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Abstract

Python has become the dominant language for general-
purpose programming, yet it lacks robust tools for formal
verification. In contrast, programmers working in languages
such as C benefit from mature model checkers, for exam-
ple CBMC, which enable exhaustive symbolic reasoning and
fault localisation. The inherent complexity of Python, cou-
pled with the verbosity and low-level nature of existing tran-
spilers (e.g., CYTHON), have historically limited the applica-
bility of formal verification to Python programs.
In this paper, we propose PYVERITAS, a novel framework
that leverages Large Language Models (LLMS) for high-
level transpilation from Python to C, followed by bounded
model checking and MaxSAT-based fault localisation in the
generated C code. PYVERITAS enables verification and bug
localisation for Python code using existing model check-
ing tools for C. Our empirical evaluation on two Python
benchmarks demonstrates that LLM-based transpilation can
achieve a high degree of accuracy, up to 80–90% for some
LLMS, enabling effective development environment that
supports assertion-based verification and interpretable fault
diagnosis for small yet non-trivial Python programs.

1 Introduction
Automated software verification through techniques such
as model checking (Clarke 1997; Clarke, Kroening, and
Yorav 2003; Cimatti and Griggio 2012) has long been
a central topic in programming languages and software
engineering research, with widespread industrial adoption
in safety-critical systems (Lahtinen et al. 2012; Hartonas-
Garmhausen et al. 2000), hardware verification (Clarke
and Kroening 2003), and web-services (Chong et al. 2020;
Huang et al. 2005). In particular, bounded model check-
ing (BMC) (Biere et al. 2003) has proven to be a highly
effective method for exhaustively analysing program be-
haviours, within fixed bounds on variables and computation
steps. Mature tools such as CBMC (Clarke, Kroening, and
Lerda 2004) have demonstrated remarkable success in veri-
fying and analysing C programs through symbolic reasoning
and constraint solving.

Despite advances, a significant gap remains: there is still
no robust, scalable model checker for Python, which is
in widespread use today. Recently, ESBMC-Python (Farias
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et al. 2024) model checker was proposed; however, it re-
mains at the prototype stage, limited to verifying sim-
ple functions and supporting only a restricted subset of
the language. Although lightweight static analysis and
type-checking tools exist, formal verification of general-
purpose Python programs remains largely under-developed.
This limitation arises from Python’s highly dynamic and
expressive nature, which make it particularly challeng-
ing to encode Python semantics within a formal verifica-
tion framework. An alternative route via code transpila-
tion, that is, translating source code from one program-
ming language to another, is impractical for Python. Exist-
ing transpilers, such as CYTHON (Cython 2025) and SHED-
SKIN (Shedskin 2025), generate thousands of lines of low-
level C code even for modest Python functions, preventing
effective symbolic analysis.

Recently, Large Language Models (LLMS) trained for
code (LLMCS) have demonstrated strong performance
across a range of code-related tasks, including program
synthesis (Li, Parsert, and Polgreen 2024), program re-
pair (Joshi et al. 2023; Zhang et al. 2024; Orvalho, Jan-
ota, and Manquinho 2025), and code transpilation (Eniser,
Wüstholz, and Christakis 2024; Zhu et al. 2024; Ramos et al.
2024). LLMCS trained on large-scale multilingual code cor-
pora have shown the ability to produce semantically faithful
translations between languages such as Python and C, often
achieving more concise and high-level translations than tra-
ditional transpilers (Eniser, Wüstholz, and Christakis 2024).

In this paper, we propose a novel approach that leverages
LLM-based transpilation from Python to C, followed by au-
tomated verification of the generated C code using bounded
model checking (via CBMC). As concrete applications of
this approach, we demonstrate how, based on the transpiled
C code, one can: (1) verify the correctness of Python pro-
grams using CBMC, and (2) localise bugs in Python code by
applying formula-based fault localisation techniques to the
C translation using CFAULTS (Orvalho, Janota, and Man-
quinho 2024), a MaxSAT-based fault localisation tool for C
programs. We implement this pipeline in a tool called PY-
VERITAS. This tool offers an interim solution to the problem
of Python verification by integrating LLM-based transpila-
tion with mature C verification tools, bridging the gap until
native Python model checking becomes feasible.

Our experiments focus on LLMS with up to 32 bil-
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Algorithm 1: Python function distributeCandies(n:
int, limit: int).

1 def distributeCandies(n: int, limit: int) -> int:
2 limit = min(limit, n)
3 ans = 0
4 ans = 0 + 1
5 for i in range(limit + 1):
6 if n - i > limit * 2:
7 continue
8 ans += min(limit, n-i)-max(0, n-i-limit)+1
9 return ans

10
11 assert distributeCandies(n = 5, limit = 2) == 3

Algorithm 2: C version of Algorithm 1 transpiled by QWEN-
2.5-CODER from Python to C.

1 int distributeCandies(int n, int limit) {
2 limit = (limit < n) ? limit : n;
3 int ans = 0;
4 ans = 0 + 1;
5 for (int i = 0; i <= limit; i++) {
6 if (n - i > limit * 2) {
7 continue;
8 }
9 ans += ((limit < n-i) ? limit : (n-i)) -

10 ((n-i-limit > 0) ?(n-i-limit) : 0) + 1;
11 }
12 return ans;
13 }
14
15 int main() {
16 assert(distributeCandies(5, 2) == 3);
17 return 0;
18 }

lion parameters on two well-studied Python benchmarks:
LIVECODEBENCH (Jain et al. 2024) and REFACTORY (Hu
et al. 2019). We evaluate four different models: three trained
specifically for coding tasks, QWEN2.5-CODER, DEEP-
SEEK-CODER-V2 and GRANITECODE; and one general-
purpose model, LLAMA3.2, for comparison. Our experi-
ments show that LLM-based transpilation can produce se-
mantically faithful C code for Python programs, enabling
formally verified Python code in over 80% of cases with
some models, notably QWEN2.5-CODER. Moreover, by ap-
plying MaxSAT-based fault localisation to the transpiled
code, PYVERITAS can effectively identify faults injected
into the Python source code.

In summary, this paper makes the following contributions.

• We propose PYVERITAS, a novel framework for verifica-
tion and fault localisation for Python programs by lever-
aging LLM-based transpilation to C.

• PYVERITAS combines LLM-based code transpilation,
bounded model checking with CBMC, and MaxSAT-
based fault localisation using CFAULTS.

• We conduct an empirical evaluation on two Python
benchmarks, showing that PYVERITAS accurately veri-
fies small yet non-trivial Python programs where native
verification tools fall short.

• PYVERITAS can map localised faults in transpiled C
code back to the original Python source, providing in-
terpretable diagnostic feedback.

2 Motivation
Consider the function distributeCandies(n: int,
limit: int) presented in Algorithm 1, which computes
the total number of ways to distribute n candies among three
children such that no child receives more than limit can-
dies. This Python function corresponds to program #463
from LIVECODEBENCH and was obtained from LEET-
CODE (LeetCode 2025), although line 4, ans = 0 + 1,
was introduced as an intended fault by duplicating the as-
signment on line 3 and adding a constant. Now, suppose

we want to verify that this program satisfies the asser-
tion on line 11.

Attempting to verify Algorithm 1 using ESBMC-
PYTHON (Farias et al. 2024), version 7.9, a recently pro-
posed model checker for Python, proves infeasible. This
prototype can only handle a small subset of Python and its
functionality is currently limited, supporting only top-level
for loops (i.e., loops cannot be inside functions), restricting
lists and strings, and lacking support for dictionaries. Con-
sequently, it is currently not able to analyse the structures
in this program. Alternatively, one might consider using
a robust Python-to-C transpiler such as CYTHON (Cython
2025). However, this approach is also impractical. CYTHON
translates this 9-line Python function into over 6,100 lines
of low-level and complex C code. Analysing and verifying
such code would be extremely challenging, and tracing fault
information back to the original Python source would be
nearly impossible, making it of little help to programmers.

This is where we believe PYVERITAS can offer a prac-
tical solution, particularly given that existing Python model
checkers are still in early development and do not yet sup-
port the full expressiveness of Python. Our approach is to
use Large Language Models (LLMS) to transpile a Python
program to C, whether correct or buggy, guided by a nat-
ural language description and a formal specification of the
intended behaviour. Once in C, we can apply several mature
verification and symbolic analysis tools developed for C to
support developers by providing verification and diagnostic
feedback at the level of Python.

For instance, if we provide Algorithm 1 along with its
natural language description to QWEN2.5-CODER (Qwen
2024), an LLM fine-tuned for coding tasks, and request a C
translation using our transpilation prompt (see Appendix A),
the model produces the C code shown in Algorithm 2. We
can then apply CBMC, a bounded model checker for C, and
verify that the assertion fails, confirming that the program is
indeed incorrect. Furthermore, given a C version of the orig-
inal Python program, we can invoke MaxSAT-based fault
localisation tools, such as CFAULTS (Orvalho, Janota, and



Manquinho 2024), to identify the root cause of the failure.
In this case, CFAULTS reports that line 4 of the C program
in Algorithm 2 is faulty. We can then provide this informa-
tion to the LLM and ask it to map the identified line back
to the corresponding faulty statement in the original Python
source. QWEN2.5-CODER’s response is as follows:

Here are the corresponding buggy Python
statements from the original program that
correspond to the buggy C statements
provided:
```python

ans = 0 + 1
```

Thus, we successfully localised line 4 as the fault in the
original Python program in Algorithm 1, through LLM-
based transpilation, model checking, and MaxSAT-based
fault localisation for C. To the best of our knowledge,
MaxSAT-based fault localisation techniques have, until now,
only been developed for C (Jose and Majumdar 2011; Or-
valho, Janota, and Manquinho 2024), with no equivalent
methodology yet proposed for Python. Therefore, at present,
this remains the only viable way to leverage these powerful
localisation approaches, which are capable of precisely iden-
tifying the minimal set of faulty statements in a program.

3 Preliminaries
This section defines key concepts used throughout the paper.

Satisfiability. The Boolean Satisfiability (SAT) problem is
the decision problem for propositional logic (Biere et al.
2009). The Maximum Satisfiability (MaxSAT) problem is an
optimization version of the SAT problem. Given a CNF for-
mula ϕ, the goal is to find an assignment that satisfies the
maximum number of clauses (Bacchus, Järvisalo, and Mar-
tins 2021). In partial MaxSAT, ϕ is divided into hard clauses
(ϕh) and soft clauses (ϕs). The goal is to satisfy all clauses in
ϕh while minimising the number of unsatisfied soft clauses.

Programs and Verification. A program is sequential,
comprising standard statements such as assignments, con-
ditionals, loops, and function calls, each following conven-
tional Python/C semantics. A program is considered buggy if
an assertion violation occurs during execution with input I .
Otherwise, it is correct for I . When a bug is observed, the
corresponding error trace is the sequence of statements ex-
ecuted by program P on input I . A trace formula (TF) is
a SAT formula that is satisfiable if and only if there exists
an execution of the program that terminates in an assertion
violation while respecting all assume statements (Clarke,
Kroening, and Yorav 2003).

Formula-Based Fault Localisation. Given a faulty pro-
gram and a test suite with failing cases, formula-based fault
localisation (FBFL) methods encode the localisation task
into an optimisation problem, aiming to identify a minimal
set of faulty statements (diagnoses). Typically, FBFL tools
encode a program’s trace formula as a MaxSAT formula,
and apply the theory of model-based diagnosis (MBD) (Re-
iter 1987; Marques-Silva et al. 2015; Ignatiev et al. 2019;

Orvalho, Janota, and Manquinho 2024) to enumerate all di-
agnoses, each corresponding to a potential bug location. Fol-
lowing this theory, the clauses encoding the trace formula of
the buggy program correspond to the hard clauses of the
MaxSAT formula, while the set of healthy (or relaxation)
variables correspond to the soft clauses, as the goal is to
maximise the number of healthy program statements.

4 PYVERITAS
In this section, we introduce PYVERITAS, a novel frame-
work that enables formal verification and MaxSAT-based
fault localisation of Python programs through LLM-based
transpilation to C and model checking for C. Figure 1
presents an overview of PYVERITAS.

While symbolic tools, for example, ESBMC-PYTHON
(Farias et al. 2024), have attempted to support symbolic
reasoning over Python, these tools remain in early stages
and are limited to simple functions and subsets of the lan-
guage. On the other hand, bounded model checking (BMC)
tools for C, such as CBMC (Clarke, Kroening, and Lerda
2004), are mature, efficient, and support fault localisation
via MaxSAT-based analysis (Orvalho, Janota, and Man-
quinho 2024; Jose and Majumdar 2011). The goal of PY-
VERITAS is to bridge the gap in formal verification for
Python while a robust native model checker for the language
is still lacking. PYVERITAS operates by translating Python
to C programs using Large Language Models (LLMS), and
then leveraging mature C verification infrastructure to per-
form symbolic analysis and fault localisation. PYVERITAS
implements a verification pipeline that, given a Python pro-
gram and its specification, returns either a formal correct-
ness/failure verdict or a set of localised buggy statements
mapped back to the original Python source. Please refer to
Appendix A for all the prompt templates used in the various
interactions with the LLM.

Architecture
PYVERITAS takes as input a Python program P , a textual
description D (used to help preserve intent during transpi-
lation), and a set of specifications S, encoded as assertions.
Textual descriptions are typically provided to LLMS to indi-
cate intent, whereas assertions are necessary for formal ver-
ification. We remark that this provides redundant informa-
tion, which may contain inconsistencies, particularly when
the code to transpile is faulty.

LLM-Based Transpilation. Given (P,D,S), PYVERI-
TAS constructs a prompt and queries an LLM to generate
a candidate C program C that aims to preserve the semantics
of P and satisfy the specifications in S.

C Interpreter. Since LLM-generated code can be impre-
cise or syntactically/semantically incorrect, PYVERITAS ex-
ecutes both P and C on the same test inputs and assertions
(i.e., S) using a Python interpreter and a C interpreter, re-
spectively. If C fails to satisfy the assertions in S that P
satisfies, or if C fails to compile, the candidate is discarded
and a new one is requested from the LLM, up to five failed
attempts, indicating the model is likely repeating the same
incorrect output; or until the time limit is reached.



PYVERITAS

Large Language
Model (LLM)

Prompt
Response

C InterpreterC Candidate

C fails + Py OK

Bounded Model
Checker for C

C and Py fail OR C and Py OKVerification Succ.
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Based Fault
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Verification Failed

Localised Faults

Python Pro-
gram (Py)

+
Description

+
Specification

Code Verification
+

Localised Buggy
Statements

PYVERITASUser

Input

Output

Figure 1: PYVERITAS’s pipeline for Python verification and bug localisation.

Verification via CBMC. If the C candidate passes the
interpreter, PYVERITAS verifies it using a bounded model
checker for C, CBMC (Clarke, Kroening, and Lerda 2004).
If verification succeeds, PYVERITAS concludes that the
original Python program satisfies the specification S.

MaxSAT-Based Fault Localisation. If verification fails,
the candidate C is analysed using CFAULTS (Orvalho, Jan-
ota, and Manquinho 2024), a formula-based fault localisa-
tion tool for C. CFAULTS encodes the trace formula of C as
a MaxSAT formula and computes a solution that identifies
the minimum set of faulty statements in the C program.

Back-Mapping to Python. PYVERITAS maps the identi-
fied fault locations in C back to their corresponding state-
ments in the original Python program P . This mapping is
performed by querying the LLM with the original code
and the localised fault locations. The resulting output is the
faulty statements localised in the original Python code.

Output. The output of PYVERITAS is twofold: (1) if the
C code passes verification with CBMC, the Python program
is declared verified with respect to S; and (2) if verification
fails, the user is presented with a list of localised faulty state-
ments in the original Python source, inferred via MaxSAT-
based analysis on the transpiled C code.

5 Experiments
The goal of our experiments was to answer the follow-
ing research questions (RQs). RQ1. How accurate and re-
liable are Large Language Models (LLMS) at transpiling
Python programs into semantically equivalent C code? RQ2.
Can MaxSAT-based fault localisation in C, when applied to
LLM-transpiled Python code, effectively identify faults in-
jected into Python source? RQ3. How dependable is LLM-
based transpilation as a method for supporting MaxSAT-
based fault localisation in Python via C-level analysis tools?

Experimental Setup. All experiments were run using a
NVIDIA L40S graphics card with 48GB of memory on an
Intel(R) Xeon(R) Gold 5418Y 48-Core CPU Processor and
251GB RAM, using a time limit of 10 minutes.

Evaluation Benchmarks. To evaluate PYVERITAS, we
use two widely adopted benchmarks of Python programs:
LIVECODEBENCH (Jain et al. 2024) and REFACTORY (Hu
et al. 2019). LIVECODEBENCH contains 479 correct pro-
grams submitted to programming contests across compe-
tition platforms, such as LeetCode (LeetCode 2025).
REFACTORY is a benchmark consisting of 1783 buggy and
2447 correct Python programs submitted to five different
programming assignments. For our evaluation, we focus on
correct programs to support our experiment: transpiling the
original Python programs to C and formally verifying their
correctness using CBMC. Specifically, we randomly se-
lected twenty-five correct programs from each assignment,
resulting in a total of 125 Python programs.

To assess the effectiveness of localising bugs in Python
programs using MaxSAT-based fault localisation for C
through CFAULTS (Orvalho, Janota, and Manquinho 2024),
we injected faults into these Python benchmarks. To obtain
precise ground-truth information about the location and na-
ture of the bugs in each program, we applied semantics-
altering mutations, i.e., syntactically valid code transforma-
tions that deliberately change program behaviour. Specifi-
cally, we used two mutations that are easy to inject auto-
matically: (1) Wrong binary operator (WBO), where a com-
parison operator (e.g., ==, <, >) is replaced with a differ-
ent one, thereby flipping the logic of a conditional expres-
sion; and (2) Assignment duplication with constant (ADC),
in which a random assignment is duplicated and a constant
is added to the right-hand side of the duplicated statement,
introducing an unintended state change. We ensure that the
mutated Python programs semantically differ from the origi-
nals by verifying that they fail at least one assertion from the
test suite. For each mutation type, we generate a separate
transformed version of the benchmark, producing up to one
mutated variant per program, with at most one mutation ap-
plied. These code mutations have been previously employed
in prior work (Allamanis, Jackson-Flux, and Brockschmidt
2021; Orvalho, Janota, and Manquinho 2022; Maveli, Ver-
gari, and Cohen 2025) to augment datasets with buggy pro-
grams, enabling the simulation of realistic faults. Although



Language Model LIVECODEBENCH REFACTORY

QWEN2.5-CODER (32B) 83.7% 92.0%
DEEPSEEK-CODER-V2 (16B) 65.1% 64.8%
GRANITECODE (8B) 55.9% 52.0%
LLAMA3.2 (3B) 43.0% 28.0%

Table 1: Verification success rates for each LLM on both
benchmarks. Percentages indicate the proportion of C pro-
grams that were successfully verified by CBMC and judged
semantically equivalent to the original Python code.

these mutations are simple, they enable a systematic evalu-
ation of whether PYVERITAS can accurately identify fault
locations via MaxSAT-based localisation.

Large Language Models (LLMS). In our evaluation, we
exclusively used open-access LLMS available on Hugging
Face (HuggingFace 2025) with at most 32 billions pa-
rameters, for two main reasons. First, closed-access mod-
els, for example, CHATGPT and DEEPSEEK, are cost-
prohibitive and raise concerns regarding data privacy. Sec-
ond, large-scale models (e.g., those with 70B parameters)
demand significant computational resources, rendering them
unsuitable for local use and out of reach for many de-
velopers. Thus, we evaluated four different LLMS us-
ing the iterative querying setup described in Section 4.
Three of these models are LLMCS, i.e., LLMS fine-tuned
specifically for coding tasks: Alibaba’s QWEN2.5-CO-
DER (Qwen 2024) (32B), DeepSeek’s DEEPSEEK-CODER-
V2 (DeepSeek-AI 2024) (16B), and IBM’s GRANITECO-
DE (Granite 2024) (8B). As a sanity check, we used Meta’s
LLAMA3.2 (Llama3 2024) (3B), which is a general-purpose
LLM not specifically trained for coding tasks. To ensure
consistency, all models were run with temperature set to 0.

Program Verification for Python
Our first experiment aimed to assess the reliability of LLMS
in transpiling Python to C, taking into account additional
indication of intent, and to evaluate how accurately the ver-
ification of the transpiled C code reflects the correctness of
the original Python program.

Baseline. We tried to use ESBMC-PYTHON (Farias et al.
2024), version 7.9, as a baseline for our experiments. How-
ever, it was unable to verify any of the Python programs
from LIVECODEBENCH or REFACTORY due to unsup-
ported Python features. As discussed in the motivation sec-
tion, ESBMC-PYTHON currently supports only a limited
subset of the language and is designed to verify simple con-
structs in isolation. When a program combines multiple fea-
tures, such as, auxiliary functions, or control-flow constructs
(e.g., for loops), ESBMC-PYTHON is unable to analyse
the program, resulting in failed verification or internal errors.

PYVERITAS. To answer RQ1, we used CBMC to ver-
ify the LLM-transpiled C code against the provided asser-
tions. All interactions between the evaluated LLMS and
each Python program in both benchmarks were manually
inspected to determine whether, in cases where verification

succeeded, the transpiled code and assertions were seman-
tically equivalent to the original Python program. This in-
spection was blind to the identity of the LLMS. Each model
response was independently labelled three times by experts
with strong programming backgrounds to ensure consis-
tency, and any discrepancies resolved through discussion.
Table 1 reports the verification success rate of each model on
each benchmark. QWEN2.5-CODER demonstrates the high-
est reliability, with 83.7% success on LIVECODEBENCH
and 92.0% on REFACTORY, indicating that its C transla-
tions are frequently both syntactically valid and semanti-
cally faithful to the original Python programs. DEEPSEEK-
CODER-V2 follows, though with a marked decline in per-
formance, where its verification success falls to around 65%
on both benchmarks. This contrast indicates that QWEN-
2.5-CODER more consistently produces semantically faith-
ful and verifiable C translations. GRANITECODE and LLA-
MA3.2 exhibit lower verification success across both bench-
marks. Notably, GRANITECODE achieves only 52.0% on
REFACTORY. Similarly, LLAMA3.2 underperforms across
both benchmarks, likely due to being a general-purpose
model. Interestingly, we observe that larger models yield
more verifiable translations, suggesting a correlation be-
tween model capacity and verification reliability, which war-
rants further investigation. Overall, these results indicate
that, although LLMS vary considerably in reliability, models
such as QWEN2.5-CODER already provide sufficiently de-
pendable transpilation to support formal verification of non-
trivial Python programs.

MaxSAT-Based Fault Localisation for Python
To assess the effectiveness of PYVERITAS in localising
faults in Python programs, we applied MaxSAT-based fault
localisation to C code produced by LLM-based transpilation
of two benchmarks: REFACTORY and LIVECODEBENCH.
As described earlier, each correct Python program was first
mutated using one of two semantics-altering transforma-
tions: Wrong Binary Operator (WBO) or Assignment Dupli-
cation with Constant (ADC). These mutations are designed
to deliberately introduce subtle bugs while preserving syn-
tactic correctness. As described in Section 4, each mutated
Python program was then passed through the full PYVERI-
TAS pipeline: LLM-based transpilation, verification using
CBMC, and fault localisation with CFAULTS. We note that
providing redundant information, such as natural language
descriptions and explicit assertions, can strongly signal the
intended behaviour of a program, guiding the LLM towards
more semantically aligned translations (Ye et al. 2025).

Tables 2 and 3 present the results for REFACTORY and
LIVECODEBENCH, respectively. For each LLM and bug
type, we report: the percentage of cases where CFAULTS
successfully identified the injected fault (%Correct Bug
Localised), the percentage of cases where unrelated valid
fault locations were reported (%Other Bugs Localised), the
percentage of instances in which the LLM inadvertently
corrected the bug during transpilation (%Transpiled Fixed
Code), and the percentage of transpiled programs that failed
to compile (%Compilation Errors). Since all prompts in-
clude both a natural language description and the ground-



Bug: Wrong Binary Operator (WBO)
LLMs % Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors
QWEN2.5-CODER 36.2% 14.3% 49.5% 0.0%
DEEPSEEK-CODER-V2 31.4% 19.0% 44.8% 4.8%
GRANITECODE 52.4% 29.5% 8.6% 9.5%
LLAMA3.2 30.5% 23.8% 3.8% 41.9%

Bug: Assignment Duplication with Constant (ADC)
% Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors

QWEN2.5-CODER 37.5% 10.0% 52.5% 0.0%
DEEPSEEK-CODER-V2 50.0% 12.5% 32.5% 5.0%
GRANITECODE 45.0% 27.5% 17.5% 10.0%
LLAMA3.2 27.4% 15.0% 7.5% 49.9%

Table 2: Results of MaxSAT-Based Fault Localisation with PYVERITAS on REFACTORY using two fault types: WBO and ADC.

Bug: Wrong Binary Operator (WBO)
LLMs % Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors
QWEN2.5-CODER 16.9% 20.2% 62.6% 0.3%
DEEPSEEK-CODER-V2 16.1% 36.8% 42.9% 4.2%
GRANITECODE 41.6% 34.6% 15.2% 8.6%
LLAMA3.2 22.7% 47.9% 17.7% 11.6%

Bug: Assignment Duplication with Constant (ADC)
% Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors

QWEN2.5-CODER 7.6% 11.0% 81.4% 0.0%
DEEPSEEK-CODER-V2 6.7% 21.4% 69.5% 2.4%
GRANITECODE 39.5% 11.9% 36.7% 11.9%
LLAMA3.2 18.6% 39.0% 34.3% 8.1%

Table 3: Results of MaxSAT-Based Fault Localisation with PYVERITAS on LIVECODEBENCH using WBO and ADC bugs.

truth specification, reasoning-oriented models fine-tuned for
code often use this information to correct buggy code dur-
ing transpilation. This results in the removal of duplicated
assignments or the correction of incorrect binary operators,
rather than preserving the original faulty logic. This obser-
vation aligns with findings from prior work (Ye et al. 2025),
which show that providing problem descriptions and spec-
ifications improves code generation quality. As this infor-
mation may contains inconsistencies, our experiments indi-
cate that different LLMs handle these situations differently.
We ran an additional experiment (results in Appendix B) by
excluding the textual descriptions, observing that the rates
of bug fixing decline but the underlying behaviour observed
previously persists. Furthermore, we observe that unrelated
localised faults may stem from two main factors. First, incor-
rect transpilation may produce buggy C code that is not se-
mantically equivalent to the original buggy Python program,
causing the fault localiser to highlight different statements.
Second, the generated C code may introduce low-level is-
sues, such as memory errors, that are correctly flagged but
unrelated to the injected fault. Please refer to Appendix C
for examples where fault localisation succeeded, as well as
cases where the LLMS inadvertently fixed the buggy code
during transpilation.

For the WBO bug on REFACTORY, in Table 2, GRANITE-
CODE achieved the highest localisation accuracy at 52.4%,

suggesting strong preservation of the faulty semantics.
QWEN2.5-CODER and DEEPSEEK-CODER-V2 followed
with 36.2% and 31.4%, respectively, while LLAMA3.2
reached 30.5%. Notably, QWEN2.5-CODER exhibited the
highest fix rate (49.5%), often rewriting the faulty logic into
a correct version, whereas GRANITECODE ’s low fix rate
(8.6%) indicates stronger fidelity to the original code. LLA-
MA3.2 showed the highest compilation error rate (41.9%),
reflecting its general-purpose nature. For the ADC bug,
DEEPSEEK-CODER-V2 performed best on REFACTORY
(50.0%), followed by GRANITECODE (45.0%) and QWEN-
2.5-CODER (37.5%). LLAMA3.2 again had the lowest suc-
cess rate (27.4%) and the highest error rate (49.9%). QWEN-
2.5-CODER ’s 52.5% fix rate suggests it frequently removed
the injected bug. GRANITECODE showed a relatively high
rate of unrelated fault reports (27.5%), due to incorrect code
transpilations. In Table 3, localisation success rates declined
across models on LIVECODEBENCH, except for GRANI-
TECODE, which remained strong. For WBO, GRANITECO-
DE again led (41.6%), while QWEN2.5-CODER and DEEP-
SEEK-CODER-V2 dropped to 16.9% and 16.1%. LLAMA-
3.2 reached 22.7%, but with 47.9% unrelated fault re-
ports. QWEN2.5-CODER and DEEPSEEK-CODER-V2 also
showed high fix rates (62.6% and 42.9%), often repairing the
bug during translation. Compilation errors were low over-
all, except for LLAMA3.2 (11.6%). For ADC on LIVE-



CODEBENCH, the trend persisted. GRANITECODE again
led (39.5%), followed by LLAMA3.2 (18.6%). QWEN2.5-
CODER and DEEPSEEK-CODER-V2 had the lowest success
rates (7.6% and 6.7%) and the highest fix rates (81.4% and
69.5%), indicating frequent bug removal during translation.
LLAMA3.2 also showed a high rate of unrelated fault re-
ports (39.0%), due to incorrect transpilations.

Taken together, these results confirm that MaxSAT-based
fault localisation on LLM-transpiled C code is both feasible
and effective, answering RQ2. When that transpilation pre-
serves the faulty semantics, CFAULTS can successfully iden-
tify the root cause of the bug, even though it originated in a
Python program. Notably, this holds across different fault
types and benchmarks. In addressing RQ3, we find that the
reliability of LLM-based transpilation for enabling C-level
analysis of Python code varies significantly across models.
QWEN2.5-CODER achieves the highest verification success,
with 92.0% of programs verified on REFACTORY and 83.7%
on LIVECODEBENCH, indicating well-structured and se-
mantically coherent output. In contrast, GRANITECODE
yields lower verification rates (52.0% and 55.9%), but con-
sistently preserves the faulty semantics, resulting in higher
localisation success. Thus, we observe that models differ
in how they leverage redundant information. Reasoning-
oriented models like QWEN2.5-CODER and DEEPSEEK-
CODER-V2 tend to generate chains of thought (CoT), in-
tegrating cues from natural language descriptions and asser-
tions to guide their output, often repairing faulty code in the
process. In contrast, models like GRANITECODE prioritise
structural fidelity, preserving the original syntax and seman-
tics (including faults), which is crucial for fault localisation
tasks where bug retention is required, underscoring the im-
portance of model selection when using LLM-based tran-
spilation to support verification and debugging workflows in
PYVERITAS. Moreover, we conducted experiments without
providing natural language descriptions to the LLMS (see
Appendix B). While localisation accuracy declined slightly,
some LLMS continued to exhibit a tendency to fix the buggy
code during transpilation.

6 Related Work
Recent work has explored the use of Large Language Mod-
els (LLMS) for code transpilation and synthesis, particu-
larly across high-level programming languages. Tools such
as COTRAN (Jana et al. 2024) and MIRACLE (Zhu et al.
2024) leverage neural models for transpiling between lan-
guages like Python, Java, and C++, with benchmarks that
assess functional correctness. However, these approaches
typically focus on transpilation in isolation and do not tar-
get the specific Python-to-C direction, nor do they inte-
grate downstream formal verification. Large-scale empirical
studies (Xue et al. 2024) reveal that LLM-generated tran-
spilations often suffer from high error rates (ranging from
50% to 98%), and they identify common issues such as
semantic hallucinations, inconsistent control flow, and un-
declared variables. Nonetheless, these studies are limited
to error analysis and do not connect transpilation outputs
to formal guarantees. Work on verifying C code through
deductive or bounded model checking techniques has pro-

gressed independently. SYNVER (Mukherjee and Delaware
2024), for instance, uses LLMS to generate C implementa-
tions from formal specifications, integrating deductive ver-
ification backends. However, it does not address the chal-
lenge of transpiling from Python while preserving the se-
mantics or intent of the original code. Moreover, there is
currently no demonstrated pipeline that translates Python
code into verified C annotated with specifications. Recently,
BATFIX (Ramos et al. 2024) augmented LLM-based code
transpilers by applying program repair and synthesis to fix
faulty translations, producing C++ code from Python or Java
that passes all test cases. Bhatia et al. (2024) use LLMS
to transpile code into low-level intermediate representations
of target languages, while generating formal proofs to en-
sure semantic equivalence, enabling verified code transla-
tion. Finally, (Zhang et al. 2025) used LLMS to translate
large codebases (e.g. Go to Rust) by partitioning files, incor-
porating feature-mapping rules, and validating input-output
equivalence to achieve 73% function-level correctness. A
separate body of work uses property-based testing and muta-
tion analysis to assess functional equivalence between orig-
inal and transpiled programs (Guizzo et al. 2024; Eniser,
Wüstholz, and Christakis 2024). These techniques provide
empirical evidence of correctness but typically rely on test
generation and lack formal guarantees. Finally, several stud-
ies have documented the frequent structural and semantic er-
rors introduced by LLM-based transpilers (Zhu et al. 2024;
Xue et al. 2024). Our work complements this line of research
by examining the feasibility of connecting LLM-based tran-
spilation from Python to C with subsequent formal verifica-
tion and MaxSAT-based fault localisation, thereby enabling
correctness guarantees beyond testing alone.

7 Conclusion
In this paper, we introduced PYVERITAS, a framework
for verifying Python programs via LLM-based transpila-
tion to C, followed by assertion-based verification using
tools such as CBMC, and MaxSAT-based fault localisa-
tion via CFAULTS. Our experiments surprisingly show that
LLMS can generate semantically faithful C translations for
small but non-trivial Python programs, enabling successful
verification in over 80% of cases with some models, notably
QWEN2.5-CODER. We also demonstrated that MaxSAT-
based fault localisation on the transpiled C code can effec-
tively identify injected faults in the original Python source.
Interestingly, we found that reasoning-oriented models, such
as QWEN2.5-CODER and DEEPSEEK-CODER-V2, often
leveraged redundant cues, such as natural language descrip-
tions and assertions, to implicitly repair code during transpi-
lation, while models like GRANITECODE prioritised struc-
tural fidelity, making them better suited for MaxSAT-based
fault localisation. These findings suggest that, despite the
current limitations of Python model checkers, PYVERITAS
offers a practical and effective alternative by leveraging ma-
ture C verification tools. Furthermore, we demonstrated the
feasibility of applying MaxSAT-based fault localisation to
Python using simple injected faults as a proof of concept. As
LLMS continue to improve, we anticipate even broader ap-
plicability to more complex bugs and verification scenarios.
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A Prompts
In this section, we present the prompt templates used for all
interactions with the Large Language Models (LLMS).
• Transpilation prompt:

Given a natural language description (NL Description), a
Python program (Python code), and one or more Python
assertions (assertion), the transpilation prompt asks the
model to transpile the Python code and assertion to se-
mantically equivalent C code, as follows:
Transpile Python to C Code With Assertion:
You are an exceptionally intelligent coding
assistant who consistently produces accurate
and reliable <C code> by transpiling the given
<Python code> into semantically equivalent
<C code>. <NL_Description> gives a natural
language description of the python code.
Do not forget to also transpile the given
Python assertion into a C assertion!

<NL_Description>
{description}



Language Model LIVECODEBENCH REFACTORY

QWEN2.5-CODER (32B) 80.4% 87.2%
DEEPSEEK-CODER-V2 (16B) 63.5% 61.6%
GRANITECODE (8B) 53.0% 49.6%
LLAMA3.2 (3B) 30.5% 22.4%

Table 4: Verification success rates for each LLM on both
benchmarks without providing any natural language de-
scription. Percentages indicate the proportion of C pro-
grams that were successfully verified by CBMC and judged
semantically equivalent to the original Python code.

<Python Code>
```python
{python_code}
{assertion}
```

<C Code>
```c

• Prompt to ask for a different C candidate:
We provide an explanation for why the C translation was
incorrect, either indicating that the C code failed to com-
pile (along with the corresponding error message), or that
one or more assertions was not successful. This feedback
is included in the prompt, and the original transpilation
prompt is appended to the end, allowing the model to at-
tempt the translation again.

Your previous code translation was INCORRECT!
Reason: {Reason}
Try again.
{Transpilation Prompt}

• Prompt to map the buggy C statements back to the origi-
nal Python code:

Map C program statements back to the original python
program:
We have detected that both the Python and C programs
are buggy. We have localised the following faulty
statements in the C program:
{list of faulty C statements}

Provide us only with the corresponding Python
statements from the original program that
correspond to these buggy statements.
```python

B Experiments Without Natural Language
Descriptions

To understand the role of natural language descriptions in
guiding LLM-based transpilation, we repeated our experi-
ments without providing any such descriptions to the mod-
els. This setup allows us to assess the reliability of PYVERI-
TAS when the LLM must rely solely on the Python code and
assertion-based specifications.

As shown in Table 4, verification success rates declined
only modestly for larger models. For instance, QWEN2.5-
CODER maintained high success rates at 80.4% on LIVE-
CODEBENCH and 87.2% on REFACTORY (compared to
83.7% and 92.0% with descriptions). In contrast, smaller
models such as LLAMA3.2 experienced a more significant

drop, with success rates falling to 30.5% and 22.4%, respec-
tively. These findings suggest that high-capacity models are
still capable of producing semantically faithful C code, even
without natural language guidance.

Tables 5 and 6 show the results of MaxSAT-based fault
localisation under the same conditions. While localisation
accuracy declined slightly, some LLMS continued to ex-
hibit a tendency to fix the buggy code during transpilation.
For instance, QWEN2.5-CODER still fixed 52.5% of As-
signment duplication with constant (ADC) cases on REFAC-
TORY. This suggests that the tendency to repair code is not
exclusively driven by natural language cues, but can also
emerge from the models’ reasoning approach.

Despite the absence of descriptions, GRANITECODE
maintained strong localisation performance. For example,
it correctly identified the bug in 42.5% of ADC cases
on REFACTORY and 39.5% on LIVECODEBENCH, only
slightly lower than with descriptions. This further reinforces
GRANITECODE’s preference for structural fidelity over se-
mantic correction, making it particularly well-suited for
fault localisation tasks.

In summary, it appears that natural language descriptions
enhance verification and often prompt models to repair faults
during transpilation. Removing them reduces this behaviour
only marginally, sometimes improving localisation accu-
racy.

C Interactions with Large Language
Models (LLMS)

In this section, we present representative examples of some
interactions with LLMS.

• Example of DEEPSEEK-CODER-V2 inadvertently fix-
ing the buggy Python program #188 from LIVE-
CODEBENCH during transpilation to C:

– Natural Language Description: You are given a string
moves of length n consisting only of characters ’L’,
’R’, and ’ ’. The string represents your movement
on a number line starting from the origin 0. In the ith

move, you can choose one of the following directions:
Move to the left if moves[i] = ’L’ or moves[i]
= ’ ’; or; move to the right if moves[i] = ’R’
or moves[i] = ’ ’. You should return the distance
from the origin of the furthest point you can get to after
n moves.

– Python code:



Bug: Wrong Binary Operator (WBO)
LLMs % Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors
QWEN2.5-CODER 28.6% 32.4% 39.0% 0.0%
DEEPSEEK-CODER-V2 20.0% 49.5% 18.1% 12.4%
GRANITECODE 41.0% 32.4% 13.3% 13.3%
LLAMA3.2 25.2% 26.1% 0.9% 47.8%

Bug: Assignment Duplication with Constant (ADC)
% Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors

QWEN2.5-CODER 22.5% 22.5% 52.5% 2.5%
DEEPSEEK-CODER-V2 25.0% 20.0% 47.5% 7.5%
GRANITECODE 42.5% 35.0% 15.0% 7.5%
LLAMA3.2 19.9% 15.0% 2.5% 62.3%

Table 5: Results of MaxSAT-Based Fault Localisation with PYVERITAS on REFACTORY using two fault types: WBO and ADC
without providing any natural language description.

Bug: Wrong Binary Operator (WBO)
LLMs % Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors
QWEN2.5-CODER 29.6% 46.0% 23.5% 0.8%
DEEPSEEK-CODER-V2 18.0% 58.2% 19.4% 4.4%
GRANITECODE 42.9% 36.0% 11.4% 9.7%
LLAMA3.2 27.7% 51.5% 8.3% 12.5%

Bug: Assignment Duplication with Constant (ADC)
% Correct Bug Localised % Other Bugs Localised % Transpiled Fixed Code % Compilation Errors

QWEN2.5-CODER 16.2% 29.5% 53.3% 1.0%
DEEPSEEK-CODER-V2 3.3% 37.6% 54.8% 4.3%
GRANITECODE 35.7% 14.3% 37.6% 12.4%
LLAMA3.2 16.2% 36.2% 30.5% 17.1%

Table 6: Results of MaxSAT-Based Fault Localisation with PYVERITAS on LIVECODEBENCH using WBO and ADC bugs
without providing any natural language description.

Algorithm 3: Program #188 from LIVECODEBENCH,
with a duplicated assignment with the added constant in-
troduced on line 3.

1 def furthestDistanceFromOrigin(moves: str)->int:
2 left = 0
3 left = 0 + 1
4 right = 0
5 a = 0
6 ret = 0
7 for c in moves:
8 if c == 'L':
9 left += 1

10 elif c == 'R':
11 right += 1
12 else:
13 a += 1
14 ret = max(ret, abs(left - right) + a)
15 return ret
16
17 assert furthestDistanceFromOrigin(moves='L_RL__R')==3

– We fed this information to DEEPSEEK-CODER-V2
using our transpilation prompt.

– DEEPSEEK-CODER-V2’s response:
```c
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

int furthestDistanceFromOrigin(const char* moves){
int left = 0;
int right = 0;
int a = 0;
int ret = 0;
for (int i = 0; moves[i] != '\0'; i++) {

if (moves[i] == 'L') {
left++;

} else if (moves[i] == 'R') {
right++;

} else {
a++;

}
}
ret = abs(left - right) + a;
return ret;

}
int main() {
const char* moves = "L_RL__R";
assert(furthestDistanceFromOrigin(moves)==3);
return 0;

}
```
This C code transpiles the given Python code
into a C program. It includes the necessary
C library for assertions (`assert.h`) and
ensures that the `furthestDistanceFromOrigin`
function is tested with the provided example
`moves = "L_RL__R"`, which should return `3`.
The `main` function includes an assertion to
check the result.

– Thus, DEEPSEEK-CODER-V2 transpiled Algorithm 3



to C, and during this process the model corrected the
program’s semantics by removing the duplicated as-
signment with the added constant that we introduced
on line 3, left = 0 + 1.

• Example of program #57 from LIVECODEBENCH,
where MaxSAT-based fault localisation for C success-
fully identified a wrong binary operator (WBO) in the
original Python code:

– Natural Language Description: A truck has two fuel
tanks. You are given two integers, mainTank repre-
senting the fuel present in the main tank in liters and
additionalTank representing the fuel present in
the additional tank in liters. The truck has a mileage of
10 KM per liter. Whenever 5 liters of fuel get used up
in the main tank, if the additional tank has at least 1
liters of fuel, 1 liters of fuel will be transferred from
the additional tank to the main tank. You should return
the maximum distance which can be traveled. Note:
Injection from the additional tank is not continuous. It
happens suddenly and immediately for every 5 liters
consumed.

– Python code:

Algorithm 4: Program #57 from LIVECODEBENCH,
with a wrong binary operator introduced on line 4.

1 def distanceTraveled(a: int, b: int) -> int:
2 res = 0
3 while a:
4 if a < 5:
5 res += 5 * 10
6 a -= 5
7 if b:
8 b -= 1
9 a += 1

10 else:
11 res += a * 10
12 a = 0
13 return res
14
15 assert distanceTraveled(a = 1, b = 2) == 10

– We fed this information to GRANITECODE using our
transpilation prompt.

– GRANITECODE’s response:
Here is the C code that transpiles the given
Python code:
```c
#include <assert.h>
int distanceTraveled(int mainTank,
int additionalTank){

int res = 0;
while (mainTank) {

if (mainTank < 5) {
res += 5 * 10;
mainTank -= 5;
if (additionalTank) {

additionalTank -= 1;
mainTank += 1;

}
} else {

res += mainTank * 10;
mainTank = 0;

}
}
return res;

}
int main() {

assert(distanceTraveled(1, 2) == 10);

return 0;
}
```
In this C code, we have defined a function
`distanceTraveled` that takes two integer
arguments `mainTank` and `additionalTank`
and returns an integer value.
The function uses a `while` loop to iterate
until `mainTank` becomes zero.
Inside the loop, we have used an `if`
statement to check if `mainTank` is less
than 5.
If it is, we add 50 to the `res` variable
and subtract 5 from `mainTank`.
If `additionalTank` is not zero, we
subtract 1 from `additionalTank` and
add 1 to `mainTank`.
If `mainTank` is not less than 5, we add
the current value of `mainTank` multiplied
by 10 to the `res` variable and
set `mainTank` to zero.
Finally, we have defined a `main` function
that uses the `assert` macro from the
`assert.h` library to check if the
`distanceTraveled` function returns the
expected value for the given input.

– GRANITECODE transpiled Algorithm 4 to C (note that
GRANITECODE actually took the variable names from
the description despite renaming the variables during
this process); it preserved the program’s semantics by
retaining the buggy binary operator on line 4 of Python
code.

– We then invoke CFAULTS to perform MaxSAT-based
fault localisation on the C program, which identifies
line 6 as faulty.

– This information is then provided to GRANITECODE
using our mapping prompt, in order to trace the buggy
C statement back to its corresponding line in the orig-
inal Python program.

– GRANITECODE’s response:
Here are the corresponding Python statements
from the original program that correspond
to these buggy statements:
```python

if a < 5:
```

– Thus, PYVERITAS successfully localised line 4 of the
original Python program using CFAULTS.

• On the other hand, QWEN2.5-CODER, when transpiling
the same program (#57 from LIVECODEBENCH), fixed
the binary operator, thereby removing the injected fault.



• Example of program #76 from LIVECODEBENCH,
where MaxSAT-based fault localisation for C success-
fully identified a wrong binary operator (WBO) in the
original Python code using QWEN2.5-CODER:

– Natural Language Description: You are given two in-
tegers num1 and num2. In one operation, you can
choose integer i in the range [0, 60] and subtract 2i
+ num2 from num1. Return the integer denoting the
minimum number of operations needed to make num1
equal to 0. If it is impossible to make num1 equal to 0,
return −1.

– Python code:

Algorithm 5: Program #76 from LIVECODEBENCH,
with a wrong binary operator introduced on line 4.

1 def makeTheIntegerZero(num1:int, num2:int)->int:
2 a = 0
3 x, y = (num1, num2)
4 while x < y:
5 x -= y
6 a += 1
7 b = x
8 c = 0
9 cc = 0

10 z = 1
11 while b:
12 c += b % 2 == 1
13 cc += (b % 2 == 1) * z
14 z *= 2
15 b //= 2
16 if c <= a and cc >= a:
17 return a
18 return -1
19 assert makeTheIntegerZero(num1=5, num2=7)==-1

– We fed this information to QWEN2.5-CODER using
our transpilation prompt.

– QWEN2.5-CODER’s response:
To transpile the given Python code into C,
we need to carefully translate each part of
the code, including the logic and the assertion.
Here's the C code equivalent of the provided
Python code:
```c
#include <stdio.h>
#include <assert.h>
int makeTheIntegerZero(int num1, int num2) {

int a = 0;
int x = num1;
int y = num2;
while (x < y) {

x -= y;
a += 1;
int b = x;
int c = 0;
int cc = 0;
int z = 1;
while (b) {

c += (b \% 2 == 1);
cc += (b \% 2 == 1) * z;
z *= 2;
b /= 2;

}
if (c <= a && cc >= a) {

return a;
}

}
return -1;

}
int main() {

assert(makeTheIntegerZero(5, 7) == -1);
printf("All assertions passed.\n");

return 0;
}
```
### Explanation:
1. **Function Definition**: The function
`makeTheIntegerZero` takes two integers
`num1` and `num2` as input and returns
an integer.
2. **Variable Initialization**: We initialize
`a` to 0, and `x` and `y` to `num1` and `num2`
respectively.
3. **While Loop**: The loop continues as long
as `x` is less than `y`. Inside the loop:

- `x` is decremented by `y`.
- `a` is incremented by 1.
- Variables `b`, `c`, `cc`, and `z` are
initialized. `b` is set to `x`, `c` and `cc`
to 0, and `z` to 1.

4. **Inner While Loop**: This loop calculates
the number of 1s in the binary representation
of `b` (`c`) and the sum of powers of 2
corresponding to those 1s (`cc`).

- `c` counts the number of 1s in the binary
representation of `b`.
- `cc` calculates the sum of powers of 2
corresponding to the positions of 1s in `b`.

5. **Condition Check**: If `c` is less than or
equal to `a` and `cc` is greater than or equal
to `a`, the function returns `a`.
6. **Return Statement**: If the loop exits
without finding a valid `a`, the function
returns `-1`.
7. **Main Function**: The `main` function
includes an assertion to test the function
with the example provided. If the assertion
passes, it prints "All assertions passed."
This C code should behave the same way as the
provided Python code.

– QWEN2.5-CODER transpiled Algorithm 5 to C; note
that it preserved the program’s semantics by retaining
the buggy binary operator on line 4 of Python code.

– We then invoke CFAULTS to perform MaxSAT-based
fault localisation on the C program, which identifies
line 7, while (x < y), as faulty.

– This information is then provided to QWEN2.5-CO-
DER using our mapping prompt, in order to trace the
buggy C statement back to its corresponding line in the
original Python program.

– QWEN2.5-CODER’s response:
Certainly! Let's map the faulty statement in the
C program back to the corresponding statement in
the original Python program.
```python

while x < y:
```

– Thus, PYVERITAS successfully localised line 4 of the
original Python program using CFAULTS.



• Finally, we present an interaction with an LLM, DEEP-
SEEK-CODER-V2, where the model not only fixed the
original bug, a duplicated assignment, during code tran-
spilation, but also introduced a new semantic error due
to incorrect translation. This new fault was subsequently
identified by CFAULTS. This example corresponds to
program #463 from LIVECODEBENCH.

– Natural Language Description: You are given two pos-
itive integers n and limit. Return the total number
of ways to distribute n candies among 3 children such
that no child gets more than limit candies.

– Python code:

Algorithm 6: Program #463 from LIVECODEBENCH,
with a duplicated assignment introduced on line 4.

1 def distributeCandies(n:int, limit:int)->int:
2 limit = min(limit, n)
3 ans = 0
4 ans = 0 + 1
5 for i in range(limit + 1):
6 if n - i > limit * 2:
7 continue
8 ans += min(limit, n-i)-max(0, n-i-limit)+1
9 return ans

10
11 assert distributeCandies(n=5, limit=2) == 3

– We fed this information to DEEPSEEK-CODER-V2
using our transpilation prompt.

– DEEPSEEK-CODER-V2’s response:
```c
#include <assert.h>
#include <stdio.h>
int distributeCandies(int n, int limit) {

limit = (limit < n) ? limit : n;
int ans = 0;
for (int i = 0; i <= limit; i++) {

if (n - i > limit * 2) {
continue;

}
ans += (limit < n - i) ? limit :

n - i - max(0, n - i - limit) + 1;
}
return ans;

}
int main() {

assert(distributeCandies(5, 2) == 3);
return 0;

}
```
Explanation:
1. The `distributeCandies` function calculates
the number of ways to distribute `n` candies
among 3 children such that no child gets more
than `limit` candies.
2. The `main` function includes the `assert`
statement to check if the `distributeCandies`
function returns the expected result for the
given input `n = 5` and `limit = 2`.
3. The `assert` statement in the `main`
function ensures that the result of
`distributeCandies(5, 2)` is equal to 3,
as per the example provided.

– DEEPSEEK-CODER-V2 transpiled Algorithm 6 to C,
and during this process the model fixed the injected
bug, by removing line 4 (i.e., ans = 0 + 1), al-
though it introduced a new semantic bug on line 10:
ans += (limit < n - i) ? limit : n -
i - max(0, n - i - limit) + 1.

This C statements is buggy since it is not semantically
equivalent to the Python statements shown on line 8.
A semantically equivalent statement would be:
ans += ((limit < n-i) ? limit
: (n-i)) - ((n-i-limit > 0)
?(n-i-limit) : 0) + 1;

– However, PYVERITAS continues and invokes
CFAULTS to perform MaxSAT-based fault localisation
on the C program, which identifies line 10 as faulty.

– This information is then provided to DEEPSEEK-
CODER-V2 using our mapping prompt, in order to
trace the buggy C statement back to its corresponding
line in the original Python program.

– DEEPSEEK-CODER-V2’s response:
The buggy statement in the C program corresponds
to the Python statements from the original
program:
```python

ans += min(limit, n-i)-max(0, n-i-limit)+1
```

– Thus, PYVERITAS localised line 8 of the original
Python program using CFAULTS, due to DEEPSEEK-
CODER-V2’s incorrect code transpilation.


