
Verified Probabilistic Policies
for Deep Reinforcement Learning

Edoardo Bacci and David Parker

University of Birmingham, Birmingham, United Kingdom
{exb461,d.a.parker}@bham.ac.uk

Abstract. Deep reinforcement learning is an increasingly popular tech-
nique for synthesising policies to control an agent’s interaction with its
environment. There is also growing interest in formally verifying that
such policies are correct and execute safely. Progress has been made
in this area by building on existing work for verification of deep neu-
ral networks and of continuous-state dynamical systems. In this paper,
we tackle the problem of verifying probabilistic policies for deep rein-
forcement learning, which are used to, for example, tackle adversarial
environments, break symmetries and manage trade-offs. We propose an
abstraction approach, based on interval Markov decision processes, that
yields probabilistic guarantees on a policy’s execution, and present tech-
niques to build and solve these models using abstract interpretation,
mixed-integer linear programming, entropy-based refinement and prob-
abilistic model checking. We implement our approach and illustrate its
effectiveness on a selection of reinforcement learning benchmarks.

1 Introduction

Reinforcement learning (RL) is a technique for training a policy used to govern
the interaction between an agent and an environment. It is based on repeated
explorations of the environment, which yield rewards that the agent should aim
to maximise. Deep reinforcement learning combines RL and deep learning, by
using neural networks to store a representation of a learnt reward function or
optimal policy. These methods have been increasingly successful across a wide
range of challenging application domains, including for example, autonomous
driving [30], robotics [19] and healthcare [49].

In safety critical domains, it is particularly important to assure that policies
learnt via RL will be executed safely, which makes the application of formal
verification to this problem appealing. This is challenging, especially for deep
RL, since it requires reasoning about multi-dimensional, continuous state spaces
and complex policies encoded as deep neural networks.

There are several approaches to assuring safety in reinforcement learning,
often leveraging ideas from formal verification, such as the use of temporal logic
to specify safety conditions, or the use of abstract interpretation to build dis-
cretised models. One approach is shielding (e.g., [1]), which synthesises override
mechanisms to prevent the RL agent from acting upon bad decisions; another is

http://orcid.org/0000-0002-0367-898X
http://orcid.org/0000-0003-4137-8862

constrained or safe RL (e.g. [17]), which generates provably safe policies, typi-
cally by restricting the training process to safe explorations.

An alternative approach, which we take in this paper, is to verify an RL
policy’s correctness after it has been learnt, rather than placing restrictions on
the learning process or on its deployment. Progress has been made in the formal
verification of policies for RL [6] and also for the specific case of deep RL [28,3,4],
in the latter case by building on advances in abstraction and verification tech-
niques for neural networks; [3] also exploits the development of efficient abstract
domains such as template polyhedra [42], previously applied to the verification
of continuous-space and hybrid systems [7,16].

A useful tool in reinforcement learning is the notion of a probabilistic pol-
icy (or stochastic policy), which chooses randomly between available actions in
each state, according to a probability distribution specified by the policy. This
brings a number of advantages (similarly to mixed strategies [39] in game the-
ory and contextual bandits [34]), such as balancing the exploration-exploitation
tradeoff [18], dealing with partial observability of the environment [40], handling
multiple objectives [47] or learning continuous actions [38].

In this paper, we tackle the problem of verifying the safety of probabilistic
policies for deep reinforcement learning. We define a formal model of their exe-
cution using (continuous-state, finite-branching) discrete-time Markov processes.
We then build and solve sound abstractions of these models. This approach was
also taken in earlier work [4], which used Markov decision process abstractions
to verify deep RL policies in which actions may exhibit failures.

However, a particular challenge for probabilistic policies, as generated by
deep RL, is that policies tend to specify very different action distributions across
states. We thus propose a novel abstraction based on interval Markov decision
processes (IMDPs), in which transitions are labelled with intervals of probabil-
ities, representing the range of possible events that can occur. We solve these
IMDPs, over a finite time horizon, which we show yields probabilistic guarantees,
in the form of upper bounds on the actual probability of the RL policy leading
the agent to a state designated to be unsafe.

We present methods to construct IMDP abstractions using template poly-
hedra as an abstract domain, and mixed-integer linear programming (MILP) to
reason symbolically about the neural network policy encoding and a model of
the RL agent’s environment. We extend existing MILP-based methods for neu-
ral networks to cope with the softmax encoding used for probabilistic policies.
Naive approaches to constructing these IMDPs yield abstractions that are too
coarse, i.e., where the probability intervals are too wide and the resulting safety
probability bounds are too high be useful. So, we present an iterative refine-
ment approach based on sampling which splits abstract states via cross-entropy
minimisation based on the uncertainty of the over-approximation.

We implement our techniques, building on an extension of the probabilistic
model checker PRISM [32] to solve IMDPs. We show that our approach suc-
cessfully verifies probabilistic policies trained for several reinforcement learning
benchmarks and explore trade-offs in precision and computational efficiency.

2

Related work. As discussed above, other approaches to assuring safety in re-
inforcement learning include shielding [1,5,52,31,25] and constrained or safe RL
[17,21,13,45,22,37,26,23]. By contrast, we verify policies independently, without
limiting the training process or imposing constraints on execution.

Formal verification of RL, but in a non-probabilistic setting includes: [6],
which extracts and analyses decision trees; [28], which checks safety and liveness
properties for deep RL; and [3], which also uses template polyhedra and MILP
to build abstractions, but to check (non-probabilistic) safety invariants.

In the probabilistic setting, perhaps closest is our earlier work [4], which
uses abstraction for finite-horizon probabilistic verification of deep RL, but for
non-probabilistic policies, thus using a simpler (MDP) abstraction, as well as a
coarser (interval) abstract domain and a different, more basic approach to re-
finement. Another approach to generating formal probabilistic guarantees is [14],
which, unlike us, does not need a model of the environment and instead learns
an approximation and produces probably approximately correct (PAC) guaran-
tees. Probabilistic verification of neural network policies on partially observable
models, but for discrete state spaces, was considered in [10].

There is also a body of work on verifying continuous space probabilistic
models and stochastic hybrid systems, by building finite-state abstractions as,
e.g., interval Markov chains [33] or interval MDPs [36,11], but these do not
consider control policies encoded as neural networks. Similarly, abstractions of
discrete-state probabilistic models use similar ideas to our approach, notably via
the use of interval Markov chains [15] and stochastic games [27].

2 Background

We first provide background on the two key probabilistic models used in this
paper: discrete-time Markov processes (DTMPs), used to model RL policy exe-
cutions, and interval Markov decision processes (IMDPs), used for abstractions.

Notation. We write Dist(X) for the set of discrete probability distributions
over a set X, i.e., functions µ : X → [0, 1] where

∑
x∈X µ(x) = 1. The support

of µ, denoted supp(µ), is defined as supp(µ) = {x ∈ X |µ(x) > 0}. We use the
same notation where X is uncountable but where µ has finite support. We write
P(X) to denote the powerset of X and vi for the ith element of a vector v.

Definition 1 (Discrete-time Markov process). A (finite-branching) discrete-
time Markov process is a tuple (S, S0,P,AP , L), where: S is a (possibly uncount-
ably infinite) set of states; S0 ⊆ S is a set of initial states; P : S × S → [0, 1] is
a transition probability matrix, where

∑
s′∈supp(P(s,·)) P(s, s′) = 1 for all s ∈ S;

AP is a set of atomic propositions; and L : S → P(AP) is a labelling function.

A DTMP begins in some initial state s0 ∈ S0 and then moves between states
at discrete time steps. From state s, the probability of making a transition to
state s′ is P(s, s′). Note that, although the state space of DTMPs used here is
continuous, each state only has a finite number of possible successors. This is

3

always true for our models (where transitions represent policies choosing between
a finite number of actions) and simplifies the model.

A path through a DTMP is an infinite sequence of states s0s1s2 . . . such that
P(si, si+1) > 0 for all i. The set of all paths starting in state s is denoted Path(s)
and we define a probability space Prs over Path(s) in the usual way [29]. We use
atomic propositions (from the set AP) to label states of interest for verification,
e.g., to denote them as safe or unsafe. For b ∈ AP , we write s |= b if b ∈ L(s).

The probability of reaching a b-labelled state from s within k steps is:

Prs(♦
6kb) = Prs({s0s1s2 · · · ∈ Path(s) | si |= b for some 0 6 i 6 k})

which, since DTMPs are finite-branching models, can be computed recursively:

Prs(♦
6kb) =

1 if s |= b
0 if s 6|= b ∧ k=0∑

s′∈supp(P(s,·)) P(s, s′) · Prs′(♦
6k−1b) otherwise.

To build abstractions, we use interval Markov decision processes (IMDPs).

Definition 2 (Interval Markov decision process). An interval Markov de-
cision process is a tuple (S, S0,P,AP , L), where: S is a finite set of states;
S0 ⊆ S are initial states; P : S×N×S → (I∪0) is the interval transition probabil-
ity function, where I is the set of probability intervals I = {[a, b] | 0 < a 6 b 6 1},
assigning either a probability interval or the probability exactly 0 to any transi-
tion; AP is a set of atomic propositions; and L:S→P(AP) is a labelling function.

Like a DTMP, an IMDP evolves through states in a state space S, starting
from an initial state s0 ∈ S0. In each state s ∈ S, an action j must be chosen.
Because of the way we use IMDPs, and to avoid confusion with the actions taken
by RL policies, we simply use integer indices j ∈ N for actions. The probability
of moving to each successor state s′ then falls within the interval P(s, j, s′).

To reason about IMDPs, we use policies, which resolve the nondeterminism
in terms of actions and probabilities. A policy σ of the IMDP selects the choice
to take in each state, based on the history of its execution so far. In addition,
we have a so-called environment policy τ which selects probabilities for each
transition that fall within the specified intervals. For a policy σ and environment
policy τ , we have a probability space Prσ,τs over the set of infinite paths starting
in state s. As above, we can define, for example, the probability Prσ,τs (♦6kb) of
reaching a b-labelled state from s within k steps, under σ and τ .

If ψ is an event of interest defined by a measurable set of paths (e.g., ♦6kb),
we can compute (through robust value iteration [48]) lower and upper bounds
on, e.g., maximum probabilities, over the set of all allowable probability values:

Prmaxmin
s (ψ) = sup

σ
inf
τ

Prσ,τs (ψ) and Prmax,max
s (ψ) = sup

σ
sup
τ

Prσ,τs (ψ)

4

3 Modelling and Abstraction of Reinforcement Learning

We begin by giving a formal definition of our model for the execution of a
reinforcement learning system, under the control of a probabilistic policy. We
also define the problem of verifying that this policy is executed safely, namely
that the probability of visiting an unsafe system state, within a specified time
horizon, is below an acceptable threshold.

Then we define abstractions of these models, given an abstract domain over
the states of the model, and show how an analysis of the resulting abstraction
yields probabilistic guarantees in the form of sound upper bounds on the prob-
ability of a failure occurring. In this section, we make no particular assumption
about the representation of the policy, nor about the abstract domain.

3.1 Modelling and Verification of Reinforcement Learning

Our model takes the form of a controlled dynamical system over a continuous
n-dimensional state space S ⊆ Rn, assuming a finite set of actions A performed
at discrete time steps. A (time invariant) environment E : S ×A→ S describes
the effect of executing an action in a state, i.e., if st is the state at time t and
at is the action taken in that state, we have st+1 = E(st, at).

We assume a reinforcement learning system is controlled by a probabilistic
policy, i.e., a function of the form π : S → Dist(A), where π(s)(a) specifies
the probability with which action a should be taken in state s. Since we are
interested in verifying the behaviour of a particular policy, not in the problem of
learning such a policy, we ignore issues of partial observability. We also do not
need to include any definition of rewards.

Furthermore, since our primary interest here is in the treatment of proba-
bilistic policies, we do not consider other sources of stochasticity, such as the
agent’s perception of its state or the environment’s response to an action. Our
model could easily be extended with other discrete probabilistic aspects, such as
the policy execution failure models considered in [4].

Combining all of the above, we define an RL execution model as a (continuous-
space, finite-branching) discrete-time Markov process (DTMP). In addition to a
particular environment E and policy π, we also specify a set S0 ⊆ S of possible
initial states and a set Sfail ⊆ S of failure states, representing unsafe states.

Definition 3 (RL execution model). Assuming a state space S ⊆ Rn and
action set A, and given an environment E : S×A→ S, policy π : S → Dist(A),
initial states S0 ⊆ S and failure states Sfail ⊆ S, the corresponding RL execution
model is the DTMP (S, S0,P,AP , L) where AP = {fail}, for any s ∈ S, fail ∈
L(s) iff s ∈ Sfail and, for states s, s′ ∈ S:

P(s, s′) =
∑
{π(s)(a) | a ∈ A s.t. E(s, a) = s′} .

The summation in Definition 3 is required since distinct actions a and a′ applied
in state s could result in the same successor state s′.

5

Then, assuming the model above, we define the problem of verifying that an
RL policy executes safely. We consider a fixed time horizon k ∈ N and an error
probability threshold psafe , and the check that the probability of reaching an
unsafe state within k time steps is always (from any start state) below psafe .

Definition 4 (RL verification problem). Given a DTMP model of an RL
execution, as in Definition 3, a time horizon k ∈ N and a threshold psafe ∈ [0, 1],
the RL verification problem is to check that Prs(♦

6kfail) 6 psafe for all s ∈ S0.

In practice, we often tackle a numerical version of the verification problem,
and instead compute the worst-case probability of error for any start state p+ =
inf{Prs(♦

6kfail) | s ∈ S0} or (as we do later) an upper bound on this value.

3.2 Abstractions for Verification of Reinforcement Learning

Because our models of RL systems are over continuous state spaces, in order to
verify them in practice, we construct finite abstractions. These represent an over-
approximation of the original model, by grouping states with similar behaviour
into abstract states, belonging to some abstract domain Ŝ ⊆ P(S).

Such abstractions are usually necessarily nondeterministic since an abstract
state groups states with similar, but distinct, behaviour. For example, abstrac-
tion of a probabilistic model such as a discrete-time Markov process could be
captured as a Markov decision process [4]. However, a further source of com-
plexity for abstracting probabilistic policies, especially those represented as deep
neural networks, is that states can also vary widely with regards to the proba-
bilities with which policies select actions in those states.

So, in this work we represent abstractions as interval MDPs (IMDPs), in
which transitions are labelled with intervals, representing a range of different
possible probabilities. We will show that solving the IMDP (i.e., computing the
maximum finite-horizon probability of reaching a failure state) yields an upper
bound on the corresponding probability for the model being abstracted.

Below, we define this abstraction and state its correctness, first focusing
separately on abstractions of an RL system’s environment and policy, and then
combining these into a single IMDP abstraction.

Assuming an abstract domain Ŝ ⊆ P(S), we first require an environment ab-
straction Ê : Ŝ×A→ Ŝ, which soundly over-approximates the RL environment
E : S ×A→ S, as follows.

Definition 5 (Environment abstraction). For environment E : S ×A→ S
and set of abstract states Ŝ ⊆ P(S), an environment abstraction is a function
Ê : Ŝ × A→ Ŝ such that: for any abstract state ŝ ∈ Ŝ, concrete state s ∈ ŝ and
action a ∈ A, we have E(s, a) ∈ Ê(ŝ, a).

Additionally, we need, for any RL policy π, a policy abstraction π̂, which gives
a lower and upper bound on the probability with which each action is selected
within the states grouped by each abstract state.

6

Definition 6 (Policy abstraction). For a policy π : S → Dist(A) and a set
of abstract states Ŝ ⊆ P(S), a policy abstraction is a pair (π̂L, π̂U) of functions
of the form π̂L : Ŝ ×A→ [0, 1] and π̂U : Ŝ ×A→ [0, 1], satisfying the following:
for any abstract state ŝ ∈ Ŝ, concrete state s ∈ ŝ and action a ∈ A, we have
π̂L(ŝ, a) 6 π(s, a) 6 π̂U (ŝ, a).

Finally, combining these notions, we can define an RL execution abstraction,
which is an IMDP abstraction of the execution of an policy in an environment.

Definition 7 (RL execution abstraction). Let E and π be an RL environ-
ment and policy, DTMP (S, S0,P,AP , L) be the corresponding RL execution
model and Ŝ ⊆ P(S) be a set of abstract states. Given also a policy abstraction
π̂ of π and an environment abstraction Ê of E, an RL execution abstraction is
an IMDP (Ŝ, Ŝ0, P̂,AP , L̂) satisfying the following:

– for all s ∈ S0, s ∈ ŝ for some ŝ ∈ Ŝ0;

– for each ŝ ∈ Ŝ, there is a partition {ŝ1, . . . , ŝm} of ŝ such that, for each

j ∈ {1, . . . ,m} we have P̂(ŝ, j, ŝ′) = [P̂L(ŝ, j, ŝ′), P̂U (ŝ, j, ŝ′)] where:

P̂L(ŝ, j, ŝ′) =
∑{

π̂L(ŝj , a) | a ∈ A s.t. Ê(ŝj , a) = ŝ′
}

P̂U (ŝ, j, ŝ′) =
∑{

π̂U (ŝj , a) | a ∈ A s.t. Ê(ŝj , a) = ŝ′
}

– AP = {fail} and fail ∈ L̂(ŝ) iff fail ∈ L(s) for some s ∈ ŝ.

Intuitively, each abstract state ŝ is partitioned into groups of states ŝj that be-
have the same under the specified environment and policy abstractions. The
nondeterministic choice between actions j ∈ {1, . . . ,m} in abstract state ŝ, each
of which corresponds to the state subset ŝj , allows the abstraction to overap-
proximate the behaviour of the original DTMP model.

Finally, we state the correctness of the abstraction, i.e., that solving the
IMDP provides upper bounds on the probability of policy execution resulting in
a failure. This is formalised as follows (see the appendix for a proof).

Theorem 1. Given a state s ∈ S of an RL execution model DTMP, and an
abstract state ŝ ∈ Ŝ of the corresponding abstraction IMDP for which s ∈ ŝ:

Prs(♦
6kfail) 6 Prmaxmax

ŝ (♦6kfail).

In particular, this means that we can tackle the RL verification problem of
checking that the error probability is below a threshold psafe for all possible
start states (see Definition 4). We can do this by finding an abstraction for
which Prmaxmax

ŝ (♦6kfail) 6 psafe for all initial abstract states ŝ ∈ Ŝ0.

Although Prmaxmin
ŝ (♦6kfail) is not necessarily a lower bound on the failure

probability, the value may still be useful to guide abstraction refinement.

7

4 Template-based Abstraction of Neural Network Policies

We now describe in more detail the process for constructing an IMDP abstrac-
tion, as given in Definition 7, to verify the execution of an agent with its environ-
ment, under the control of a probabilistic policy. We assume that the policy is
encoded in neural network form and has already been learnt, prior to verification,
and we use template polyhedra to represent abstract states.

The overall process works by building a k-step unfolding of the IMDP, start-
ing from a set of initial states Ŝ0 ⊆ S. For each abstract state ŝ explored during
this process, we need to split ŝ into an appropriate partition {ŝ1, . . . , ŝm}. Then,
for each ŝj ∈ ŝ and each action a ∈ A, we determine lower and upper bounds on
the probabilities with which a is selected in states in ŝj , i.e., we construct a policy
abstraction (π̂L, π̂U). We also find the successor abstract state that results from
executing a in ŝj , i.e., we build an environment abstraction Ê. Construction of
the IMDP then follows directly from Definition 7.

In the following sections, we describe our techniques in more detail. First,
we give brief details of the abstract domain used: bounded polyhedra. Next, we
describe how to construct policy abstractions via MILP. Lastly, we describe how
to partition abstract states via refinement. We omit details of the environment
abstraction since we reuse the symbolic post operator over template polyhedra
given in [3], also performed with MILP. This supports environments specified
as linear, piecewise linear or non-linear systems defined with polynomial and
transcendental functions. The latter is dealt with using linearisation, subdividing
into small intervals and over-approximating using interval arithmetic.

Further details of the algorithms in this section can be found in [2].

4.1 Bounded Template Polyhedra

Recall that the state space of our model S ⊆ Rn is over n real-valued variables.
We represent abstract states using template polyhedra [42], which are convex
subsets of Rn, defined by constraints in a finite set of directions ∆ ⊂ Rn (in
other words, the facets of the polyhedra are normal to the directions in ∆). We
call a fixed set of directions ∆ ⊂ Rn a template.

Given a (convex) abstract state ŝ ⊆ Rn, a ∆-polyhedron of ŝ is defined as
the tightest ∆-polyhedron enclosing ŝ:

∩{{s : 〈δ, s〉 6 sup{〈δ, s〉 : s ∈ ŝ}} : δ ∈ ∆},

where 〈·, ·〉 denotes scalar product. In this paper, we restrict our attention to
bounded template polyhedra (also called polytopes), in which every variable in
the state space is bounded by a direction of the template, since this is needed
for our refinement scheme.

Important special cases of template polyhedra are rectangles (i.e., intervals)
and octagons. Later, in Section 5, we will present an empirical comparison of
these different abstract domains applied to our setting, and show the benefits of
the more general case of template polyhedra.

8

4.2 Constructing Policy Abstractions

We focus first on the abstraction of the RL policy π : S → Dist(A), assuming
there are k actions: A = {a1, . . . , ak}. Let π be encoded by a neural network
comprising n input neurons, l hidden layers, each containing hi neurons (1 6
i 6 l), and k output neurons, and using ReLU activation functions.

The policy is encoded as follows. We use variable vectors z0 . . . , zl+1 to denote
the values of the neurons at each layer. The current state of the environment is
fed to the input layer z0, each hidden layer’s values are as follows:

zi = ReLU(Wizi−1 + bi) for i = 1, . . . , l

and the output layer is zl+1 = Wl+1zl, where each Wi is a matrix of weights
connecting layers i−1 and i and each bi is a vector of biases. In the usual fash-
ion, ReLU(z) = max(z, 0). Finally, the k output neurons yield the probability
assigned by the policy to each action. More precisely, the probability that the
encoded policy selects action aj is given by pj based on a softmax normalisation
of the output layer:

pj = softmax(zl+1)j =
ez
j
l+1∑k

i=1 e
zil+1

For an abstract state ŝ, we compute the policy abstraction, i.e., lower and upper
bounds π̂L(ŝ, aj) and π̂U (ŝ, aj) for all actions aj (see Definition 6), via mixed-
integer linear programming (MILP), building on existing MILP encodings of
neural networks [46,12,9]. The probability bounds cannot be directly computed
via MILP due to the nonlinearity of the softmax function so, as a proxy, we
maximise the corresponding entry (the jth logit) of the output layer (l+1). For
the upper bound (the lower bound is computed analogously), we optimise:

maximize zjl+1

subject to z0 ∈ ŝ,
0 6 zi −Wizi−1 − bi 6Mz′i for i = 1, . . . , l,
0 6 zi 6M −Mz′i for i = 1, . . . , l,
0 6 z′i 6 1 for i = 1, . . . , l,
zl+1 = Wl+1zl,

(1)

over the variables z0 ∈ Rn, zl+1 ∈ Rk and zi ∈ Rhi , z′i ∈ Zhi for 1 6 i 6 l.
Since abstract state ŝ is a convex polyhedron, the initial constraint z0 ∈ ŝ

on the vector of values z0 fed to the input layer is represented by |∆| linear
inequalities. ReLU functions are modelled using a big-M encoding [46], where
we add integer variable vectors z′i and M ∈ R is a constant representing an
upper bound for the possible values of neurons.

We solve 2k MILPs to obtain lower and upper bounds on the logits for
all k actions. We then calculate bounds on the probabilities of each action by
combining these values as described below. Since the exponential function in

9

softmax is monotonic, it preserves the order of the intervals, allowing us to
compute the bounds on the probabilities achievable in ŝ.

Let xlb,i and xub,i denote the lower and upper bounds, respectively, obtained
for each action ai via MILP (i.e., the optimised values zil+1 in (1) above). Then,
the upper bound for the probability of choosing action aj is yub,j :

yub,j = softmax(zub,j) where ziub,j =

{
xub,i if i = j

1− xlb,i otherwise

and where zub,j is an intermediate vector of size k. Again, the computation for
the lower bound is performed analogously.

4.3 Refinement of Abstract States

As discussed above, each abstract state ŝ in the IMDP is split into a partition
{ŝ1, . . . , ŝm} and, for each ŝi, the probability bounds π̂L(ŝi, a) and π̂U (ŝi, a) are
determined for each action a. If these intervals are two wide, the abstraction is
too coarse and the results uninformative. To determine a good partition (i.e., one
that groups states with similar behaviour in terms of the probabilities chosen by
the policy), we use refinement, repeatedly splitting ŝi into finer partitions.

We define the maximum probability spread of ŝi, denoted ∆max
π̂ (ŝi), as:

∆max
π̂ (ŝi) = max

a∈A
(π̂U (ŝi, a)− π̂L(ŝi, a))

and we refine ŝi until ∆max
π̂ (ŝi) falls below a specified threshold φ. Varying φ

allows us to tune the desired degree of precision.
When refining, our aim is minimise ∆max

π̂ (ŝi), i.e., to group areas of the
state space that have similar probability ranges, but also to minimise the num-
ber of splits performed. We try to find a good compromise between improving
the accuracy of the abstraction and reducing partition growth, which generates
additional abstract states and increases the size of the IMDP abstraction.

Calculating the range ∆max
π̂ (ŝi) can be done by using MILP to compute each

of the lower and upper bounds π̂L(ŝi, a) and π̂U (ŝi, a). However, this may be
time consuming. So, during the first part of refinement for each abstract state,
we sample probabilities for some states to compute an underestimate of the true
range. If the sampled range is already wide enough to trigger further refinement,
we do so; otherwise we calculate the exact range of probabilities using MILP to
check whether there is a need for further refinement.

Each refinement step comprises three phases, described in more detail below:
(i) sampling policy probabilities; (ii) selecting a direction to split; (iii) splitting.
Figure 1 gives an illustrative example of a full refinement.

Sampling the neural network policy. We first generate a sample of the
probabilities chosen by the policy within the abstract state. Since this is a con-
vex region, we sample state points within it randomly using the Hit & Run
method [44]. We then obtain, from the neural network, the probabilities of pick-
ing actions at each sampled state. We consider each action a separately, and

10

1.0

0.25

0.0

0.5

0.75

Fig. 1: Sampled policy probabilities for one action in an abstract state (left)
and the template polyhedra partition generated through refinement (right).

then later split according to the most promising one (i.e., with the widest prob-
ability spread across all actions). The probabilities for each a are computed in
a one-vs-all fashion: we generate a point cloud representing the probability of
taking that action as opposed to any other action.

The number of samples used (and hence the time needed) is kept fixed,
rather than fixing the density of the sampled points. We sample 1000 points per
abstract state split but this parameter can be tuned depending on the machine
and the desired time/accuracy tradeoff. This ensures that ever more accurate
approximations are generated as the size of the polyhedra decreases.

Choosing candidate directions. We refine abstract states (represented as
template polyhedra) by bisecting them along a chosen direction from the set ∆
used to define them. Since the polyhedra are bounded, we are free to pick any one.
To find the direction that contributes most to reducing the probability spread,
we use cross-entropy minimisation to find the optimal boundary at which to split
each direction, and then pick the direction that yields the lowest value.

Let S̃ be the set of sampled points and Ỹs denote the true probability of
choosing action a in each point s ∈ S̃, as extracted from the probabilistic policy.
For a direction δ, we project all points in S̃ onto δ and sort them accordingly,
i.e., we let S̃ = {s1, . . . , sm}, where m = |S̃| and index i is sorted by 〈δ, si〉.
We determine the optimal boundary for splitting in direction δ by finding the
optimal index k that splits S̃ into {s1, . . . , sk} and {sk+1, . . . , sm}. To do so, we

first define the function Y k,δi classifying the ith point according to this split:

Y k,δi =

{
1 if i 6 k
0 if i > k

and then minimise, over k, the binary cross entropy loss function:

H(Y k,δ, Ỹ) = − 1

m

∑m

i=1

(
Y k,δi log(Ỹsi) + (1− Y k,δi) log(1− Ỹsi)

)
11

which reflects how well the true probability for each point Ỹs matches the sepa-
ration into the two groups.

One problem with this approach is that, if the distribution of probabilities
is skewed to strongly favour some probabilities, a good decision boundary may
not be picked. To counter this, we perform sample weighting by grouping the
sampled probabilities into small bins, and counting the number of samples in
each bin to calculate how much weight to give to each sample.

Abstract state splitting. Once a direction δ and bisection point sk are chosen,
the abstract state is split into two with a corresponding pair of constraints that
splits the polyhedron. Because we are constrained to the directions of the tem-
plate, and the decision boundary is highly non-linear, sometimes the bisection
point falls close to the interval boundary and the resulting slices are extremely
thin. This would cause the creation of an unnecessarily high number of polyhe-
dra, which we prevent by imposing a minimum size of the split relative to the
dimension chosen. By doing so we are guaranteed a minimum degree of progress
and the complex shapes in the non-linear policy space which are not easily classi-
fied (such as non-convex shapes) are broken down into more manageable regions.

5 Experimental Evaluation

We evaluate our approach by implementing the techniques described in Sec-
tion 4 and applying them to 3 reinforcement learning benchmarks, analysing
performance and the impact of various configurations and optimisations.

5.1 Experimental Setup

Implementation. The code is developed in a mixture of Python and Java. Neu-
ral network manipulation is done through Pytorch [51], MILP solution through
Gurobi [20], graph analysis with networkX [50] and cross-entropy minimisation
with Scikit-learn [41]. IMDPs are constructed and solved using an extension of
PRISM [32] which implements robust value iteration [48]. The code is available
from https://github.com/phate09/SafeDRL.

Benchmarks. We use the following three RL benchmark environments:

(i) Bouncing ball [24]: The agent controls a ball with height p and vertical
velocity v, choosing to either hit the ball downward with a paddle, adding speed,
or do nothing. The ball accelerates while falling and bounces on the ground losing
10% of its energy; it eventually stops bouncing if its height is too low and it is out
of reach of the paddle. The initial heights and speed vary. In our experiments,
we consider two possible starting regions: “large” (S0 = L), where p ∈ [5, 9] and
v ∈ [−1, 1], and “small” (S0 = S), where p ∈ [5, 9] and v ∈ [−0.1, 0]. The safety
constraint is that the ball never stops bouncing.

(ii) Adaptive cruise control [3]: The problem has two vehicles i ∈ {lead , ego},
whose state is determined by variables xi and vi for the position and speed of

12

https://github.com/phate09/SafeDRL

(a) Intervals: |ŝ| = 450 (b) Octagons: |ŝ| = 334 (c) Templates: |ŝ| = 25

Fig. 2: Policy abstractions for an abstract state from the adaptive cruise con-
trol benchmark, using different abstract domains (see Figure 1 for legend).

each car, respectively. The lead car proceeds at constant speed (28 m s−1), and
the agent controls the acceleration (±1 m s−2) of ego using two actions. The
range of possible start states allows a relative distance of [3, 10] metres and the
speed of the ego vehicle is in [26, 32] m/s. Safety means preserving xlead > xego .

(iii) Inverted pendulum: This benchmark is a modified (discrete action) version
of the “Pendulum-v0” environment from the OpenAI Gym [8] where an agent
applies left or right rotational force to a pole pivoting around one of its ends,
with the aim of balancing the pole in an upright position. The state is modelled
by 2 variables: the angular position and velocity of the pole. We consider initial
conditions of an angle [−0.05, 0.05] and speed [−0.05, 0.05]. Safety constitutes
remaining within a range of positions and velocities such that an upright position
can be recovered. This benchmark is more challenging than the previous two: it
allows 3 actions (noop, push left, push right) and the dynamics of the system
are highly non-linear, making the problem more complex.

Policy training. All agents have been trained using proximal policy optimisa-
tion (PPO) [43] in actor-critic configuration with Adam optimiser. The training
is distributed over 8 actors with 10 instances of each environment, managing the
collection of results and the update of the network with RLlib [35]. Hyperpa-
rameters have been mostly kept unchanged from their default values except the
learning rate and batch size which have been set to 5×10−4 and 4096, respec-
tively. We used a standard feed forward architecture with 2 hidden layers (size
32 for the bouncing ball and size 64 for the adaptive cruise control and inverted
pendulum problems) and ReLU activation functions.

Abstract domains. The abstraction techniques we present in Section 4 are
based on the use of template polyhedra as an abstract domain. As special cases,
this includes rectangles (intervals) and octagons. We use both of these in our
experiments, but also the more general case of arbitrary bounded template poly-
hedra. In the latter case, we choose a set of directions by sampling a represen-
tative portion of the state space where the agent is expected to operate, and

13

Benchmark
k

Abs.
φ

Contain. Num. Num. IMDP Prob. Runtime
environment dom. check poly. visited size bound (min.)

Bouncing

ball (S0 = S)
20 Rect 0.1 3 337 28 411 0.0 1
20 Oct 0.1 3 352 66 484 0.0 2

Bouncing

ball (S0 = L)

20 Rect 0.1 3 1727 5534 7796 0.63 30
20 Oct 0.1 3 2489 3045 6273 0.0 33
20 Rect 0.1 7 18890 0 23337 0.006 91
20 Oct 0.1 7 13437 0 16837 0.0 111

Adaptive
cruise
control

7 Rect 0.33 3 1522 4770 10702 0.084 85
7 Oct 0.33 3 1415 2299 6394 0.078 60
7 Temp 0.33 3 2440 2475 9234 0.47 70
7 Rect 0.5 3 593 1589 3776 0.62 29
7 Oct 0.5 3 801 881 3063 0.12 30
7 Temp 0.5 3 1102 1079 4045 0.53 34
7 Rect 0.33 7 11334 0 24184 0.040 176
7 Oct 0.33 7 7609 0 16899 0.031 152
7 Temp 0.33 7 6710 0 14626 0.038 113
7 Rect 0.5 7 3981 0 8395 0.17 64
7 Oct 0.5 7 2662 0 5895 0.12 52
7 Temp 0.5 7 2809 0 6178 0.16 48

Inverted
pendulum

6 Rect 0.5 3 1494 3788 14726 0.057 71
6 Rect 0.5 7 5436 0 16695 0.057 69

Table 1: Verification results for the benchmark environments

choosing appropriate slopes for the directions to better represents the decision
boundaries. The effect of the choice of different template can be seen in Fig 2
where we show a representative abstract state and how the refinement algorithm
is affected by the choice of template: as expected, increasing the generality of
the abstract domain results in a smaller number of abstract states.

Containment checks. Lastly, we describe an optimisation implemented for
construction of IMDP abstractions, whose effectiveness we will evaluate in the
next section. When calculating the successors of abstract states to construct an
IMDP, we sometimes find that successors that are partially or fully contained
within previously visited abstract states. Against the possible trade-off of de-
creasing the accuracy of the abstraction, we can attempt to reduce the total size
of the IMDP that is constructed by aggregating together states which are fully
contained within previously visited abstract states.

5.2 Experimental Results

Table 1 summarises the experimental results across the different benchmark
environments; k denotes the time horizon considered. We use a range of con-
figurations, varying: the abstract domain used (rectangles, octagons or general
template polyhedra); the maximum probability spread threshold φ and whether
the containment check optimisation is used.

14

The table lists, for each case: the number of independent polyhedra generated,
the number of instances in which polyhedra are contained in previously visited
abstract states and aggregated together; the final size of the IMDP abstraction
(number of abstract states); the generated upper bound on the probability of
encountering an unsafe state from an initial state; and the runtime of the whole
process. Experiments were run on a 4-core 4.2 GHz PC with 64 GB RAM.

Verification successfully produced probability bounds for all environments
considered. Typically, the values of k shown are the largest time horizons we
could check, assuming a 3 hour timeout for verification. The majority of the
runtime is for constructing the abstraction, not solving the IMDP.

As can be seen, the various configurations result in different safety probability
bounds and runtimes for the same environments, so we are primarily interested in
the impact that these choices have on the trade-off between abstraction precision
and performance. We summarise findings for each benchmark separately.

Bouncing ball. These are the quickest abstractions to construct and verify due
to the low number of variables and the simplicity of the dynamics. For both
initial regions considered, we can actually verify that it is fully safe (maximum
probability 0). However, for the larger one, rectangles (particular with contain-
ment checks) are not accurate enough to show this.

Two main areas of the policy are identified for refinement: one where it can
reach the ball and should hit it and one where the ball is out of reach and the
paddle should not be activated to preserve energy. But even for threshold φ = 0.1
(lower than used for other benchmarks), rectangular abstractions resulted in
large abstract states containing most of the other states visited by the agent,
and which ultimately overlapped with the unsafe region.

Adaptive cruise control. On this benchmark, we use a wider range of con-
figurations. Firstly, as expected, for smaller values of the maximum probability
spread threshold φ, the probability bound obtained is lower (the overestima-
tion error from the abstraction decreases, making it closer to the true maximum
probability) but the abstraction size and runtime increase. Applying the con-
tainment check for previously visited states has a similar effect: it helps reduce
the computation time, but at the expense of overapproximation (higher bounds)

The choice of abstract domain also has a significant impact. Octagons yield
more precise results than rectangles, for the same values of φ, and also produce
smaller abstractions (and therefore lower runtime). On the other hand, general
template polyhedra (chosen to better approximate the decision boundary) do
not appear to provide an improvement in time or precision on this example,
instead causing higher probability bounds, especially when combined with the
containment check. Our hypothesis is that this abstract domains groups large
areas of the state space (as shown in Fig. 2) and this eventually leads to overlaps
with the unsafe region.

Inverted pendulum. This benchmark is more challenging and, while we suc-
cessfully generate bounds on the probability of unsafe behaviour, for smaller
values of φ and other abstract domains, experiments timed out due to the high

15

(a) Rectangles (b) Octagons

Fig. 3: Refined policy abstractions from the inverted pendulum benchmark

number of abstract states generated and the time needed for MILP solution.
The abstract states generated were sufficiently small that the containment check
could be used to reduce runtime without increasing the probability bound.

Figure 3 illustrates abstraction applied to a state space fragment from this
benchmark using both rectangles and octagons. It shows the probability of choos-
ing one of three actions, coded by RGB colour: noop (red), right (green) and left
(blue), The X axis represents angular speed and the Y axis represents the angle
of the pendulum in radians. Notice the grey area towards the centre where all
3 actions have the same probability, the centre right area with yellow tints (red
and green), and the centre left area with purple tints (red and blue). Towards
the bottom of the heatmap, the colour fades to green as the agent tries to push
the pendulum so that it spins and balances once it reaches the opposite side.

6 Conclusion

We presented an approach for verifying probabilistic policies for deep reinforce-
ment learning agents. This is based on a formal model of their execution as
continuous-space discrete time Markov process, and a novel abstraction repre-
sented as an interval MDP. We propose techniques to implement this framework
with MILP and a sampling-based refinement method using cross-entropy min-
imisation. Experiments on several RL benchmarks illustrate its effectiveness and
show how we can tune the approach to trade off accuracy and performance.

Future work includes automating the selection of an appropriate template for
abstraction and using lower bounds from the abstraction to improve refinement.

Acknowledgements. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 834115, FUN2MODEL).

16

Appendix: Proof of Theorem 1

We provide here a proof of Theorem 1, from Section 3, which states that:

Given a state s ∈ S of an RL execution model DTMP, and abstract state ŝ ∈ Ŝ
of the corresponding controller abstraction IMDP for which s ∈ ŝ, we have:

Prs(♦
6kfail) 6 Prmaxmax

ŝ (♦6kfail)

By the definition of Prmaxmax
ŝ (·), it suffices to show that there is some policy σ

and some environment policy τ in the IMDP such that:

Prs(♦
6kfail) 6 Prσ,τŝ (♦6kfail) (2)

Recall that, in the construction of the IMDP (see Definition 7), an abstract state
ŝ is associated with a partition of subsets ŝj of ŝ, each of which is used to define
the j-labelled choice in state ŝ. Let σ be the policy that picks in each state s
(regardless of history) the unique index js such that s ∈ ŝjs . Then, let τ be
the environment policy that selects the upper bound of the interval for every
transition probability. We use function P̂τ to denote the chosen probabilities,
i.e., we have P̂τ (ŝ, js, ŝ

′) = P̂U (ŝ, js, ŝ
′) for any ŝ, js, ŝ

′.
The probabilities Prσ,τŝ (♦6kfail) for these policies, starting in ŝ, are defined

similarly to those for discrete-time Markov processes (see Section 2):

Prσ,τŝ (♦6kfail) =

1 if ŝ |= fail
0 if ŝ 6|= fail ∧ k=0∑

ŝ′∈supp(P̂(ŝ,js,·))
P̂(ŝ, js, ŝ

′)·Prσ,τŝ′ (♦6k−1fail) otherwise.

Since this is defined recursively, we prove (2) by induction over k. For the case
k = 0, the definitions of Prs(♦

60fail) and Pr ŝ(♦
60fail) are equivalent: they

equal 1 if s |= fail (or ŝ |= fail) and 0 otherwise. From Definition 7, s |= fail
implies ŝ |= fail . Therefore, Prs(♦

60fail) 6 Prσ,τŝ (♦60fail).
Next, for the inductive step, we will assume, as the inductive hypothesis,

that Prs′(♦
6k−1fail) 6 Prσ,τŝ′ (♦6k−1fail) for s′ ∈ S and ŝ′ ∈ Ŝ with s′ ∈ ŝ′. If

ŝ |= fail then Prσ,τŝ (♦6kfail) = 1 > Prs(♦
6kfail). Otherwise we have:

Prσ,τŝ (♦6kfail)

=
∑
ŝ′∈supp(P̂τ (ŝ,js,·)) P̂τ (ŝ, js, ŝ

′) · Pr ŝ′(♦
6k−1fail) by defn. of σ and Prσ,τŝ (♦6kfail)

=
∑
ŝ′∈supp(P̂U (ŝ,js,·)) P̂U (ŝ, js, ŝ

′) · Pr ŝ′(♦
6k−1fail) by defn. of τ

=
∑
a∈A πU (ŝ, a) · Pr

Ê(ŝj ,a)
(♦6k−1fail) by defn. of P̂U (ŝ, j, ŝ′)

>
∑
a∈A π(s, a) · Pr

Ê(ŝj ,a)
(♦6k−1fail) since s ∈ ŝ and by Defn.6

>
∑
a∈A π(s, a) · PrE(s,a)(♦

6k−1fail) by induction and since, by

Defn. 5, E(s, w) ∈ Ê(ŝj , w)
=
∑
s′∈supp(P(s,·)) P(s, s′) · Prs′(♦

6k−1fail) by defn. of P(s, s′)

= Prs(♦
6kfail) by defn. of Prs(♦

6kfail)

which completes the proof.

17

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proc. 32nd AAAI Conference on Artificial
Intelligence (AAAI’18). pp. 2669–2678 (2018)

2. Bacci, E.: Formal Verification of Deep Reinforcement Learning Agents. Ph.D. the-
sis, School of Computer Science, University of Birmingham (2022)

3. Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infinity.
In: Proc. 30th International Joint Conference on Artificial Intelligence (IJCAI’21).
pp. 2154–2160 (2021)

4. Bacci, E., Parker, D.: Probabilistic guarantees for safe deep reinforcement learn-
ing. In: Proc. 18th International Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS’20). LNCS, vol. 12288, pp. 231–248. Springer (2020)

5. Bastani, O.: Safe Reinforcement Learning with Nonlinear Dynamics via Model
Predictive Shielding. In: Proceedings of the American Control Conference. pp.
3488–3494 (2021)

6. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. In: Proc. 2018 Annual Conference on Neural Information Processing
Systems (NeurIPS’18). pp. 2499–2509 (2018)

7. Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided
refinement of template polyhedra. In: TACAS (1). pp. 589–606 (2017)

8. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym (6 2016)

9. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Kumar, P.: A unified view of piece-
wise linear neural network verification. In: Proc. 32nd International Conference on
Neural Information Processing Systems (NIPS’18). pp. 4795–4804 (2018)

10. Carr, S., Jansen, N., Topcu, U.: Task-aware verifiable RNN-based policies for par-
tially observable Markov decision processes. Journal of Artificial Intelligence Re-
search 72, 819–847 (2021)

11. Cauchi, N., Laurenti, L., Lahijanian, M., Abate, A., Kwiatkowska, M., Cardelli,
L.: Efficiency through uncertainty: Scalable formal synthesis for stochastic hybrid
systems. In: 22nd ACM International Conference on Hybrid Systems: Computation
and Control (2019)

12. Cheng, C.H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: Proc. International Symposium on Automated Technology for Veri-
fication and Analysis (ATVA’17). LNCS, vol. 10482, pp. 251–268 (2017)

13. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
AAAI. pp. 3387–3395. AAAI Press (2019)

14. Delgrange, F., Ann Now e, G.A.P.: Distillation of RL policies with formal guaran-
tees via variational abstraction of markov decision processes. In: Proc. 36th AAAI
Conference on Artificial Intelligence (AAAI’22) (2022)

15. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari,
A. (ed.) Proc. SPIN’06. LNCS, vol. 3925, pp. 71–88. Springer (2006)

16. Frehse, G., Giacobbe, M., Henzinger, T.A.: Space-time interpolants. In: CAV (1).
pp. 468–486. Springer (2018)

17. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: AAAI. pp. 6485–6492. AAAI Press
(2018)

18

18. Garćıa, J., Fernández, F.: Probabilistic policy reuse for safe reinforcement learning.
ACM Transactions on Autonomous and Adaptive Systems 13(3), 1–24 (2018)

19. Gu, S., Holly, E., Lillicrap, T.P., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: Proc. 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA’17). pp. 3389–3396 (2017)

20. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021)
21. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained neural fitted q-

iteration. In: AAMAS. pp. 2012–2014. IFAAMAS (2019)
22. Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with

logical constraints. In: AAMAS. pp. 483–491. International Foundation for Au-
tonomous Agents and Multiagent Systems (2020)

23. Hunt, N., Fulton, N., Magliacane, S., Hoang, T.N., Das, S., Solar-Lezama, A.:
Verifiably safe exploration for end-to-end reinforcement learning. In: Proc. 24th
International Conference on Hybrid Systems: Computation and Control (HSCC’21)
(2021)

24. Jaeger, M., Jensen, P.G., Larsen, K.G., Legay, A., Sedwards, S., Taankvist, J.H.:
Teaching Stratego to play ball: Optimal synthesis for continuous space MDPs. In:
ATVA. pp. 81–97. Springer (2019)

25. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields. In: Proc. 31st International Conference on Con-
currency Theory (CONCUR’20). vol. 171, pp. 31–316 (2020)

26. Jin, P., Zhang, M., Li, J., Han, L., Wen, X.: Learning on Abstract Domains: A
New Approach for Verifiable Guarantee in Reinforcement Learning (jun 2021)

27. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design 36(3), 246–280 (2010)

28. Kazak, Y., Barrett, C.W., Katz, G., Schapira, M.: Verifying deep-RL-driven sys-
tems. In: Proceedings of the 2019 Workshop on Network Meets AI & ML, Ne-
tAI@SIGCOMM’19. pp. 83–89. ACM (2019)

29. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer-Verlag,
2nd edn. (1976)

30. Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J., Lam, V., Bewley,
A., Shah, A.: Learning to drive in a day. In: ICRA. pp. 8248–8254. IEEE (2019)

31. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield Synthesis for Reinforce-
ment Learning. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). vol. 12476
LNCS, pp. 290–306. Springer, Cham (oct 2020)

32. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Proc. 23rd International Conference on Computer Aided
Verification (CAV’11). LNCS, vol. 6806, pp. 585–591. Springer (2011)

33. Lahijania, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Transactions on Automatic Control 60(8),
2031–2045 (2015)

34. Langford, J., Zhang, T.: The epoch-greedy algorithm for contextual multi-armed
bandits. Advances in neural information processing systems 20(1), 96–1 (2007)

35. Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J.,
Jordan, M., Stoica, I.: RLlib: Abstractions for distributed reinforcement learning.
In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 3053–
3062. PMLR (10–15 Jul 2018)

19

36. Lun, Y.Z., Wheatley, J., D’Innocenzo, A., Abate, A.: Approximate abstractions of
markov chains with interval decision processes. In: Proc. 6th IFAC Conference on
Analysis and Design of Hybrid Systems (2018)

37. Ma, H., Guan, Y., Li, S.E., Zhang, X., Zheng, S., Chen, J.: Feasible Actor-Critic:
Constrained Reinforcement Learning for Ensuring Statewise Safety (2021)

38. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
Balcan, M.F., Weinberger, K.Q. (eds.) Proc. 33rd International Conference on
Machine Learning. vol. 48, pp. 1928–1937. PMLR (2016)

39. Osborne, M.J., et al.: An introduction to game theory, vol. 3. Oxford university
press New York (2004)

40. Papoudakis, G., Christianos, F., Albrecht, S.V.: Agent modelling under partial
observability for deep reinforcement learning. In: Proceedings of the Neural Infor-
mation Processing Systems (NeurIPS) (2021)

41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

42. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: VMCAI. pp. 25–41. Springer (2005)

43. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv:1707.06347 (2017)

44. Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly
distributed over bounded regions. Operations Research 32(6), 1296–1308 (1984)

45. Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., Finn, C.: Learning to be Safe: Deep
RL with a Safety Critic (2020)

46. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating Robustness of Neural Networks with
Mixed Integer Programming (2017)

47. Vamplew, P., Dazeley, R., Barker, E., Kelarev, A.V.: Constructing stochastic mix-
ture policies for episodic multiobjective reinforcement learning tasks. In: Proc.
Australasian Conference on Artificial Intelligence. LNCS, vol. 5866, pp. 340–349.
Springer (2009)

48. Wolff, E., Topcu, U., Murray, R.: Robust control of uncertain Markov decision
processes with temporal logic specifications. In: Proc. 51th IEEE Conference on
Decision and Control (CDC’12). pp. 3372–3379 (2012)

49. Yu, C., Liu, J., Nemati, S., Yin, G.: Reinforcement learning in healthcare: A survey.
ACM Computing Surveys 55(1), 1–36 (2021)

50. Networkx - network analysis in python. https://networkx.github.io/, accessed:
2020-05-07

51. Pytorch. https://pytorch.org/, accessed: 2020-05-07
52. Zhu, H., Magill, S., Xiong, Z., Jagannathan, S.: An inductive synthesis frame-

work for verifiable reinforcement learning. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). pp.
686–701. Association for Computing Machinery (jun 2019)

20

https://networkx.github.io/
https://pytorch.org/

	Verified Probabilistic Policies for Deep Reinforcement Learning

