her investment.
Note that the procedure operates with Alice’s endowment as input, rather than
assuming the usual value of $10. The basic idea behind the update is that high
investments increase Bob’s trust while low investments decrease it. However, the
amount invested must be judged relative to the value of Bob’s trust prior to the
investment (t0). If it was low, then even a moderate investment (half of endowment,
say) will likely increase it (but a higher investment would increase it more).
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Figure 5.5: “Exponential” trust curves; each consists of two distinct functions of the
form a exp(bx) + c that cross identity (f(x) = x) at x = d; the parameters for each section
are chosen so that the first approaches identity from above on [0, d] (representing trust
increase that declines as prior trust grows) while the second deviates from identity on
[d, 1] (representing trust decrease that gets bigger as prior trust grows)

The second caveat is that the way Bob’s trust evolves will depend on his past
behaviour, particularly his returns in the most recent rounds of the game (if any).
For example, if in the previous round Bob returned more than he received, he may
expect Alice to increase her investment accordingly.

Hence, we postulate that the new value of trust is a weighted average of two
estimates: one computed based on the relationship between Bob’s prior trust and
the size of Alice’s investment and another based on the relationship between how
nice Bob has been so far in the game and how nice Alice’s current investment was.

The first of those estimates, denoted t1 in Algorithm 15, is computed using
a function designed to capture the relationship between Alice’s investment and
Bob’s prior trust. Note that the investment is expressed as a proportion of maximal
possible investment (which is equal to Alice’s endowment) so that it takes values
between 0 and 1. Figure 5.5 depicts the curves that model how trust evolves
upon an investment. The intuition is that Bob’s expectation of Alice’s investment
corresponds to his trust towards her. For example, if his trust is 0.7, he expects Alice
to invest roughly 70% of her endowment. If she invests more, his trust will increase
and if she invests less, his trust will decrease. Hence, given an investment proportion,
the trust curves cross the y = x identity line when x is equal to that proportion.

The second estimate, denoted t2 in the algorithm, is computed based on
comparing Alice’s and Bob’s “niceness” – a number between −1 and 1 that
summarises an agent’s past behaviour in the game. For Alice, niceness captures
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Figure 5.6: Exponential curves f(x) = aebx + c with f(0) = 0, for selected values of b

the relationship between her most recent investment and the one before – it is
negative when most recent investment is lower and positive when it is higher than
the one prior to that. For Bob, niceness is more complex – it aggregates all his past
behaviour. In each round, his one-step niceness expresses the proportion of Alice’s
investment that he returned, shifted towards −1 to obtain the required range. With
that, overall niceness is a weighted average of one-step niceness over all rounds, with
more recent behaviour assigned more importance using exponential smoothing.

Algorithm 16: How trust changes depending on niceness
input : prior trust t0 of Bob towards Alice, Bob’s niceness niceBob, Alice’s

niceness niceAlice
output : updated trust of Bob towards Alice (perceived by Alice)

1 function trustChangeBasedOnNiceness(t0, niceBob, niceAlice):
2 if niceAlice < 0 and niceBob > 0 then
3 b← (niceBob − niceAlice) / 4;
4 return expCurveCrossingAtZero(−b, t0);
5 else
6 b← niceAlice > niceBob ? niceAlice − niceBob : 0 ; /* Ternary op */
7 return expCurveCrossingAtOne(b, t0);
8 end
9 end

Then, the value of t2 is computed based on the relationship between Alice’s and
Bob’s niceness – the way it is done is outlined in Algorithm 16. If Bob has been
nice but Alice has not (the if branch of the if statement), Bob’s trust decreases,
with the magnitude of the decrease proportional to the difference in niceness. This
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dynamics is achieved by using exponential functions of varying steepness that cross
the origin, illustrated in Figure 5.6. Otherwise, if Alice was nicer than Bob (the
positive case of the ternary operator of else branch), his trust will increase according
to a function from a family illustrated in Figure 5.7 – again, larger differences in
niceness correspond to less steep curves, i.e., greater increases in trust. Finally, if
Bob was nicer than Alice but both were nice or both were not nice (the negative case
of the ternary operator of else branch), we assume the trust does not change (when
b = 0 the exponential curve is assumed to coincide with the identity function).

With t1 and t2 computed, the last aspect of the algorithm involves determining
the weights of the two trust values when they are averaged. As indicated on line 7
of Algorithm 15, the weights are based on how significant Bob’s niceness is deemed
to be. This significance is computed based on two factors: (i) the number of rounds
played so far in the game – more rounds means more evidence; (ii) the value of
Bob’s niceness itself – more extreme values are assumed to be more significant.
The resulting relationship between the number of past rounds, Bob’s niceness and
the weight of t2 is depicted in Figure 5.8.

Trust Change Following a Return The hypothesised evolution of trust
following Bob’s return of Alice’s investment, outlined in Algorithm 17, is much
simpler than what we have just described for investment. It is modelled using
exponential functions from Figure 5.5 – the central part of the algorithm involves
computing the point at which the curve will cross y = x line. The important thing to
note is that this point does not get uniformly closer to one as the return proportion
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Figure 5.8: How weight of t2 depends on Bob’s niceness and the number of rounds
played so far

Algorithm 17: Dynamics of trust - update following a return
input : old trust t0 of Bob towards Alice, Alice’s investment inv, Bob’s

return ret
output : updated trust of Alice towards Bob (perceived by Bob)

1 function trustChangeAfterReturn(t0, inv, ret):
2 p← ret / inv;
3 if p > 1 then
4 c← 1− (1− t0) ret−(inv+1)

inv ;
5 else
6 c← (9p/10)2;
7 end
8 return expCurve(c, t0) ; /* See Figure 5.5 */
9 end

increases. Instead, returns that are close to twice the investment are in fact deemed
untrustworthy, unless the investment was low and the value of trust was low.

This design captures the following intuition: when Alice’s trust is low and she
invests a small part of her endowment ($1 or $2, say), then Bob’s high return
should be interpreted as an encouraging sign – he shows willingness to cooperate
without significantly sacrificing profits (since investment was low anyway). However,
assuming Alice’s trust is already high and she invests a larger part of her endowment
($6 or $7, say), then Bob’s high return may be considered suspicious, as he puts
himself at a monetary disadvantage for no apparent reason. For example, it may be
that Bob is a con man, intending to quickly gain Alice’s trust, thereby encouraging
large investments, and subsequently defect, keeping the money to himself.
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Hence, we now give the trust dynamics function δτ : FPath × Act × Ags ×
Ags → ([−1, 1] → [−1, 1]). Given agents A and B, action a taken in the last
state of some path ρ and estimated prior trust t0 (before a was taken) of B
towards A, δτ(ρ, a, A,B)(t0) describes how A’s estimation of B’s trust changes
following action a being taken:

δτ(ρ, a, A,B)(t0) =
updateTrust(t0, a, ρ) if owns(last(ρ)) = A,

t0 otherwise.
(5.7)

Hence, A’s estimation of B’s trust changes when A takes an action and it is
updated according to Algorithm 14.

Utility Function We are now almost ready to specify an agent’s utility functions.
The only components that remain to be given are the reward utility functions.
For monetary income, represented by the reward structure R, we use an identity
function – hence utility gained from earning $4 is equal to 4. Note that this is not
generally true, as utility associated to monetary outcomes and incomes have been
shown to follow an S-shaped curve which is steeper for losses than for gains [98].
However, since the amounts we consider as part of the trust game are small, linear
utility is an acceptable approximation.

On the other hand, utility of trust is assumed to be described by a function
fτ(t) = 2Et, where E is Alice’s endowment. The linear coefficient is chosen to
correspond to a maximal possible earning of any player during one round of trust
game, so that the utility gained from monetary income is comparable in magnitude
with the utility gained from relationship-building. This in turn ensures that goal
coefficients of an agent are comparable in value, rather than strongly biased. We
emphasise, however, that this seemingly arbitrary choice of the linear coefficient of
the trust utility function does not fundamentally alter the workings of the model
– it should rather be thought of as a stylistic choice.

Therefore, given a path ρ whose last state is s, cognitive state utility of agents
gained at s is given by:

cus
Alice(ρ) = λAlice

m rs
Alice(s) + λAlice

τ 2EEsAlice[trustBob,Alice],
cus

Bob(ρ) = λBob
m rs

Bob(s) + λBob
τ 2EEsBob[trustAlice,Bob].

Additionally, utility gained by agents when action a is taken in state s is described by:

ua
Alice(s, a) = λAlice

m ra
Alice(s, a),

ua
Bob(s, a) = λBob

m ra
Bob(s, a).
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That completes the specification of the trust game as a CSMG. In Section 6.2.1,
we use the model just defined to make behavioural predictions. In Chapter 7, we
describe an experimental study with human subjects in which we used our model
to drive the behaviour of an artificial bot.

5.6 Conclusions

We have presented an emotion-aware model of human decision making that served
as a setting for a novel definition of social trust. Our framework is data-driven
and captures the intricacies of human reasoning using insights from theory of mind
and existing behavioural models. A wide range of human personalities may be
expressed in the framework thanks to a continuous representation of each agent’s
characteristics via a vector of goal coefficients. We have shown how to model the
trust game using our framework, which involved formalising the evolution of trust
in humans. The rest of this thesis illustrates the applications of our model.



6
Cognitive Stochastic Multiplayer Games –

Implementation & Case Studies

Contents
6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.2 Representations . . . . . . . . . . . . . . . . . . . . . . . 111
6.1.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.4 Code Highlights . . . . . . . . . . . . . . . . . . . . . . 113
6.1.5 Belief Update . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.1 Trust Game . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.2 Bravery Game . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.3 Tipping . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 136

This chapter covers the practical side of cognitive stochastic multiplayer games
– we begin by overviewing its probabilistic programming implementation in Sec-
tion 6.1, followed by presentation of several case studies that illustrate the depth
of applications of our framework, in Section 6.2

6.1 Implementation

Recall that one of the main goals when creating our framework was implementability
– we envisage it being used in robots, enabling them to smoothly integrate in the
society. This section describes the tool that we have developed to that end. Besides
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showing that our original goal has been achieved, an implementation allows us to
validate and showcase our model more effectively.

The first decision one faces when preparing to implement a theoretical model is
that of which programming language, or, more generally, programming paradigm,
to use. We have opted for WebPPL [79], a recently developed probabilistic program-
ming language embedded in JavaScript. This decision has been influenced by a recent
rise in the quality and popularity of probabilistic programming languages. Indeed,
Ong et al. [23] point out several advantages of expressing models of emotions as
stochastic programs and argue for more widespread use of probabilistic programming
in affective computing. These mental theories expressed as probabilistic programs
are highly compatible with our framework and could be used as submodules of our
tool, as long as it is developed in a language that supports stochasticity.

Recent trends aside, many aspects of our framework, such as agents’ beliefs,
estimations or their decision-making process, are inherently probabilistic. Proba-
bilistic programming languages provide constructs for sampling from a variety of
probabilistic distributions and making inferences out of the box, thereby greatly
simplifying the development process.

Having settled on the paradigm, one must then select a particular language.
As mentioned above, we have chosen WebPPL – its ease of use, plenty of support
available online and existence of the related code base [115, 116] being the main
reasons behind our selection. In particular, WebPPL allows one to express all
major probability distributions and provides an easy mechanism for sampling
from them. Inference is equally easy to perform and supports conditioning.
Furthermore, WebPPL has already been used to implement models of rational
agents in MDPs [115]. Our tool can be viewed as a continuation of that line of work
– we take the basic model they proposed and extend it with mental reasoning.

6.1.1 Overview

We now give an overview of the tool1, which serves also as a summary of the operation
of our framework. Recall that our main contribution is a novel formalisation of agent
decision making. Its most basic application is an ability to simulate the execution
of a turn-based, stochastic game, which constitutes a primary feature of our tool.
Formally speaking, the tool computes the posterior predictive distribution over future
actions of agents. It requires several inputs: mechanics of the game (states, actions,
transition function etc.), specification of the mental component (mental states, their

1Available at https://github.com/maciekolejnik/webppl-cognitive-agents

https://github.com/maciekolejnik/webppl-cognitive-agents


6. CSMGs – Implementation & Case Studies 111

Learn

Data

Prior

params

state

game spec

Predict

posterior predictive distribution

Figure 6.1: Overall process of the framework

dynamics and evaluation functions) and each agent’s utility function, parameters
and initial state. The simulation may then be run for any number of iterations of
the game and it generates a sequence of actions taken at each step. Note that this is
a probabilistic process (actions are sampled from the computed posterior predictive
distribution) and the computed trace will generally differ between executions; what
remains the same, however, are the probability distributions according to which
agents choose their actions. As the execution progresses, players update their beliefs
in a Bayesian fashion (see Section 6.1.5 for how that is implemented), assimilating
the information gained by observing their opponents’ actions.

The main obstacle encountered when simulating execution of a game is the need
to provide parameters and initial states of agents. These are often not known; even
if some information about the agents is at hand, it may not be easy to translate
it to the required format. However, behavioural data, i.e., a record of actions
taken by agents, is likely to be much more readily available. Hence, the second
functionality of our tool involves learning preferences, beliefs and estimations of
agents from data. The inference is again Bayesian in nature and uses the decision-
making model to compute the likelihoods of various actions. It also requires a prior,
which may encode population-wide statistics, our belief about characteristics of a
particular agent or be set to uniform if no information is available. The process
is graphically summarised in Figure 6.1.

6.1.2 Representations

Recall that each agent in our framework maintains (and updates) their belief
beρA, as well as meta-parameters estimations θA and mental state estimations estρA.
Abstractly, all those components can be arbitrary probability distributions; however,
their implementation requires finite representations that allow efficient sampling
and, in case of belief and mental estimations, updating.
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Table 6.1: Distributions used for meta-parameter estimations

rationality α Gaussian
lookahead β Poisson

discount factor γ Beta/Dirac

Belief

Recall that belief is defined on the space Λ = {~λ | ∑
i λi = 1} of possible goal

coefficient vectors. As it turns out, family of Dirichlet distributions, overviewed in
Section 3.2.3 and commonly used in Bayesian statistics, is highly appropriate for
expressing structures of this type. This yields a compact representation of belief as
a vector ~α of positive reals. The length of ~α depends on the number of agents in
the system and the format of agents’ utility functions; however, letting n denote
the number of agents, k be the number of physical rewards and l be the number
of mental variables, the length of ~α is no greater than k + nl.

Meta-parameter Estimations

When it comes to agents’ estimations of others’ meta-parameters, our choice is less
constrained due to the assumption that agents do not update them. Of course,
we still need a finite representation, but in this case our choice boils down to
selecting a distribution that is most suitable for a given parameter. Our selections
are summarised in Table 6.1 and briefly overviewed below. Note that in practice,
continuous distributions are often replaced by their discrete approximations, which
makes inference by enumeration possible.

Rationality Recall that, for an agent A, αA is a positive real number that
measures A’s rationality, roughly interpreted as an ability of an agent to correctly
assess utilities of available actions and select the best one. It is well-known that
qualities of this type follow a Gaussian distribution within a given population.

Lookahead Next, lookahead β of an agent describes how far into the future they
look when considering their next move. The range of possible values of β is the
set of non-negative integers and we expect the distribution of β in a population
to approximately follow the familiar bell curve. That can be modelled with a
Poisson distribution without significantly compromising accuracy. It has an added
benefit of simplicity, with the unique parameter λ that may be set to the most
likely value of β for a given agent.
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Discount Factor Finally, the discount factor γ of an agent takes values between 0
and 1, which makes Beta distribution suitable to represent its estimation. However,
in some applications agents may be known to not discount future rewards, in
which case a Dirac distribution may be used. Another possibility that calls for a
δ-distribution is when any value of the discount factor that is not 1 is equivalent
from the point of view of agents’ decision making. An example of such a system
is our model of the game of tic-tac-toe analysed in Chapter 5.

Mental State Estimations

Recall that agents update their estimations of mental states of others using dynamics
functions that operate on scalars. This update mechanism operates pointwise on
the support of the estimation. Hence, we take mental state estimations to be
represented using categorical distributions, ensuring finiteness of the support and
termination of the update mechanism.

6.1.3 Inference

Recall from Section 3.2.4 that exact probabilistic inference is often intractable,
particularly when the distributions involved are continuous. As a result, approximate
methods, such as sequential or Markov chain Monte Carlo, are often employed. In
the context of our tool, using continuous probability distributions to represent meta-
parameter estimations would necessitate utilising these inexact techniques. However,
due to the high complexity of the decision-making mechanism and inefficiency
of WebPPL, approximate algorithms do not perform well within our tool. We
hypothesise that this stems from the fact that these methods rely on visiting many
points in the probability space. However, computing likelihood of each point, which
involves invoking the decision-making algorithm, is an expensive operation in our
tool. As a result, the approximate inference algorithms do not terminate within
reasonable time bounds. Instead, we use exact inference throughout the tool, which
is made possible by making sure that all continuous probability distributions are
discretised, as indicated in Section 6.1.2.

6.1.4 Code Highlights

To give the reader a better idea of how our tool is implemented, we now discuss
its internal structure and present selected code fragments. The description in this
section is largely conceptual, but it is complemented by the user guide for the
tool, which can be found in Appendix A.
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Recall that WebPPL is a functional subset of JavaScript; hence, our tool is
written in a functional style. The bulk of the most relevant code is contained in
two functions: (i) makeCSMG, which takes a basic setup of a game (states, actions,
transitions, physical and mental rewards of agents) as an argument and returns
an object representing a CSMG, and (ii) makeAgent, which instantiates an agent,
given its parameters, its initial state (belief, mental estimations and meta-parameter
estimations) and a game (obtained by calling makeCSMG) it is part of.

Making a Game Out of these two functions, makeCSMG is much simpler – besides
validating provided inputs, a non-trivial task in itself, its main job involves converting
the supplied dynamics models into a mental reward structure. The key code fragment
that captures the complexity of computing mental rewards is displayed in Listing 5.
First of all, note that, in our program, this function is defined inside the scope
of various other methods (such as makeCSMG), which explains why most of the
variables may appear undefined.

In any case, the crucial aspect of computeRewardsFromAttitude is that iden-
tifiers of three agents are introduced, reflecting the number of parties involved
in the computation of mental rewards. First, we have the agent who computes
the value of (a mental component of) a utility function, selfAgentID. Second, we
have the agent whose utility is being computed, ofAgentID (of course, it may be
that selfAgentID = ofAgentID). Third, there is the agent whose mental state
is being estimated (or computed), overAgentID.

The utility function, whose form selfAgentID is assumed to know, will generally
contain various components corresponding to different mental attitudes. In this case,
we are focusing on one such attitude, identified by mentalAttIdx – let us assume
it is trust. Now, ofAgentID may care about many other agents’ trust, including
their own trust. All those agents are listed in agentArr, which is a parameter that
comes from the game setup provided by the user as argument to makeCSMG. As the
listing shows, computing rewards involves iterating (i.e., mapping, as we are in
the realm of functional programming) over agentArr, and, for each overAgentID
whose trust must be computed, invoking estimateReward.

There are three possibilities:

1. selfAgentID computes its own utility and its own trust.
In this case, computation of the reward boils down to using the definition of
trust, passed as a property of the model and encoded in the computeMentalState
function.
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1 /** This function captures how an agent (identified by
2 * *selfAgentID*) computes mental rewards associated to a given
3 * mental attitude (identified by *mentalAttIdx*), gained by
4 * *ofAgentID* from *overAgentID*'s mental state.
5 * This computation is performed in *state*, where *selfAgentID*'s
6 * belief is *belief*; *mentalSnapshot* provides a reference
7 * point for computing nested estimation; *agentArr* is an array
8 * of agent IDs, identifying agents whose mental state *ofAgentID*
9 * cares about. */

10 let computeRewardsFromAttitude = function(mentalAttIdx, agentArr) {
11 let estimateReward = function(overAgentID) {
12 if (selfAgentID === overAgentID) {
13 if (selfAgentID === ofAgentID)
14 return computeMentalState(state, belief, mentalAttIdx)
15 else
16 return nestedEstimation(state, mentalAttIdx, mentalSnapshot)
17 }
18 return expectation(
19 estimateMentalState(state, overAgentID, mentalAttIdx)
20 )
21 }
22 return map(estimateReward, agentArr)
23 }

Listing 5: Computing mental rewards

2. selfAgentID computes another agent’s utility, but the component being
computed relates to selfAgentID’s trust.
This is an example of a nested estimation, which is resolved by combining
the definition of trust and trust dynamics. In particular, selfAgentID uses
the actual value of its trust towards ofAgentID at the present moment, but
applies trust dynamics from there (as described in Section 5.4.1), reflecting
the fact that the rewards are typically being computed for some future state.

3. selfAgentID computes its own or another agent’s utility, and the component
being computed relates to another agent’s trust.
In this case, mental state estimation function is employed, i.e., the trust
dynamics model is used to estimate overAgentID’s trust.

Making an Agent The other function, makeAgent, encodes the decision-making
process of an agent, the way its utility is computed and the way its belief is
updated. Below, we describe in some detail the first of these mechanisms; utility
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computation uses the goal coefficients provided as an argument to makeAgent,
but most of its complexity is in resolving mental rewards, outlined above; belief
update is covered in Section 6.1.5.

Three functions are involved in the implementation of agents’ decision making.
Firstly, act (see Listing 6) kicks off the process by saving an agent’s mental
snapshot and encoding the aggregation over meta-parameters of their opponents.
Then, for each combination of opponents’ meta-parameters, the decision tree is
explored using mutually recursive actRec (see Listing 7) and expectedUtility
(see Listing 8) functions.

1 let act = function (state) {
2 let turn = turn(state)
3 // prepare mentalSnapshot for future utility computations
4 let belief = belief(state)
5 let mentalState = mapN(function(i) {
6 return computeMentalState(state, belief, i)
7 }, numberOfRewards.mental)
8 let mentalSnapshot = {
9 values: mentalState,

10 state: state
11 }
12 let actionDist = Infer({method: 'enumerate'}, function () {
13 let othersMetaParams =
14 sampleMetaParamsEstimations(metaParamsEstimations)
15 let allMetaParams = mergeMetaParams(
16 othersMetaParams, selfMetaParams, selfId)
17 let lookAhead = allMetaParams.lookAhead[turn]
18 let actionRecDist = actRec(
19 state, lookAhead, allMetaParams, mentalSnapshot)
20 return sample(actionRecDist)
21 })
22 return actionDist
23 }

Listing 6: Computing an action – initial call

Note that act captures the computation of an agent’s own, as well as their oppo-
nent’s, action. The mental snapshot, which records an agent’s mental state, is used to
compute nested mental state estimations as part of computeRewardsFromAttitude
function outlined above. Then, the action distribution is computed by enumerating
possible combinations of meta-parameters of this agent’s opponents, which we
assume there is a finite number of. Of course, in principle, meta-parameter
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estimations may take the form of a continuous probability distribution, such as those
suggested in Section 6.1.2. However, we have found that approximate inference
methods do not perform well in this context. We hypothesise this has to do with
the fact that each execution of the stochastic model passed to Infer is a heavy
computation that itself involves inference. For each combination of meta-parameters,
lookahead of the decision-maker is retrieved and an exploration of the decision
tree begins with a call to actRec.

This relatively simple function encodes the soft expected utility maximisation
principle using the factor operator of WebPPL (line 10). factor is similar
to condition, introduced in Section 3.2.4, but weaker; rather than completely
discarding some executions, it merely makes some more, and others less, likely. In
particular, factor(x), when executed as part of a stochastic model passed to Infer,
increases the log probability of the current execution by x. As part of actRec, this
has an effect of assigning probability proportional to ealpha * eu to an action whose
expected utility is computed as eu, in line with Equation 3.1.

1 let actRec =
2 function (state, timeLeft, allMetaParams, mentalSnapshot) {
3 let turn = turn(state)
4 let alpha = allMetaParams.alpha[turn]
5 let availableActions = actions(state)
6 let actionDist = Infer({method: 'enumerate'}, function () {
7 let action = uniformDraw(availableActions)
8 let eu = expectedUtility(state, action,
9 turn, timeLeft, allMetaParams, mentalSnapshot)

10 factor(alpha * eu)
11 return action
12 })
13 return actionDist
14 }

Listing 7: Computing an action – recursive call

It is important to note that the computation of an expected utility of taking
an action, captured by the expectedUtility function, reflects the possible future
developments, in line with agent’s lookahead. Specifically, expected utility of an
action is a sum of the utility associated to that action (line 5) and a discounted
expectation of future utility (line 25). The latter is computed recursively (line 23)
with respect to a distribution of future actions (line 19).

Note also that the horizon used when computing this future action (line 17) is
not always equal to the lookahead of the agent whose turn it is – it will often be the
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case that the lookahead of the agent who computes the expected utility, or whatever
remains of it (timeLeft), does not reach that far. As an example, consider an agent
A with a lookahead of three, who, as part of calculating future utilities, is now
computing an action of their opponent B in a state s that is two steps away. Even
if B’s lookahead is estimated to be three, A will not be able to look that far into
the future, as its own lookahead only allows A to consider one more future step.

1 let expectedUtility = function (state, action, ofAgentID,
2 timeLeft, allMetaParams, mentalSnapshot) {
3 if (timeLeft === 0) return 0
4 let u = actionUtility(
5 state, action, ofAgentID, mentalSnapshot)
6 let nextTimeLeft = timeLeft - 1
7 let discountFactor = allMetaParams.discountFactor[ofAgentID]
8 let futureUtilityDist =
9 Infer({method: 'enumerate'}, function () {

10 let nextState = sample(transitionFn(state, action))
11 let nextStateUtility = stateUtility(
12 nextState, ofAgentID, mentalSnapshot)
13 if (nextTimeLeft == 0)
14 return nextStateUtility
15 let nextTurn = turn(nextState)
16 let nextHorizon = min(
17 allMetaParams.lookAhead[nextTurn], nextTimeLeft)
18 let nextActionDist = actRec(nextState, nextHorizon,
19 allMetaParams, mentalSnapshot)
20 let nextAction = sample(nextActionDist)
21 return nextStateUtility + expectedUtility(
22 nextState, nextAction, ofAgentID,
23 nextTimeLeft, allMetaParams, mentalSnapshot)
24 })
25 let futureUtilExp = expectation(futureUtilityDist)
26 let eu = u + discountFactor * futureUtilExp
27 return eu
28 }

Listing 8: Computing an action – expected utility

Running Simulations The code described so far can be considered as the core
of our tool, as it implements the theoretical assumptions behind our framework.
However, another significant portion of our codebase consists of utility functions
that facilitate usage of our tool: running simulations and performing inferences.



6. CSMGs – Implementation & Case Studies 119

Of particular interest is the first of these functionalities. We provide an easy,
yet flexible way of simulating executions of systems through a notion of experiments
that consist of scenarios. The idea is that an experiment represents some aspect
of a modelled interaction that we want to study, while scenarios define various
conditions under which we want to run the model. With that, users do not need
to manually create a game and agents, followed by repeatedly computing actions
to simulate system execution. Instead, they can use the functionality we provide
to only specify aspects that uniquely reflect their requirements.

In particular, each experiment comes with a name, a description and a list of
scenarios, along with an optional set of functions that allow arbitrary code to be
executed during simulations (designed to facilitate reporting). In turn, each scenario
defines the parameters and initial states of agents, and game parameters. We then
provide a function, presented in a simplified form (with input validation removed)
in Listing 9, which, if supplied with a specification of a system (makeGame), a list of
experiments and a command, will process that command and execute it, which typ-
ically involves running one or all of the experiments provided. Appendix A provides
more details about the expected format of the commands and gives examples.

1 let processCommandline = function(makeGame, experiments, argv) {
2 let log = argv.log
3 if (log) {
4 globalStore.loggingLevel = log
5 }
6 let help = argv.help
7 if (help) {
8 printInfo(experiments)
9 return

10 }
11 let experimentIDStr = argv.experiment
12 if (isDefined(experimentIDStr)) {
13 /** run only selected experiment */
14 let experimentID = parseInt(experimentIDStr)
15 let experiment = experiments[experimentID]
16 let result = run(experiment, makeGame, argv)
17 return extend(result, { experimentID })
18 }
19 return runAll(experiments, makeGame, argv)
20 }

Listing 9: Running experiments
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The crucial piece of code in Listing 9 is line 16, which runs a given experiment. Its
operation is similar to processCommandline itself, in that it processes the command
further to check whether one or more scenarios should be run, and delegates the rest
to a function responsible for running individual scenarios. The actual simulation
is captured by a function called trace, presented in Listing 10. In the spirit or
functional programming, it uses a recursive helper to compute subsequent actions
of an agent for a specified number of steps. It returns a trace, which consists of
a list of (state, action) pairs (represented as arrays), but whose last element is a
single state. Incidentally, trace illustrates a peculiar feature of WebPPL, namely
that functions stored as fields of an object must be retrieved into a variable before
being applied. That explains why lines 7 and 8, or 10 and 11, which one may be
tempted to combine into one, must stay as they are.

1 // s_0 is the starting state of the simulation
2 let trace = function (game, s_0, agents, timeLeft) {
3 let traceRec = function(state, timeLeft) {
4 if (timeLeft > 0) {
5 let turn = game.API.turn
6 let actingPlayer = agents[turn(state)]
7 let act = actingPlayer.act
8 let actionDist = act(state)
9 let action = sample(actionDist)

10 let transitionFn = game.transitionFn
11 let nextState = sample(transitionFn(state, action))
12 return [[state, action]].concat(traceRec(nextState,timeLeft - 1))
13 }
14 return [[state]]
15 }
16 traceRec(s_0, timeLeft)
17 }

Listing 10: Simulating execution of a system

Simulations feature heavily in the analysis of the case studies in Section 6.2,
with details of how to run them and examples of experiments and scenarios to
be found in Appendix B.

Making Inferences Finally, we mention the second functionality of our tool:
learning parameters and state of agents from data. Conceptually, it is a simple
process, which involves combining the prior, defined individually for each inference,
reflecting what is known about the agents, with the likelihood, given by the act



6. CSMGs – Implementation & Case Studies 121

function that encodes agents’ decision making, and the evidence, and using Bayesian
update to obtain a posterior on agent’s state and parameters. This operation is
performed repeatedly, for every available piece of evidence, which in this case
takes the form of agents’ actions.

Evidence is provided as a data file specifying a set of agents, parameters of the
game and a behavioural record, i.e., a sequence of actions taken by agents and states
that the game visited, possibly over multiple executions of the system. We define a
custom format that this file must conform to and a set of methods for parsing it.

Conceptually, the most complex aspect of the inference is the representation
of the belief we are learning, since it is a probability distribution over agent’s
parameters and state, which includes mental state estimations that are themselves
represented as probability distributions. To avoid cumbersome nested structures
in our code, we reduce mental state estimations to their expectations, so that
our belief over them admits a tractable representation. Fortunately, beliefs of
agents are succinctly encoded as vectors of parameters, which ensures probability
distributions over these beliefs are tractable.

The key element of this inference process, presented in Listing 11, is the
implementation of the Bayesian update. It involves computing an action that
an agent would select under various combinations of parameters and state sampled
from the prior. The likelihood of the sample is then given by the function
actionSimilarity (line 20), which quantifies how similar the computed action is
to the one observed. By convention, this similarity measure takes nonpositive values,
with equal actions assigned a similarity score of 0 and distinct actions a negative
score that increases in magnitude the more dissimilar the actions are. By default,
distinct actions are assigned a score of -1. However, in many scenarios, especially
when actions have a numerical interpretation, a more fine-grained notion of similarity
may be given. An example is provided by the trust game, where the similarity of two
monetary transfers is inversely proportional to the absolute difference between them.

The tipping example of Section 6.2.3 illustrates how inference is performed in
practice.

6.1.5 Belief Update

In this section, we describe how beliefs of agents are updated in practice. Recall
that, in principle, the update is Bayesian in nature, computed based on likelihoods
of available actions. However, since we have settled on representing belief using a
Dirichlet distribution, we must ensure that this representation is preserved after belief
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1 // below code is in the scope of various other functions
2 // that process the data file.
3 // It is called to learn from observing
4 // *observedAction* taken in *state* by agent identified
5 // by *actingAgentID* in a system *csmg*
6 let agentPosterior = Infer({method: 'enumerate'}, function() {
7 let agentSetup = sample(prior[actingAgentID])
8 let agentParams = {
9 goalCoeffs: agentSetup.goalCoeffs,

10 metaParams: agentSetup.metaParams
11 }
12 let agentInitialState = {
13 belief: agentSetup.belief,
14 mentalEstimations: agentSetup.mentalEstimations,
15 metaParamsEstimations: agentSetup.metaParamsEstimations
16 }
17 let agent = makeAgent(agentParams, actingAgentID, agentInitialState, csmg)
18 let act = agent.act
19 let computedAction = sample(act(state))
20 factor(actionSimilarity(state, computedAction, observedAction))
21 return agentSetup
22 })

Listing 11: Updating the prior over agent’s parameters and state based on observation

is updated. Unfortunately, performing the update according to Equation 5.6 does not
generally guarantee that the distribution remains a member of the Dirichlet family.

To define a procedure that ensures that belief maintains its representation, we use
the fact that the Dirichlet distribution is a conjugate prior to categorical distribution.
In other words, when the prior is distributed as a Dirichlet and the likelihood is a
categorical distribution, the posterior will also be distributed as a Dirichlet, and the
update will be a straightforward operation on the parameters of the distribution.

Recall that the Dirichlet distribution is naturally applicable to experiments
with k outcomes and it describes our current belief about the probability of each
outcome. It is parameterised by k values (α1, . . . , αk) where each αi is interpreted
as αi − 1 observations is category i. Therefore, a natural update of the parameters
upon making a new observation is to increment by 1 the parameter corresponding
to the category in which the observation was made.

As it happens, in our model, the likelihood is indeed a categorical distribution;
however, its support is made up of actions available to an agent. On the other hand,
belief of one agent over another is a distribution over goal coefficient vectors, where



6. CSMGs – Implementation & Case Studies 123

each element of such a vector can be thought of as a weight this agent assigns to
the corresponding reward. Therefore, when belief is represented as Dir(~α), each
element of ~α quantifies an agent’s conviction that their opponent is motivated by the
corresponding reward. To define belief update, we must associate an observed action
to a weighted set of rewards. More formally, having observed an action a performed
by agent B, agent A updates its belief by incrementing one or more of αis by amounts
proportional to the weight(s) of one or more reward structures that a is mapped to.

To define this mapping, consider first its inverse: at a given point of the
system execution where it is B’s turn to take an action, each component of the
utility function may be associated with a distribution over actions available to
B, representing probabilities that an agent would take each action if they were
solely motivated by that reward. As an example, if B’s utility function has two
components: (i) monetary incomes and (ii) opponent’s trust, then, at any point of
the system execution, (i) will favour actions that provide an agent with the largest
income, while (ii) will favour actions that increase opponent’s trust. The upshot is
that, upon observing B take an action a, another agent A may associate a list of
pairs (λi, p) to a, one for each λi in B’s utility function, where λi is a goal coefficient
identifying a reward and p is a (hypothetical) probability, computed by A, that B
would take action a if they were solely motivated by reward corresponding to λi.
Then, each αi in the vector representing A’s belief is incremented proportionally
to the corresponding probability, where the sum of increments is equal to 1. The
procedure just described is formalised in Algorithm 18.

Hence, the size of increment of each parameter (identified by an integer i), is
proportional to the probability that agent B takes action a when guided solely
by the ith reward. Intuitively, that favours rewards which are likely to have
motivated B to take action a.

The function actCond in line 5 of the algorithm represents a standard computa-
tion of opponent’s action commonly performed in our tool, modified by a stipulation
that utility is computed with respect to the ith reward only. We may express this
computation using notation of decision making equations as follows:

Probρ,iA (a) = EρA[P ρ,ρ,βA,a
A,B | utilities computed wrt. ith reward only],

where the conditional probability operator is again used liberally; it should be
interpreted to mean that, when evaluating P ρ,ρ,βA,a

A,B , the utility of B is always
computed as if it only consisted of the ith reward.
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Algorithm 18: Approximate belief update (under Dirichlet representation)
input : prior belief ~α0 (represented as Dirichlet), current path ρ, agent A

who updates their belief, agent B, action a taken by B
output : updated belief ~α

1 function updateBelief( ~α0, ρ, A, B, a):
2 ~ps ← [];
3 n← number of components in B’s utility function;

/* compute probability of B taking action a under each
reward structure */

4 foreach i in 0→ n do
/* call to actCond represents A computing a distribution

over possible actions of B under condition that only
ith reward is used for computing utilities */

5 δ ← actCond(A,B,ρ,i);
/* retrieve probability of action a from computed

distribution */
6 ps[i]← δ(a);
7 end
8 total = ∑

i(ps);
9 ~α = [];

10 foreach i in 0→ n do
11 α[i]← α0[i] + ps[i]/total;
12 end
13 return ~α;
14 end

6.2 Case Studies

To illustrate the expressiveness of our framework and show how it can be used in
practice, we now consider a variety of scenarios that call for mental reasoning in
humans. In each case, we formulate a CSMG model of a given interaction and
use our tool and synthetic data to perform a number of experiments involving
making predictions and inferences. Appendix B provides instructions for how to
replicate the results described below.

6.2.1 Trust Game

We begin with the familiar by now trust game example, which we have already
modelled as a CSMG in Section 5.5. Below, we assume players’ endowments to
be 4 and 0 for an investor and an investee, respectively. As usual, we take the
multiplication factor k to be equal to 2.
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To validate our proposed setup, we use the tool to predict the behaviour of
a collection of agents to see whether it matches our expectations. We then use
synthetic data to learn agents’ parameters and predict their future behaviour. We
take the following list of hypotheses to guide our experiments:

(H1) There exists a configuration of agent parameters under which cooperation is
predicted by the framework.

(H2) As initial trust between agents increases, so does the social welfare of the
game.

(H3) Untrustworthy individuals who try to trick their opponent into trusting them
are punished.

The first hypothesis (H1) serves as a sanity check for the framework – it must
hold or our approach is deemed to fail. The second hypothesis (H2) aims to confirm
a widely held conviction that high trust is beneficial to the society – in this case,
measured by average size of a transfer in trust game. Finally, the third hypothesis
(H3) asserts that fair, trustworthy agents can detect when their opponent attempts
to take advantage of their good intentions to make monetary profit and they do
not cooperate with such con men.

In the experiments described below, we focus on the way agents’ characteristics
and initial beliefs influence their behaviour. Therefore, we fix agents’ meta-
parameters by assuming they’re almost perfectly rational (α = 100), have a limited
lookahead (β = 2) and discount future rounds (γ = 0.8). We furthermore assume
that agents estimate their opponent’s meta-parameters accurately. We also reduce
initial mental estimations (i.e., estimations of opponent’s trust) to their expectations.

Verifying Cooperation Arises To verify that H1 holds, it suffices to make both
agents trusting (i.e., their beliefs should be biased towards λτ) and trustworthy (i.e.,
λτ > λm). In particular, we set both agents’ goal coefficient vectors to [0.3, 0.7]
(where, recall, 0.3 is the weight an agent assigns to money, while 0.7 measures
importance of trust) and their initial belief to Dir([1, 3]), which implies initial
trust equal to 0.75. Initial trust estimations matter little from the point of view
of generated prediction – we assume they are fairly accurate, represented with a
Dirac distribution centred at 0.7. Simulating execution of such a system produces
highly cooperative behaviour, with investor investing the maximal possible amount
($4) every time and investee reciprocating with returns at least equal to that. Of
course, simulation has a probabilistic nature, so the resulting trace is not guaranteed
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Figure 6.2: How mean (averaged over twenty simulations of ten executions of rounds of
the trust game) investment and return depend on initial trust

to always be the same. However, with choice of parameters as specified above,
most of the computed action distributions are very strongly biased towards one
action, producing very predictable traces.

Investigating Effect of Trust Next, to test H2, we perform simulations of ten
rounds of the trust game for various values of initial belief (and hence, initial trust),
with other parameters chosen randomly. In particular, we use five different values
of initial beliefs (Dir([4, 1]), Dir([3, 2]), Dir([2, 2]), Dir([2, 3]), Dir([1, 4])), which give
rise to five different values of initial trust (0.2, 0.4, 0.5, 0.6 and 0.8). For each value,
we define twenty scenarios, each with a combination of goal coefficients and trust
estimations of agents that was randomly selected at the start of the experiment,
and which is the same for the respective runs that vary in initial trust. In other
words, the first (out of twenty) scenario for which initial trust is 0.2 will use the
same parameters of agents as the first scenario for which initial trust is 0.4, 0.5 etc.

Moreover, to counteract randomness that arises from selecting actions according
to a probability distribution as part of simulations, we perform six runs of each
scenario. We are interested in mean investment and mean return corresponding
to each value of initial trust, averaged over twenty scenarios and the six runs
within each scenario. The results, plotted in Figure 6.2, confirm our hypothesis.
We note a steep increase when initial trust increases from 0.2 to 0.4, suggesting
that low values are particularly detrimental to social welfare. We also observe a
widening gap between investments and returns – this stems from the fact that
growing trust between agents generally leads to higher investments of Alice, but
it does not necessarily cause Bob to be more generous.
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Con Man Modelling Finally, to verify H3, we note that an untrustworthy
individual is naturally modelled in the framework by setting λm = 1. However,
a true con man (playing as Bob) might try to trick their opponent into trusting
them by initially cooperating (particularly if initial investments are low) and then
defecting (i.e., keeping all the profits for themselves), once investments become
high enough. However, such a strategy can only profit the con man if he times
his defection to coincide with the end of the game. To enable that, we assume
he knows how many rounds the game will last. Moreover, we equip the con man
with a more simplistic trust dynamics model – he assumes that, the higher his
return, the greater the increase in Alice’s trust towards him. Finally, the con
man assumes that Alice’s behaviour is driven by her trust – the more she trusts
him, the more she will be willing to invest.

To see what happens when a cognitive agent faces a con man, we randomise
Alice’s goal coefficients, her belief and her initial estimation of Bob’s trust and
equip Bob with a high lookahead (βBob = 5) to model his strategic thinking. We
then simulate the execution of the trust game for three rounds. Such a short
horizon was chosen to play well with Bob’s strategy and enable him to execute
his tricks. Arguably, most con men do not engage with their victims for extended
periods of time; rather, they act fast, attempting to gain someone’s trust and
quickly use it to their advantage.

To obtain a wide range of Alice’s personalities, we repeat this three-round
simulation twenty times, ignoring the runs where no transfers arise (when Alice’s
trust is too low for her to invest). Preliminary results are mixed; we observed a
wide variety of traces, reflecting diversity of Alice’s parameters. Bob’s strategy is
fairly consistent throughout executions; he is generally noncooperative (i.e., does
not return any money), unless an investment in the first or second round is low, in
which case he senses an opportunity to trick Alice into trusting him and cooperates.
However, he is most profitable when Alice’s trustworthiness and initial trust are
high. In that case, despite Bob’s selfish behaviour, Alice’s investments remain
sizable throughout the game, as the rate of trust decline is gentle. Overall, this
experiment illustrates that our framework is capable of expressing a wide variety of
agent types. However, further investigation is needed to resolve our hypothesis.
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6.2.2 Bravery Game

The second case study we analyse is inspired by an example from Geanakopolos
et al [52] and serves as a comparison between psychological games (described in
Section 2.2) and our model. The original scenario involves an agent (player 1)
who makes a decision in front of his friends (player 2). He prefers to be timid,
but he does not want to disappoint his friends, who may expect him to act boldly.
Beliefs of players are captured by letting p be the probability of player 1 taking
action bold, q be player 2’s expectation of p (first-order belief) and q̃ be player
1’s expectation of q (second-order belief). The game and agents’ preferences are
summarised in Figure 6.3a (in the style of the original paper); note that utility
functions are defined in terms of beliefs, a crucial feature of psychological games
framework. For example, the more player 1 thinks his friends expect him to be
bold (reflected by a value of q̃ close to 1), the more likely he is to act boldly. Note
that player 2 not only prefers their friend to act boldly, they moreover prefer to
think of him as bold. Three distinct equilibria are predicted for this game: one
in which player 1 acts boldly (p = 1), one in which he acts timidly (p = 0) and
one where he randomises (p = 0.5). We note also that a crucial assumption that
gives rise to these three equilibria is that beliefs of players correspond to reality
in equilibrium, i.e., p = q = q̃ in each of the above solutions.

We propose to use the CSMG framework to conduct complementary analysis. We
are interested in the expected behaviour of agents when their beliefs are not accurate
and we wish to find out under what circumstances an equilibrium is reached and
whether it is one of the equilibria predicted by the psychological games framework.
We therefore consider a repeated version of the bravery game and, to enable player
1 making inferences about his friends’ preferences, we modify the game to allow
player 2 to react to player 1’s decision. In particular, following a bold move, player
2 may support or suppress their friend’s action, whereas, after a timid decision,
possible reactions are encouragement or support. A graphical representation of (one
iteration of) the resulting game is displayed in Figure 6.3b. Note that the notion of
equilibrium is not defined in our framework, but we informally say that a simulation
has reached an equilibrium if, from some point onward, action distribution computed
by agents and their beliefs do not change from one iteration to the next.

Before giving an overview of a CSMG model of the bravery game, we outline the
major differences in how mental states of agents are formalised in our framework and
in psychological games. Belief plays an important role in both models but its scope
differs: our belief is dynamic and computable and it quantifies uncertainty over
opponent’s characteristics; their (psychological games) belief operates on strategies
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Figure 6.3: Bravery game

of other agents and does not support updating. Our model allows the formulation
of rich, parameterised, belief-dependent mental states, whereas in psychological
games emotions are beliefs. Moreover, while psychological games introduce nested
beliefs of arbitrary order, our framework proposes a heuristic approach of mental
estimations that simplifies beliefs of higher orders.

To represent the standard, numerical (non belief-based) component of agents’
utility from Figure 6.3a, we define two physical reward structures: Rb assigns a
unit reward to both players in a state reached after a bold move, while Rt assigns a
unit reward after a timid move. With that, appropriately set goal coefficients allow
us to model boldness or timidness of various degree. To represent belief-dependent
components of agents’ utility, we introduce a mental variable η = pride and are
particularly interested in pridep2 , pride felt by player 2 upon player 1 making
his decision. Note that we allow negative values of pride, interpreting them as
shame. Since player 1 cares about what his friends think of him, he is motivated by
maximising their pride, which he estimates according to a pride dynamics function.
While we do not go into details of estimation heuristics here, the intuition is that
pride is estimated based on player 2’s reactions, with support hinting at positive
pride and other reactions suggesting a negative value (shame).

Utility functions of agents are as follows, where we use states where paths are
expected under the assumption that states encode executions histories:

cus
p1(s) = λp1

b rs
b,p1(s) + λp1

t rs
t,p1(s) + λp1

p Esp1 [pridep2 ],
cus

p2(s) = λp2
b rs

b,p2(s) + λp2
t rs

t,p2(s) + λp2
p Jpridep2K

s.

Intuitively, player 1 is bold when λp1
b � λp1

t ; in fact, we define their boldness as
ξp1 = 2λp1

b

2−λp1
p

and player 2’s belief of player 1’s boldness at state s is then Esp2 [ξp1 ].
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With that, player 2’s pride is proportional to their belief of p1’s boldness in absolute
terms, but when player 1 takes a timid move, pride is negative.

Experiments

For the first set of experiments, we assume player 1 (αp1 = 30) is more rational
than player 2 (αp2 = 10), as we expect a group of people to make decisions more
noisily than an individual. Additionally, we assume players do not discount future
events (γ = 1) and are rather short-sighted (βp1 = 1, βp2 = 2). Moreover, as an
attempt to recreate the setting from the psychological game, we fix goal coefficients
of agents as follows: ~λp1 = [0.2, 0.35, 0.45], ~λp2 = [0.4, 0.2, 0.4]. We then vary
initial beliefs of agents and simulate the execution of the system for twenty steps.
We find that, regardless of the accuracy of initial beliefs, within a few iterations
the game reaches an equilibrium-like state characterised by dominance of bold
actions followed by reactions of support. Interestingly though, this uniformity
is disrupted by an occasional suppress reaction of player 2. We interpret it as
complacency of player 2 who, having observed a streak of bold decision by their
friend, assumes that this will continue in this manner whatever they do. In any
case, our analysis suggests that, provided player 2 is given an opportunity to give
feedback following their friend’s decisions, out of the three psychological equilibria,
the one characterised by p = 1 is superior.

Another experiment we perform shows that looking further into the future may
produce better outcomes for everyone. In particular, we set goal coefficients of
player 1 to ~λp1 = [0.35, 0.6, 0.05] so that he still prefers to be timid, but he now
cares less about his friends’ pride. We then simulate the execution for three different
values of player 1’s lookahead: βp1 = 1, βp1 = 3 and βp1 = 5, and repeat this
process five times to smooth out any probabilistic noise. Our findings, summarised
in Table 6.2, show that by looking more into the future, player 1 can increase not
only his, but also player 2’s rewards gained along execution. Closer inspection
reveals that longer lookahead allows player 1 to visualise growing pride of player
2, which outweighs player 1’s natural preference for a timid move.

Overall, our treatment of bravery game serves as a comparison of our approach
and psychological games framework. While both models stem from a desire to enrich
the domain of utility functions, the way this is achieved differs. In our framework,
emotions are captured by a complex mechanism that allows parameterisation and
encoding of psychological theories, making it possible to capture intricacies of human
feeling; in psychological games, emotions are reduced to beliefs about behaviour
of others. Moreover, the CSMG framework is well-suited to capturing continuity
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Table 6.2: Rewards accumulated by each player (p1 and p2) over twenty steps of bravery
game, averaged over five runs, as a function of player 1’s lookahead (βp1)

βp1 p1 p2

1 4.63 2.11
3 5.39 6.22
5 5.43 6.71

of human preferences (via goal coefficients vectors), limits of our knowledge and
the repeated, dynamic nature of our interactions. Conversely, the psychological
games framework helps predict what behaviours are sustainable in the long-term,
once beliefs of agents converge to reality.

6.2.3 Tipping

The next case study we analyse has to do with tipping (i.e., gratuity). In particular,
our aim is to formalise the cognitive process that underlies a decision of how much
to tip. This, in turn, allows us to infer various statistics, such as tipping norms
in different countries, based on behavioural data.

Before presenting the details of the model, we make the following observations.
First of all, tipping customs differ between cultures – what would be a very generous
tip in Europe may qualify as an insult in America. We hypothesise that each
country/region/community can be assigned a baseline amount, which characterises
the social norm that dictates how much to tip having received a service of standard
quality. Second, by tipping less than imposed by the local custom, an agent
exposes themselves to feelings of guilt, which features as a mental attitude in
our model. Finally, each agent’s attachment to money differs and affects how
much they’re willing to tip.

Game Setup

Tipping is modelled as a two-person game between a service provider (we’ll call
them Ben) and service receiver (called Abi). Ben provides a service, be it waiting
at a restaurant, a taxi ride or valeting, which we assume can be of low, medium or
high quality. This is followed by Abi giving a tip, which ranges between 5% and
25% (we only consider multiples of 5 for simplicity). Figure 6.4 gives a graphical
representation of one iteration of the tipping game; it is easy to deduce standard
components of the model, such as the transition function T and set of actions
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Figure 6.4: Tipping model

Act. As usual, states encode execution histories (which allows us to use states
where paths are expected) so, for example:

s1 = ([med], []),
s6 = ([low], [20]).

Also, if Ben provides a service of high quality from state s8 then the game would
transition into state ([med, high], [5]). A sole physical reward structure Rm models
the monetary exchange associated with tipping with a state reward function rs

m

that assigns −a to Abi and a to Ben in a state where Abi has just given a tip a.
Note that an action reward would be more natural here, but mental rewards are
collected at states and dealing with only one type of rewards simplifies analysis.

Mental Rewards As mentioned above, we hypothesise that guilt features as a
factor when tipping. Note that, unlike the trust game, where an agent is driven by
their opponent’s trust, guilt is experienced by the agent themselves. Also, while in
the trust game the behaviour of both agents is of interest, here we mostly concern
ourselves with modelling Abi’s behaviour; we assume Ben always does his best, but
quality of the service provided varies. Therefore, our main task is to capture how
much guilt, denoted ηgAbi, Abi experiences depending on how high her tip is.

We assume that Abi’s guilt is primarily influenced by two factors: (i) her
guilt proneness, measured according to the GASP (Guilt And Shame Proneness)
scale [117] as a number between 1 and 7, and (ii) her estimation of Ben’s expectation
of the tip, which we assume is a function of service quality. In particular, based
on perceived quality of service received and a tipping norm, Abi estimates how
high her tip should be. Tipping less than that reference value causes Abi to feel
guilty (JηgAbiK < 0), and the smaller the tip, the more guilt she experiences (where
the pace of guilt increase is exponential, but the rate is dependent on Abi’s GASP
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score). Conversely, tipping higher than the reference value will invoke “negative
guilt”, i.e., pride (JηgAbiK > 0), but the absolute values will be smaller than for guilt.
With that, Abi’s utility function captures her attachment to money and the guilt
she would experience after tipping less than expected:

cus
Abi(s) = λAbi

m rs
Abi(s) + λAbi

g JηgAbiK
s.

Experiments

We now describe how using our tool with simulated tipping data can provide insights
about population-wide patterns. The idea is that human actions are driven primarily
by their personalities, beliefs and desires, but societal norms play a role too. For
example, a successful home assistance robot must be able to adapt its behaviour
not only to the preferences of its owner(s) but also to the environment it operates
in. In the context of our example, tipping norm constitutes such a societal norm.

In all the experiments, we are only interested in learning Abi’s parameters (and
the tipping norm) – Ben’s behaviour is assumed to vary probabilistically.

Inferring Parameters from Synthetic Data For the first experiment, we use
three batches of synthetic data, each consisting of ten rounds of the tipping game.
Tips in the first file are generally low, tips is the second file are mostly medium and
tips in the third file are generally high, as judged by a human (more information
about the synthetic data files is given in Appendix B). We perform inference on
each of the data files, in which we learn Abi’s goal coefficients, Abi’s GASP score
and the tipping norm. We take a (discretised) uniform distribution as a prior,
separate for each parameter we are inferring (with around five elements in the
support of each prior, see Appendix B for details). Note that computing disjoint
posteriors is less accurate as it does not capture correlations between parameters,
but it is easier to present and conceptualise.
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Figure 6.5 visualises inferences of Abi’s goal coefficients; note that goal coefficients
sum to 1, which explains why only points on one of the diagonals have positive
probabilities. Reassuringly, the higher the tips, the more biased the posterior is
towards λAbi

g . In other words, low tips are explained by an agent’s attachment to
money, while high tippers are inferred to place more importance on their feelings.

Next, Figure 6.6 depicts the visualisations of inferred distributions of the other
two parameters, the tipping norm and the GASP scores. Clear patterns are observed,
with the distributions of tipping norm peaking at growing values as the observed
tips increase, as expected. The distinction between different GASP scores is not as
clear cut, but suggests that low tippers are less prone to experience guilt, while those
who give higher tips are almost certainly susceptible to begin culpable. However,
GASP scores suggest no significant disparity between medium and high tippers,
suggesting other factors, such as tipping norms, come into play.

We remark that it would be incorrect to infer the tipping norm solely based on
the data (by taking an average of observed tips, say), tempting as it may seem,
because parameters of an agent play an equally important role in determining their
behaviour. To illustrate it, we use the data characterised by medium tips, and
for a variety of combinations of Abi’s goal coefficients and her GASP score (again,
see Appendix B for details), we infer the tipping norm. To improve accuracy, we
use a more informed prior on the tipping norm – still uniform, but its support
is restricted to the set {5, 7, 9, 11, 15}.

The inferred posterior varies widely depending on the values of goal coefficients
and the GASP score that we fix. For example, when Abi is more money-oriented
(~λAbi = [0.9, 0.1]) and not prone to experience guilt (GASP score equal to 1), the
posterior is biased toward smaller tipping norm (5 being most likely), but with little
certainty. With a more centralised GASP score (equal to 4) and a lack of strong
preference between guilt and money (~λAbi = [0.5, 0.5]), high tipping norm (15) is
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Table 6.3: Prediction errors, aggregated over 10 runs; µ (resp. M) denotes the mean
(resp. median); # is the number of rounds of tipping game used for learning

(a) Goal coeffs

#
MSPE
µ M

0 .209 .174
5 .045 .035
10 .057 .041
15 .022 .015

(b) GASP score

#
MSPE
µ M

0 10 10
5 5.38 4.91
10 7.37 5.61
15 4.01 2.25

(c) Tipping norm

#
MSPE

µ M
0 107.5 112.5
5 105.33 102.82
10 69.18 68.55
15 53.06 37.39

deemed most likely and the confidence of the prediction is higher. In-between values
of tipping norm also feature as likely for other values of Abi’s parameters.

Inferring Parameters from Generated Data The other type of experiment
we perform involves learning from data generated (through simulations) by the
tool itself. For that, we randomly generate Abi’s goal coefficients, her GASP score
and the tipping norm and simulate the execution for ten rounds. We then attempt
to learn the randomly chosen parameters starting from a uniform (discretised)
prior, the same as before. We repeat this process ten times and evaluate each
posterior predictive distribution by computing its mean squared prediction error
(MSPE) (introduced in Section 3.2.5). We then aggregate the MSPEs from each
run via mean and median averages.

Additionally, to study how the amount of data affects the accuracy of the
inference, we repeat the above process on data generated by simulating five and
fifteen rounds of the tipping game. The results are displayed in Table 6.3, separately
for each inferred parameter. The leftmost column indicates the number of rounds
that the data used for inference consisted of. For reference, the first row of each
table shows prediction errors computed from the prior, before any learning occurs.

The results show that learning performs especially well for goal coefficients, even
with relatively little data available. This suggests personality of an agent can be
derived directly from their behaviour, with minimal confounding effect of other
variables. On the other hand, tipping norm and the GASP score are harder to learn,
reflecting the interplay of these two factors in determining agent behaviour. In
particular, high tips may be explained by high GASP score even if the tipping norm
is moderate, but they may also arise despite agent’s low proneness to guilt when
the tipping norm is high. This suggests considering a joint probability distribution
of the two parameters, which we plan to analyse as part of future work.
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6.3 Conclusion

This chapter has focused on describing the practical side of our framework, CSMG.
We have outlined the main components of its probabilistic programming implementa-
tion and gave an insight into the representations we use internally. We have included
key code fragments that capture the fundamental properties of our tool. Finally, we
have presented a selection of case studies from a variety of domains, each highlighting
a different aspect of our formalism. We have analysed each case study through a
series of experiments, most of which involve randomly setting parameters of agents
and running inherently stochastic simulations. This complicates the reproducibility
of our experiments, as different resolutions of random choices may produce distinct
results. While we have strived to counteract this by increasing the number of
simulations (to smooth out irregularities) and providing a record of outcomes
of random choices that occurred during our run, more effort is needed to make
replicability more straightforward. In principle, setting random seeds should allow
us to achieve that goal, but we have so far been unable to make it work as desired.
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In Chapter 5, we have presented the CSMG formalism, a probabilistic framework
that models human-like decision-making processes. Then, in Chapter 6 we have
described a software implementation of that model that supports behavioural
predictions and inference of preferences. We claim robots can be endowed with this
formalism to help them make sense of the world and advance their partnerships
with humans. This chapter substantiates our assertion by reporting results of a
human experiment we have run to evaluate our framework.
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We begin by describing the design of our experiment and its objectives in
Section 7.1. Our method of data collection involves a custom, highly interactive
web application – we discuss its architecture and selected implementation details in
Section 7.2. Finally, Section 7.3 presents the results of the study and the conclusions
we have drawn from them are outlined in Section 7.4.

7.1 Experiment Design

In whatever setting our human study would be run, its main objective was to
evaluate the predictive power of our framework. However, depending on the
environment of the experiment, our preference was to study aspects of human-robot
interaction that could inform future robot designs. Therefore, objectives of the
study go hand in hand with the experimental setup we adopt. Below we describe
the choices we have made and motivate them.

7.1.1 Introduction

To enable evaluation of our model, we needed a scenario where humans make
decisions (which we would try to predict using our framework), ideally as part of
direct interaction with a robot (which we could implement using our software). We
wanted this scenario to be easy to understand for participants and fairly simple
to implement (due to ongoing pandemic and time constraints, conducting the
experiment online was the only viable approach, necessitating development of a
custom web application). Fortunately, there is a two-player game that readers of
this thesis will be familiar with that fit that bill perfectly.

Indeed, the trust game is widely accepted as a standard experimental setup for
measuring trust and trustworthiness through actions, rather than self-reports. It
is simple enough for a human to grasp within minutes, but features a powerful,
monetary incentive mechanism. Its appropriateness is attested by its popularity
as an experimental paradigm, with well over a hundred human studies based on
trust game performed to date (see Johnson et al [54] for a meta-analysis).

On the other hand, measuring trust and trustworthiness through trust game has
its critics too [118]. It is often pointed out that a decision of how much to invest
(resp. return) cannot be attributed solely to trust (resp. trustworthiness). Indeed, by
running cleverly designed variations of trust game, it has been suggested that other
social preferences, such as altruism, inequity aversion or betrayal aversion, influence
participants’ decisions [119, 120]. Moreover, lack of stability of the paradigm is
raised as a concern; in particular, the following factors of the trust game vary widely
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between studies: (i) the investment multiplier (K), (ii) the horizon of the game, (iii)
the way actions are elicited, and (iv) framing of game description and instructions.

While we agree with all of the above, we believe it does not disqualify trust
game as an experimental paradigm. However, the critique provides important
insights that inform the way in which we employ the trust game. In particular,
at no point do we draw direct correspondence between investment decisions and
trust. Instead, we encode our hypothesis of how trust affects decisions in our
model and test that hypothesis by running our experiment. We also carefully
consider what setting of factors of the game is most appropriate for our purposes
(detailed in Sections 7.1.3 and 7.1.5).

Moreover, despite the high number of replications of the trust game experiment,
we have identified a gap in the literature. Namely, a vast majority of experiments
conducted to date involve humans interacting with other humans. Only recently
some authors set out to study if, and how, human behaviour in the trust game
would be different if they were to face a robot. We have identified three such studies
and described them in more detail in Section 2.3. The overarching conclusion
that can be drawn from these investigations is that humans trust robots at least
as much as other humans.

However, a major limitation of the aforementioned studies is a lack of autonomy
of the machines and the one-offness of the interaction. Therefore, we set out to fill
that gap by endowing the robot in our experiment with a sophisticated decision-
making mechanism based on our framework. Moreover, to study the dynamics of
trust in human-robot interaction, we have participants play repeated trust game.
Also, unlike all past studies which put the human subject in the role of an investor,
we select the role at random for each subject. We defer more details about our
experimental procedure until Section 7.1.5.

Note that, throughout this chapter, we refer to the artificial agent we designed
to play the trust game against human participants as a bot. This reflects the
non-physical form of our agent, which was the only practical way for us to proceed.
Moreover, we drop the naming of players we have used until now, Alice and Bob,
and instead refer to players as investor and investee. We also remark that, since
the experiment involved humans, ethical approval was sought and granted by
the Ethics Committee of the Department of Computer Science at University of
Oxford (ref. CS_C1A_21_029).
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7.1.2 Data Collection

One of the first things we had to settle on was the platform on which to run
our experiment. Given the ongoing pandemic, Amazon Mechanical Turk (below
abbreviated as MTurk) was an obvious choice. It is a crowdsourcing marketplace
that allows requesters to submit so-called Human Intelligence Tasks (HITs), which
can subsequently be completed by workers in exchange for pay. Upon a worker
completing a given HIT, the requester gets to approve or reject that assignment.
The most common tasks to be found on the platform are short and simple; think of
identifying objects in images, transcribing audio or validating spreadsheet entries.
However, the platform has increasingly been taken up by researchers to conduct
scientific experiments with human subjects, a trend accelerated by the COVID-19
pandemic. Using the MTurk platform comes with several benefits:

• Diversity: respondents’ demographics is more diverse than the typical college
campus population

• Scalability: arbitrarily high number of participants can be requested with
no extra time or resource expenditure

• Economy: both in terms of time and money

• Automation: an API is provided which allows automating all the admin
tasks, such as approving assignments or paying subjects

Of course, Mechanical Turk has its disadvantages too. Of these, two are most
prominent. Firstly, any task submitted to the platform must be possible to complete
using only a computer with access to internet. This is problematic for many medical
studies that require brain scanning or use of other specialised machinery. It would be
problematic for us if we wanted to use real robots. While some may argue that doing
that would make our results more credible, it would also come with many difficulties.
Moreover, autonomous machines will come in various forms and shapes, meaning
that experimental results obtained by using a humanoid robot may not necessarily
transfer to driverless cars. Therefore, by using a non-physical bot in our experiment
we focus our attention on humans’ relationship with autonomous automation as a
whole, be it a robot vacuum cleaner or a military drone (perhaps to a lesser extent).

Secondly, a major disadvantage of MTurk is the design of the incentive system of
the platform. The majority of workers are there for the money and are highly skilled
at completing the tasks in the shortest amount of time possible. This can negatively
affect the quality of the data collected, especially if no steps are taken to filter out
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inattentive workers. There are two standard practices to ensure data quality. First
of those is provided by the platform itself, which allows one to target the study
only at workers of highest calibre. In particular, a subset of MTurk workers is
awarded a so-called Masters Worker qualification. Quoting MTurk webpage, Master
Workers “have consistently demonstrated a high degree of success in performing
a wide range of HITs across a large number of Requesters”. It is also possible to
filter workers using other metrics, such as HIT approval rate, which measures the
percentage of tasks completed by a worker that were approved by the requester.
It is customary to place both of the above requirements on workers participating
in research studies and this is what we do – we required workers to be Master
Workers and have their approval rates above 95%.

Another common technique applied to ensure high quality of submissions involves
including attention or comprehension checks as part of the task. We implement
two such mechanisms as part of our experiment design: (i) a time control for
behavioural questions that we ask subjects before they play the game and (ii) a
set of comprehension questions that check participants’ understanding of the trust
game. We describe those measures in more detail in Section 7.1.5.

MTurk comes with a wide range of predefined templates for surveys, image/video
classification tasks, data collection, etc. However, for a very specific application
such as ours, a custom solution was required. A typical approach in such cases is to
use the MTurk platform in a minimal way. Namely, a link to an external site on
which the experiment is hosted is included in task description. Upon completing
the work on the site, a participant is provided with a unique code which they then
input on the MTurk task page before submitting the task. More detail on how
we use Mechanical Turk is given in Section 7.2.

Before moving on to the objectives of the experiment, we explain some nomencla-
ture we use throughout this chapter. Every instance of trust game played between
a subject and our bot leads to an outcome that is a sequence of investments and
returns that occurred in the game. We introduce two properties of outcomes that
will be useful in evaluating and comparing plays between participants. Firstly,
total welfare of a game is the sum of earnings of both players; it is proportional
to the size of investments. Second, fairness of an outcome is an appropriately
scaled ratio of earnings of both players; in particular, supposing investor earned
$k and investee earned $l, fairness is given by φ = k−l

k+l . Hence, its value ranges
between −1 and 1, with positive values corresponding to outcomes where investor
earns more than investee, and vice versa.
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7.1.3 Objectives

Having given an overview of our experimental setup, we now state the objec-
tives of our study.

Model Validation As stated above, our most important goal was to evaluate the
predictive power of our framework. For each play, at every step, the bot generates
predictions of the participant’s action as part of computing its own action. Those
predictions are probabilistic, meaning that they take the form of a probability
distribution over possible actions. We compare the predictions generated by our
model (identified as csmg) to the following baseline predictors:

• uniform: predicts each action is equally likely

• last: predicts next action will be the same as the last action

• average: predicts next action will be the average of all previous actions

• dang: a predictor based on computational trust model by Dang et al. [121]

The first three predictors are very simple, but dang deserves an overview. The
main idea behind it is to capture how well a user behaved in the past with a single
measure, called the trust score, which is then used to predict future behaviour.
The trust score is updated in every round of the game using an intricate system of
equations manually crafted to encode various hypothesised properties of trust. This
includes common assumptions about the dynamics of trust that can be captured
by a logarithmic function (which is smooth, increasing and concave on [0, 1] and
crosses identity at the extremes). Moreover, authors make an effort to ensure their
measure punishes so-called fluctuating behaviour, characterised by most recent
sending proportion significantly deviating from those in the past.

With that, the trust score is based on the weighted average of (i) the current
trust, which is roughly proportional to the most recent sending proportion (defined
as the ratio of actual transfer and maximal possible transfer):

current_trustt = log(send_proportiont × (e− 1) + 1),

and (ii) aggregate trust, which captures all past behaviour and is updated after
every round, with a stipulation that the most recent transfer matters more the
more it deviates from previous transfers:

aggregate_trustt = αt × current_trustt + (1− αt)× aggregate_trustt−1 ,
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where αt ∝ |current_trustt − current_trustt−1 |. Then, the weighted average
is expressed as

expect_trustt = trend_factort × current_trustt

+ (1− trend_factort)× aggregate_trustt ,

where trend_factort represents the recent trend in user’s behaviour; higher values
mean sending proportions have improved and vice versa. Finally, the trust score
is expressed in terms of expect_trustt as follows:

trust_scoret = expect_trustt × change_ratet ,

where change_ratet measures fluctuating behaviour of the user; it is close to 1 when
transfers are consistent or deviate slightly, but quickly approaches 0 if divergence
persists. Moreover, change_ratet decreases faster as a response to sudden decrease
in sending proportion than when transfers increase, which is still punished, however.

In summary, dang predicts future behaviour of a user based on a trust score
that measures past behaviour of that user and whose formulation detects fluctuating
behaviour. dang shares many features with the trust dynamics model presented
in Section 5.4.4 on which our predictor, csmg, is based. However, there are two
major differences: (i) dang does not take into account opponent’s behaviour and
(ii) dang does not differentiate between the two roles in the game.

Note that uniform is a probabilistic predictor, same as csmg, while others
are deterministic. Now, a natural measure to evaluate a probabilistic prediction is
mean squared prediction error (MSPE), introduced in Section 6.2.3. It is easy to
see that computing MSPE of a deterministic prediction (treated as a special case
of a probabilistic prediction) is equivalent to computing its MSE.

However, there is an important discrepancy between stochastic and deterministic
predictors. The former are represented by discrete probability distributions whose
support is the set of available actions. On the other hand, dang and average
formulate predictions as fractional numbers, which are incompatible with the
expected format of a probabilistic prediction and cannot be evaluated using MSPE.

Therefore, to find common ground for evaluation, we reduce each probabilistic
predictor to a deterministic (fractional) one by taking an expectation of the
probability distribution that constitutes the prediction. Hence, every prediction
is reduced to a single, possibly fractional number and evaluated by computing
its mean squared error.
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Determining Optimal Robot Parameters Recall that every agent in our
model is characterised by a vector of goal coefficients. As a result, every time the
model is implemented in a robot, parameters’ values must be set appropriately.
The second goal of our experiment is to study how various settings of the bot’s goal
coefficients influence game outcomes and satisfaction of participants. Our hope is
that our findings lay a foundation for future robot designs.

More specifically, we define three types of bots, each characterised by a unique
combination of goal coefficients:

• a greedy bot, with goal coefficients vector 〈0.8, 0.2〉

• a neutral bot, with goal coefficients vector 〈0.5, 0.5〉

• a selfless bot, with goal coefficients vector 〈0.3, 0.7〉

For each participant, the type of the bot is selected at random. We then study how
the total welfare and fairness of plays differ between the three cohorts. We also
query subjects’ impressions of the bot and compare between treatments.

Prior Effect The third objective of our experiment is partially inspired by Wagner
et al. [40], who propose a conceptual framework for human-robot trust but find it
fails to detect overtrust. We hypothesise a possible solution to the problem could
be to include priors about individuals. To test this hypothesis in the setting of our
framework, we consider two treatments which we refer to as uniform prior and
informed prior. To understand the difference between the two treatments, recall
that an agent in our framework, besides their own parameters, is also equipped with
an initial state. It consists of a belief about every other agent, as well as estimations
of opponents’ mental states. In other words, an initial state of an agent is made up of
priors about all other agents. Now, when an agent knows nothing about one of their
opponents, a uniform prior is in order. However, any relevant information that is
available may be encoded in agent’s initial state, resulting in a more informed prior.

In the context of the trust game, bot’s prior over their human opponent consists
of a belief that essentially captures bot’s trust towards that opponent, bot’s initial
estimation of human’s trust and bot’s estimation of human’s meta-parameters
(rationality, lookahead and discount factor). To generate such a prior, we include
as part of our experiment a questionnaire that subjects fill in before playing the
game. Then, for each participant, we randomly decide whether to use their answers
to the questionnaire to generate an informed prior or use a uniform prior. This
produces uniform prior and informed prior treatments. Details about what
questions make up the questionnaire and how we use the answers to generate
a prior are in Section 7.1.5.
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Human Opportunism An important decision that has to be made as part
of a repeated trust game experiment is whether to disclose the horizon of the
game to the participants. It is often hypothesised that revealing the horizon will
lead the human to alter their behaviour in the latter stages of the game [121].
We decided to test this assumption by including two treatments, one where the
horizon is disclosed (disclosed) to the participant and the other where it is not
(undisclosed). To evaluate it, we restrict our attention to games where the subject
plays as investee and we measure how their last action differs between the two
treatments. We hypothesise that the last return will be on average smaller (when
considered as proportion of investment) in the cohort with the disclosed horizon,
showing opportunistic nature of humans when dealing with robots.

7.1.4 Novel Contribution

According to the best of our knowledge, the experiment proposed below is the first
to date where humans play repeated trust game against a machine that uses a
sophisticated reasoning mechanism. The three aspects which make our approach
unique are (i) the game is repeated, i.e., played over multiple rounds, (ii) the robot
(or, more precisely, bot) that participants play against is driven by our probabilistic,
cognitive framework, and (iii) we will run the bot not only as an investee (which is
what all the experiments mentioned above do), but also as an investor.

7.1.5 Experimental Procedure

Having given an overview of our experimental setup and a list of objectives, we now
proceed to describe in detail our experimental procedure. This section covers the
high-level aspects, while implementation details are to be found in Section 7.2.

As mentioned above, participants for our experiment are recruited using Amazon
Mechanical Turk marketplace. To qualify for this assignment, a worker on MTurk
platform must be in possession of the Master Worker qualification and have HIT
approval rate above 95%. Eligible workers are presented with a task page displayed
in Figure 7.1. It contains basic information about the experiment, a few disclaimers,
informed consent form and, most importantly, a link to a web application where
the experiment is hosted. That is where all the interaction with the participant
takes place and we describe it in detail in what follows.
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Figure 7.1: Experiment task page on MTurk

Web Application

The web application, which was developed specifically for this experiment, can
be conceptually divided into five parts, reflecting the flow that a user follows
when completing our study. The first component is a set of standard demographic
questions that give us an idea of what population our respondents belong to. Upon
answering those, the user is presented with a study-specific pre-game questionnaire
designed to estimate relevant aspects of participant’s decision-making process
and their personality. Having completed the questionnaire, the subject is shown
instructions explaining the game and asked questions that check their understanding
of game rules. Participants are given two chances to answer those questions correctly;
in case they fail, they are unable to proceed to the game and their participation in
the experiment ends. However, to reimburse them for the time they had already
committed, subjects are paid between $0.20 and $1, depending on how long they
spent trying to understand the game.

In case they answer correctly, each participant then proceeds to the game, in
the role of an investor or investee, whichever was randomly selected for them. The
play always lasts seven rounds, though only subjects in the disclosed treatment
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are aware of that. The number itself was chosen to strike the right balance of
keeping participants engaged during the whole play while ensuring enough data
is obtained to provide insights into trust dynamics and human nature. Moreover,
an odd number was deemed less likely to be correctly guessed by subjects in the
undisclosed treatment. Further, we mention that the multiplication factor K
of the game is set to 2. This largely stems from personal preference – we believe
it creates a more straightforward dynamics, with an expectation on the investee
to return half of what they receive. In any case, we are of opinion that the value
of the multiplication factor, be it 2 or 3, is of little significance.

Finally, once the game is complete, we ask participants three simple questions
about their experience and give them an opportunity to provide feedback. Upon
submitting their answers, a unique code is generated for each user which, when
entered on MTurk task page, will ensure they get paid appropriately. We now
describe each component of the web application in detail.

Demographic Questions We ask subjects to provide their age, gender, national-
ity, education and previous robot exposure as part of a standard demographic survey.

Pre-Game Questionnaire The questionnaire that follows the demographics
survey consists of six questions that attempt to determine each participant’s
lookahead, rationality, trust and trustworthiness.

Time Control Note that the questions, especially the first four, are cognitively
challenging and designed to induce subjects to think hard. To ensure that partici-
pants read the questions fully and carefully consider their answers, we implement
a time control mechanism. Based on its length and difficulty, each question is
assigned an expected time (ranging from 10 to 25 seconds) needed to answer it.
A subsequent question is displayed only once that time elapses. Participants are
informed how much time they have for each question and how long remains until
the next question appears. We evaluate whether the time control is effective in
improving quality of answers in Section 7.3.4.

Lookahead The first question is inspired by the 11-20 money request game [122],
originally devised to measure depth of reasoning that an individual performs:

Imagine a following game: There are two players and each requests an
integer amount of money between $11 and $20. Each player will receive

the amount they requested but a player will receive an additional
amount of $20 if they request exactly one dollar less than their
opponent. What amount would you select in such a game?
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The idea is that, the lower the number an individual chooses, the deeper their
reasoning. For instance, selecting $18 may be a result of a reasoning process along
the following lines: “My opponent will expect me to select $20; hence they will
select $19; therefore I should choose $18 to obtain the bonus”. Using nomenclature
of our framework, each answer is associated with a lookahead value (e.g., agent
that looks three steps ahead would compute $17 as optimal choice).

The way we estimate an agent’s lookahead based on their answer is given in
detail in Appendix C, but the idea is the following: we use the base distribution
reported by Arad et al. [122] for the uniform treatment, with a stipulation that
the support of the distribution must be adapted to ensure reasonable response
times of our app. In the informed treatment, the estimation is obtained by soft
conditioning (using WebPPL’s factor operator) base distribution on a lookahead
value that corresponds to the observed answer.

Rationality To estimate participant’s rationality, we present them with three
sets of lotteries of increasing complexity and query their preferences. This is the
most cognitively challenging part of the questionnaire and spans three questions
(one per lottery set). Full details are again given in Appendix C; in the nutshell,
each question solicits preferences between two lotteries, each specifying various
probabilities of receiving various amounts of money (all lower than $100). The
assumption is that a perfectly rational agent would correctly compute expected
dollar value of each lottery and rank them accordingly.

The way a rationality estimation is computed based on participant’s answers
is as follows: we start with a base rationality value of sixteen and we increase
(resp. decrease) it for every correct (incorrect) answer, where the magnitude of the
modification is inversely proportional to the difficulty of the question (i.e., easier
lottery questions matter more). The resulting rationality value is between zero
and forty-four. See Appendix C for a formal algorithm.

Trust Participant’s trust towards our bot is estimated by asking the fol-
lowing question:

On a scale from 1 to 5, how would you describe your overall trust
towards robots?

Since the participant has no additional knowledge about our bot, we assume that
their trust towards it is the same as their overall trust towards robots in general.
Recalling that trust (in particular core trust, which is of relevance here) in our
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framework is a number between zero and one suggests a straightforward, linear
mapping between an answer to the above question and a trust value. Recall
also that agent’s estimation of their opponent’s mental state is represented in
our framework as a probability distribution over possible values of that mental
state. In this case, we use a Dirac distribution centred on the trust value given
by the aforementioned mapping.

Trustworthiness (Initial Belief) The last question in the pre-game ques-
tionnaire has been designed to assess participant’s trustworthiness, or equivalently,
their goal coefficients. The wording of the question is not as direct as for trust:

On a scale from 1 to 5, how concerned are you with the way the robot
perceives you?

Our choice of phrasing reflects the fact that, in our framework, trustworthiness of
agent A towards B measures how much A cares about B’s trust. Trustworthiness,
just like trust, is measured on a 0 – 1 scale. Recall that, in our model of trust
game, trustworthiness is given by the ratio of agent’s goal coefficients. Estimation
of participant’s goal coefficients is captured by a belief which takes the form of a
Dirichlet distribution, represented as a vector of positive real numbers ~α.

Since the ratio of those real numbers is equal to the expected ratio of goal
coefficients, i.e., the trustworthiness, subject’s answer to the above question should
be correlated with the ratio of Dirichlet parameters. It then remains to choose their
sum, which is inversely proportional to the uncertainty of our belief. After some
experimentation, we settled on setting the sum to 3. This results in initial beliefs
such as [2, 1] (when the answer is 1), [1.75, 1.25] (when the answer is 2) or [1.25, 1.75]
(when the answer is 4). In the uniform condition, belief is set to [1, 1], reflecting
greater uncertainty about participant’s trustworthiness. Appendix C describes in
more detail how belief is set based on subject’s answers and why it is done this way.

The Game Upon completing the pre-game questionnaire, the subject proceeds to
the game itself. It is during this transition that the participant is randomly assigned
to one of the treatments; namely, the character of the bot is selected (selfless,
neutral or greedy), along with the prior (informed or uniform) and horizon
(disclosed or undisclosed) and the role of the participant. It is also at this
point that the state of the bot is initialised, either based on questionnaire answers
(in the informed condition) or otherwise (uniform condition).
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Game Description The game screen initially consists of the game description
and a set of three comprehension questions. The explanation of the game has been
designed with brevity and clarity in mind. It has been an iterative process, heavily
influenced by the feedback gathered from volunteers who tested the game. Note
that the description differs depending on the role of the participant.

Comprehension questions have been chosen to cover as many aspects of the game
as possible without being overly complicated. subjects are given two opportunities
to answer the questions correctly. This is to avoid punishing participants in case they
accidentally choose a wrong answer (as a result of misclicking, misunderstanding
the question or otherwise) on their first attempt. Full text of the game description
along with comprehension questions can be consulted in Appendix C.

Game Play If the participant answers the comprehension questions correctly
(on the first or second attempt), they proceed to the game. It always lasts seven
rounds, but the subject is only told that number in the disclosed condition.
The game interface is designed to be simple and error-free, hence selection of
user’s action is queried with buttons rather than text fields. Also, given the
potentially long-running computation of bot’s action, a spinner is activated for
its duration to keep users informed.

Post-Game Questionnaire Once play is complete, a summary of the game
is presented to the participant; it consists of their earnings in the game and their
payment (see Section 7.1.5). Moreover, we ask three simple questions about their
experience. The first question queries subject’s assessment of how human the
bot’s behaviour felt:

To what extent do you agree with the following statement:
Playing with the bot felt like playing with another human.

Possible answers include complete or partial (dis)agreement or indifference.
The other two questions relate to participant’s trust changes as a result of playing

the game. One concerns subject’s trust towards the bot they played the game with:
Has your trust towards this particular bot changed after playing the

game?

while the other one checks whether the trust change (if any) translates to all other
robots:

Has your general perception of robots changed?

Apart from answering the questions, participants are given a chance to provide
some feedback. Upon submission, they receive a unique code which they then
have to enter on the MTurk task page.
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Payment Structure

We now discuss the remuneration subjects receive for taking part in our study.
As mentioned in the introduction, our goal from the onset was to have a variable
remuneration structure so that participants are motivated to earn more in the
game. However, ethical considerations require us to pay subjects even if they
do not earn anything in the game.

As a result, remuneration is split into base payment, which every participant
receives regardless of game outcome, and a bonus, which reflects each subject’s
earnings in the game.

The base payment has been chosen so as to ensure that subjects are paid
consistently with the UK National Minimum Wage, in compliance with ethical
approval. In particular, after converting to dollars (only available currency on
MTurk), the base payment had to be equivalent to $12 per hour. Based on trial
runs, we determined that completion time rarely exceeds ten minutes and averages
below that and set the base payment to $2.

Determining the range of bonuses revolved around a trade-off between keeping
the cost of the study reasonable while trying to strongly motivate subjects to take
the game seriously. In the end, we settled on an expected bonus value of a little
over $1, so that it makes up more than a third of the participant’s expected income.

In particular, the currency in the game is introduced as abstract “units”, rather
than dollars. At the start of each round, the investor is endowed with 4 units
and whatever they invest gets doubled. Hence, the maximal possible earnings of
each player during the seven rounds of trust game are 56 units. This, of course,
is highly unlikely to occur in practice. Indeed, players’ earnings rarely exceed 28
units, as typically not all investments are maximal (hence there is less than 56
units in total) and earnings of the two players do not usually differ significantly.
Units are converted into dollars using the exchange rate of 1 unit = $0.05, which
participants are made aware of prior to play.

In fact, the structure of the base payment is a little more complicated than
stated above. This reflects the possibility of a participant failing the comprehension
test and being unable to proceed to the game. We deemed it unethical to leave
such a subject with nothing, even though they do not provide any useful data
to us. However, we also want to differentiate between subjects who make a true
effort to understand rules of the game but are unable to, and subjects who rush
completing comprehension check in hope of getting lucky.

We achieve this as follows: we set the guaranteed base payment that every
subject receives to $0.2. Now, if a participant passes the comprehension check, their
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base pay increases by $1.8 to $2 (reflecting the time they are expected to spend
on the experiment). On the other hand, if they fail, their payment depends on the
time it took them to try to understand the game (in particular, the time elapsed
between being presented with game instructions and submitting their answers to
comprehension questions for the second time). Specifically, the additional payment
(on top of the $0.2 base) is nothing if time spent comprehending is less than one
minute and increases linearly by $0.2 for every additional minute spent, up to four
minutes. For example, if 2:24 min was spent, extra $0.4 is paid and if 5:30 min was
spent, extra $0.8 is paid, which is the maximal amount. In summary, participants
who fail the comprehension check are paid between $0.2 and $1, depending on how
much effort they put into trying to find the correct answer.

7.2 System Architecture & Implementation

Previous sections described in detail the high-level design of our experiment.
However, implementing the required mechanisms was far from straightforward.
This section overviews the architecture of the web application we have developed
to conduct this study and the challenges we had to overcome.

7.2.1 Web Application

We have developed a web application that implements the experimental procedure
described in Section 7.1.5. A typical web application consists of a backend
(application code that runs on the server), frontend (application code that runs
on the client, i.e., the browser of a user visiting the app) and a database and
must be hosted on a reliable platform to ensure reliability. Below we overview the
technological choices we made for each of these components.

Backend Back in the early days of web development, the number of technologies
available was quite limited and so the choice was rather straightforward. Many web
applications were built using PHP for backend, HTML and Javascript for frontend
and an SQL database for permanent data storage.

However, times have changed and today a plethora of web frameworks written
in various programming languages exist. Fortunately, our choice was made easier
by the fact that our model is implemented in WebPPL, which in turn is written
in Javascript. Any WebPPL program can be executed from within Javascript
code. Now, running our model involves heavy computation which may take many
seconds to complete. Such jobs should be run on the server side to ensure reliable
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performance and good user experience. This meant that the backend of our
application had to be implemented in Javascript.

Fortunately, Node.js is a popular and widely supported Javascript runtime
environment which is highly suitable for backend development. Many frameworks
exist that facilitate building web applications. One of the most popular ones, thanks
to its flexibility and minimality, is Express.js. It makes the job of a programmer
much easier by taking care of common tasks such as routing HTTP requests and
responses and error handling. That enables the developer to solely focus on defining
an appropriate API and implementing its functionality. We have chosen Express
based on recommendations on the web.

Frontend Similarly as for backend, we have also used a web framework to aid
development of client-side code. Frontend frameworks are not as essential as backend
ones since writing HTML (which is what frontend is about) is much less complex
than connecting to sockets and parsing HTTP requests (which is what the server
must do). Still, they have gained a lot of popularity recently as they make apps
faster, more scalable and easier to develop.

One such framework is called React and, besides improving performance, it brings
features from object-oriented and functional programming into frontend development.
React forces the programmer to think of the user interface as a hierarchy of stand-
alone, reusable components, each with its own state and functionality. This makes
frontend code much more readable and easier to debug. While we had not known
all this when we were choosing which framework to use, we selected React due
to its popularity and for personal development.

Database That leaves us with the last major component of a modern web
application – the database. All the interactions that participants of our experiment
have with our app, particularly their choices in the trust game, must be securely
stored for subsequent analysis. We have decided to use for this purpose Cloud
Firestore, which is part of a wider platform called Firebase, developed by Google
to aid development of web and mobile applications. Firestore is their second-
generation NoSQL database in which data is stored as part of documents, which
in turn belong to collections. Each document has a JSON format, supporting a
variety data types such as numbers, strings, arrays or timestamps. Firestore is
free to use as long as usage does not exceed certain, quite generous limits. It
offers an intuitive web interface for viewing and managing the data, as well as
APIs to access the database programatically.
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Hosting Once all the components of a web application are chosen, it must be
decided where the app is to be hosted. Heroku is a well-established platform
which, crucially, supports Node.js applications and makes it very easy to manage,
configure and deploy them. Moreover, it offers flexibility with respect to utilisation
of computational resources, bringing significant cost savings. This is especially
relevant in our case, given that our application is only expected to receive high
traffic for the duration of the experiment, which was expected to last no more than
a few days. At all other times, we can utilise the free tier, enabling us to develop
and test the application in production environment without incurring any costs.

7.2.2 Mechanical Turk

In this section, we give a technical overview of how we use the Amazon Mechanical
Turk platform. Recall that, once a HIT (Human Intelligence Task) is released on
MTurk by a requester, workers can view it and have a chance to accept it. If they do,
they have a limited amount of time (set by the requester) to complete and submit
the task. Typically, tasks are short and can be performed without leaving the MTurk
platform. However, unconventional HITs such as ours require a custom solution
which workers carry out on a separate site (such as our web application). Once
they are finished, workers submit the task, which must subsequently be approved or
rejected by the requester within a limited time, declared by the requester prior to
publishing the task. In case the requester does not make a decision within allotted
time, the HIT is automatically approved and the worker paid the assignment fee. If
the requester approves the assignment, they may pay the worker a bonus of any
size. If the requester rejects the assignment, worker is not paid.

In our case, we would like to approve an assignment provided we can verify
that the worker has completed the experiment. Recall that, since we want to
reward participants who fail the comprehension test, they are also classified as
completing the experiment, along with those who complete the game play. To
make this verification possible, every time a subject completes the experiment, we
present them with a unique code, consisting of ten random alphanumeric characters.
Internally, this code is created as soon as a user completes the pre-game questionnaire
and serves as an identifier of that user throughout the game. This means that all
requests originating from that user’s browser are accompanied by their identifier
and all their interactions (questionnaire answers, actions in the game) are saved in
the database in a document identified by that code. The worker is asked to enter
the code in a text box inside the task page on MTurk so that, once they submit
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the HIT, we can retrieve the code they had entered and perform the verification
using information saved in the database.

This process may sound straightforward, but manually performing this ver-
ification for more than hundred experiment participants would be highly time
consuming. Fortunately, MTurk provides an API which allows one to perform
all the necessary operations automatically, from creating and publishing the HIT
to approving and rejecting assignments.

HIT Creation When our server (re)starts, several things happen as part of
initialisation. We check that the connection to the database is live; we set up
logging according to a value of an environment variable; and, if enabled by another
environment variable, we use MTurk API to create a HIT (or retrieve an existing
one). This operation, if it succeeds, returns an identifier of the created HIT. This
long string of characters serves as the name of a database collection that will
store all the data gathered during that run of the application (interaction of each
user is stored in a separate document).

Creating a HIT, which is an operation offered as part of MTurk API, involves
specifying its name and short description as well as the HTML code that will
constitute the task page. The task page contains a slightly longer description of
the task, a link to an information sheet with more details about our study, a few
disclaimers, informed consent form, link to our web application and a text box
where the code provided upon completion is to be entered. Additionally, various
configuration items are set as part of task creation, such as workers’ qualification
requirements, how long the task should be live on the platform or maximum
number of completed assignments.

Once the task is live, every five minutes, our server checks if any new assignments
have been submitted by calling an appropriate API endpoint. In case some are
found, they are processed in turn. We start by retrieving the code that the worker
entered. We then check whether there exists a document in the database (specifically,
within the collection named after current HIT’s identifier) with name matching
the provided code. If it does, we retrieve that document and check whether the
worker completed the experiment. If they did, their assignment is approved but
the bonus must be determined. There are two options: (i) either they failed the
comprehension check, in which case we also retrieve the bonus that they should
be paid from the database (it had been computed previously based on the timings
of answering comprehension questions), (ii) or they completed the game, in which
case bonus is computed from their earnings in the game.
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7.2.3 Challenges

Having given an overview of our design decisions and the way we interact with
MTurk, we now describe the most notable challenges that we faced when developing
the web application.

Performance

Recall that the time it takes for our tool to compute the decision of an agent
increases exponentially with the lookahead of that agent. In a game such as trust
game, assuming investor’s endowment of four units and multiplication factor of
two, agents have a choice of up to nine different actions. As a result, the decision
tree becomes very large very quickly and it is impractical to set lookahead values
greater than four. This is especially relevant for our experiment, since the time it
takes for the bot to compute its action is the time participant spends waiting.

Our concern was that, if that time is too long, subject might get impatient and
alter their strategy, thereby compromising results of our study. We have therefore
committed to never exceed thirty seconds and keep it well below that limit most
of the time. To achieve that, we experimented with various configurations of bot
parameters to see what values of bot parameters we can afford. Naturally, the
greater the bot’s lookahead is, the more informed its decisions are. However, we
have discovered that larger lookahead only makes a substantial difference when bot
plays as investee. Intuitively, this stems from the fact the the role of investee in the
trust game puts one at the mercy of the other player. Trust must be maintained
at a reasonable level in order to sustain cooperation, but a short-sighted investee
will be tempted to betray their opponent’s trust by keeping most, if not all, of the
money they receive. In the role of an investor, however, opponent’s trust does not
matter as much; what matters is investor’s own trust towards their opponent.

As a result, we have identified that a lookahead of two, which enables the agent
to consider their own transfer and opponent’s return, is sufficient to compute optimal
action in the role of investor. This allowed us to use more accurate meta-parameter
estimations (as detailed in Appendix C). On the other hand, when bot plays as
investee, we use a lookahead equal to four, as this was experimentally determined
as the largest possible value that does not compromise performance. However, it
comes at a trade-off of less accurate meta-parameter estimations.
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WebPPL Immaturity

Recall that WebPPL is a fairly new probabilistic programming language. Its
development kicked off in 2015, continued for the next three years and was mostly
abandoned in early 2019. While we have not discovered any major bugs, certain
aspects of the language, particularly error handling, leave a lot to be desired.

In the context of our web application, the main challenge was to run WebPPL
code from Javascript. We have gathered this was possible based on online discussions
that can be found in a webppl-dev Google group1. However, that feature is not doc-
umented and making it work necessitated studying the source code of the language.

This was made even more difficult by the fact that the primary method for
running WebPPL code, webppl.run, performs compilation of the provided code
prior to executing it. As it turns out, compiling WebPPL is remarkably inefficient;
we have observed compilation times as high as ten seconds, though the average was
roughly three seconds. In any case, time-sensitivity of our experiment demanded
that this compilation time is drastically reduced.

A natural idea is to pre-compile the code, preferably as part of server initialisation,
so that future runs can skip that step. Indeed, after further source code exploration,
we identified appropriate methods that allowed us to separate the compilation
and execution.

Worker Processes

When it is bot’s turn to select an action in the trust game, the browser of the
user playing the game queries the transfer amount by sending a request to our
server. Now, a naive server implementation would, upon receiving such a request,
make a call to a function (shipped as part of WebPPL library) that knows how
to run WebPPL code and collect the result once this code has finished executing.
The problem here is that, while the bot’s action is being computed, which as we
mentioned may take up to 30 seconds, the server is busy and cannot serve incoming
requests. This might cause problems on the client-side too, with the application
becoming unresponsive while the request is being processed.

As a result, Heroku places a hard, not configurable limit of 30 seconds on
processing time of a request. In any case, it is recommended to keep it well under
that limit, specifically under 500 ms. With that, all heavy computations that
may take longer than that are run separately as part of so-called worker processes.
This makes the whole operation of querying bot’s action more complex. Rather

1https://groups.google.com/g/webppl-dev

https://groups.google.com/g/webppl-dev
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than sending one request followed by receiving a response, the client now starts
by sending an initial request. Upon receiving that request, the server kicks off the
worker process and sends a response containing an identifier of that worker process
to the client. This allows the client to repeatedly (every half a second in our case)
query the server to check whether the worker process has finished computing bot’s
action. Until that is not the case, the server keeps sending a response indicating
the action has not been computed. Once it is the case however, server responds
with the computed action and the game can continue on the client side.

The way this is implemented on the server itself is with a queue. Every time
a request arrives that demands bot’s action to be computed, a job is created
and placed in a queue. Worker processes that are not busy constantly scan that
queue and, as soon a job is placed there, one of them will pick it up and start the
computation. However, if all worker processes are busy when a new job arrives in
the queue, that job must wait until a worker process becomes free (and possibly
until all the jobs that are in front of it in the queue are processed). It is therefore
important to choose the number of worker processes on the server appropriately,
reflecting the expected number of simultaneous users of the application.

Game Description Wording

Even though trust game is a fairly simple scenario, explaining it concisely turned
out to be challenging. It took many iterations of reviewing the game description
followed by hearing feedback from people to arrive at the final text. In the end,
we have opted for different descriptions depending on the role that the participant
was assigned to, as detailed in Appendix C.

Custom Caching

One of the most useful features of WebPPL is the caching operator. When applied
to a function, it memoises the return value every time the function is called, so
that subsequent calls with the same arguments can return immediately by looking
up the return value in the cache. Recall that our decision-making algorithm works
by traversing the decision tree and computing various things, such as beliefs or
utilities, at each node. Since many nodes are visited repeatedly, it is very useful
to have the values already computed for a given node cached, so that future visits
do not need to recompute those values.

This mechanism is particularly important when it comes to computing agent’s
belief, which is computed recursively and each recursive step, i.e., the belief update,
is computationally expensive. Now, the problem is that the cache is only preserved
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for a single execution of a WebPPL program. However, a basic property of our
multi-process server design is that every job may be completed by any worker
process. Any data passed between processes must be serialisable, so storing the
state of entire WebPPL program is highly impractical. As a result, every time
a worker process starts processing a new job, no state from previously computed
jobs for the same participant (which computed all actions of the bot up until this
point) is available; in particular, the cache is lost.

We have run performance tests and determined that recomputing beliefs every
time is costly, especially in the latter stages of the game. We have found that up
to 50% of execution time of a given job was being spent computing bot’s belief.
We have therefore implemented custom caching, whereby the WebPPL program
that computes bot’s action also returns the belief cache (every cached function has
a separate cache). We then process the cache to extract its selected entries and
store them in a local Redis database. With that, every time a worker picks up a
new job, it first retrieves the appropriate belief cache (identified by the ID of the
user who requested this job) and passes it to the WebPPL program.

7.3 Results

Before describing our findings, we briefly mention how we carried out our exper-
imental procedure in practice.

MTurk Task Setup Our aim was to obtain roughly a hundred data points, each
provided by a participant who passes the comprehension check and completes the
game. However, to test our web application and our procedure, we first ran a pilot
study with eleven subjects. It went well overall, although only six out of eleven
participants passed the comprehension check. This may have been partially due
to the fact that we omitted the Masters qualification requirement.

Our estimation was that, in the actual study, failure rate would be no higher
than 30%. We therefore set our HIT to accept up to 150 assignments. We also
allowed two hours for each subject to complete the task. Of course, this is much
more than the expected time of completion of our experiment. The reason for
allowing participants this fairly generous amount of time to complete the task has
to do with performance considerations. As detailed in Section 7.2.3, actions of the
bot are computed by so-called worker processes. As soon as the number of users
playing the game simultaneously is greater than the number of worker processes
started on the server, performance of the application may suffer. Server cost is
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proportional to the number of worker processes. Our goal therefore was to minimise
the number of simultaneous users at any time of the experiment.

Now, based on external advice, we had expected that the highest workload will
take place in the first few hours once the HIT is published. Apparently, many
MTurk workers run scripts that accept eligible assignments shortly after they are
published. We reasoned that if we allow each participant two hours for completion,
some will start the task as soon as they can, but others will do it twenty, forty
or ninety minutes after accepting the assignment.

We set the lifetime of the task to be two days (48 hours). We had expected
all available assignments to be completed within hours and regarded two days
as a safe upper limit.

Outcome We now describe what actually happened upon publishing our task
on MTurk. Accordingly with our expectations, there was a high level of activity
immediately afterwards. Twenty MTurk workers accepted the HIT within a minute
of its release; more than fifty completed the task in the first three hours of its
existence. However, to our surprise, activity reduced considerably with time and we
ended up with only 99 workers completing the task. Fortunately, success rate was
higher than anticipated; n=80 participants passed comprehension check and gave
us useful data. All the results presented below are based on those eighty subjects.

We find that the participants were predominantly middle-aged; half of them were
aged between 35 and 40 years old and a further 23 were at least 25 years old but
no older than 34 (see Figure 7.2a). More than half (48) were male (see Figure 7.2c).
Most subjects had a university degree; majority Bachelor’s (42) but there was one
with at least a PhD (see Figure 7.2b). As is usually the case for MTurk studies,
participants predominantly come from one of two countries, India or USA, the latter
being four times more frequent than the former (see Figure 7.2d). Finally, most
subjects reported limited (48) or fair (26) exposure to robotics (see Figure 7.3).

From the technical point of view, the experiment went well. One participant
reported an application error preventing them from finishing the game. However,
they were able to start again and complete the study upon refreshing the site.
We paid them an extra $1 as bonus for the time lost. Inspection of the code of
our application revealed that the error was caused by inappropriate handling of a
particular edge case in which a worker process fails to compute the bot’s action.

Recall that our aim was to keep bot’s actions’ computation time well below
thirty seconds. We cannot claim we achieved this goal fully, as there were four
instances where this limit was exceed. Not by much, however; the longest it took
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(a) Age (b) Education

(c) Gender (d) Nationality

Figure 7.2: Demographics of subjects (PNTS stands for “Prefer not to say”)

Figure 7.3: Exposure to robots of participants

the bot to compute its action was 35 seconds. On the plus side, in 99% of cases
computation time was kept under 30 seconds. Moreover, in 90% of cases it was
under 11 seconds and 50% of the time it was no more than 2 seconds.

With this preliminary information presented, we direct our attention to the
objectives of our experiment.
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7.3.1 Model Validation

We begin by analysing how behavioural predictions generated by our model fare
against baseline predictors detailed in Section 7.1.3.

The overall comparison, for which all data from all subjects (regardless of
treatment) were used, is depicted in Figure 7.4. Note that we summarise the
prediction errors with a box plot with all data points overlayed on top of it. For
every predictor, each yellow dot represents the mean squared error of behavioural
predictions generated by this predictor for a participant. Since the game always
consists of seven rounds, this MSE is an average of seven squared prediction errors
(one prediction per round). Each prediction takes the form of a fractional number.
Recall that probabilistic predictions, such as the ones generated by our model, are
reduced to a deterministic, fractional prediction by taking an expectation. While
this leads to some loss of information, this is the best single measure that unifies
all predictors that we have found.

Besides individual data points, which are overlaid and technically not part of
the box plot, our plots convey basic summary statistics of the data: each box
represents the interquartile range (IQR), i.e., it contains the middle 50% of MSEs
when they are ordered. The whiskers extend to the furthest point (both ways)
that is no further than 1.5 times the IQR distance (i.e., the length of the box)
from box edges. In other words, the whiskers show the minimum and maximum
values in the data set excluding any outliers. For example, the box plot for the
uniform predictor in Figure 7.4 has no outliers and, indeed, whiskers are located
at the minimal and maximal mean squared errors. Finally, two measures of central
tendency are shown: the median is represented by a red line across the box whereas
green triangles indicate means.

Now, returning to Figure 7.4, we can see that dang outperforms our model
in terms of median prediction error (Mdang = 1.58 compared to Mcsmg = 1.84 for
csmg) and very slightly on the mean too (µdang = 1.82 vs. µcsmg = 1.92). On
the other hand, we note somewhat smaller standard deviation of our predictor
(σcsmg = 1.42 vs. σdang = 1.44). We also observe that the highest MSE for dang is
10.54 compared to the maximum of 7.14 for our model. Other baseline predictors
performed significantly worse than dang; uniform is consistent (no outliers) but
not very accurate, while average and last gave similar results. All the medians,
means and standard deviations are summarised in Table 7.1.

We also perform the exact same analysis on certain subsets of our data. In
particular, we first restrict our attention to plays in which our bot used participants’
answers in the pre-game questionnaire to generate an informed prior (i.e., the
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Figure 7.4: All predictors compared on all data points. Each yellow dot represents the
MSE of seven predictions generated for some participant.

Table 7.1: Summary statistics (mean, median, standard deviation) of predictions
generated by all predictors on all data (N = 80)

µ M σ

csmg 1.92 1.84 1.42
dang 1.81 1.57 1.44

uniform 2.56 2.5 1.45
average 2.27 2.02 1.67

last 2.15 2 1.66
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Figure 7.5: All predictors compared on informed treatment (N = 42). Each yellow
dot represents the MSE of seven predictions generated for some participant.

Table 7.2: Summary statistics (mean, median, standard deviation) of predictions
generated by all predictors in informed treatment

µ M σ

csmg 1.79 1.2 1.71
dang 1.69 1.34 1.66

uniform 2.36 2.28 1.53
average 1.89 1.53 1.44

last 2.01 1.93 1.7

informed treatment). The box plot generated based on this subset of our data is
displayed in Figure 7.5, with summary statistics presented in Table 7.2.

Interestingly, all predictors show an improvement in the informed treatment
compared with all data, suggesting that, by chance, the behaviour of participants’
allocated to that treatment was more predictable. However, the improvement is most
pronounced for our model, particularly in terms of median prediction error. This
comes at a price of increased standard deviation though, as the figure clearly shows.
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Figure 7.6: All predictors compared on undisclosed treatment (N = 37). Each yellow
dot represents the MSE of seven predictions generated for some participant.

Table 7.3: Summary statistics (mean, median, standard deviation) of predictions
generated by all predictors in undisclosed treatment

µ M σ

csmg 1.75 1.54 1.32
dang 1.92 1.74 1.75

uniform 2.54 2.43 1.59
average 1.86 1.71 1.29

last 2.1 2 1.79

Another treatment we focus our attention on is undisclosed, characterised by
the fact that subjects were unaware of the number of rounds that would be played.
This is a standard measure taken (notably by Dang et al. [121]) to avoid participants
changing their behaviour in the last round. We therefore hypothesised predictions
would be better for this cohort. The results are displayed in Figure 7.6 and Table 7.3.

Indeed, four of five predictors improve under the undisclosed treatment
compared to all data, both in terms of means as well as medians of prediction
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Figure 7.7: All predictors compared on an intersection of undisclosed and informed
treatments (N = 19)

errors. However, dang scores worse on both measures; in fact, it is outperformed
by average under this treatment.

Finally, we consider a final, smallest subset of our data, formed as an intersection
of informed and undisclosed treatments. This subset can be characterised as
providing optimal conditions for our predictor to perform well – not only is a prior
over participants’ preferences and cognitive abilities available, but also subjects are
not tempted to act opportunistically at the end of the game.

Indeed, the box plot in Figure 7.7 and summary statistics in Table 7.4 demon-
strate the superiority of our predictor under these conditions, with average coming
in close second place, surprisingly again outperforming dang.

Overall, only csmg outperforms the three baseline predictors under all data
subsets and shows consistent improvement under treatments that should theoretically
favour it. However, due to relatively small sample size, no statistically significant
conclusions can be drawn regarding the superiority of csmg over dang or vice versa.
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Table 7.4: Summary statistics (mean, median, standard deviation) of predictions
generated by all predictors in the intersection of undisclosed and informed

µ M σ

csmg 1.47 1.14 1.58
dang 1.94 1.5 2.27

uniform 2.35 2.28 1.62
average 1.59 1.25 1.28

last 2.1 2 2.17

7.3.2 The Effect of Bot Parameters on Game Outcomes

The second major result of our experiment concerns the differences in game outcomes
depending on the “character” of the bot. Recall that we designated three different
“bot personalities” by varying goal coefficients: selfless characterised by a vector
〈.3, .7〉, neutral marked by goal coefficients 〈.5, .5〉 and greedy with 〈.8, .2〉.
Intuitively, the first element of the vector reflects bot’s relative attachment to
money, while the second one quantifies the relative importance of maintaining a
relationship with their human opponent.

The first set of results is displayed in Figure 7.8; again, we use box plots with
individual points overlaid to visualise the data. Recall from Section 7.1.2 that we
quantify game outcomes using two measures: (i) fairness, which captures relative
difference in earnings of both players (in this case, positive values indicate that the
human earned more, and vice versa), and (ii) total welfare, which describes the sum
of earnings of both players. Note that we use two different colours for the data points,
to distinguish plays where bot is an investor (in yellow) or an investee (in red).

Looking at fairness first (Figure 7.8a), a few interesting observations can be
made. First of all, means, medians and standard deviations are markedly different,
summarised in Table 7.5. The second remark worth making concerns the skewness of
the greedy data towards negative values, which shows that the greedy bot was quite
successful at maximising its profit. Worth noticing also is small standard deviation
in the selfless cohort and near perfect average fairness of neutral plays.

To investigate if the differences between group means are statistically significant,
we perform the Mann-Whitney U rank test. We use a non-parametric method
since group variances differ significantly and the normality of our data is doubtful
(as evidenced by Shapiro, D’Agostino and Kolmogorov-Smirnov normality tests),
particularly in the greedy cohort. We obtain p = 0.00157 when comparing
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(a) Fairness (b) Total welfare

Figure 7.8: How game outcomes depend on bot’s character (yellow points correspond
to plays in which bot is an investor, red points represent bot as an investee)

Table 7.5: Summary statistics (mean, median, standard deviation) of fairness depending
on bot’s character

µ M σ

selfless 0.18 0.16 0.1
neutral -0.02 -0.01 0.26
greedy -0.25 -0.22 0.46

selfless with neutral, p = 0.00327 when comparing selfless with greedy
and p = 0.0841 when comparing neutral with greedy. This suggests high
significance in the first two comparisons, even with Bonferroni correction applied,
which is needed as we perform three comparisons. In particular, since in both
cases p < 0.0033 = 0.01

3 , Bonferroni inequality yields that the experimentwise
Type I error rate αE is at most 0.01.

Looking at total welfare next (Figure 7.8b and Table 7.6), measures of central
tendency again differ manifestly. Mann-Whitney U rank test this time shows

Table 7.6: Summary statistics (mean, median, standard deviation) of total welfare
depending on bot’s character

µ M σ

selfless 48 49.5 5.63
neutral 44.4 45.5 8.09
greedy 39.1 37.5 7.41
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very high significance in the selfless vs greedy comparison, with p = 0.00008,
meaning that the likelihood of committing Type I error is less than 0.1%. On the
other hand, the two other comparisons yield much higher p values; p = 0.109 for
selfless vs neutral and p = 0.0227 for greedy vs neutral.

Apart from game outcomes, which are highly objective, we also investigate how
participants’ subjective impressions are affected by various bot types. Recall that
after the game each participant answers three questions. The first of those asks
the subject to judge how human the bot’s behaviour felt on a 5-point Likert scale.
The other two questions concern change in participant’s trust – to the bot that
they just faced and to robots in general, respectively.

The answers to the first question are summarised in a bar plot of Figure 7.9. Note
that, due to difference in group sizes, we use relative, rather than absolute, measures
of frequencies of answers. Therefore, the units of the y axis are percentages and
each bar should be interpreted as the percentage of all participants in a given group
(selfless, neutral or greedy) that selected a given answer. The differences
between groups are not significant, but it is worth noting that neutral was judged
the least human by the participants.

The distribution of the answers to the other two questions is depicted in
Figure 7.10. We also visualise the correlation between the two responses using a
confusion matrix, displayed in Figure 7.11. Each of the nine squares of the grid
represents a combination of answers and the value inside the square is the number
of times such combination was observed. For example, the square marked with a
nine in the left-bottom corner counts cases where a participant reported a decrease
in trust towards the bot as well as towards robots generally. The bottom left to
top right diagonal contains the combinations where both answers match.

7.3.3 Prior Effect

The final major result that we present investigates how the quality of predictions
generated by our model depends on whether an informed prior is utilised. We have
already seen in Section 7.3.1 that our predictor performs better when that is the case.
Presently, we make those observations more rigorous by focusing on a comparison of
the prediction error of csmg between the two treatments, informed and uniform.

The results are plotted in Figure 7.12. We note the presence of more outliers
in the informed group, and the outliers present are more extreme – we attribute
this to chance (if a participant behaves unexpectedly then even a good prior will
generally not make much of a difference). Despite that, mean prediction error
is smaller for informed – µinformed = 1.79 vs µuniform = 2.07. However, the
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Figure 7.9: Distribution of answers to the question “Do you agree bot played like a
human?”, categorised by bot character

difference is much more pronounced if we consider the medians – Minformed = 1.2 vs
Muniform = 1.86. Even more remarkable is the fact that the smallest mean squared
error recorded for uniform is 0.43, which is greater than the 19th percentile (0.40)
in the informed cohort. In other words, a fifth of predictions generated using
the informed prior are better than the best prediction generated using the uniform
prior. In fact, 20th percentile for uniform (1.43) is significantly larger than the
median for informed. Indeed, Mann-Whitney U rank test reveals a significant
difference between the two cohorts (p = 0.0397), which is even more impressive
considering relatively small sample sizes (N = 42 for the uniform group).

Of course, we have seen that predictions of our model are significantly better for
the undisclosed cohort. To eliminate the possibility of confounding our result, we
performed the same analysis restricted to plays in which participants did not know
the game’s horizon. The results are depicted in Figure 7.13. Interestingly, nearly all
outliers in the informed group disappear, bringing the mean down (µinformed =
1.47) while the median remains low (Minformed = 1.14). Improvement in the
uniform cohort is negligible – µuniform = 2.05, Muniform = 1.85. As a result, despite



7. Human Experiment 171

(a) Distribution of answers to the question
“How did your trust to the bot change af-
ter playing the game?”, categorised by bot
character

(b) Distribution of answers to the question
“How did your trust to robots in general
change after playing the game?”, categorised
by bot character

Figure 7.10: Answer distributions for trust-related questions

Figure 7.11: Confusion matrix showing how change of trust towards the bot (y axis)
translates into trust change towards robots generally (x axis). Values −1, 0 and 1 represent
participant reporting a decrease, no change and an increase of trust, respectively
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Figure 7.12: Prediction errors of csmg predictor categorised by type of prior used; all
data points

Figure 7.13: Prediction errors of csmg predictor categorised by type of prior used;
restricted to undisclosed cohort

reduced sample size, the difference between group means became more significant
by restricting data to undisclosed – Mann-Whitney U rank test gives p = 0.0275.

This confirms our hypothesis that an accurate prior can improve the quality of
behavioural predictions and falsifies a statement by Dang et al. [121], who claimed
that “the only reliable available information for predicting users behavior is their
behavior during previous transactions”.
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7.3.4 Minor Results

Having described the main results of our experiment, we now briefly describe some
findings that are not directly related to our framework, but provide insights into
human nature and our relationship to robots.

Human Opportunism We begin by resolving the hypothesis claiming that telling
subjects how many rounds the game will last alters their behaviour in the last round
of the game. To investigate it, we focus on plays where the participant played as
investee and where the bot invested a non-zero amount in the last round (which
happened in a little over half of the cases). Also, rather than considering the absolute
number of units returned, we focus on the proportion of the amount invested by the
bot that was returned by the subject. Recalling that every investment is doubled in
transit, such a proportion falls in the range between 0 and 2. Figure 7.14 depicts the
frequencies of various return proportions, split into four buckets to aid readability.
Despite a very small sample size (N = 20 plays satisfy the condition mentioned
above), the trend is clear, with the vast majority of humans who knew how many
rounds will be played deciding to defect in the last round. This is confirmed by
the Mann-Whitney U rank test, which suggests the difference in means between
groups is significant (p = 0.0304), thereby confirming our hypothesis.

11-20 Money Request Game Since we used the 11-20 Money Request Game
to estimate lookaheads of participants, we report the answers we collected and
compare them to what the authors of the game reported as part of the original
study. This comparison is depicted in Figure 7.15.

Effectiveness of Questionnaire Time Controls Recall that we have imple-
mented a time control mechanism whose goal was to force participants to carefully
choose their answers to questions in the pre-game questionnaire. This mechanism
was described in some detail in Section 7.1.5 but the gist of it is as follows: the
questions, rather than appearing all at once, appear one by one with a time
delay that differs for each question, reflecting its difficulty (and thereby expected
time needed to answer it).

To evaluate the effectiveness of this measure, we have recorded time series of
subjects’ interactions with the questionnaire. Each time series consists of a sequence
of timestamped events. The first event in the sequence is always the start event,
which is triggered when the participant starts the questionnaire after reading (or
not) the introduction. After that, every time the subject selects an answer to
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Figure 7.14: Number of subjects returning a given proportion of money received in
the last round of the game, categorised by whether game horizon is disclosed to the
participant

Figure 7.15: Distribution of answers to the 11-20 Money Request Game observed as
part of our study (in blue) with a backdrop of the distribution expected based on results
from Arad et al. [122] (diagonal hatch)
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Table 7.7: Time allocations (in seconds) for each question

Q1 Q2 Q3 Q4 Q5 Q6
25 15 20 25 10 10

a question, or changes previously selected answer, a new (timestamped) event,
named after that question (e.g., moneyRequest or lottery1), is added to the time
series. Note that, if a participant interacts repeatedly with one question without
interacting with other questions in between, we save this as one event timestamped
at the last interaction. The last event is always submit, with a timestamp that
represents the total time spent answering the questionnaire.

The way we analyse this time series data is a combination of quantitative and
qualitative methods. As part of the latter, consider Figure 7.16, which we will
use to illustrate how we evaluate the effectiveness of our mechanism. We will
refer to individual plots from that Figure as (r, c) where 1 ≤ r ≤ 6 is the row
number and 1 ≤ c ≤ 4 identifies the column. Table 7.7 presents time allocations for
each question, defined as the time that elapses between this question being first
shown and the subsequent question being displayed (or, for Q6 which is the last
question, it is the time that elapses between displaying the question and activating
the submit button). Note that the time allocation is designed to act only as the
lower bound on the time subject spends contemplating the answer – an answer
may be selected or changed even once this time elapses.

Now, what we would like to see in plots from Figure 7.16 are intervals whose
lengths reflect the allocations from Table 7.7 with at least ten seconds spent reading
the introduction. For example, plot (5, 2) is a great example of a fairly efficient
subject with exemplary time allocation, (4, 1) suggests another participant who paid
attention and gave some thought to the questions, albeit somewhat less efficiently.
Other examples are (2, 3), (6, 1), (6, 2).

What we do not want to see are less uniform timelines, particularly those where
a significant proportion of time is spent on Q1. This suggests a participant who
starts the questionnaire, goes off to do something else while running down the
clock and more questions to appear, and then comes back, answers the questions
quickly and proceeds to the game. This is made even worse if combined with
negligible reading time. Fortunately, no plot in Figure 7.16 fits this bill perfectly,
but (1, 3), (3, 3) and (5, 4) are suspicious.
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Figure 7.16: Chronology of completing pre-game questionnaire for a random sample of
twenty-four participants
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(a) Total questionnaire completion times of
all participants with reading time excluded;
dotted line marks the theoretical minimal
completion time

(b) Proportion of time participant a takes
to answer the first question relative to total
questionnaire completion time (reading time
excluded); dotted line indicates expected
proportion

Figure 7.17: Quantifying questionnaire completion times

This qualitative analysis, as part of which we studied questionnaire timelines of
all participants, suggests that our time control was fairly effective. This conclusion
is further scrutinised using data. In particular, Figure 7.17a shows the distribution
of total times spent by subjects completing pre-game questionnaire (where time
reading the introduction is excluded). The dotted line marks 105 seconds, which is
the sum of time allocations for each question and the theoretical minimal completion
time. We report the median completion time of 113 seconds and mean completion
time of 140 seconds. Therefore, a sizeable proportion of participants used more
time than the bare minimum.

Next, Figure 7.17b displays the ratios of time a participant takes before answering
the first question to the total questionnaire completion time (reading time excluded
again). The dotted line indicates the expected ratio, based on time allocations
from Table 7.7. Indeed, even though the deviation is significant (σ = 0.12), both
the median (M = 0.228) and the mean (µ = 0.252) are highly consistent with
the expectation.

7.4 Discussion

We now proceed with a discussion of the results just presented. We primarily focus
on interpreting the major results of our study but we briefly mention some of
the minor findings too.

Evaluating Predictors We begin by noting an important difference between
the two main contenders: csmg – the predictor based on our model and dang
– a trust-based predictor specially designed for forecasting behaviour in repeated
trust game. Predictions generated by csmg are probabilistic, offering not just
the forecast but also an indication of confidence in its accuracy. Moreover, the
predictions are explainable by the model that underlies them. That same framework
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can be applied to many other scenarios, such as the ones covered in Section 6.2,
and generate behavioural predictions in those novel settings.

On the other hand, dang is based on intricate mathematical formulations and
recurrence relations designed to capture certain behavioural patterns hypothesised
to occur in humans. The method does not generalise outside of the trust game.
Moreover, the predictions generated by dang are based on a real number between
0 and 1 which represents trustworthiness of an agent. The expected transfer is
computed as a product of the maximal possible transfer and this trustworthiness
value, most commonly resulting in a fractional number. In this particular context,
such a prediction is fairly reasonable and, most importantly, its error can easily be
computed. However, one may also argue that a deterministic behavioural prediction
should be limited to choosing a single action from those available to an agent.

In any case, it is not our role to arbitrate on such matters. However, in
order to quantitatively compare the two predictors, we had to settle on a single
representation. To enable fair comparison, we decided to conform our predictor
to the format of dang, thereby losing all the extra information that probabilistic
predictions carry. Admittedly, it is also much more straightforward to convert
our probabilistic prediction to a deterministic one (as long as fractional forecasts
are allowed) than vice versa.

Keeping all this in mind, the fact that our predictor comes so close to dang when
evaluated on all the data points should be considered a success. However, as shown
by Figure 7.14, human behaviour differs greatly between the undisclosed and
disclosed treatments (the figure is limited to human behaviour as investee, but their
behaviour in the role of investor is affected too). Now, we could have programmed
our model and the bot so that it knows the game horizon in the disclosed condition,
which would have resulted in even better predictions. However, we decided to instead
keep the bot naive so that it does not alter its behaviour towards the end, enabling
us to properly test our hypothesis regarding human opportunism. As a result, it
is to be expected that, under the disclosed horizon, csmg predictions will be less
accurate, particularly in the latter rounds of the game. Indeed, it should come as
no surprise that if we consider ten participants for whom csmg predictor performed
the worst, we find that seven cases belong to the disclosed treatment.

Restricting our analysis to undisclosed treatment effectively gets rid of cases
when the bot is under-informed. However, if we combine this with a restriction
to the informed treatment, we are then focusing on cases when the bot is over-
informed, where the extra information is used to improve the accuracy of bot’s prior
over the participant. Informed prior gives our model an edge over its competitors,
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Table 7.8: An observed play, in which participant played as an investor. Each column
represents one round of the game, consisting of a subject’s investment in the first row,
followed by a bot’s return in the second row.

R1 R2 R3 R4 R5 R6 R7
subject 4 4 4 4 3 4 2
bot 0 0 0 0 0 0 0

which allows it to produce extremely accurate predictions in some cases. In fact,
out of ten plays on which our predictor performed best, nine were under informed
prior. If we zoom out and consider top twenty plays, fifteen of them belong
to the informed treatment.

Another reason why our predictor performs so well in the intersection of undis-
closed and informed treatments is the complementarity of the improvements
that both restrictions bring about. As argued above, restricting to undisclosed
means participants’ behaviour is more predictable in the latter stages of the game.
On the other hand, informed prior improves predictions in the initial rounds where
no, or little, behavioural data is available.

We finish our discussion of predictors by taking a closer look at a particular
play that illustrates well the difference between csmg and dang. In fact, the play
under consideration is the one where our predictor fared worst (MSEcsmg = 7.14),
but dang did quite well (MSEdang = 1.35). The participant played in the role of
an investor and they knew how many rounds the game would last for. Table 7.8
displays the sequence of actions that occurred.

Now, our model keeps predicting that the next action of the participant will
be a low transfer. Initially, this stems from a prior that was inaccurate in this
case, as it assumed low trust of the human. As the game progresses, the prediction
does not change significantly, since it is mostly driven by the assumption that
uncooperative behaviour of the bot must have decreased human’s trust further. In
this case, resilience (or irrationality) of the human was stronger than anticipated
by the bot. On the other hand, dang’s predictions are highly accurate in this
case as they are generated solely based on past behaviour of the human (i.e., bot’s
behaviour is not taken into account).
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Figure 7.18: Comparison of total earnings in the game by role

Bot Character When it comes to the results comparing game outcomes between
various bot types, we have learned that goal coefficients indeed influence game
outcomes to a great extent. Considering fairness first, the difference in variances
between bot types is quite remarkable. Selfless bot was designed with generosity
in mind, but upon encountering repeated uncooperative human behaviour, it
eventually loses its patience and stops being generous. As a result, games involving
a selfless bot are usually one of two types: (i) both players being nice to each
other, which leads to high investments and high total welfare, and (ii) human
being noncooperative, which makes the bot noncooperative after a few rounds and
results in lower social welfare. Interestingly, case (i) is much more common when
human plays as investor while case (ii) occurs more often with the bot investing
and the human trying to outsmart it. Anyhow, both cases end up producing games
where human earns more, but not much more.

Neutral bot cares a little more about the money and a little less about human’s
trust, compared to the selfless bot. As a result, it loses its patience faster and
punishes noncooperative participants earlier and more severely, resulting in a number
of games in which the bot out-earns the human. These games are also characterised
by low total welfare, explaining its higher variation in this cohort. This is partly
because the bot does not give second chances – once it stops trusting the human,
it does not give him or her an opportunity to regain its trust.
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That brings us to the final bot type, the greedy one, which stretches the range
of outcomes further. Greedy bot is primarily concerned with maximising profit
and achieves this goal remarkably well. This is true despite a fairly unfavourable
split of roles – out of twenty-eight plays that feature the greedy bot, only nine
have it play as an investor. However, as Figure 7.18 shows, investors generally
earn more, reflecting their commanding role in the game (in fact, investee is at
investor’s mercy to earn anything at all).

The greedy bot approaches the game as follows: as an investor, it is very careful
with its money, investing high only if it trusts the human a lot. This produces a
median earning of twenty-seven units, compared to the human’s two. The difference
in means is smaller but still very significant: µbot = 28.6 vs. µhuman = 6.6. But
perhaps more remarkable are the results when the bot plays as investee. In that
role, due to its short-sightedness (a consequence of performance limitations) the
bot plays quite opportunistically, particularly when faced with high investments.
This turned out to be a successful strategy as many humans, perhaps in disbelief of
such uncooperative behaviour of the bot, kept investing the money despite receiving
no returns. In one instance, the bot earned a whopping fifty units, far exceeding
the maximum earning of any human (which was thirty-two units). In fact, on five
occasions, the bot earned more than any human has. This can be linked to studies
pointing out humans’ tendency to overtrust automation [75, 123].

Overall, these results show that our model is capable of capturing a variety
of personalities that result in a range of behaviours with simple manipulations of
goal coefficients. We have observed that being generous in trust game pays off in
the long term, but only if both players act that way. It is also quite remarkable
that out of forty-three participants who played the game as investors, only one
invested no units in the first round. While this may partly be explained by human
curiosity and the desire to maximise profits, it also shows that humans generally
trust, and often overtrust, robots.

We also briefly comment on the results from the post-game questionnaire.
First of all, we believe that behavioural data is more reliable and should be
taken more seriously than the post-game questionnaire. Nevertheless, certain
interesting conclusions may be drawn from participants’ answers. Regarding
perceived “humanness” of the bot, the results are not significant, but suggest
that the behaviour of bots with more extreme personality is regarded to be more
human. We hypothesise that many participants may not expect machines to
display true autonomy; instead, they anticipate the bot to be driven by a simple
algorithm, leading to consistent, repetitive behaviour. Among the three bot types,
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neutral fits that bill best. What is perhaps missing from our analysis is an
attempt to determine whether subjects expect the bot to act human-like. Do
they view robots as partners or servants?

Finally, we discuss subjects’ self-reported trust changes following game play.
The answer distributions from Figure 7.10 are hardly surprising – a majority of
subjects lose trust towards non-cooperative greedy bot and maintain their trust
in other cases. However, given that fairness differs significantly between selfless
and neutral, the fact that there is very little discrepancy between both groups in
terms of trust changes is unexpected. It may be attributed to chance or inaccurate
reporting, but it could also suggest that gaining human’s trust is quite difficult.

A more encouraging conclusion can be drawn from the analysis of the correlation
between subjects’ reported change of trust towards the bot and their shift in trust
towards robots generally, illustrated in Figure 7.11. Note that, if the two answers
were perfectly correlated, we would expect the bottom-left to top-right diagonal of
the confusion matrix to contain all the values. Even though that is not the case, the
correlation is still quite strong, with 67.5% of values falling on the main diagonal.
What is interesting, however, are the cases when the two answers do not match. In
particular, we note the imbalance in the distribution of these mismatching answers –
a vast majority of them corresponds to the case when participant’s trust towards the
bot decreases, but their trust towards robots remains unchanged (represented by a
square marked “22”). In contrast, when participant’s trust towards the bot increases,
it predominantly translates into an increase in general trust too. Hence, participants
seem to display a strong propensity to trust robots; they are willing to generalise
positive experiences and tend to treat disappointing outcomes as isolated events.

Minor Results Among the minor results of the study, arguably the most in-
teresting one relates to human opportunism. It should perhaps not come as a
surprise that, by and large, participants have chosen to betray the bot’s trust to
earn a few more dimes. Now, while this suggests that humans do not treat robots
as equal partners, we believe caution is due before drawing any conclusions. A
crucial aspect of our experimental setting is that it is clear from the onset that
this is a one-off interaction. Hence, participants have no incentive to maintain a
long-term relationship with the bot. This is a fundamental difference between our
experiment and possible real-life human-robot partnerships such as autonomous
driving, care of elderly, home assistance or search and rescue.

Still, our finding could prove useful in the design of customer-facing robots
that are not owned by a single individual, but provide a service to the general
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public. It seems such robots could be subject to more abuse than a human would
be when performing the same function. Their design should therefore reflect it,
as well as try to mitigate it.

As for evaluation of our time control mechanism, the results should be taken
with a grain of salt, reflecting the number of assumptions and simplifications
we have made. However, at the very least, the method appears promising and
further experimentation could bring more definitive answers. It would certainly be
interesting to see how questionnaire completion times would differ in the absence
of any time controls. In retrospect, we could have included such an analysis in
our study, by randomly including the time controls for only half of participants.
Unfortunately, some good ideas only come to mind when it is too late.

7.5 Conclusions

We conclude by including selected examples of feedback that subjects left at the
end of the study (original spelling).

“One of it’s kind excellent survey, changed my perception towards bot.”

“I somewhat didn’t expect the bot to learn from my behavior. Even
if I was initially greedy, I rather expected the bot to give me a second
chance to return some units in a later round.”

“The robot seemed inconsistent regarding how much it returned. It
was particularly stingy when I invested 4 units, and it returned 0, but
seemed to act somewhat fairly for all other investment amounts.”

“Its really a nice and unique survey about playing a simple investment
game with an artificial agent. Thank you.”

“Already don’t trust, confirmation of my feelings.”

“This bot was a jerk. I couldn’t believe they returned 0 units to me on
most of the rounds. It makes me feel angry, which is irrational since it
is a bot and not a person.”

“first 3 rounds i had not given any units so after that bot also didn’t
give me any units. I think this is called AI. Where they can grasp other
person behavior very easily.”

“Despite being disappointed by the bot’s investments in the last few
rounds, I liked playing this game. Thank you :)”

Other comments left by participants can be found in Appendix C. Overall, the
feedback was for the most part positive, with many subjects finding the game
interesting and stimulating, and theorising about how the bot is implemented.
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Conclusions and Future Work

Our original goal for this research was formalising trust and providing a way to
reason about it. First, we proposed ASMAS, a formal framework that extends
partially observable stochastic games with so-called cognitive dimension, which
represents mental reasoning of agents. Reasoning about trust is then possible
thanks to a specially designed logical language, whose formulas are interpreted
on instances of ASMAS.

However, scrutiny of that formalism reveals its inadequacy for modelling human-
robot interactions and identifies inconsistencies in proposed trust definitions. We
rectify these issues with an updated framework, CSMG; in order to define trust
truthfully, we take a step back and consider what motivates humans and how
they make decisions. CSMG integrates several existing behavioural models and
formulates a novel utility function that captures agents’ emotions. In this setting,
we put forward a formal definition of trust that exhibits certain theoretically
desired properties.

We implement our model in a probabilistic programming language called
WebPPL and use the developed tool to analyse a number of case studies. Moreover,
we designed and ran a human experiment in which participants play the trust
game against a bot run by our model. We have shown that behavioural predictions
generated by our framework are no worse than those from a predictor designed
specifically for that game, and significantly outperform baseline methods.

We view our work as a proof of concept, showing that there is a place for reasoning
about emotions in software deployed to autonomous robots. The most immediate
application of our tool is envisaged in home-assistive and other humanoid robots.

184
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They will need to interact with people continuously, for which an understanding of
our emotions and motivations will be vital. For that application to materialise, our
model will likely need to be ported to another programming language – a task we
hope will be facilitated by the fact that the existing implementation is probabilistic.
Over a longer horizon, the framework could fuel other forms of automation, such as
self-driving cars, allowing detection of too high or too low levels of trust.

Weaknesses Admittedly, some aspects of our work leave space for improvement.
For example, the universality of our approach may not be evident due to the relatively
small number of case studies presented. This is because of time constraints; we
have prioritised other elements of our work, such as the human experiment, which
left no time to develop more case studies.

On a related note, we wish we had been able to exhaustively model other mental
states the way we expressed trust. As this document shows, a lot of effort went
into our formulation of trust and its dynamics model. It is also to be expected
that not all emotions will admit an elegant definition like trust did, as we designed
our framework with trust in mind. However, we note that not all mental states
must be modelled from scratch as we did for trust. Probabilistic affective models
should be utilised whenever available; they could serve as the definition of a given
emotion, while the dynamics model could be learned from data, in a similar fashion
to how Chen et al. [38] do it.

We also remark upon the assumed structure of the utility function. Assigning
numerical values to all human motivations, including emotional ones, is disputable.
But we believe settling on such a common representation is the only way to compare
things like earning $100 and the guilt experienced for betraying a friend’s trust
(that might have enabled earning of the $100). Differing ranges of physical and
mental rewards are troubling, but the resulting inconvenience is partly offset by
appropriately using the reward utility functions and learning of goal coefficients. It
is also important to keep in mind that we do not postulate that all those numbers
(utilities) representing various motivations actually arise when average human makes
decisions. Instead, the utility function simply reflects the preferences of an agent.
Crucially, our model learns the utility function from agents’ behaviour, meaning
the accuracy of our representation improves as more data becomes available.

A discussion of deficiencies of our work would not be complete without mentioning
the suboptimal performance of our tool. This is partly due to the low efficiency of
the implementation language, WebPPL. A more modern language optimised for
performance could be used instead, Pyro being one candidate. However, the other
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avenue for improvement is in the algorithms that operate our tool. The main source
of complexity is the decision tree traversal that agents perform when computing
their actions. Its depth is controlled by the lookahead parameter of an agent, which
is uniform among all branches of the tree. However, there are reasons to think that
humans are more discriminative in their exploration of the decision tree, discarding
some parts of it altogether without deep consideration. Encoding heuristics of this
kind could bring a significant improvement to the tool’s efficiency and enable us
to consider larger lookaheads and wider action ranges for agents.

Future Work Addressing some of the issues mentioned above provides several
directions for future work. However, there are a few more avenues for further
research which deserve a note. The most obvious one, and perhaps the most difficult
too, is to add support for concurrent games. The problem is that sequentiality
is ingrained into the decision-making process we have formulated. When agents
are allowed to take actions simultaneously, an alternative approach, perhaps based
on equilibrium analysis, is needed.

A more conceptually straightforward extension of our framework has to do with
the inference mechanism of mental rewards of others. Recall that, currently, agents
start with an estimation of their opponents’ mental states and update it according
to an appropriate dynamics function. However, in reality, another mechanism is at
play that allows an agent to improve their estimation – the evidential inference of
deducing a value of other’s mental state based on their behaviour. This difference
is best illustrated using the trust game example. We have assumed that, upon
Alice’s action, her estimation of Bob’s trust is updated and vice versa. However,
consider Alice’s action of investing (or not). Intuitively, the amount she chooses
can be assumed to reflect the amount of trust she places in Bob. Therefore, based
on her action, Bob should be able to infer how much she trusts him. This is not
the same mechanism as trust estimation update that follows one’s own action.

Finally, we remark that our focus in this work has been on the core, dispositional
element of trust that most other authors have ignored. However, integrating a
competence model would make the framework more robust. Fortunately, this need
not require much effort, as we could use any of the models proposed by the robotics
community, such as the task-specific trust model due to Soh et al. [39].
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A
User Guide

Our tool is developed as a WebPPL package, in the same way as standard packages
like webppl-json1, webppl-csv2 or a more closely-related webppl-agents3. It is
called webppl-cognitive-agents4.

Prerequisites Being a WebPPL package, webppl-cognitive-agents needs a
working installation of WebPPL. This, in turn, requires presence of Node.js – a
JavaScript runtime. To install both, follow instructions from WebPPL documenta-
tion5.

Installation WithWebPPL up and running, webppl-cognitive-agents package
can be installed in a standard way:

> npm install webppl-cognitive-agents

Installation can be verified by executing

> webppl test/installation.wppl --require .

in the top-level directory of the downloaded package.
1Available at https://github.com/stuhlmueller/webppl-json; last accessed: 01/02/2022
2Available at https://github.com/mhtess/webppl-csv; last accessed: 01/02/2022
3Available at https://github.com/agentmodels/webppl-agents; last accessed: 01/02/2022
4Available at https://github.com/maciekolejnik/webppl-cognitive-agents; last ac-

cessed: 01/02/2022
5Available at https://webppl.readthedocs.io/en/master/installation.html; last ac-

cessed: 07/02/2022
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Usage To use the package in your code, require it on the command line like this:

> webppl <your-code> --require <path to webppl-cognitive-agents>

in the same way as you would use any other WebPPL package.
We refer the reader to the README file in the top-level directory of the down-

loaded package for instructions on how to construct models, run simulations and
perform inferences.



B
Case Studies Experiments

In this chapter, we provide instructions for replicating the experiments we described
in Section 6.2. Note that a working installation of WebPPL along with the
webppl-cognitive-agents package is required to proceed. Appendix A outlines
how to set that up.

B.1 Trust Game

We begin with the trust game experiments. Recall that we tested three hypotheses,
H1, H2 and H3. Below we describe how we did it. Note that all the experiments
we run are defined inside the examples/trustgame/src/simulations.wppl file
within the webppl-cognitive-agents package.

H1 To verify the first hypothesis, execute

> webppl examples/trustgame/src/simulations.wppl --require .
--require examples/trustgame -- --experiment 0 --scenario 0

which runs the first scenario of the first experiment. By default, it produces as
output all the action distributions according to which agents select their actions.
This can be surpressed by appending --log 1 to the above command, in which
case only the trace is printed.

We obtained the following trace when we run that command: [4, 5, 4, 4, 4, 4, 4, 4, 4, 4].
However, [4, 4, 4, 4, 4, 4, 4, 4, 4, 4] is also a likely outcome since Bob selects his first
action according to (roughly) the following distribution: 〈4→ 0.25, 5→ 0.75〉.
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Table B.1: Randomly generated parameters of agents in our run of the
varyTrustExperiment

Alice Bob
Goal coeffs Trust estimation Goal coeffs Trust estimation

1 [0.99, 0.01] 0.35 [0.17, 0.83] 0.79
2 [0.99, 0.01] 0.92 [0.74, 0.26] 0.43
3 [0.2, 0.8] 0.96 [0.78, 0.22] 0.57
4 [0.74, 0.26] 0.29 [0.94, 0.06] 0.66
5 [0.32, 0.68] 0.15 [0.13, 0.87] 0.57
6 [0.13, 0.87] 0.96 [0.02, 0.98] 0.68
7 [0.19, 0.81] 0.46 [0.65, 0.35] 0.46
8 [0.82, 0.18] 0.45 [0.58, 0.42] 0.52
9 [0.76, 0.24] 0.05 [0.29, 0.71] 0.49
10 [0.41, 0.59] 0.12 [0.87, 0.13] 0.73
11 [0.29, 0.71] 0.35 [0.3, 0.7] 0.86
12 [0.47, 0.53] 0.86 [0.36, 0.64] 0.51
13 [0.72, 0.28] 0.15 [0.22, 0.78] 0.68
14 [0.57, 0.43] 0.54 [0.57, 0.43] 0.2
15 [0.37, 0.63] 0.83 [0.9, 0.1] 0.02
16 [0.35, 0.65] 0.86 [0.9, 0.1] 0.83
17 [0.59, 0.41] 0.13 [0.79, 0.21] 0.6
18 [0.57, 0.43] 0.15 [0.95, 0.05] 0.96
19 [0.09, 0.91] 0.93 [0.27, 0.73] 0.28
20 [0.6, 0.4] 0.8 [0.14, 0.86] 0.6

H2 Verifying the second hypothesis is a more involved process, captured by a
custom experiment called varyTrustExperiment. To run it, execute

> webppl examples/trustgame/src/simulations.wppl --require .
--require examples/trustgame -- --experiment 1 --log 1 --reps 20

This will print all the traces, for each run of each scenario of each experiment. Note
that parameters of agents are selected randomly in this experiment, which means
replicating the exact results is not trivial. However, Table B.1 lists the parameters
that were selected for the run whose results we report in Figure 6.2.

H3 Finally, the third hypothesis concerns conman behaviour. To model this
type of agent in the framework, certain special steps have to be taken, which
can be consulted by inspecting conmanCognitiveExperiment in the simulations
file. To run the experiment:
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> webppl examples/trustgame/src/simulations.wppl --require . --require
examples/trustgame -- --experiment 3 --log 1

By default, it simulates three rounds of the trust game between a standard cognitive
agent and a con man twenty times. The number of repetitions may be changed
to n by appending --reps n to the above command. Note that, due to high
lookahead of Bob, the simulations are expected to run for a considerable amount
of time (up to an hour).

The trace of each execution is printed to the user and must be inspected manually
to interpret the results. The traces will likely vary significantly, reflecting a wide
variety of Alice’s personalities and beliefs. The experiment calculates average
earnings of both players, which are expected to be somewhat higher for Bob.

B.2 Bravery Game

Our analysis of the bravery game consists of two experiments, specified programati-
cally in the file examples/bravery/src/simulations.wppl as equilibriumExperiment
and varyTrustExperiment.

The first of these, equilibriumExperiment, sets goal coefficients of agents to
mimic their utility function given in the original model as a psychological game [52].
Beliefs of players are varied and, for each setting, twenty steps of the bravery
game are simulated to see if an equilibrium-like pattern of behaviour arises. To
run the experiment, execute

> webppl examples/bravery/src/simulations.wppl --require .
--require examples/bravery -- --experiment 1 --log 1

The result will be in the form of three traces (for different values of initial beliefs) –
these have to be inspected manually. The paper makes a claim that an equilibrium
is reached regardless of initial belief, which will be confirmed if the traces are
dominated by bold actions from some point onwards.

The second experiment studies how player 1’s lookahead affects the total reward
accumulated by each player in the game. To run it, execute:

> webppl examples/bravery/src/simulations.wppl --require .
--require examples/bravery -- --experiment 2 --runs 5 --log 1

This prints total rewards of players accumulated over 10 rounds for three different
values of lookahead (1,3,5), averaged over five runs. The results should match
the values in Table 6.2.



B. Case Studies Experiments 193

B.3 Tipping

Tipping experiments differ from the above in that they involve inference from data.
This makes running the experiments a little more cumbersome, despite our best
efforts to simplify the process by providing custom scripts.

1 % this file contains a (made up) record of tips given after receiving
2 % given quality of service
3 % the tips are medium, characterised by tipping norm of roughly 10-15
4 % the behaviour is not fully consistent as the agent gives tips of
5 % various sizes depending on their mood etc
6

7 (0,ben);(1,abi)
8

9 10;4;4
10

11 <start>
12 % agents
13 0; 1
14 % rounds
15 normal;15
16 bad;0
17 good;25
18 good;20
19 normal;10
20 bad;5
21 bad;10
22 good;20
23 normal;20
24 normal;10
25 <end>

Listing 12: File mediumTips.csv from the tipping case study

Inferences from Synthetic Data The first experiment is the easier of the two,
as it involves inference from three batches of synthetic data, each characterised by
low, medium or high tips. The data files are located in the examples/tipping/data
directory. Listing 12 gives an example of one such file; for the others, we refer the
reader to the code base. A script that automates inference from all three batches
and reports results to a text file is called inferFromSyntheticData and located
in the examples/tipping directory. It is executed as follows:

> bash examples/tipping/inferFromSyntheticData syntheticInfer.txt
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Note that inference is a computationally intensive process and an execution of that
script may take over ten minutes. The results of inference, which consist of three
sets (one per data file) of discrete probability distributions (describing posterior
over Abi’s goal coefficients, her GASP score and the tipping norm) are saved to a
file syntheticInfer.txt written into the examples/tipping/results directory.

Additionally, the priors used for inference are recorded in that file. Recall
that separate distributions are used for each parameter we are inferring and they
are all uniform, but discretised. Specifically, prior over Abi’s goal coefficients
is a uniform distribution over the set {[a, 1 − a] | a ∈ {1, .8, .6, .4, .2, 0}}, prior
over Abi’s GASP score has support {1, 3, 5, 7} and prior over the tipping norm
is uniform over {5, 10, 15, 20, 25}.

The next experiment that uses synthetic data is designed to illustrate that tipping
norm should not be inferred from data alone, as that ignores the confounding effect
of agent’s goal coefficient and GASP score. To show it, we focus on mediumTips.csv,
the data file characterised by medium tips, and we study how the inferred posterior
differs for various configurations of Abi’s goal coefficients and her GASP score.
This experiment runs inference ten times; on each occasion, Abi’s goal coefficients
are set randomly (but each goal coefficient is a multiple of .1, which gives eleven
possibilities), as well as her GASP score (seven possible values). To run it, execute

> bash examples/tipping/inferFromSyntheticDataFixGoalCoeffsAndGasp
syntheticInferFixed.txt

The results get saved in syntheticInferFixed.txt. They must be interpreted by
manually inspecting the posterior distributions on the tipping norm in each case.
We claim there will be a sizable amount of variability in those posteriors, showing
that Abi’s parameters must be taken into account when inferring the tipping norm.

Inferences from Generated Data The second type of experiments involves
learning from data generated by the tool. This requires the data to be generated first:

> bash examples/tipping/generateDataFiles

This runs simulations of the type familiar from previous case studies and uses the
webppl-fs package to construct appropriate data files based on the outcomes of
the simulations. They are saved in a subdirectory generatedData within the data
directory; specifically, inside three subdirectories 5, 10 and 15, corresponding to
the number of rounds of the tipping game that are simulated.

To perform inference based on the generated files, execute the following three com-
mands:
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> bash examples/tipping/inferFromGeneratedData 5rounds.txt 5 10
> bash examples/tipping/inferFromGeneratedData 10rounds.txt 10 10
> bash examples/tipping/inferFromGeneratedData 15rounds.txt 15 10

Each command processes ten files and prints its progress to the user (this is helpful
since the commands generally take a long time to run).

To evaluate the posteriors, i.e., generate the MSPEs from Table 6.3, we have
included a Python script, which reads the text files (both data files and results files)
to obtain observed behaviour and tool’s predictions and computes MSPEs of each
prediction (separately for goal coefficients, the tipping norm and the GASP score).
It then averages the MSPEs, both as means and medians, and prints the results
to the user. Execute the following commands to evaluate the predictions:

> python3 util/computeMSPE.py 5 10
> python3 util/computeMSPE.py 10 10
> python3 util/computeMSPE.py 15 10

The expectation is that the results will match the values in Table 6.3. Of course,
due to randomness in the process of data generation, the learning performance may
differ between runs, but the trends should remain the same.
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In this chapter, we provide more details about the way our Trust Game
experiment was run. In particular, we describe how participants’ answers to
the pre-game questionnaire are used to generate an appropriate prior (Section C.1),
we give full text used to describe the game and the comprehension questions that
follow (Section C.2), as well as a full specification of parameters used to instantiate
our bot (Section C.3) and all the feedback left by participants (Section C.4). Note
that the web application can be accessed online1 and we encourage the reader
to see it for themselves.

C.1 Generating Priors

This section specifies in detail the procedures we employ to generate estimations
of participants’ cognitive characteristics and beliefs based on the answers they
provide as part of the questionnaire.

1At http://trust-game-experiment.herokuapp.com/; last accessed: 01/02/2022
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Lookahead Lookahead of the participant is estimated from the answer to the
11-20 money request game question (see Section 7.1.5). The formal procedure
is given in Algorithm 19. In principle, it boils down to conditioning (but only
in the informed treatment) the base distribution from line 2 on the provided
answer. Note that the distribution is based on the results reported from the original
experiment conducted by the authors [122]. Further, note that lookahead values
only up to 4 are considered – this reflects performance limitations.

Algorithm 19: estimating participant’s lookahead
input : answer to money request question answer , boolean flag

informedTreatment, participant’s role role
output : prior over participant’s lookahead, expressed as a probability

distribution
1 function estimateLookahead(answer ,informedTreatment,role):

/* distribution over vs with probs given by ps; based
on [122] */

2 d0 ← Categorical(ps : [1/14, 2/14, 5/14, 5/14, 1/14], vs : [0, 1, 2, 3, 4]);
3 est ← 20− answer ;

/* only use the answer in the informed treatment */
4 if informedTreatment then

/* operation below uses webppl’s factor operator to bias
the distribution toward values close to est */

5 d← conditionSoft(d0, est);
6 else
7 d← d0;
8 end

/* if participant plays as investor, simplify estimation
for performance reasons */

9 if role is investor then
10 v ← to_integer(expectation(d));
11 return Delta(v); /* Dirac centered on v */
12 end
13 return d;
14 end

The soft conditioning from line 5 is achieved by using the factor operator of
WebPPL, as outlined in Algorithm 20. The pseudocode contained therein very
closely resembles valid WebPPL code and illustrates a basic but common pattern
of inference. It achieves the task of modifying probabilities assigned to values
in the support of a given discrete distribution so that elements that are near a
given value v are deemed more likely.
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Algorithm 20: softly conditioning a distribution on an observation
input : (discrete) probability distribution prior , (observed) value v

(usually from the support of prior but not necessarily)
output : posterior distribution obtained by softly conditioning prior on

observing v
1 function conditionSoft(prior ,v):
2 function model()
3 s← sample(prior);

/* factor(x) adds x to the log probability of current
execution */

4 factor(|s− v|); /* the closer s is to v, the more likely */
5 return s;
6 end

/* Infer performs inference; in this case, by enumerating
possible executions of model */

7 return Infer(method: ’enumerate’, model);
8 end

With that settled, it remains to explain the if statement of line 9. It simplifies
the resulting distribution in the case when the participant has been assigned the
role of investor. This is because, as mentioned in Section 7.2.3, when bot is an
investee, its lookahead is set to 4. This places a high burden on the computational
resources, meaning that mental state and meta-parameter estimations must be
kept simple. Given that the time needed to compute bot’s action is linear in the
product of sizes of supports of the distributions, they must be kept to minimum,
hence Dirac delta is used.

Rationality Recall that rationality of a participant is estimated based on the
preferences between lotteries that we elicit as part of the pre-game questionnaire.
Each user is presented with the following three questions, designed to be pro-
gressively more difficult:

1. Imagine you are offered two lotteries defined as follows:

(A) you receive $100 with probability 0.6 and $50 with probability 0.4

(B) you receive $100 with probability 0.4 and $50 with probability 0.6

2. This time, consider the following lotteries:

(A) you receive $15 with probability 0.2, $10 with probability 0.2 and $5
with probability 0.6
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(B) you receive $10 with probability 0.8 and $5 with probability 0.2

3. Finally, consider two lotteries:

(A) you receive $100 with probability 0.2, $50 with probability 0.3 and $10
with probability 0.5

(B) you receive $40 with certainty

In each case, participant is asked to specify whether, given choice, they would
pick lottery A, lottery B or if they are indifferent. We expect subjects’s preferences
to be consistent with expected utility maximisation principle; in particular, they
should favour option A in the first question, option B in the second one and
be indifferent about the last choice. Note that we have carefully designed the
lotteries to reduce the effect various confounders, such as risk aversion or certainty
effect [98] that most humans display. Specifically, lotteries do not involve any
losses, the amounts are moderate (which ensures utility is approximately linear)
and outcomes are predominantly uncertain. We note however that the last question
sets a probabilistic lottery against a deterministic one, meaning risk aversion may
influence subject’s answer. Although our framework does not currently model
risk aversion of agents, a future extension might do, in which case our data could
be used to estimate that quality.

The formal procedure is given as Algorithm 21. The key observation is that since
the distribution of rationality in a population is assumed to follow the bell curve,
we would like to represent its estimation with a distribution that is close to being
normal. However, for performance reasons, we are limited to discrete distributions
with fairly small number of values in its support. Therefore, Algorithm 21 returns
a categorical distribution with one or three elements in its support (depending on
role assignment in the game, cf. lookahead assignment above) that are sampled
from a normal distribution with appropriately chosen mean and standard deviation.
That computation is captured by the normalSamples function. Mean is set by
an iterative process that repeatedly increments or decrements the base value of
16 depending on the correctness of each answer, where easier questions produce
bigger modifications. Standard deviation is either 8 or 16 depending on whether
answers are consistent or not.
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Algorithm 21: estimating participant’s rationality
input : lottery preferences answers, boolean flag informedTreatment,

participant’s role role
output : prior over participant’s rationality, expressed as a probability

distribution
1 function estimateRationality(answers,informedTreatment,role):
2 µ← 16; /* base rationality */
3 δ ← 16;
4 for i← 1 to 3 do
5 if ith preference in answers is correct then
6 µ← µ+ δ;
7 else
8 µ← max(0, µ− δ);
9 end

10 δ ← δ/2;
11 end

/* ternary operator below; standard deviation is lower if
answers consistent (all wrong or all correct) */

12 σ ← all answers correct or all incorrect ? 8 : 16;
13 s← role is investor ? 1 : 3;
14 if informedTreatment then
15 return normalSamples(µ, σ, s);
16 else
17 return normalSamples(32, 8, s);
18 end
19 end

Belief Finally, we analyse how belief of the bot, represented by a vector ~α =
〈α1, α2〉 is generated. Recall that belief in this case is virtually equivalent to trust;
hence the question we ask participants to estimate it attempts to gauge their
trustworthiness. In particular, we ask “On a scale from 1 to 5, how concerned
are you with the way the robot perceives you?” and hypothesise that the bigger
the answer, the more trustworthy (towards the bot) the subject is. Therefore, we
designate five different beliefs, one for each possible answer, that are characterised
by varying values of trust. The exact formula is ~α = 〈2.25− 0.25a, 0.75 + 0.25a〉,
where a ∈ {1, 2, 3, 4, 5} is the answer provided. This gives fairly neutral belief
values, ranging from [2, 1] to [1, 2], which means initial trust ranges from 2/3 to
1/3. Note that the sum of entries of ~α roughly corresponds to the confidence in the
accuracy of the belief – in this case, it is quite low due to unreliability of human
self-reporting. In fact, this confidence is even lower in the uniform treatment,
where belief is set to ~α = [1, 1], reflecting lack of knowledge.



C. Trust Game Experiment 201

C.2 Game Description

For completeness, we include the full description of the game that was presented to
participants of our experiment. We begin by introducing the game:

You will now play a simple game called Trust Game against a bot. We
explain what that means below. Please read the description carefully
as we will ask you questions to ensure understanding. You will get two
chances to answer the questions correctly; if you don’t, your submission
will be rejected.

That is followed by an overview of the payment structure, which allows us to
introduce the abstract “units” that we use as currency in the experiment. The
text below in under a headline that says “Currency”.

The Trust Game is a money-exchange game. However, instead of dollars,
we use abstract monetary units, where 20 units = $1, 4 units = $0.20, 1
unit = $0.05 etc.

The game description (headlined “Game Description”) then follows; it starts by
stating the game horizon, or lack thereof. In the disclosed treatment, it reads:

The game is played through seven identical rounds,

while in the undisclosed treatment, an explanation is given:

The game is played through a number of identical rounds. Because of
the experimental condition you have been assigned to, we can’t tell you
exactly how many rounds will be played, but it will be more than 2 and
no more than 20.

Next, mechanics of the game are described; note that the wording again differs,
this time depending on the role assigned to the participant. If they are an investor,
they are shown the following:

In each round you receive 4 units, and you can invest any part of
your endowment by giving it to the robot. The amount you invest gets
doubled in transit. Subsequently the robot can return to you any part
of what it has received. For example, if out of your 4 units you invest 3
with the robot, it will receive 6, and then it may return to you anything
between 0 and 6.

Otherwise, they see this:
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In each round the bot receives 4 units, and it can invest any part of
its endowment by giving it to you. The amount the bot invests gets
doubled in transit. Subsequently you can return to the robot any
part of what you have received. For example, if out of its 4 units the
bot invests 3 with you, you will receive 6, and then you may return to
the bot anything between 0 and 6.

Finally, we include a clarification on how earnings are accumulated throughout
the game. For investors:

Your earnings in the game get accumulated from round to round, but
in each single round you can still invest only up to 4 units.

While for investees:

Your earnings in the game get accumulated from round to round, but in
each single round you can return to the bot only up to as many units as
you received in that round. Similarly, in each round, the bot can invest
only up to 4 units.

Comprehension Check Presentation of the game description is followed by
a comprehension check, consisting of three questions designed to exhaustively
verify participant’s understanding of the Trust Game. The exact wording of the
questions varies depending on subject’s role; below we consider the case when
they are an investor.

1. Suppose you invested 3 units. How many units will the bot receive?

2. Suppose the bot received 8 units. What’s the maximum number of units they
can share?

3. Suppose you earned 3 units in the first round. What amount will you have
available for investment in the second round?

Each question is answered by selecting a value from a drop-down list. In particular,
possible responses are: {0, 3, 6, 9}, {0, 4, 6, 8}, {0, 3, 4, 7} for questions one, two and
three, respectively. Subjects have two opportunities to find the right answers; in
case not all responses are correct in their first attempt, participants are told they
have their last chance, but we do not tell them which answers were wrong.
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C.3 Bot Setup

Even though we have already talked about the parameterisation of the bot in
Section 7.1.3, we formally summarise our choices below. The goal coefficients
of the bot depend on its randomly selected character, given by the mapping:
〈selfless → [.3, .7], neutral → [.5, .5], greedy → [.8, .2]〉. Further, meta-parameters
of the bot are set as follows: rationality αbot = 1000 reflects the infallibility of
machine reasoning; discount factor γbot = 0.8 models the uncertainty about game’s
horizon (recall that the bot does not know how many rounds the game will run
for, regardless of the treatment); lookahead βbot ∈ {2, 4} differs depending on the
role assignment – it is higher when bot is an investee.

C.4 Participants’ Comments

We include all the feedback that participants voluntarily left after completing the
experiment. It is presented in Table C.1, along with information specifying the
treatment each subject was assigned to.

Table C.1: Comments left by participants (original spelling) with additional information
about treatment they were assigned to (“role” refers to the subject while “character” is
that of the bot)

Role Horizon Character Feedback

investor disclosed neutral This was interesting. I liked trying to
figure out how the bot would choose how
much to send back.

investor disclosed greedy I know the bot is just programmed to be-
have a certain way so it’s just about what
the human that programmed it wants

investee disclosed selfless first 3 rounds i had not given any units
so after that bot also didn’t give me any
units. I think this is called AI. Where
they can grasp other person behavior very
easily.

investor disclosed selfless Great game.
investee disclosed selfless It was interesting Game, play with bot.

Thank you!
investor disclosed greedy This bot was a jerk. I couldn’t believe

they returned 0 units to me on most of
the rounds. It makes me feel angry, which
is irrational since it is a bot and not a
person.

Continued on next page
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Table C.1 – continued from previous page
Role Horizon Character Feedback

investee disclosed neutral The robot got stingy towards the later
rounds.

investor disclosed neutral I thought the game was interesting. I
wasn’t sure how the bot would react to
my decisions. The descriptions were pretty
clear to me. I had no problems.

investor undisclosed neutral I trust the robot
investor disclosed greedy Already don’t trust, confirmation of my

feelings.
investee undisclosed greedy Its really a nice and unique survey about

playing a simple investment game with an
artificial agent. Thank you.

investor undisclosed greedy No issues, questions, comments, or con-
cerns, thanks!

investor undisclosed selfless Game broke at first, refresh fixed it.
investor undisclosed greedy Seems like the Bot has been programmed

with lower odds for returning coins.
investor undisclosed neutral The robot seemed inconsistent regarding

how much it returned. It was particularly
stingy when I invested 4 units, and it
returned 0, but seemed to act somewhat
fairly for all other investment amounts.

investor disclosed neutral I enjoyed the game. Thank you.
investor disclosed neutral directions were easy to understand and

I appreciate they were present when the
comprehension questions were asked

investor disclosed greedy just seems like the robot was going to keep
all every time regardless

investor undisclosed greedy wished i could play more rounds and play
with a different robot!

investee disclosed neutral I somewhat didn’t expect the bot to learn
from my behavior. Even if I was initially
greedy, I rather expected the bot to give
me a second chance to return some units
in a later round.

investor undisclosed neutral I had fun playing the game and the in-
structions were clear. Thank you.

investor undisclosed greedy One of it’s kind excellent survey, changed
my perception towards bot.

investor disclosed greedy Nice Survey, having opportunity to earn
bonus!

investee disclosed neutral I found it interesting.
Continued on next page
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Table C.1 – continued from previous page
Role Horizon Character Feedback

investor disclosed selfless this was fun, thank you
investee undisclosed selfless Despite being disappointed by the bot’s

investments in the last few rounds, I liked
playing this game. Thank you :)

investee undisclosed neutral Interesting little game; I have a small
background in programming, so I figured
that eventually the bot would reduce
the investment as I reduced my return.
Thanks, and good luck!

investor undisclosed selfless I was hoping the bot would send me more
since I sent everything but still, not bad.
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