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Abstract
Virtually all verification techniques using formal methods rely on the availability of a formal
specification, which describes the design requirements precisely. However, formulating specifications
remains a manual task that is notoriously challenging and error-prone. To address this bottleneck in
formal verification, recent research has thus focussed on automatically generating specifications for
formal verification from examples of (desired and undesired) system behavior. In this survey, we list
and compare recent advances in mining specifications in Linear Temporal Logic (LTL), the de facto
standard specification language for reactive systems. Several approaches have been designed for
learning LTL formulas, which address different aspects and settings of specification design. Moreover,
the approaches rely on a diverse range of techniques such as constraint solving, neural network
training, enumerative search, etc. We survey the current state-of-the-art techniques and compare
them for the convenience of the formal methods practitioners.
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1 Introduction

Formal methods refer to the discipline of computer science that employs mathematically
rigorous techniques to ensure the safe behavior of software, hardware, and cyber-physical
systems. There have been countless success stories of formal methods, ranging over several
application domains such as communication systems [28, 55], railway transportation [5, 6],
aerospace [33, 24], and operating systems [79, 47], to name but a few. We refer the reader to
the exceptional textbook by Baier and Katoen [7] for a comprehensive introduction.

However, there is an important catch with verification techniques: they assume the avail-
ability of functional and usable specifications that precisely describe the design requirements.
This assumption is often unrealistic as designing specifications, which had been primarily a
manual task, proves not only to be tedious but also error-prone. Consequently, the availability
of formal specifications is widely regarded as a major bottleneck in formal methods [2, 11, 76].

To overcome this limitation, recent efforts have focused on developing methods that
can automatically generate specifications from examples of desired and undesired system
behavior. Notably, a significant body of research has emerged that concentrates on learning
specifications in Linear Temporal Logic (LTL). This focus on LTL is due to its dual benefits:
mathematical precision and interpretability. The latter has recently become of increasing
interest as it facilitates the application of LTL beyond formal verification to areas such as
reinforcement learning, planning, and other AI-related domains [53, 18, 43, 17].

This survey provides a comprehensive overview of the diverse body of work focused on
learning LTL specifications. In the past decade, researchers have tackled this task from
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multiple perspectives, spanning various settings and methodologies. As summarized in
Table 1, these efforts can be differentiated based on their learning setup, methodology, and
the guarantees they provide, offering a nuanced understanding of the field.

We specifically focus on approaches addressing the passive learning problem, where the
objective is to learn concise LTL formulas that accurately capture user-provided examples of
a system’s behavior. These examples typically consist of two categories: positive (desirable)
and negative (undesirable) system behaviors. However, in many practical scenarios, it is
unrealistic to assume the availability of perfectly labeled examples for both classes. Real-
world data is often noisy, making it challenging to accurately classify the data. Furthermore,
in many safety-critical domains, such as autonomous vehicles and medical devices, obtaining
negative examples may be infeasible or even risky (potentially harming humans). As a result,
some approaches have explored less conventional settings, including noisy data and scenarios
where only positive examples are available.

The approaches summarized in Table 1 share a common thread: they employ search
strategies to navigate the space of possible LTL formulas, although these strategies differ
substantially in their methodology. Some approaches leverage off-the-shelf constraint solvers
(e.g., SAT and SMT solvers) by carefully encoding the learning problem in propositional or
first-order logic, while others employ specialized enumeration techniques tailored to the task.
A third category of approaches harnesses advances in deep learning to identify promising
LTL formulas. As a result, the search strategies, considered LTL fragments, and theoretical
guarantees vary substantially.

The remainder of this paper compares and contrasts the underlying principles of the
aforementioned approaches, categorized into three distinct groups based on their search
strategies. These categories comprise constraint-based, enumeration-based, and neural-
network-based methods, which will be explored in Sections 4, 5, and 6, respectively. Section 2
provides the required background on LTL and the learning problem we consider.

2 Preliminaries

2.1 System Executions and Words

Informal methods, executions or trajectories of systems are typically formalized as sequences
of symbols from a finite non-empty set Σ, known as alphabet. We refer to such sequences as
words over Σ. A word w = a0a1 . . . , where ai ∈ Σ, can be either finite or infinite, depending
on whether the execution it represents is finite or infinite. The set of infinite words over Σ is
denoted by Σω, while the set of finite words is denoted by Σ∗. Given a word w = a1a2 . . .

in Σ∗ or Σω, we let w[i] := ai denote symbol of w at position i and w[i :] := aiai+1 . . . the
suffix starting from the starting from position i. The length |w| of a word w is the number
of its symbols. In particular, the empty word, denoted by ε, has length zero.

2.2 Linear Temporal Logic (LTL)

The logic LTL [67] is the de facto standard for reasoning about executions, or sequences
of events, of reactive systems. Typically, specific events in a system are abstracted using a
set P of propositions, which represent events or properties of interest in the system under
consideration. A system execution is then modeled by a word over the alphabet Σ = 2P ,
capturing the propositions that hold true at specific time points along the system’s execution.

Given a set P of propositions, the syntax of LTL formulas is defined inductively using
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the grammar
φ := p ∈ P | ¬φ | φ ∨ φ | X φ | φ U φ,

where ¬ (not) and ∨ (or) are Boolean operators, while X (neXt) and U (Until) are so-called
future-time temporal operators. Several derived Boolean operators, including ∧ (conjunction)
and → (implication), as well as temporal operators, such as F (Eventually), G (Always),
W (Weak Until), and R (Release), are often added as syntactic sugar. Additionally, some
works also incorporate past-time temporal operators, including P (Previously) and S (Since),
which are past-time analogs of X and U, respectively.

To define the semantics of LTL, one usually uses a “model relation”, denoted by |=, which
captures when the suffix of a word w ∈ (2P)ω starting at a position i ∈ N satisfies an LTL
formula φ. Formally, this relation is given as follows:

w, i |= p if and only if p ∈ w[i]
w, i |= ¬φ if and only if w, i ̸|= φ

w, i |= φ1 ∨ φ2 if and only if w, i |= φ1 or w, i |= φ2

w, i |= X φ if and only if w, i + 1 |= φ

w, i |= φ1 U φ2 if and only if w, j |= φ2 for some i ≤ j and
w, k |= φ1 for each i ≤ k < j

If the entire word starting at position 0 satisfies φ (i.e., w, 0 |= φ), we simply write w |= φ

and say that w satisfies φ.
Traditionally, LTL has been interpreted over infinite words, but there is a growing interest

in interpreting LTL over finite words [38], particularly in artificial intelligence applications.
To reflect this shift, it is sufficient to adapt the model relation slightly, taking into account
the end of a word in the operators X and U. More precisely, we modify the model relation
for a finite word w ∈ (2P)∗ as follows:

w, i |= X φ if and only if i < |w| − 1 and w, i + 1 |= φ

w, i |= φ1 U φ2 if and only if w, j |= φ2 for some i ≤ j ≤ |w − 1| and
w, k |= φ1 for each i ≤ k < j

The size of an LTL formula φ, denoted by |φ|, is defined as the number of its unique
subformulas. For example, the size of φ := (p U G q) ∨ X(G q) is six since it contains six
unique subformulas: (p U G q) ∨ X(G q), p U G q, X(G q), G q, p, and q.

When learning LTL formulas, it is useful to have a canonical representation. A common
approach is to use a so-called syntax directed acyclic graph (DAG), which is a syntax tree
that merges common subformulas. Figure 1 illustrates the distinction between a syntax tree
(Figure 1a) and a syntax DAG (Figure 1b) for the formula φ := (p U G q) ∨ X(G q). Notably,
the size of a formula and the number of nodes in its syntax DAG coincide, whereas the
number of nodes in the syntax tree can be exponentially larger.

3 Passive Learning of LTL Formulas.

With the necessary groundwork established, we now turn our attention to the central task
of this survey: learning LTL formulas from examples. To this end, we assume that the
examples of desired and undesired system executions are bundled in a sample, denoted by S.
In the standard setting for passive learning of LTL formulas, this sample takes the form of a
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(a) Syntax Tree
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(b) Syntax DAG

Figure 1 Representations of LTL formula φ = (p U G q) ∨ X(G q)

pair S = (P, N), comprising two sets of words: P , consisting of positive examples, and N ,
comprising negative examples, where P ∩ N = ∅.

A crucial concept in this setting is that of consistency, where an LTL formula φ is said
to be consistent with the sample S if it satisfies two conditions: firstly, every word u ∈ P

must satisfy φ (i.e., u |= φ), and secondly, every word v ∈ N must not satisfy φ (i.e., v ̸|= φ).
This definition allows us to define the passive learning task formally.

▶ Definition 1 (Passive Learning of LTL formulas). Given a sample S = (P, N), compute a
minimal LTL formula φ that is consistent with S.

A crucial aspect of the above definition is the minimality requirement for the prospective
LTL formula, as emphasized by Neider and Gavran [60]. Notably, the problem becomes
trivial if this size restriction is relaxed: for any u ∈ P and v ∈ N , one can construct a formula
φu,v that captures the first symbol where u and v differ using a sequence of X-operators
and a suitable propositional formula, ensuring that u |= φu,v and v ̸|= φu,v. Then, the
conjunction of these formulas,

∧
u∈P

∨
v∈N φu,v, is consistent with the sample S. However, a

formula that simply enumerates the differences in the positive and negative examples suffers
from overfitting and fails to generalize the temporal patterns. Furthermore, the resulting
formula can become excessively complex, thereby compromising its interpretability.

There has been significant research aimed at understanding the theoretical aspects of the
above problem, particularly in terms of computational complexity [29, 58, 15]. In this survey,
however, we will primarily focus on practical algorithms that efficiently address the problem.
While the problem as stated represents the standard passive learning framework, real-world
scenarios often deviate from this idealization. In practice, samples may be imperfect—either
noisy (e.g., due to misclassifications or sensor reading errors) or incomplete (e.g., when only
positive examples are available). To account for such challenges, numerous studies have
extended the passive learning framework to accommodate these scenarios.

4 Constraint-Based Approaches

As hinted at in the introduction, constraint-based approaches leverage off-the-shelf solvers
to search for prospective LTL formulas. These solvers employ a wide range of technologies,
including (i) solvers for satisfiability (SAT) [26, 8] and maximum satisfiability (MaxSAT)
[12] for propositional logic, (ii) Inductive Logic Programming (ILP) [35], (iii) Mixed Integer
Linear Programming (MILP) [62], and (iv) Syntax-Guided Synthesis (SyGuS) [1].

At the heart of constraint-based approaches lies the idea of translating the learning
problem into one or several satisfiability problems within a suitable logical framework (e.g.,
SAT or SMT). Although the solver technologies may differ, the underlying logical encodings
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of the learning problem exhibit striking similarities across most works. In particular, most
approaches separate the encoding of the syntax of the prospective formula from its semantics,
allowing for a flexible and modular formulation of the search problem. This modularity
enables the customization of the search to accommodate specific requirements, such as
targeting a particular subclass of formulas or satisfying a specific subset of examples.

To further illustrate this approach, let us consider one of the pioneering works in this
category, the paper by Neider and Gavran [60], which leverages SAT solving. The core of
their approach revolves around constructing a series (ΦS

n)n=1,2,... of propositional formulas
that facilitate the search for prospective LTL formulas of increasing size n. Specifically, each
formula ΦS

n satisfies two crucial properties: (i) it is satisfiable if and only if there exists an
LTL formula of size n that is consistent with S and (ii) a satisfying assignment of ΦS

n contains
sufficient information to construct such an LTL formula. By incrementally increasing the
value of n until ΦS

n becomes satisfiable, one can obtain an LTL formula that is guaranteed to
be minimal and consistent with S.

The formula ΦS
n is constructed as a conjunction of two subformulas, ΦS

n = ΦDAG
n ∧

Φcon
n . The subformula ΦDAG

n encodes the syntax DAG of the prospective LTL formula and
encompasses a range of constraints, ensuring that fundamental properties of a syntax DAG
of an LTL formula are satisfied (e.g., each node being labelled by a unique LTL operator and
each node having at most two children). On the other hand, the subformula Φcon

n ensures
that the the positive examples satisfy the prospective LTL formula while the negative ones
violate it. To this end, the formula Φcon

n encodes of the semantics of LTL on the given
positive and negative words similar to Bounded Model Checking [23]. They rely on the SAT
solver Z3 [26] for their implementation.

Riener [73] expanded upon the work of Neider and Gavran, streamlining the SAT encoding
by preprocessing the possible syntactic structures of LTL formulas, formalized as partial DAGs.
By precomputing and storing partial DAGs, which are not yet labeled with LTL operators,
Riener’s approach enables a more efficient search by decomposing the search space according
to the underlying DAG structure. This innovation potentially enables parallelization, thereby
accelerating the encoding process and reducing computational complexity.

Camacho and Mcllraith [19] propose a SAT encoding similar to that of Neider and Gavran,
leveraging Alternating Finite Automata (AFA), a type of finite state acceptors for words.
Since the definition of AFA are distinct from LTL, both approaches seem different at the
first glance. However, it is well established that counter-free AFA, a specific subclass of
AFA, are equivalent to LTL in terms of their expressive power. Furthermore, the syntactic
structure and semantic interpretation of counter-free AFA, as demonstrated by Camacho
and Mcllraith [19, Theorem 1, Property 1], show a striking resemblance to those of LTL,
ultimately leading to an encoding that is almost identical to that of Neider and Gavran.
They rely on the SAT solver Pycosat [10] for their implementation.

Arif et al. [3] elevate the SAT-based encoding of Neider and Gavran to a syntax-guided
synthesis (SyGUS) framework. Such frameworks, employed in programming synthesis,
inherently support various search heuristics, including symmetry breaking, rewrite rules, and
others. Notably, in contrast to previous work that translates LTL semantics to SAT in a
straightforward manner [60], Arif et al. rely on a bit-vector arithmetic-based encoding. They
use the CVC4SY solver [72] for their implementation.

Ielo et al. [45] elevate the SAT-based encoding of Nieder and Gavran to the Answer
Set Programming (ASP) framework, a declarative programming paradigm that allows for
defining problems in terms of rules and constraints. They devise two formulations of the
passive learning problem in ASP, as an abduction problem and as a context-depedent learning
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problem. They rely ASP solvers such as CLINGO and ILASP [34] in their implementation.

4.1 Learning from Noisy Data.
To accommodate noisy data, a relaxation of the requirement for the generated formula to be
consistent with all examples is necessary. This relaxed consistency criterion is often expressed
using metrics of misclassification, such as the loss function

l(S, φ) =
∑

u∈P [u ̸|= φ] +
∑

v∈N [v |= φ]
|P | + |N |

,

where S = (P, N) and the Iverson bracket [ ] maps true statements to 1 and false to 0. This
loss quantifies the proportion of examples misclassified by the formula φ and closely mimic
standard loss functions used in statistical machine learning.

To learn minimal LTL formulas that minimimize the above loss function, Gaglione et
al. [32] propose translating the problem into a Maximum Satisfiability (MaxSAT) instance,
mirroring the techniques employed by Neider and Gavran [60] and Riener [73] for propositional
logic. MaxSAT extends the classical satisfiability problem of propositional logic, allowing for
the definition of hard constraints (mandatory clauses) and soft constraints (optional clauses).
The solution to a MaxSAT problem is a variable assignment that satisfies all hard constraints
and as many soft constraints as possible. Gaglione et al. capitalize on this technology by
designating all clauses in ΦDAG

n as hard constraints and selected clauses in Φcon
n as soft

constraints. As a result, they obtain a minimal LTL formula that minimizes the specified loss
function. They rely on the MaxSAT solving capabilities of Z3 [12] for their implementation.

In fact, by following a similar method, almost all of the constraint-based approaches can
potenitally be extended to noisy settings if the solver employed allows such relaxations.

4.2 Learning from Positive Examples Only.
The problem of learning from positive examples only is a special case of the one-class learning
task, where only one class of inputs (positive or negative) is available. This problem frequently
arises in AI applications, particularly in the context of explainability, where one seeks to
infer the behavior of an autonomous agent from observational data.

Unlike learning from noisy data, extending constraint-based approaches to learn from only
positive examples is not straightforward. The primary reason for this is that learning LTL
formulas from positive examples is an inherently ill-posed problem. Given a set of positive
examples P , the smallest LTL formula that is consistent with P is the trivial formula true,
which is satisfied by any word. Clearly, this formula is too general and does not provide any
insights into the underlying (temporal) patterns in the examples.

To address this challenge, Roy et al. [75] propose strongness—or specificity—as an
additional optimization parameter besides the size of the formula. In particular, the authors
solve formulate a learning task wherein, given a set P of positive examples and a size bound
n > 0, the goal is to learn an LTL formula φ that satisfies the following three conditions: (i)
each w ∈ P satisfies φ, (ii) φ has size at most n, and (iii) there exists no other formula with
the former two properties that implies φ.

To tackle this problem, Roy et al. employ a counterexample-guided inductive synthesis
loop [1], which leverages negative examples to guide the learning algorithm towards a
most specific LTL formula. In each iteration of the loop, the authors utilize one of the
aforementioned SAT-based methods to construct a consistent LTL formula. This formula is
then analyzed, and if necessary, used to generate a new negative example that directs the
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search towards a more specific formula. This iterative process continues until no formulas
more specific than the current formula can be found, at which point the algorithm terminates.

Chou et al. [22] propose learning LTL formulas from positive examples of high-dimensional
data. They rely on domain specific non-convex cost functions involving the positive examples
and LTL formulas to ensure that the prospective formula tightly describes the examples. To
search for the prospective formula, they provide a joint encoding of the cost functions and
the syntax DAG of LTL formulas using Mixed Integer Linear Programming (MILP). They
rely on the MILP solver IPOPT [80] for their implementation.

5 Enumeration-Based Approaches

The constraint-based approaches discussed in Section 4 provide a systematic method for
learning arbitrary LTL formulas. However, the performance of these approaches is limited
by the capabilities of the underlying solvers. The search techniques typically employed in
the solvers are not optimized for learning LTL formulas, thus often leading to bottlenecks in
scalability.

As a result, recent works have started exploring alternative search strategies that are
tailored to navigate through the search space of LTL formulas efficiently. These approaches
search through relevant/interesting LTL formulas in a more targeted manner that results in
scalability, typically at the expense of the minimality of the learned formulas.

A prominent example of this approach is Scarlet, a tool developed by Raha et al. [69, 70]
that detects and accumulates common temporal patterns in a given sample. For instance,
analyzing a sample consisting of a positive word u = {p}{p}{q}{p}{r}{p} and a negative
word v = {p}{p}{r}{p}{q}, Scarlet extracts the formula F(q ∧ F(r)), which captures the
order in which the propositions q and r appear. By employing dynamic programming, the
tool identifies a large number of such patterns, which are then translated into a simple yet
expressive LTL fragment named directed LTL. Scarlet then combines a suitable selection
of directed LTL formulas to construct a consistent formula using a novel procedure called
Boolean subset cover. Unlike constraint-based approaches, Scarlet’s search strategy integrates
syntax and semantics computations in a single, unified process, resulting in a more efficient
and effective method for learning LTL formulas.

Another notable example is the highly parallelized algorithm developed by Valizadeh et
al. [78], which is designed to leverage the processing power of Graphics Processing Units
(GPUs). Their approach comprises two pivotal procedures: relaxed unique checks (RUCs)
and divide and conquer (D&C). The RUCs procedure performs a bottom-up search through
the syntax of LTL formulas, eliminating redundant formulas that exhibit the same behavior
on the given sample. Since this procedure is resource-intensive, it cannot be easily extended
to large samples. To mitigate this, the D&C procedure partitions the sample into smaller,
manageable subsets on which RUCs can be applied in parallel. The resulting formulas
can then be combined using Boolean combinations to generate one consistent LTL formula.
Internally, Valizadeh et al.’s approach employs bit-vectors to encode the semantics of LTL
formulas, which can be highly efficiently implemented on GPUs. By exploiting the parallel
processing capabilities of GPUs, the authors achieve a significant speedup, making their
approach perhaps the most scalable one of all.

Ghiorzi et al. [36] propose a range of heuristics to expedite the enumeration of LTL
formulas. Inspired by Riener [73], the authors first employ an enumeration strategy based on
partial DAGs to navigate the search space quickly. Then, they utilize LTL rewrite rules to
eliminate equivalent and redundant formulas, leveraging rules such as φ ∧ ¬φ ≡ false and
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¬ F φ ≡ G(¬φ). Additionally, the authors efficiently eliminate tautologies and contradictions
by alternately checking the satisfaction of enumerated LTL formulas on positive and negative
examples.

6 Neural Network-Based Approaches

Recent research also focuses on leveraging the optimized training capabilities of neural
networks to achieve scalability in the LTL learning process. However, due to the inherent
uncertainty of neural network training, these approaches lack theoretical guarantees regarding
the consistency of the learned LTL formulas. Nonetheless, they can produce reasonably good
LTL formulas from large, typically noisy datasets.

The current approaches specifically exploit Graph Neural Networks (GNNs) [42] to learn
LTL formulas. GNNs are a powerful neural architecture that learns vector representations of
vertex and edge features, typically called embeddings. More formally, GNNs define a message-
passing process between vertices in a graph, where each vertex aggregates information from its
neighbors to update its own representation. This process is repeated several times, allowing
the model to learn complex patterns and relationships between vertex and edge features.

The critical insight to understanding the connection of LTL and GNNs is to view a word
w = a1a2 . . . an as a linear graph v1 → v2 · · · → vn with n nodes. This representation allows
associating a feature vector xi to each node vi that tracks the satisfaction of the different
subformulas of a prospective LTL formula φ when evaluated at the i-position of an example
(see the definition of the model relation on Page 4). By leveraging message passing, the
satisfaction of the entire formula φ can be computed by aggregating the feature vectors of
nodes vj with j > i according to the semantics of LTL.

Luo et al. [56] built upon the insight of representing words as linear graphs to train a
GNN on a sample S = (P, N). Subsequently, the authors use the learned network weights to
extract an LTL formula that closely approximates the behavior of the GNN on the given
sample.

Although Luo et al.’s work pioneered the use of GNNs for learning LTL formulas, it
suffers from the limitation that the extracted LTL formula might accurately capture the
behavior of the trained GNN. Wan et al. [81] address this shortcoming by introducing an
enhanced architecture. In particular, the authors devise a faithful encoding of the LTL
semantics within the GNN architecture, achieved through parametric constraints on the
network weights. This innovative encoding ensures that a consistent LTL formula can always
be reliably extracted from the trained GNN.

7 Other Settings

Our discussion thus far has centered around the classical passive learning problem for LTL as
defined in Definition 1. However, several variants of this problem have been explored, each
presenting unique challenges. In this section, we discuss three such extensions, highlighting
their distinct characteristics and proposed solutions.

7.1 Mining LTL based on Templates
A key property of Definition 1 is that it makes no restrictions on the syntactic structure
of an LTL formula as long as this formula is consistent with the given sample. In practice,
however, users sometimes want to incorporate domain knowledge into the learning process or
must confine the solutions to specific LTL fragments. Unfortunately, the methods discussed
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in Sections 4 to 6 do not offer this level of fine-grained control and, thus, cannot be applied
in such situations.

To address this limitation, researchers have proposed methods that allow users to provide
a partial formula, typically referred to as a template or sketch, where parts can be omitted
(typically indicated by a question mark). In this framework, the task of a learning algorithm
is then to infer the missing part of a template (or sketch) so that the completed formula is
consistent with a given set of examples. Notable examples operating in this setting are the
methods by Lemieux et al. [51] and Lutz et al. [57]. The former approach considers templates,
called property types, in which question marks serve as placeholders for missing propositions.
By contrast, the latter approach introduces so-called sketches in which placeholders can
represent missing operators and even entire subformulas.

For example, Li et al. [52] have developed a method to mine LTL specifications in
the GR(1) fragment of LTL, using templates that include G F?, G(? → X?), and others.
Similarly, Shah et al. [77] have focused on conjunctive LTL formulas built from a limited set
of typical temporal properties collected by Dwyer et al. [27]. Another notable example is the
work by Kim et al. [46], which considers a set of interpretable LTL templates originating in
software system development and seeks to infer formulas robust to noise in the input data.

7.2 Mining LTL from Natural Language
One of the significant barriers to adopting temporal logic in practice is the limited expertise of
practitioners and engineers in this area [44, 40]. As a result, they often prefer to specify their
requirements in natural language, which is more intuitive and accessible to them. Several
research efforts have focused on bridging this gap by automatically extracting LTL formulas
from natural language descriptions. Early approaches [30, 50, 64, 37, 39] achieved this by
efficiently parsing English sentences to translate them into LTL and other temporal logic
formulas. The advent of data-driven techniques has led to the development of neural-network-
based methods [65, 41, 21] that rely on human-labeled pairs of natural language descriptions
and corresponding logic formulas. More recently, researchers have begun to leverage the
impressive natural language understanding capabilities of Large Language Models to enhance
the translation capabilities further [25, 66, 54, 31], offering promise for more effective and
efficient property specification.

7.3 Logics beyond LTL
The widespread adoption of continuous-time logics, such as Signal Temporal Logic (STL), in
the context of cyber-physical systems has spawned a significant body of research focused
on learning specifications in STL. In fact, a comprehensive survey by Bartocci et al. [9] is
dedicated entirely to this problem. Most of these works concentrate on learning formulas
with a specific syntactic structure [13, 14] or identifying time intervals for given STL
formulas [4, 49, 48]. A handful of works also tackle the more general passive learning problem,
where the goal is to learn STL formulas of arbitrary structure [59, 63].

In addition to linear-time properties, there exist several works focusing on learning
branching-time properties in Computation Tree Logic (CTL). For instance, Chan [20]
addresses the problem of completing simple CTL templates, while Wasylkowski and Zeller [82]
investigate inferring operational preconditions for Java methods in CTL. Recent research by
Pommellet et al. [68] and Bordais et al. [16] demonstrate that constraint-based techniques
can be used to learn not only CTL but also Alternating-time Temporal Logics (ATL), which
extends CTL for multi-agent systems.
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Apart from LTL, STL and CTL, there is also research on learning formulas in other
temporal logics, such as Metric Temporal Logic (MTL) [71], and the Property Specification
Language (PSL) [74].

8 Conclusion

This survey provides a comprehensive overview of the diverse research efforts focused on
learning specifications in temporal logic, with a particular emphasis on Linear Temporal Logic.
We systematically compared and contrasted these works based on their search strategies to
navigate the vast space of possible formulas. Some approaches leverage off-the-shelf solvers,
while others propose customized enumeration techniques or exploit advances in deep learning
to facilitate the learning process. By synthesizing the strengths and limitations of these
approaches, we aim to provide a roadmap for future research in this exciting and rapidly
evolving field.
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