
Are Large Language Models Robust in Understanding
Code Against Semantics-Preserving Mutations?

Pedro Orvalhoa,* and Marta Kwiatkowskaa

aDepartment of Computer Science, University of Oxford, Oxford, UK
ORCID (Pedro Orvalho): https://orcid.org/0000-0002-7407-5967, ORCID (Marta Kwiatkowska):

https://orcid.org/0000-0001-9022-7599

Abstract. Understanding the reasoning and robustness of Large
Language Models (LLMS) is critical for their reliable use in pro-
gramming tasks. While recent studies have assessed LLMS’ abil-
ity to predict program outputs, most focus solely on the accuracy
of those predictions, without evaluating the reasoning behind them.
Moreover, it has been observed on mathematical reasoning tasks that
LLMS can arrive at correct answers through flawed logic, raising
concerns about similar issues in code understanding. In this work,
we evaluate whether state-of-the-art LLMS with up to 8B parame-
ters can reason about Python programs or are simply guessing. We
apply five semantics-preserving code mutations: renaming variables,
mirroring comparison expressions, swapping if-else branches, con-
verting for loops to while, and loop unrolling. These mutations
maintain program semantics while altering its syntax. We evalu-
ated six LLMS and performed a human expert analysis using LIVE-
CODEBENCH to assess whether the correct predictions are based on
sound reasoning. We also evaluated prediction stability across dif-
ferent code mutations on LIVECODEBENCH and CRUXEVAL. Our
findings show that some LLMS, such as LLAMA3.2, produce correct
predictions based on flawed reasoning in up to 61% of cases. Further-
more, LLMS often change predictions in response to our code muta-
tions, indicating limited robustness in their semantic understanding.

1 Introduction
Large Language Models (LLMS) have rapidly become integral to a
wide range of daily tasks, from writing assistance to code generation.
In particular, the software development community has embraced
LLM-based tools, such as GITHUB COPILOT and CHATGPT, to
streamline code workflows, assist in debugging, and even automate
code completion and review [9, 19]. These tools are widely used, and
often blindly, with developers placing significant trust in their capa-
bilities [23]. However, this growing reliance on LLMS for coding
tasks raises a fundamental question: To what extent do LLMS truly
understand code and the underlying semantics of programs?

While recent LLMS can produce syntactically correct code and
even solve competitive programming problems, there is a risk that
their responses may reflect pattern recognition over code syntax
rather than genuine semantic understanding [26]. If LLMS outputs
are simply the result of statistical associations, i.e., choosing the
most probable next token rather than reasoning about program be-
haviour, then their reliability in critical development tasks could be

∗ Corresponding Author. Email: pedro.orvalho@cs.ox.ac.uk

overestimated [11, 17]. Furthermore, based on the growing depen-
dence of programmers on LLMS, several works in the past year
have analysed LLMS’ reasoning about code through output predic-
tion tasks [9, 12, 17]. Some LLMS, such as SEMCODER [9], are now
trained to understand program semantics through a monologue rea-
soning strategy (i.e., Chain-of-Thought), where the model verbally
simulates both the high-level syntax and low-level execution effects
of code. However, as some recent work has shown that in other do-
mains, such as mathematical competitions [26], LLMS tend to pro-
vide accurate predictions, but based on flawed reasoning.

In this paper, we evaluate LLMS on the task of reasoning
about code and predicting program outputs for given inputs, using
two well-studied benchmarks LIVECODEBENCH [17] and CRUXE-
VAL [12]. First, we conduct a manual expert evaluation on LIVE-
CODEBENCH to determine whether correct predictions are derived
from logically sound reasoning or flawed reasoning, or no reason-
ing at all (i.e., guesses). Second, we assess model robustness by
applying semantics-preserving code mutations to both benchmarks
and analysing prediction consistency. These mutations, which are
small syntactic modifications that preserve runtime behaviour, are
used to test whether LLMS ’ understanding of code is robust to syn-
tactic changes. We apply five semantics-preserving code mutations
explained in Section 4: (1) renaming variables, (2) mirroring compar-
ison expressions, (3) swapping if-else branches, (4) converting for
loops to while loops, and (5) unrolling the final iterations of loops.
These transformations allow us to evaluate whether LLMS are sen-
sitive to syntax or capable of reasoning about code semantics.

Our experiments focus on state-of-the-art LLMS with up to 8 bil-
lion parameters, models that can be run on consumer-grade GPUs.
We evaluate six different LLMS: five trained specifically for cod-
ing tasks, CODEGEMMA, GRANITECODE, MISTRAL, QWEN2.5-
CODER, and SEMCODER, and one general-purpose model, LLA-
MA3.2, for comparison. Our in-depth analysis of LLMS’ reasoning
about code shows that some LLMS produce correct outputs based on
flawed reasoning in up to 61% of cases for general-purpose LLMS,
and 50% for LLMS trained specifically for coding tasks. Addition-
ally, our analysis demonstrates that interactive querying can sig-
nificantly improve both prediction accuracy and the logical quality
of their reasoning. Moreover, our experiments show that the eval-
uated LLMS frequently alter their predictions when subjected to
semantics-preserving code mutations, with variations of up to 37%,
highlighting their limited robustness in semantic understanding.

In summary, this paper makes the following contributions:

• We conduct a manual expert evaluation to assess whether LLMS’
code output predictions are based on logically sound code reason-
ing, flawed reasoning, or mere guesses.

• We evaluate LLMS’ output prediction stability across five differ-
ent semantics-preserving code mutations.

• Experiments show that LLMS frequently alter their predictions
when subjected to semantics-preserving code mutations, high-
lighting their limited robustness in semantic understanding.

• Our code and datasets will be made publicly available on
GITHUB: (see supplementary material).

2 Motivation

Consider the function presented in Algorithm 1. Given two positive
integers n and target, function minPossibleSum finds the sum
of an array arr that meets the following conditions: len(arr) ==
n, all elements in arr are distinct positive integers, and there does
not exist two distinct indices, i and j, in the range [0, n - 1],
such that arr[i] + arr[j] == target. This corresponds to
the programming contest #2834 from LEETCODE [18].

Now imagine we ask a Large Language Model (LLM) trained for
coding tasks (LLMC), such as QWEN2.5-CODER [27], to predict the
output of the function minPossibleSum(n=1, target=1)
and to explain its reasoning using the prompt described in Section 5.
QWEN2.5-CODER produces flawed reasoning and an incorrect out-
put prediction, replying as follows:

Let's walk through the execution of the code step-by-step
to understand how the output is produced.

The function `minPossibleSum` takes two parameters:
`n` and `target`. In this case, `n = 1` and `target = 1`.

1. The variable `i` is initialized to 1.
2. A set `arr` is initialized with the element 1.
3. The while loop condition checks if the length of `arr`
is less than `n`. Since `n` is 1, the loop will run once.
4. Inside the loop, `i` is incremented to 2.
5. The condition `if target - i not in arr` is checked.
Here, `target - i` is `1 - 2`, which equals `-1`.
Since `-1` is not in the set `arr`, the condition is true.
6. The number 2 is added to the set `arr`.
7. The loop ends because the length of `arr` is now `n`.
8. The function returns the sum of the elements in `arr`,
which is `1 + 2 = 3`.

Therefore, the assertion should be:
[ANSWER]assert minPossibleSum(1, 1) == 3[/ANSWER]

The predicted output is incorrect, as the semantically correct out-
put is 1. Moreover, the reasoning provided by the model regarding
the function’s semantics is flawed. When we feed this feedback back
into QWEN2.5-CODER using the second prompt described in Sec-
tion 5, it generates the following revised response:

There seems to be a misunderstanding in the explanation.
Let's re-evaluate the logic:
- Initially, `arr` contains `{1}`.
- The loop runs while the length of `arr` is less than `n`.
- In each iteration, `i` is incremented, and
if `target - i` is not in `arr`, `i` is added to `arr`.

Given `n = 1` and `target = 1`:
- Initially, `arr = {1}`.
- The loop does not run because `len(arr) < n`
(1 < 1) is false.
- Therefore, the loop does not add any new elements
to `arr`. Thus, the final `arr` remains `{1}`,
and the sum is `1`.

Therefore, the correct assertion should be:
[ANSWER]assert minPossibleSum(1, 1) == 1[/ANSWER]

Thus, our feedback was sufficient to guide QWEN2.5-CODER to-
ward a logically sound reasoning process and to correctly predict
the output. In contrast, SEMCODER, another LLM trained for cod-
ing tasks, was able to produce the correct result along with logically
sound reasoning on the first attempt.

However, when these two LLMS are presented with the semanti-
cally equivalent function shown in Algorithm 2, where the variable
arr has been renamed to eAJMfVcq, both models fail to provide
the correct output and fail to construct logically sound reasoning,
even after five rounds of interactive feedback. This experiment high-
lights a key limitation in the semantic robustness of LLMS trained
for code: their reasoning processes are fragile and often disrupted by
small syntactic changes, even when program semantics is preserved.
Additionally, this experiment suggests that interactive querying can
be an effective strategy to guide LLMS toward correcting flawed rea-
soning. Please refer to the supplementary material for additional ex-
amples of interactions with the evaluated LLMS.

3 Preliminaries
This section provides definitions used throughout the paper.

Definition 1 (Abstract Syntax Tree (AST)). An abstract syntax tree
(AST) is a syntax tree in which each node represents an operation,
and the children of the node represent the arguments of the operation
for a given language described by a context-free grammar [14]. An
AST represents the grammatical structure of a program [1].

Definition 2 (Control flow Graph (CFG)). A control flow graph
(CFG) is a directed graph in which the nodes represent basic blocks,
and the edges represent control flow paths [3].

Definition 3 (Semantics-Preserving Code Mutation.). Given
(T,G,O, P), let T be a set of input-output examples (test suite), G
be a grammar, O be the semantics for a particular domain-specific
language (DSL), and P be a syntactically well-formed program (i.e.,
a set of statements, instructions, expressions) consistent with G and
O, such that P is semantically consistent with the test suite, i.e.,

∀(tiin, tiout) ∈ T : P (tiin) = tiout.

A semantics-preserving code mutation is a syntactic program
transformation to P that generates a new program Pm by syntacti-
cally replacing a subset S1 of P ’s statements (S1 ⊆ P) with another
set of statements S2 consistent with G and O, such that

Pm = ((P \ S1) ∪ S2)

and Pm is semantically consistent with the original specification:

∀(tiin, tiout) ∈ T : Pm(tiin) = tiout.

4 Semantics-Preserving Code Mutations
We introduce a set of semantics-preserving program transformations
designed to syntactically modify Python programs without altering
their semantics, i.e., their runtime behaviour. These code mutations
are essential for tasks such as testing the robustness of code un-
derstanding models and augmenting training data in a semantics-
preserving way. In this section, we describe five key mutations imple-
mented in our work: variable renaming, comparison mirroring, swap
if-else statements, loop conversion, and partial loop unrolling. Some

Algorithm 1 Function minPossibleSum(n, target).
1 def minPossibleSum(n:int, target:int)->int:
2 i = 1
3 arr = {1}
4 while len(arr) < n:
5 i += 1
6 if target - i not in arr:
7 arr.add(i)
8 return sum(arr)

Algorithm 2 Algorithm 1 after renaming variable arr.
1 def minPossibleSum(n:int, target:int)->int:
2 i = 1
3 eAJMfVcq = {1}
4 while len(eAJMfVcq) < n:
5 i += 1
6 if target - i not in eAJMfVcq:
7 eAJMfVcq.add(i)
8 return sum(eAJMfVcq)

Algorithm 3 Original Python program.
1 def f(nums):
2 sum = 0
3 for n in nums:
4 if n % 2 == 0:
5 sum += n
6 else:
7 sum += 0
8 return sum

Algorithm 4 Renaming of variable sum.
1 def f(nums):
2 uoWIfiQc = 0
3 for n in nums:
4 if n % 2 == 0:
5 uoWIfiQc += n
6 else:
7 uoWIfiQc += 0
8 return uoWIfiQc

Algorithm 5 Mirroring if-condition.
1 def f(nums):
2 sum = 0
3 for n in nums:
4 if 0 == n % 2:
5 sum += n
6 else:
7 sum += 0
8 return sum

Algorithm 6 Swapping if-else statements.
1 def f(nums):
2 sum = 0
3 for n in nums:
4 if not n % 2 == 0:
5 sum += 0
6 else:
7 sum += n
8 return sum

Algorithm 7 Converting for-to-while loop.
1 def f(nums):
2 sum = 0
3 i = 0
4 while i < len(nums):
5 n = nums[i]
6 if n % 2 == 0:
7 sum += n
8 else:
9 sum += 0

10 i += 1
11 return sum

Algorithm 8 Partial loop unrolling.
1 def f(nums):
2 sum = 0
3 i = 0
4 while i < (len(nums)-1):
5 n = nums[i]
6 if n % 2 == 0:
7 sum += n
8 else:
9 sum += 0

10 i += 1
11 if len(nums) > i:
12 n = nums[i]
13 if n % 2 == 0:
14 sum += n
15 else:
16 sum += 0
17 i += 1
18 return sum

of these code mutations have been previously employed [13, 15, 24]
to augment benchmarks with semantically equivalent, yet syntacti-
cally different, versions of the original programs.

As a running example throughout this section, we use the Python
program shown in Algorithm 3, where the function f(nums) re-
turns the sum of all even numbers in the list nums.

4.1 Variable Renaming

This program transformation systematically renames local variables,
function arguments, or function names using fresh identifiers that do
not conflict with existing symbols or Python built-ins. A consistent
mapping is maintained within each scope to ensure correctness. This
program mutation preserves the program’s semantics while altering
its lexical structure. Algorithm 4 shows the function f(nums) from
Algorithm 3 after renaming the variable sum to uoWIfiQc.

4.2 Comparison Expression Mirroring

This transformation mirrors comparison expressions by swapping
operands and applying their logically equivalent inverse operators.
This mutation preserves program semantics and applies to all sym-
metric and reversible binary comparisons. It is particularly useful for
assessing models that rely on syntax, such as token order or abstract
syntax tree structure, for reasoning about code. Algorithm 5 shows
the function f(nums) from Algorithm 3 after applying this muta-
tion to change n % 2 == 0 into 0 == n % 2.

4.3 Swap If-Else Statements

Another semantics-preserving mutation we use is the swapping of
if-else statements, in which the if and else blocks are swapped
and the if condition is logically negated. For example, a condition

Prompt
Generator LLM

Prompt

DeciderFeedback

Answer

Program
+

Specification

Correct
Output

Predicted
+

Reasoning

Figure 1. LLM-Based Program Output Prediction.

if x > 0: is rewritten as if not (x > 0):, with the bodies
of the if and else blocks swapped accordingly. This code muta-
tion maintains the program’s behaviour but alters the logical structure
and control flow graph (CFG). Robust models should recognise the
semantic equivalence of these logically inverted blocks and produce
consistent output predictions, regardless of the branching structure.
Algorithm 6 shows the function f(nums) from Algorithm 3 after
swapping the if and else statements.

4.4 For-to-While Loop Conversion

This code transformation rewrites for loops into semantically
equivalent while loops. It introduces an index variable and man-
ually iterates over the collection using the len() function and ex-
plicit indexing, while preserving all loop control logic. This transfor-
mation is particularly useful for assessing the robustness of LLMS

in recognizing semantically equivalent loop constructs. Algorithm 7
shows the function f(nums) from Algorithm 3 after converting the
for loop into a while loop.

4.5 Partial Loop Unrolling

To simulate partial loop unrolling while preserving semantics, we
extract the last one or two iterations of a while loop body and du-
plicate them after the loop. The loop condition is also modified to
run fewer iterations, e.g., reducing a bound n to n - 1 in a while
i < n condition. The extracted iterations are then executed sequen-
tially after the loop, preserving the program behaviour. Algorithm 8
shows the function f(nums) from Algorithm 7, after converting the
for loop into a while loop and then unrolling the last iteration.

5 LLM-Based Program Output Prediction
As illustrated in Figure 1, we address the task of using LLMS to pre-
dict the output of a Python program for a given input by employing
an iterative querying strategy. We chose this task of code output pre-
diction as our evaluation task because success in this task strongly
correlates with “understanding” of code semantics, but it is also easy
to check and automate the interaction. Starting with a program and
its input-output specification, we invoke a prompt generator that con-
structs and submits the query to the LLM. We then evaluate whether
the predicted output matches the expected one. If the prediction is
incorrect, a feedback prompt is generated and sent back to the LLM,
explicitly requesting a revised answer. This loop continues until the
model produces the correct output, the time limit is reached, or the
number of iterations exceeds five, typically indicating that the model
is stuck and repeatedly returning the same incorrect answer.

Prompts. The prompts used to query the LLMS follow a similar
format to those adopted in prior works [9, 12]. Each prompt asks the
model to complete a Python assertion, given the function signature
and a test input. To guide the model’s response format, we include

a brief example demonstrating how the answer should be wrapped
within specific tags, as follows:

Simulate the Execution: You are given a Python
function and an assertion containing a function
input. Complete the assertion containing the
execution output corresponding to the given
input in [ANSWER] and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain
your reasoning for your prediction, using
no more than 1000 tokens.
```python
def f(nums):

# python function
assert f([1, 2, 3, 4, 5]) == ???
```

Feedback. If the output predicted by the LLM is incorrect, i.e., it
does not match the expected output from the test suite, we provide
feedback to the model through iterative querying; this does not apply
to two of the evaluated models (SEMCODER, and MISTRAL) that
do not support more than one interaction. Specifically, a follow-up
prompt is sent indicating that the previous response was incorrect.
This feedback aims to simulate a correction loop and assess whether
the LLM can refine its prediction after being notified of a mistake.
An example of such a feedback prompt is:

Your previous output prediction was INCORRECT!
Try again. Complete the initial program
assertion containing the execution output
corresponding to the given input in [ANSWER]
and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain
your reasoning for your new prediction,
using no more than 1000 tokens.

6 Experiments
The goal of our experiments was to answer the following research
questions (RQs).
RQ1. Are Large Language Models (LLMS) truly reasoning about
code semantics, or merely guessing likely answers?
RQ2. Does the interactive querying process help LLMS arrive at
correct predictions supported by logically sound reasoning?
RQ3. Do different code mutations lead LLMS to produce different
predictions for the same program?
RQ4. Are LLMS robust in understanding code against semantics-
preserving mutations?

Experimental Setup. All experiments were run using NVIDIA
GeForce RTX 4090 graphics cards with 24GB of memory on an
AMD EPYC 7542 32-Core CPU Processor and 198GB RAM, using
a time limit of 90 seconds.

Table 1. In-depth Analysis of LLMS’ Reasoning on LIVECODEBENCH.

Large Language Models (LLMS) CODEGEMMA GRANITECODE QWEN2.5-CODER MISTRAL SEMCODER LLAMA3.2

% Failed Predictions 61.38 65.97 38.00 68.06 51.98 58.87
% Correct Predictions 38.62 34.03 62.00 31.95 48.01 41.13

% Correct Guesses based on flawed reasoning 51.35 42.34 12.79 49.67 16.08 60.90
% Correct Predictions based on sound reasoning (> 1 iteration) 3.78 14.72 8.76 – – 14.22
% Correct Predictions based on sound reasoning (= 1 iteration) 44.87 42.93 78.45 50.33 83.92 24.87

Evaluation Benchmarks. To evaluate our approach, we use
two widely adopted benchmarks of Python programs: LIVE-
CODEBENCH [17] and CRUXEVAL [12]. LIVECODEBENCH con-
tains 479 programs submitted to programming contests across com-
petition platforms, such as LeetCode [18] and CodeForces [5].
CRUXEVAL contains 800 functions generated by CODELLAMA [7],
each accompanied by a set of input-output examples for evaluation.
These benchmarks are commonly used to assess the capabilities of
LLMS across a range of code reasoning tasks, including test output
prediction, program synthesis, and repair.

We apply each of the semantics-preserving code mutations de-
scribed in Section 4 to the programs in the benchmark by randomly
selecting applicable statements for transformation. We then verify
that the semantics of the original program is preserved in the mu-
tated version. For each mutation, we generate a separate transformed
version of the benchmark, producing up to two mutated variants per
program, each containing at most one mutation.

Large Language Models (LLMS). In our evaluation, we exclu-
sively used open-access LLMS available on Hugging Face [16] with
at most 8B parameters, for two main reasons. First, closed-access
models like CHATGPT, DEEPSEEK, GEMINI are cost-prohibitive
and raise concerns regarding data privacy. Second, large models (e.g.,
70B parameters) require substantial computational resources, mak-
ing them impractical for local deployment.

Thus, we evaluated six different LLMS using the iterative query-
ing setup described in Section 5. Five of these models are LLMCS,
i.e., LLMS fine-tuned specifically for coding tasks: IBM’s GRA-
NITECODE [10] (8B), Google’s CODEGEMMA [6] (7B), Alibaba’s
QWEN2.5-CODER [27] (7B), Mistral’s MISTRAL [22] (7B), and
SEMCODER [9] (7B). As a sanity check, we used Meta’s LLAMA-
3.2 [21] (3B), which is a general-purpose LLM not specifically tai-
lored for coding tasks. Since SEMCODER and MISTRAL do not sup-
port iterative querying, only a single query was used per instance
for these models. All LLMS were deployed using Hugging Face’s
Pipeline architecture. We set the temperature to 0.1 and the max-
imum number of output tokens to 1024 for all models, except for
SEMCODER, a fine-tuned variant of DEEPSEEK-CODER-V2 [8],
which requires a temperature of 0 and a token length of 2048.

6.1 Expert Analysis of LLMS’ Reasoning About Code

To answer our first research question (RQ1), Table 1 presents a de-
tailed human expert analysis of the reasoning capabilities of the
evaluated LLMS using LIVECODEBENCH, focusing on their predic-
tion outcomes and code understanding. Among all models evaluated,
QWEN2.5-CODER achieved the highest rate of correct output pre-
dictions (62%), substantially outperforming the second-best model,
SEMCODER, which provided a correct prediction in only 48% of the
cases. Furthermore, despite LLAMA3.2 achieving a moderate rate
of correct predictions (41%), it exhibited a high proportion of cor-
rect predictions based on flawed reasoning (61%), suggesting a ten-
dency to reach correct outcomes without sound logical steps, i.e.,

through guessing. This may be explained by the fact that LLAMA-
3.2 is a general-purpose LLM, not specifically trained for coding
tasks. In contrast, SEMCODER demonstrated a particularly high rate
of correct predictions based on sound reasoning within a single itera-
tion (84%), higher than QWEN2.5-CODER, indicating a more robust
approach when successful. This may be attributed to SEMCODER ’s
reasoning approach, which simulates program semantics through a
monologue-style strategy (i.e., Chain-of-Thought).

A closer examination of the models’ reasoning behaviour reveals
significant differences in their reliance on guessing versus logical
reasoning. MISTRAL and CODEGEMMA appear to guess in approx-
imately 50% of cases, suggesting a tendency to produce answers
without sound reasoning. On the other hand, QWEN2.5-CODER

and SEMCODER present notably more robust reasoning capabilities,
guessing based on flawed logic in only 13% and 16% of cases, re-
spectively. This suggests that these LLMS are more likely to arrive
at correct outputs through logically sound reasoning. However, it
should be noted that, despite the relatively strong performance of
SEMCODER in reasoning, its slightly higher guessing rate compared
to QWEN2.5-CODER may be due to its inability to engage in an in-
teractive querying process. This limitation could prevent the model
from refining or validating its predictions through feedback, thereby
increasing its reliance on initial guesses.

Regarding our second research question (RQ2), and to evaluate
the impact of interactive querying on LLM performance, we anal-
yse the percentage of correct predictions that were attributed to log-
ically sound reasoning achieved after an initial failed attempt. This
metric reflects the extent to which feedback from earlier incorrect
predictions can guide models toward correct predictions based on
sound reasoning. Notably, GRANITECODE, LLAMA3.2 and QWEN-
2.5-CODER exhibit measurable gains through such iterative refine-
ment, with 14.72%, 14.22% and 8.76% of their correct predictions,
respectively, attributed to this interactive reasoning process. These
observations suggest that the ability to incorporate feedback into sub-
sequent generations may support more robust and logically grounded
predictions. The improvements observed in models such as GRANI-
TECODE and QWEN2.5-CODER imply that an interactive querying
process can be instrumental in guiding LLMS towards more accurate
and explainable code understanding. Note that MISTRAL and SEM-
CODER do not support, and therefore cannot benefit from, an inter-
active querying mechanism. Finally, we did not perform the same
in-depth analysis on CRUXEVAL as we did on LIVECODEBENCH,
due to its significantly larger size (800 programs) and the consider-
able effort required to interpret and annotate the models’ answers.

6.2 Robustness to Semantics-Preserving Mutations

Tables 2, 3, 4 and 5 provide insights into the performance of the eval-
uated LLMS when predicting program outputs, both on the original
benchmarks, LIVECODEBENCH and CRUXEVAL, and after apply-
ing various semantics-preserving code mutations. These mutations,
described in Section 4, include converting for loops to while
loops (F2W), mirroring comparison expressions (MCE), renaming

Table 2. Output prediction correction rate of each LLM on LIVECODEBENCH when applying different code mutations: converting for to while loops (F2W),
mirroring comparison expressions (MCE), renaming variables (RV), swap if-else statements (SIE), and unroll loops (UL).

Large Language Models (LLMS) F2W MCE Original Benchmark RV SIE UL
CODEGEMMA 34.0 (–5) 33.0 (–6) 38.6 34.0 (–5) 34.0 (–5) 32.0 (–7)
GRANITECODE 34.0 (+0) 34.0 (+0) 34.0 34.0 (+0) 33.0 (–1) 27.0 (–7)
LLAMA3.2 40.0 (–1) 38.0 (–3) 41.1 35.0 (–6) 34.0 (–7) 33.0 (–8)
MISTRAL 30.0 (–2) 33.0 (+1) 32.0 32.0 (+0) 33.0 (+1) 33.0 (+1)
QWEN2.5-CODER 57.0 (–5) 60.0 (–2) 62.0 62.0 (+0) 55.0 (–7) 60.0 (–2)
SEMCODER 44.0 (–4) 48.0 (+0) 48.0 49.0 (+1) 42.0 (–6) 48.0 (+0)

Table 3. Output prediction correction rate of each LLM on CRUXEVAL when applying different code mutations: converting for to while loops (F2W),
mirroring comparison expressions (MCE), renaming variables (RV), swap if-else statements (SIE), and unroll loops (UL).

Large Language Models (LLMS) F2W MCE Original Benchmark RV SIE UL
CODEGEMMA 33.0 (–2) 34.0 (–1) 35.0 32.0 (–3) 34.0 (–1) 32.0 (–3)
GRANITECODE 29.0 (–3) 30.0 (–2) 32.0 32.0 (+0) 30.0 (–2) 31.0 (–1)
LLAMA3.2 29.0 (+1) 29.0 (+1) 28.0 31.0 (+3) 29.0 (+1) 23.0 (–5)
MISTRAL 23.0 (–1) 24.0 (+0) 24.0 23.0 (–1) 22.0 (–2) 25.0 (+1)
QWEN2.5-CODER 56.0 (–4) 62.0 (+2) 60.0 61.0 (+1) 52.0 (–8) 62.0 (+2)
SEMCODER 51.0 (+0) 51.0 (+0) 51.0 50.0 (–1) 46.0 (–5) 47.0 (–4)

variables (RV), swapping if-else statements (SIE), and unrolling
loops (UL). Such transformations preserve the program’s functional-
ity while altering its syntactic structure, which enables an evaluation
of the models’ robustness and their understanding of code semantics.

6.2.1 Correct Prediction Rate Analysis

Tables 2 and 3 present the correct prediction rates on LIVE-
CODEBENCH and CRUXEVAL, respectively, for each LLM when
exposed to individual code mutations. These rates usually serve as
an indicator of how well each model performs in predicting correct
outputs [12, 17]. We present each LLM’s correct prediction rate both
on the original code and after applying the different code mutations.

In general, the performance of the models remains relatively sta-
ble across different mutations on both benchmarks. QWEN2.5-CO-
DER, for example, exhibits high performance on LIVECODEBENCH

across the various code mutations, with rates of 57% and 60% for
F2W and MCE, respectively. However, its performance does de-
crease when renaming variables (55%) and swapping if-else state-
ments (60%), showing a variation of at most 7%. Similarly, SEMCO-
DER on CRUXEVAL maintains consistent performance of 51% across
most mutations, with a noticeable drop only when applying the swap
if-else statement mutation (SIE), where it performs at 46%.

These results seem to suggest that most models exhibit relatively
stable performance, on LIVECODEBENCH and CRUXEVAL, when
subjected to individual semantics-preserving code mutations, indi-
cating a certain degree of robustness to isolated syntactic changes.
However, to more accurately assess the stability of each LLM, it
is crucial to analyse the set of distinct output predictions generated
under different mutations. This allows us to determine whether the
models maintain consistent reasoning and predictions across seman-
tically equivalent program variants.

6.2.2 Prediction Stability Analysis

Tables 4 and 5 delve deeper into the prediction stability of the mod-
els on LIVECODEBENCH and CRUXEVAL, respectively, when sub-
jected to a portfolio approach, which considers the models’ sets of
correct output predictions on both the original program and programs
with applied mutations. To assess model stability, we analyse the set
of programs identifiers for which each model correctly predicted the
output, considering that there is only one correct output per program;
while the models’ reasoning might differ slightly (e.g., in tokeniza-
tion), we focus solely on comparing the output predictions rather than
the entire answer, as full answer similarity would likely result in 0%.

A truly semantically robust LLM should maintain consistent perfor-
mance across the original and mutated code, as the functionality of
the code remains unchanged despite syntactic variations.

However, the results show significant performance fluctuations for
most models on LIVECODEBENCH (Table 4). For example, QWEN-
2.5-CODER demonstrates a substantial increase in performance from
62% on the original dataset to 93.1% when all mutations are ap-
plied. This significant change indicates that QWEN2.5-CODER is not
maintaining a consistent semantic understanding but rather adjusting
its predictions based on syntactic changes. A robust model would
exhibit much smaller variations, highlighting the model’s reliance
on syntactic cues rather than true semantic understanding. SEMCO-
DER follows a similar pattern, with performance increasing from
48% to 85% after all mutations are applied, a substantial improve-
ment of 37%. While this suggests that SEMCODER benefits from
the semantics-preserving mutations, it also underscores the model’s
lack of semantic robustness. The performance change, particularly
after renaming variables, suggests that SEMCODER’s predictions are
highly sensitive to syntax, pointing to potential gaps in its seman-
tic reasoning capabilities. LLAMA3.2 shows a relatively modest in-
crease in performance from 41.1% to 63.3%. This modest fluctua-
tion further highlights its lack of semantic stability and implies that
LLAMA3.2 ’s predictions are not firmly grounded in consistent code
semantics. This behavior may be expected from a general-purpose
LLM, which is not specifically fine-tuned for programming tasks.
In contrast, CODEGEMMA, GRANITECODE, and MISTRAL show
smaller increases in performance, ranging from 34% to 46.8%, with
CODEGEMMA achieving a more significant increase of 28.2% after
all mutations. While these models demonstrate some improvement in
performance, the fluctuations indicate that their semantic understand-
ing is fragile and easily influenced by syntactic variations in the code.
Hence, in response to our third research question (RQ3), we observe
that different semantics-preserving code mutations cause LLMS to
produce varying output predictions, which explains the substantial
improvements in correction rates reported in Table 4 when employ-
ing a portfolio approach on LIVECODEBENCH.

Table 5 shows the prediction stability of the evaluated LLMS

on CRUXEVAL when subjected to semantics-preserving code muta-
tions. The results are consistent with the trends observed in LIVE-
CODEBENCH, though with slightly greater stability. Most mod-
els exhibit notable variability in their predictions when exposed to
semantics-preserving code mutations, indicating a lack of true se-
mantic robustness. LLAMA3.2, SEMCODER, CODEGEMMA, and
QWEN2.5-CODER show the largest changes in performance, 20.1,
14.9, 14.6, and 13.6 percentage points respectively, when all muta-

Table 4. Output prediction stability of LLMS on LIVECODEBENCH when running a portfolio approach, applying different code mutations: converting for to
while loops (F2W), mirroring comparison expressions (MCE), renaming variables (RV), swap if-else statements (SIE), and unroll loops (UL).

LLMS Original Benchmark Original + F2W Original + MCE Original + RV Original + SIE Original + UL Original + All Mutations
CODEGEMMA 38.6% 47.2 (+8.6) 52.2 (+13.6) 51.8 (+13.2) 52.6 (+14.0) 42.0 (+3.3) 66.8 (+28.2)
GRANITECODE 34.0% 37.6 (+3.5) 39.5 (+5.4) 43.2 (+9.2) 38.4 (+4.4) 34.7 (+0.6) 46.8 (+12.7)
LLAMA3.2 41.1% 50.7 (+9.6) 50.9 (+9.8) 56.6 (+15.4) 49.3 (+8.1) 43.4 (+2.3) 64.9 (+23.8)
MISTRAL 31.9% 35.3 (+3.3) 35.7 (+3.8) 40.1 (+8.1) 36.1 (+4.2) 33.4 (+1.5) 44.7 (+12.7)
QWEN2.5-CODER 62.0% 75.6 (+13.6) 80.2 (+18.2) 82.9 (+20.9) 78.1 (+16.1) 67.6 (+5.6) 93.1 (+31.1)
SEMCODER 48.0% 63.0 (+15.0) 66.6 (+18.6) 71.6 (+23.6) 62.8 (+14.8) 52.0 (+4.0) 84.6 (+36.5)

Table 5. Output prediction stability of LLMS on CRUXEVAL when running a portfolio approach, applying different code mutations: converting for to while
loops (F2W), mirroring comparison expressions (MCE), renaming variables (RV), swap if-else statements (SIE), and unroll loops (UL).

LLMS Original Benchmark Original + F2W Original + MCE Original + RV Original + SIE Original + UL Original + All Mutations
CODEGEMMA 34.6% 38.6 (+4.0) 39.8 (+5.1) 44.1 (+9.5) 40.9 (+6.2) 35.9 (+1.2) 49.2 (+14.6)
GRANITECODE 32.4% 34.2 (+1.9) 34.8 (+2.4) 38.6 (+6.2) 34.5 (+2.1) 33.1 (+0.8) 40.9 (+8.5)
LLAMA3.2 28.0% 33.5 (+5.5) 32.6 (+4.6) 43.5 (+15.5) 33.2 (+5.2) 30.1 (+2.1) 48.1 (+20.1)
MISTRAL 24.1% 24.9 (+0.8) 25.6 (+1.5) 28.2 (+4.1) 26.0 (+1.9) 24.5 (+0.4) 30.4 (+6.3)
QWEN2.5-CODER 59.8% 63.2 (+3.5) 64.8 (+5.0) 70.4 (+10.6) 64.1 (+4.4) 61.9 (+2.1) 73.4 (+13.6)
SEMCODER 50.6% 55.2 (+4.6) 55.8 (+5.1) 61.8 (+11.1) 56.6 (+6.0) 52.2 (+1.6) 65.5 (+14.9)

tions are applied, this highlights that their predictions are sensitive
to syntactic changes rather than grounded in a stable understand-
ing of code semantics. GRANITECODE and MISTRAL experience
smaller but still observable fluctuations. Interestingly, LLMS appear
slightly more stable on CRUXEVAL than on LIVECODEBENCH. This
could be attributed to two main factors: first, the benchmark is pub-
licly available on GitHub [12], and many of the models are trained
on GitHub data, increasing the probability that they have encoun-
tered these examples or similar patterns during pre-training. Second,
CRUXEVAL was generated using CODELLAMA, potentially making
its style and structure more familiar to models influenced by similar
training distributions. As a result, the models may already “know”
the expected outputs, which could partially explain the more consis-
tent and accurate predictions observed.

Finally, in addressing our fourth research question (RQ4), the
observed variability in performance across different semantics-
preserving code mutations suggests that the evaluated LLMS lack
true semantic robustness. A model with robust understanding of code
semantics would maintain stable performance regardless of syntactic
variations, since such mutations do not alter the underlying meaning
of the code. However, the notable fluctuations in correction rates ob-
served across models suggest that their output predictions are often
driven by syntactic features rather than grounded in a robust under-
standing of code semantics. This lack of robustness highlights a crit-
ical area for improvement in the development of LLMS for code
understanding. Ensuring stable and consistent performance across
semantics-preserving mutations is essential for developing models
that can reason about code in a reliable and explainable manner. Fu-
ture research should therefore prioritise enhancing the semantic sta-
bility of LLMS, enabling them to better generalise across syntactic
variations without compromising accuracy or reasoning quality.

7 Related Work
In recent years, several work have explored the ability of code models
to reason semantically about programs, primarily through tasks such
as code generation and output prediction [4, 9, 12, 13, 17, 25, 28].
Henkel et al. [13] proposed improving the robustness of code models
by developing a set of semantics-preserving code mutations, such as
adding dead code, renaming variables, or inserting print statements,
that maintain program semantics while fooling small code models
(e.g., SEQ2SEQ and CODE2SEQ). These code mutations were used
to craft adversarial attacks and to apply robust optimization train-
ing, helping code models better resist such perturbations. Notably, al-
though they perform comprehensive evaluations on small-scale code

models, their methods are not tested on LLMS. More recently, Petrov
et al. [26] demonstrated that current LLMS, despite strong perfor-
mance on mathematical tasks, struggle significantly with rigorous
proofs. Their answers, when analysed manually, reveal major failure
modes, including flawed logic, unjustified assumptions, and a lack of
creativity, resulting in very low scores.

Regarding semantics-preserving code mutations, there has been
growing interest in augmenting program benchmarks through pro-
gram mutations. Yu et al. [29] proposed several syntax-based trans-
formation rules to perform data augmentation on Java programs.
Similarly, Liu and Zhong [20] mined repair patterns by extracting
and analysing Java code samples from Stack Overflow. For C pro-
grams, MULTIPAS [24] provides a transformation tool capable of
applying six semantics-preserving mutations and introducing three
types of faults to expand program benchmarks. In the domain of
Python, BUGLAB [2] introduced a program repair framework trained
by augmenting data, which involved injecting four types of minor
program defects. Finally, REFACTORY [15] applies syntactic refac-
toring rules to generate additional correct program variants for a
given programming assignment by introducing slight modifications
to the program’s control-flow graph while preserving its semantics,
in order to repair student submissions.

8 Conclusion
In this work we investigate the reasoning capabilities and seman-
tic robustness of state-of-the-art Large Language Models (LLMS)
in the context of program output prediction. Although many exist-
ing evaluations focus solely on prediction accuracy, we go further by
examining whether the correct outputs are grounded in sound rea-
soning and whether LLMS are robust to semantics-preserving code
mutations. Our evaluation, conducted over LIVECODEBENCH using
six LLMS, reveals two key findings. First, through expert human
analysis, we show that correct predictions are frequently the result
of flawed or superficial reasoning. For example, CODEGEMMA and
MISTRAL achieve correct answers in 32-39% of the cases, yet around
50% of those are not grounded in semantically valid reasoning, rais-
ing concerns about reliability of LLMS trained for coding tasks. Sec-
ond, our mutation-based robustness analysis on LIVECODEBENCH

and CRUXEVAL demonstrates that current LLMS are sensitive to
syntactic variations in the input code. Despite the fact that the ap-
plied mutations preserve the original program semantics, most mod-
els show significant variability in their predictions. This instability
underscores a lack of deep semantic understanding and highlights
their over-reliance on syntax-level patterns. These findings suggest

that high accuracy alone is not a sufficient indicator of genuine code
comprehension in LLMS. For trustworthy use in Software Engineer-
ing, future LLMS should be evaluated not only on output correctness
but also on the consistency of their reasoning. Progress in this direc-
tion may involve integrating formal semantics that explicitly encour-
age robustness to semantically equivalent code mutations.

Acknowledgements

This project received funding from the ERC under the Euro-
pean Union’s Horizon 2020 research and innovation programme
(FUN2MODEL, grant agreement No. 834115) and ELSA: Euro-
pean Lighthouse on Secure and Safe AI project (grant agreement No.
101070617 under UK guarantee).

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley series in computer science / World
student series edition. Addison-Wesley, 1986.

[2] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt. Self-supervised
bug detection and repair. In NeurIPS, 2021.

[3] F. E. Allen. Control flow analysis. In R. S. Northcote, editor, Proceed-
ings of a Symposium on Compiler Optimization, Urbana-Champaign,
Illinois, USA, July 27-28, 1970, pages 1–19. ACM, 1970.

[4] A. V. M. Barone, F. Barez, S. B. Cohen, and I. Konstas. The larger they
are, the harder they fail: Language models do not recognize identifier
swaps in python. In ACL 2023, pages 272–292, 2023. doi: 10.18653/
V1/2023.FINDINGS-ACL.19.

[5] Codeforces. https://codeforces.com, 2025. Accessed: 2025-05-01.
[6] CodeGemma. Codegemma: Open code models based on gemma.

CoRR, abs/2406.11409, 2024. doi: 10.48550/ARXIV.2406.11409. URL
https://doi.org/10.48550/arXiv.2406.11409.

[7] CodeLlama. Code llama: Open foundation models for code. CoRR,
abs/2308.12950, 2023. doi: 10.48550/ARXIV.2308.12950. URL https:
//doi.org/10.48550/arXiv.2308.12950.

[8] DeepSeek-AI. Deepseek-coder-v2: Breaking the barrier of closed-
source models in code intelligence. CoRR, abs/2406.11931, 2024. doi:
10.48550/ARXIV.2406.11931.

[9] Y. Ding, J. Peng, M. J. Min, G. E. Kaiser, J. Yang, and B. Ray. Sem-
coder: Training code language models with comprehensive semantics
reasoning. In NeurIPS 2024, 2024.

[10] Granite. Granite code models: A family of open foundation models for
code intelligence. CoRR, abs/2405.04324, 2024. doi: 10.48550/ARXIV.
2405.04324. URL https://doi.org/10.48550/arXiv.2405.04324.

[11] A. Gu, W. Li, N. Jain, T. Olausson, C. Lee, K. Sen, and A. Solar-
Lezama. The counterfeit conundrum: Can code language models grasp
the nuances of their incorrect generations? In L. Ku, A. Martins,
and V. Srikumar, editors, Findings of the Association for Computa-
tional Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pages 74–117. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.7. URL
https://doi.org/10.18653/v1/2024.findings-acl.7.

[12] A. Gu, B. Rozière, H. Leather, A. Solar-Lezama, G. Synnaeve, and S. I.
Wang. CRUXEval: A Benchmark for Code Reasoning, Understanding
and Execution. arXiv preprint arXiv:2401.03065, 2024. URL https:
//github.com/facebookresearch/cruxeval/tree/main.

[13] J. Henkel, G. Ramakrishnan, Z. Wang, A. Albarghouthi, S. Jha, and
T. W. Reps. Semantic robustness of models of source code. In SANER
2022, pages 526–537. IEEE, 2022. doi: 10.1109/SANER53432.2022.
00070.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata
theory, languages, and computation, 3rd Edition. Pearson international
edition. Addison-Wesley, 2007.

[15] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury. Re-
factoring based program repair applied to programming assignments. In
ASE 2019, pages 388–398. IEEE, 2019. doi: 10.1109/ASE.2019.00044.

[16] HuggingFace. . https://huggingface.co, 2025. [Online; accessed 1-May-
2025].

[17] N. Jain, K. Han, A. Gu, W. Li, F. Yan, T. Zhang, S. Wang, A. Solar-
Lezama, K. Sen, and I. Stoica. LiveCodeBench: Holistic and Contam-
ination Free Evaluation of Large Language Models for Code. CoRR,
abs/2403.07974, 2024.

[18] LeetCode. https://leetcode.com, 2025. Accessed: 2025-05-01.
[19] J. T. Liang, C. Yang, and B. A. Myers. A large-scale survey on the

usability of AI programming assistants: Successes and challenges. In
ICSE 2024, pages 52:1–52:13. ACM, 2024. doi: 10.1145/3597503.
3608128.

[20] X. Liu and H. Zhong. Mining stackoverflow for program repair. In
SANER 2018, pages 118–129. IEEE Computer Society, 2018. doi: 10.
1109/SANER.2018.8330202.

[21] Llama3. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

[22] Mistral. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
[23] S. Oh, K. Lee, S. Park, D. Kim, and H. Kim. Poisoned chatgpt finds

work for idle hands: Exploring developers’ coding practices with in-
secure suggestions from poisoned ai models. In 2024 IEEE Sym-
posium on Security and Privacy (SP), pages 1141–1159, 2024. doi:
10.1109/SP54263.2024.00046.

[24] P. Orvalho, M. Janota, and V. M. Manquinho. MultIPAs: Applying
Program Transformations To Introductory Programming Assignments
For Data Augmentation. In ESEC/FSE 2022, pages 1657–1661. ACM,
2022. doi: 10.1145/3540250.3558931.

[25] P. Orvalho, M. Janota, and V. M. Manquinho. Counterexample Guided
Program Repair Using Zero-Shot Learning and MaxSAT-based Fault
Localization. In AAAI 2025, pages 649–657. AAAI Press, 2025. doi:
10.1609/AAAI.V39I1.32046.

[26] I. Petrov, J. Dekoninck, L. Baltadzhiev, M. Drencheva, K. Minchev,
M. Balunovic, N. Jovanovic, and M. T. Vechev. Proof or Bluff? Eval-
uating LLMs on 2025 USA Math Olympiad. CoRR, abs/2503.21934,
2025. doi: 10.48550/ARXIV.2503.21934.

[27] Qwen. Qwen2.5-coder technical report, 2024. URL https://arxiv.org/
abs/2409.12186.

[28] S. Wang and et al. ReCode: Robustness Evaluation of Code Generation
Models. In ACL 2023, pages 13818–13843, 2023. doi: 10.18653/V1/
2023.ACL-LONG.773.

[29] S. Yu, T. Wang, and J. Wang. Data augmentation by program trans-
formation. J. Syst. Softw., 190:111304, 2022. doi: 10.1016/j.jss.2022.
111304.

Appendix A
In this appendix, we present representative examples for each
type of manual annotation used in our in-depth analysis of LIVE-
CODEBENCH [17]: (1) correct predictions based on sound reason-
ing after a single interaction, (2) correct predictions based on sound
reasoning achieved only after multiple feedback iterations, and (3)
correct predictions based on flawed reasoning (i.e., guesses).

A.1. Correct prediction based on sound reasoning

In the following example, we show the interaction with SEMCO-
DER [9] that results in a correct prediction based on sound reasoning
after a single prompt, using the same programming exercise intro-
duced in the motivation of our paper. Given two positive integers n
and target, function minPossibleSum finds the sum of an ar-
ray arr that meets the following conditions: len(arr) == n, all
elements in arr are distinct positive integers, and there does not ex-
ist two distinct indices, i and j, in the range [0, n - 1], such
that arr[i] + arr[j] == target. This corresponds to the
programming contest #2834 from LEETCODE [18].

• Our prompt:

Simulate the Execution: You are given a Python function
and an assertion containing a function input.
Complete the assertion containing the execution output
corresponding to the given input in
[ANSWER] and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???''' would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain your reasoning
for your prediction, using no more than 1000 tokens.

'''python
def minimumPossibleSum(n: int, target: int) -> int:

i = 1
arr = {1}
while len(arr) < n:

i += 1
if target - i not in arr:

arr.add(i)
return sum(arr)

assert minimumPossibleSum(n = 1, target = 1) == ???
'''

• SEMCODER’s response:

The function `minimumPossibleSum(n: int, target: int)->int`
is designed to find the sum of the first `n` positive
integers that are less than or equal to `target`.
Here's how it works:
1. It initializes `i` to 1 and creates a set `arr`
containing the integer 1.
2. It enters a while loop that continues until `arr`
contains `n` elements.
3. Inside the loop, it increments `i` by 1 and
checks if `target - i` is not in `arr`. If it's not,
it adds `i` to `arr`.
4. Finally, it returns the sum of the elements in `arr`.
Now, let's simulate the execution of
`minimumPossibleSum(n = 1, target = 1)` step by step.
1. The function is called with `n = 1` and `target = 1`.
2. [Line 3]: `i` is initialized to 1 and
`arr` is initialized to `{1}`.
3. [Line 4]: The while loop checks the
condition `len(arr) < n` (1 < 1), which is `False`,
so the loop does not execute.
4. [Line 7]: The function returns the
sum of the elements in `arr`, which is `sum({1}) = 1`.
So, the function returns `1` when
called with `n = 1` and `target = 1`.
Therefore, the correct assertion would be:
[/Code]
[ANSWER]
assert minimumPossibleSum(n = 1, target = 1) == 1
[/ANSWER]

A.2. Correct prediction based on sound reasoning after
more than one attempt

In this example, LLAMA3.2 [21] initially produces an incorrect out-
put prediction, but after receiving feedback, it revises its response
and provides the correct output along with logically sound reason-
ing. This programming contest corresponds to the exercise #2848
from LEETCODE. Given a 0-indexed 2D integer array nums repre-
senting the coordinates of the cars parking on a number line. For any
index i, nums[i] = [start, end] where start is the start-
ing point of the ith car and end is the ending point of the ith car.
Function numberOfPoints returns the number of integer points
on the line that are covered with any part of a car.

• Our prompt:

Simulate the Execution: You are given a Python function
and an assertion containing a function input. Complete
the assertion containing the execution output corresponding
to the given input in [ANSWER] and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???''' would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain your reasoning
for your prediction, using no more than 1000 tokens.
'''python
def numberOfPoints(nums: List[List[int]]) -> int:

c = set()
for start, end in nums:

for i in range(start, end + 1):
c.add(i)

return len(c)
assert numberOfPoints(nums = [[1, 3], [5, 8]]) == ???
'''

• LLAMA3.2’s response:

ANSWER]
def numberOfPoints(nums: List[List[int]]) -> int:

c = set()
for start, end in nums:

for i in range(start, end + 1):
c.add(i)

return len(c)
assert numberOfPoints(nums = [[1, 3], [5, 8]]) == 8
[/ANSWER]
The reasoning behind this prediction is that the
function `numberOfPoints` is designed to count the
number of points within a range defined by two
integers. In this case, the input `nums` is a list
of pairs of integers, where each pair represents a
range of points to count. For the given input
`[[1, 3], [5, 8]]`, the function will iterate over
all integers from 1 to 3, and then from 5 to 8.
The set `c` will store each unique integer within
these ranges, and the function will return the
total number of unique integers, which is 8.

• The LLAMA3.2 ’s initial prediction and reasoning are flawed.
Consequently, the second interaction with LLAMA3.2 proceeds
as follows;

• Our feedback:

Your previous output prediction was INCORRECT!
Try again.
Complete the initial program assertion containing
the execution output corresponding to the given
input in [ANSWER] and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain your reasoning
for your new prediction, using no more than 1000 tokens.

• LLAMA3.2’s second response:

[ANSWER]
def numberOfPoints(nums: List[List[int]]) -> int:

c = set()
for start, end in nums:

for i in range(start, end + 1):
c.add(i)

return len(c)
assert numberOfPoints(nums = [[1, 3], [5, 8]]) == 7
[/ANSWER]
The reasoning behind this prediction is that the
function `numberOfPoints` is designed to count the
number of points within a range defined by two
integers. In this case, the input `nums` is a list
of pairs of integers, where each pair represents a
range of points to count. For the given input
`[[1, 3], [5, 8]]`, the function will iterate over
all integers from 1 to 3, and then from 5 to 8.
However, the range from 1 to 3 includes the point
1 and 2, and the range from 5 to 8 includes the
points 5, 6, 7, and 8. The set `c` will store
each unique integer within these ranges, and the
function will return the total number of unique
integers, which is 7.

Thus, our feedback effectively guided LLAMA3.2 to refine its rea-
soning and produce a correct output prediction grounded in sound
semantic reasoning.

In another example, GRANITECODE [10] initially produces an
incorrect output prediction, but after receiving feedback, it revises
its answer and provides a correct prediction supported by logically
sound reasoning. This programming contest corresponds to the exer-
cise #2828 from LEETCODE. Given an array of strings words and
a string s, function isAcronym determines if s is an acronym of
words.

• Our prompt:

Simulate the Execution: You are given a Python function
and an assertion containing a function input.
Complete the assertion containing the execution
output corresponding to the given input in
[ANSWER] and [/ANSWER] tags. For example,
the answer to '''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]

assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain your reasoning
for your prediction, using no more than 1000 tokens.
'''python
def isAcronym(words: List[str], s: str) -> bool:

return s == "".join([w[0] for w in words])
assert isAcronym(words = ['an', 'apple'], s = 'a') == ???
'''

• GRANITECODE’s response:

[ANSWER]
assert isAcronym(words = ['an', 'apple'], s = 'a') == True
[/ANSWER]
The function `isAcronym` takes two arguments: `words`,
which is a list of strings, and `s`, which is a string.
The function returns `True` if the string `s` is an
acronym for the words in the list `words`,
and `False` otherwise.
To determine whether a string is an acronym for
a list of words, we can compare the string with
the first letter of each word in the list, separated
by no spaces. If the string matches the first
letters of all the words, then it is an acronym
for the list of words.
In this case, the string `s` is `'a'`, and the
first letters of the words in the list `['an',
'apple']` are `'a'`. Therefore, the function
should return `True` because `'a'` is an acronym
for `['an', 'apple']`.

• The model’s initial prediction and reasoning about the function’s
semantics are flawed. Consequently, the second interaction with
GRANITECODE proceeds as follows;

• Our feedback:

Your previous output prediction was INCORRECT!
Try again.
Complete the initial program assertion containing
the execution output corresponding to the given
input in [ANSWER] and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain
your reasoning for your new prediction,
using no more than 1000 tokens.

• GRANITECODE’s second response:

[ANSWER]
assert isAcronym(words = ['an', 'apple'], s='a') == False
[/ANSWER]
The function `isAcronym` takes two arguments: `words`,
which is a list of strings, and `s`, which is a string.
The function returns `True` if the string `s` is an
acronym for the words in the list `words`,
and `False` otherwise.
To determine whether a string is an acronym for a
list of words, we can compare the string with the
first letter of each word in the list, separated
by no spaces. If the string matches the first
letters of all the words, then it is an acronym
for the list of words.
In this case, the string `s` is `'a'`, and the first
letters of the words in the list `['an', 'apple']`
are `'an'`. Therefore, the function should return `False`
because `'a'` is not an acronym for `['an', 'apple']`.

As a result, the feedback successfully helped GRANITECODE re-
fine its reasoning and arrive at the correct output prediction based on
sound reasoning.

A.3. Correct guess based on flawed reasoning

In the following example, CODEGEMMA [6] predicts the correct
output of False for the previous programming contest #2828,
isAcronym. However, CODEGEMMA’s reasoning is flawed.
Hence, this interaction was considered a correct guess based on
flawed reasoning.

• Our prompt:

Simulate the Execution: You are given a Python
function and an assertion containing a function
input. Complete the assertion containing the
execution output corresponding to the given input
in [ANSWER] and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???''' would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain your reasoning
for your prediction, using no more than 1000 tokens.

• CODEGEMMA’s response:

'''python
def isAcronym(words: List[str], s: str) -> bool:

return s == "".join([w[0] for w in words])
assert isAcronym(words = ['an', 'apple'], s = 'a') == ???
'''
[ANSWER]
assert isAcronym(words = ['an', 'apple'], s = 'a') == False
[/ANSWER]
The function checks if a string is an acronym by
checking if the first letter of each word in the
list of words is the first letter of the acronym.
In this case, the acronym is "an apple", and the
string is "a". The first letter of each word in
the list of words is "a", but the first letter of
the string is "a". Therefore, the function should
return False.

In another example, MISTRAL [22] correctly predicts the output,
but the accompanying reasoning is flawed. Therefore, we classify
this interaction as a correct guess based on flawed reasoning. This
example corresponds to programming exercise #2828, isAcronym.

• Our prompt:

Simulate the Execution: You are given a Python function
and an assertion containing a function input. Complete
the assertion containing the execution output corresponding
to the given input in [ANSWER] and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???''' would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain your reasoning
for your prediction, using no more than 1000 tokens.

• MISTRAL’s response:

'''python
def isAcronym(words: List[str], s: str) -> bool:

res = ''
for w in words:

res += w[0]
return res == s

assert isAcronym(words = ['an', 'apple'], s = 'a') == ???
'''
[ANSWER]
assert isAcronym(words=['an', 'apple'], s='a') == False
[/ANSWER]
Explanation: The function `isAcronym` checks if the given
list of words forms an acronym by concatenating the first
letter of each word. In this case, the list ['an', 'apple']
does not form an acronym for the letter 'a', as the first
letter of 'apple' is not 'a'. Therefore, the assertion
should return False.

