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Abstract
Many real world data analysis problems exhibit in-
variant structure, and models that take advantage
of this structure have shown impressive empir-
ical performance, particularly in deep learning.
While the literature contains a variety of methods
to incorporate invariance into models, theoretical
understanding is poor and there is no way to as-
sess when one method should be preferred over
another. In this work, we analyze the benefits and
limitations of two widely used approaches in deep
learning in the presence of invariance: data aug-
mentation and feature averaging. We prove that
training with data augmentation leads to better
estimates of risk and gradients thereof, and we
provide a PAC-Bayes generalization bound for
models trained with data augmentation. We also
show that compared to data augmentation, fea-
ture averaging reduces generalization error when
used with convex losses, and tightens PAC-Bayes
bounds. We provide empirical support of these
theoretical results, including a demonstration of
why generalization may not improve by training
with data augmentation: the ‘learned invariance’
fails outside of the training distribution.

1. Introduction
Many real-world problems exhibit invariant structure. Tasks
involving set-valued inputs such as point clouds are invariant
to permutation. Image classification tasks are often rotation-
and translation-invariant. Intuitively, models that capture
the invariance of a problem should perform better than those
that do not. This is supported by empirical results in a range
of applications (Cohen & Welling, 2016; Fawzi et al., 2016;
Salamon & Bello, 2017).

There are many ways of incorporating invariance into a
model. One can build the invariance into the network as
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a convolution or weight-tying scheme, or average network
predictions over transformations of the input (feature averag-
ing), or simply train on a dataset augmented with these trans-
formations (data augmentation). Each of these approaches
has been demonstrated to perform well in various settings,
but there remains a large divide between their impressive
practical performance and solid theoretical understanding.

The lack of theory leaves open a number of questions.
Firstly, if invariance is incorporated into a model or training
algorithm, what are the theoretical guarantees on the per-
formance of the trained model? Relatedly, as a matter of
practice, how should a practitioner choose amongst the dif-
ferent approaches to incorporating invariance? Concretely,
if an invariant model and a model trained with data augmen-
tation both attain the same training error, which one should
be preferred? Can one or the other be expected to converge
faster? These questions are the key motivation for our work.

We focus the two most generically applicable methods, data
augmentation and feature averaging. Our overall conclu-
sion is that feature averaging is better than data aug-
mentation is better than doing nothing; this holds even
for stochastic (Monte Carlo) approximations of the averages
involved in feature averaging and data augmentation. On
the journey to the main conclusion, we uncover a number
of intriguing properties and shed light on the mathematical
structure driving the impressive practical performance of
the methods.

1.1. Summary of Results

We consider the data-generating distribution PD to be invari-
ant to the action of a group G: PD(gX, Y ) = PD(X,Y ),
for all g ∈ G (see Section 2 for details). Our main results
relate baseline training of a generic neural network (or other
predictive model) via empirical risk minimization (ERM) to
performing either data augmentation or feature averaging.
Table 1 summarizes the theoretical results.

Data augmentation (DA) (Section 3) improves on baseline
training with ERM by minimizing an augmented risk, the
risk averaged over the orbits induced by G. This yields
a lower-variance estimator of the model risk and its min-
ima (Proposition 2). The variance reduction also applies to
gradients of the risk, and therefore affects gradient-based
learning. Our results to this end are essentially the same
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Table 1. Summary of theoretical results.
Baseline Data Augmentation Feature Averaging

Expected risk R`(f) = R`(f)
convex `
≥ R`(f

◦)
Proposition 2 Proposition 5

Empirical risk R̂`(f,Dn) R̂◦` (f,Dn)
convex `
≥ R̂◦` (f

◦,Dn) = R̂`(f
◦,Dn)

Proposition 5

Variance of R̂` Var
Dn∼PD

[R̂`(f,Dn)] ≥ Var
Dn∼PD

[R̂◦` (f,Dn)]
convex `
≥ Var

Dn∼PD
[R̂`(f

◦,Dn)]

Proposition 2 Proposition 5

KL term in KL(Q || P ) = KL(Q || P ) ≥ KL(Q◦ || P ◦)
PAC-Bayes bound Theorem 7

PAC-Bayes bound B0 = BDA ≥ BFA
for 0-1 loss Theorem 4 Theorem 9

Monte Carlo approx. PAC-Bayes bound holds KL(Q || P ) ≥ KL(Q◦̂Gk || P
◦̂
Gk)

(k ≥ 1 samples) Theorem 4 ≥ KL(Q◦ || P ◦)

as some by Chen et al. (2019). In contrast to that work,
we investigate PAC-Bayes bounds for generalization of DA.
Traditional PAC-Bayes bounds based on i.i.d. data do not
apply to DA because the augmented dataset violates the i.i.d.
assumption. We show that the i.i.d. bounds also apply to
DA and in particular to the augmented risk (Theorem 4),
and that tighter bounds may be possible. However, training
with DA is not guaranteed to produce an invariant (or even
approximately invariant) function. We demonstrate empiri-
cally how this can fail; we also provide an example where
minimizing the augmented risk yields an invariant function
(Section 3.2).

Feature averaging (FA) (Section 4) yields a lower-entropy
function class. In the case of convex loss, FA also obtains
lower expected risk than DA and lower-variance estimates
of risk and its gradient (Proposition 5). Furthermore, sym-
metrization compresses the model, and thus tightens PAC-
Bayes bounds by reducing the KL term, a phenomenon that
holds even for Monte Carlo approximations to FA (The-
orem 7 and Proposition 8). As a byproduct, we prove a
general lemma (Lemma 6) that connects the present paper
to work on generalization and post-training compression
(Zhou et al., 2019).

We illustrate our theoretical results with experiments in
Section 6, and also investigate practical questions raised
by the theory. We conclude (Section 7) by interpreting the
theory and experiments as practical recommendations.

2. Background
“Invariance” has been used to describe a number of related
but distinct phenomena in the machine learning and statis-
tics literature. One perspective, which is shared by the
present work, considers invariance of a neural network’s
output with respect to a group acting on its inputs (e.g.,
Cohen & Welling, 2016; Kondor & Trivedi, 2018; Bloem-

Reddy & Teh).1 Other work has used looser notions. For
example, Zou et al. (2012) use “invariant” to mean “not
changing very much”. Related ideas are “local invariance”
(Raj et al., 2017), “insensitivity” (van der Wilk et al., 2018),
and “approximate invariance” (Chen et al., 2019, Sec. 6).

We focus on invariance under the action of a group G. The
action of G on a set X is a mapping α : G × X → X which
is compatible with the group operation. For convenience,
we write α(g, x) = αx(g) = gx, for g ∈ G and x ∈ X .
The orbit of any x ∈ X is the subset Gx of X that can be
obtained by applying an element of G to x, Gx = {gx :
g ∈ G}. For mathematical simplicity, we assume G to be
compact, with (unique) normalized Haar measure denoted
by λ.2 We denote a random element of G by G. A mapping
f : X → Y is invariant under G (or G-invariant) if

f(gx) = f(x) , g ∈ G, x ∈ X . (1)

Any function f : X → R can be symmetrized by averaging
over G. We denote this with a symmetrization operator SG ,
defined as

f◦(x) := SGf(x) = EG∼λ[f(Gx)] , x ∈ X . (2)

We consider a typical machine learning scenario, with
a training data set Dn of n observations (Xi, Yi)

n
i=1 ∈

(X ,Y)n sampled i.i.d. from some (unknown) probability
distribution PD. Furthermore, PD is known or assumed to
be G-invariant,

PD(gX, Y ) = PD(X,Y ) , g ∈ G . (3)

1These ideas (and the results in the present work) apply gener-
ally to functions, and therefore to a broader set of machine learning
techniques; we focus on neural networks for continuity with the
previous literature.

2λ is analogous to the uniform distribution on G. Our results
generalize—with some additional technicalities—to any group that
acts property on X and has Haar measure.
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For example, X may be an image of an animal, Y a label of
the animal, and G the group of two-dimensional rotations.

The marginal distribution on X of any G-invariant PD has
a disintegration into a distribution PΦ over orbits of X ,
each endowed with an orbit representative Φ ∈ X , and
a conditional distribution PX|Φ = λ ◦ α−1

Φ ( • ) induced by
applying a random G ∼ λ to Φ (see, e.g., Bloem-Reddy
& Teh). That is, (X,Y )

d
= (GΦ, Y ) and PD = PΦ ×

PX|Φ × PY |X . The specific relevance to this work is that
expectations with respect to PD can be iterated as

E(X,Y )∼PD [f(X,Y )] (4)
= EY∼PY |X [EΦ∼PΦ [EG∼λ[f(GΦ, Y ) | Φ, Y ] | Y ]] .

For a class of functions F = {f : X → Y}, a probability
distribution Q on F , and a loss function ` : Y × Y → R+.
We denote various expected and empirical risks as follows:

R`(f) = E(X,Y )∼PD [`(f(X), Y )]

R`(Q) = Ef∼Q[R`(f)]

R̂`(f,Dn) = 1
n

∑n
i=1 `(f(Xi), Yi)

R̂`(Q,Dn) = Ef∼Q[R̂`(f,Dn)]

2.1. Modes of Invariance

Common sense indicates that when modeling G-invariant
PD, any good model will also be G-invariant, at least to
a good approximation. This has been achieved in prac-
tice through one of three approaches: trained invariance,
encouraged during training via DA; network symmetriza-
tion, typically implemented as FA; and symmetric network
design, obtained by composing a G-invariant layer with a
sequence of G-equivariant layers.

Trained invariance is implemented as DA (Fawzi et al.,
2016; Cubuk et al., 2018): (possibly random) elements Gij
of G are applied to each observation Xi of the training data,
with the label Yi left unchanged. The result is an augmented
dataset DnG = ((GijXi, Yi)j≤m)i≤n used to minimize the
augmented empirical risk

R̂◦` (f,Dn) =
1

n

n∑
i=1

EG∼λ[`(f(GXi), Yi)] (5)

≈ 1

nm

n∑
i=1

m∑
j=1

`(f(GijXi), Yi) .

DA is now a standard method in practitioners’ toolkit (Iyyer
et al., 2014; Zhou & Troyanskaya, 2015; Salamon & Bello,
2017; Zhao et al., 2018), particularly due to its ease-of-
implementation and flexibility: G may be a set of trans-
formations that is not a group, which permits its use for
encouraging exact or approximate invariance under an arbi-
trary set of transformations. Networks trained with DA have

been observed to exhibit greater invariance to the desired
transformations than those trained on the original dataset
(Fawzi et al., 2016) despite the fact that invariance is not part
of the built-in network architecture. Moreover, it can have
positive effects on generalization even when the augmenta-
tion transformations are not present in the test set (Zhang
et al., 2017).

Theoretical understanding of DA is still being developed.
Recent theoretical work has established connections to FA
and variance reduction methods. Specifically, Dao et al.
(2019) showed that for a kernel linear classifier, minimizing
the augmented risk is equivalent, to first order, to minimiz-
ing the feature averaged risk; and that a second-order ap-
proximation to the objective is equivalent to data-dependent
variance regularization. Chen et al. (2019) showed that
averaging over the set of transformations is a form of
Rao–Blackwellization, and the resulting variance-reduction
yields a number of desirable theoretical statistical properties.

Architectural invariance restricts the function class being
learned to contain only invariant functions, typically through
either FA or symmetric function composition. FA relies on
computing an average over G at one or more layers, such that
the overall network is invariant under G acting on the input.
In practice, averaging is typically done at the penultimate or
final layer, resulting in a G-invariant network f◦. A network
f withD layers is written as the composition of hD◦· · ·◦h1,
with the shorthand hd

′

d referring to the composition of layers
d through d′. The empirical risk of a network with FA at
layer d evaluated on Dn is

R̂`(f
◦,Dn) =

1

n

n∑
i=1

`
(
hDd ◦ EG∼λ[hd−1

1 (GXi)], Yi
)
.

As with DA, FA can be applied to approximate and non-
group invariance. The average over G might also be esti-
mated by applying randomly sampled elements of G, though
when hDd is nonlinear the estimate of f◦ may be biased. Un-
like DA, symmetrization guarantees that the output function
f◦ will be invariant to G whenever the expectation over G
can be computed exactly. The exact computation of this
expectation, however, can be computationally expensive
(linear in |G| when discrete) or even intractable (when G is
infinite), in which case Monte Carlo estimates can be used.

The elegant, albeit less generically applicable approach of
symmetric function composition uses properties of G to de-
termine particular functional forms that are equivariant or
invariant under G. An invariant network f◦ is constructed by
composing an invariant function (layer) h◦ with a sequence
of equivariant functions (he

k): f◦ = h◦ ◦ he
D ◦ · · · ◦ he

1. A
body of literature of varying degrees of generality has de-
veloped (Wood & Shawe-Taylor, 1996; Ravanbakhsh et al.,
2017; Kondor & Trivedi, 2018; Bloem-Reddy & Teh; Cohen
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et al., 2019). This includes convolutional networks. Empiri-
cal results indicate that this approach has advantages over
trained invariance (e.g., Cohen & Welling, 2016). Theoreti-
cal results to this end are lacking, with the notable exception
of the VC-dimension-based PAC bounds obtained by Shawe-
Taylor (1991; 1995), which connect a tighter generalization
bound to the reduction in parameters that results from sym-
metry constraints. We do not consider equivariant-invariant
architectures further, and leave their theory as future work.

2.2. PAC-Bayes Generalizations Bounds

Understanding the generalization performance of deep learn-
ing models is a core research objective of modern machine
learning. Many empirical results appear counterintuitive,
and remain largely unexplained by theory. Networks with
many more parameters than observations may generalize
well, despite also having the capacity to memorize the train-
ing set (Zhang et al., 2017). Uniform generalization bounds
often result in vacuous bounds, i.e., they are greater than the
upper bound of the loss function (Dziugaite & Roy, 2017).
However, PAC-Bayes bounds (McAllester, 1999) have been
successfully applied to large deep network architectures to
obtain nonvacuous generalization guarantees (Dziugaite &
Roy, 2017; 2018; Zhou et al., 2019).

PAC-Bayes bounds characterize the risk of a random-
ized prediction rule; the randomizaton is interpreted as a
Bayesian posterior distribution Q that can depend on Dn.
The typical bound on generalization error is expressed in
terms of the empirical risk and the KL divergence between
Q a fixed prior distribution P . The following is a standard
bound due to Catoni (2007), which holds for general data
generating distributions PD and 0-1 loss.
Theorem 1 (Catoni (2007)). Let Dn be sampled i.i.d. from
PD, and let ` be 0-1 loss. For any prior P and any
δ ∈ (0, 1), with probability 1 − δ over samples Dn, for
all posteriors Q and for all β > 0,

R`(Q) ≤ 1− e−βR̂`(Q,Dn)− 1
n (KL(Q || P )+log 1

δ )

1− e−β
. (6)

For bounded loss functions, analogous bounds are in terms
of the so-called KL generalization error (see, e.g., Dziugaite
& Roy, 2017; 2018). We state all results only for variations
of Catoni’s bound (6), but versions for KL generalization
error are straightforward to derive.

3. Data Augmentation Reduces Variance
In this section, we discuss the ways in which DA performs
better than baseline ERM, and establish the validity of a
PAC-Bayes bound for models trained with DA.

Recently, Chen et al. (2019) established that when PD is
G-invariant, DA reduces the variance of ERM-based es-

timators by (approximately) averaging loss over the or-
bits of the observations, which can be seen as a form
of Rao–Blackwellization. Specifically, for any integrable
h : X × Y → R, symmetrizing is equivalent to taking the
conditional expectation, conditioned on the orbit of X:

EG∼λ[h(GX,Y )] = E(X,Y )∼PD [h(X,Y ) | Φ(X)] .

The average of G appears in the augmented empirical risk
(5), and reduces the variance of risk estimates. Specifically,
the variance of the risk decomposes into within-orbit and
across-orbit terms, and the within-orbit term vanishes for the
augmented risk. The result follows directly from Chen et al.
(2019, Lemma 4.1); we also give a proof in Appendix A
that highlights the structure of the problem.
Proposition 2 (Chen et al. (2019)). If PD is G-invariant
and `(f( • ), • ) ∈ L2(PD), then

EDn∼PnD
[
R̂◦` (f,Dn)

]
= EDn∼PnD

[
R̂`(f,Dn)

]
, and

VarDn∼PnD
[
R̂◦` (f,Dn)

]
≤ VarDn∼PnD

[
R̂`(f,Dn)

]
.

3.1. Practical Data Augmentation

Computing EG∼λ[`(f(GX), Y )] exactly may be infeasible:
G may be discrete but large, or G may be continuous. In
either case, practical DA relies on Monte Carlo estimates,
typically within stochastic gradient descent (SGD). Specifi-
cally, with Gij ∼ λ, R̂◦` is approximated by

R̂◦̂` (f,Dn) :=
1

nm

n∑
i=1

m∑
j=1

`(f(GijXi), Yi) . (7)

For “nice” loss functions—those for which we can inter-
change differentiation and EG∼λ—the symmetrization re-
duces the variance of gradient estimates of augmented risk.
Conversely, the variance of the Monte Carlo estimate of (7)
may offset the reduction obtained from averaging. Further-
more, it has been argued that the noise in SGD implicitly
regularizes the objective (Neyshabur, 2017); excessive vari-
ance reduction may have harmful effects. In short, the con-
sequences of the interplay between the variance reduction
of symmetrization and the variance increase of approximat-
ing that symmetrization, especially in the context of SGD
for overparameterized models, are not clear. The details
of those trade-offs are beyond the scope of this paper; we
briefly investigate the effects empirically in Section 6.

3.2. Data Augmentation and Trained Invariance

While DA is sometimes referred to as an approach to train an
invariant function, the learned function will not be invariant
in general. The objective of training with DA is to minimize
a symmetrized risk, not to find a symmetric function.

One setting in which minimizing the augmented risk will
yield an invariant function is with a linear model fw(X) =
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w>X and a convex loss, and with G a group whose action
on X has a linear representation. To state the result, let V be
a d-dimensional vector space over R with dual vector space
V ∗, and assume that X spans V . Furthermore, let G admit a
linear representation, ρ : G → GL(V ), with corresponding
dual ρ∗g = ρ>g−1 .

Proposition 3. Suppose that G has a linear representation,
as described above, let fw(X) = w>X and ` be strictly
convex. Then the (global) minimizer ŵ satisfies ρ∗gŵ = ŵ
for λ-almost all g ∈ G. In particular, fŵ is G-invariant.

Under suitable step-size conditions (e.g., the Robbins–
Munro conditions) SGD will converge to an invariant set of
weights. Thus, to learn a predictor that exhibits the desired
invariance on the entire dataset, it is sufficient to train with
SGD on augmented data with a convex loss.

Non-convex objectives with non-linear models do not yield
similar results. As most settings for which we would use
deep learning are both non-convex and non-linear, this sug-
gests that although DA may appear to promote invariance,
it may fail to learn networks that are truly invariant.

The example depicted in Fig. 1 demonstrates such a failure:
the learned function appears to capture the target invariance
on the training data, but, having not learned the appropriate
symmetry in weight space, fails to generalize to novel data
and displays high variance over orbits in evaluation. We
train fully connected neural networks using DA on one of
two related datasets: MNIST and fashionMNIST (28× 28
pixel black and white images of handwritten digits and cloth-
ing categories respectively), each augmented by rotations
of multiples of 90 degrees. We then evaluate the variance
of the outputs over orbits (rotations by 90, 180, and 270 de-
grees) in the test set. Finally, we evaluate the two networks
on orbits in the complementary dataset.

We observe that the networks attain low variance over orbits
of data drawn from the same distribution as the training data.
The performance of the networks on out-of-distribution data
is more interesting. The MNIST network has increasingly
higher variance of its predictions on the rotations of fash-
ionMNIST as it reduces its prediction variance over orbits
of MNIST. We also note that the variance between random
seeds in the variances over orbits was significantly higher
on the out-of-distribution data. We omit data for FA be-
cause averaging over each of the four rotations of the input
trivially yields a variance of zero over each orbit.

3.3. PAC-Bayes Generalization Bounds

The PAC-Bayes bound in Theorem 1 holds with binary clas-
sification loss. Exact DA violates the assumptions because
with the same loss, EG∼λ[`(f(GX), Y )] ∈ [0, 1]. Monte
Carlo approximations of EG∼λ[`(f(GX), Y )] also violate
the assumptions of Theorem 1 because the augmented data

Figure 1. Variance of predictions w.r.t. rotations of input over the
course of training. Labels indicate training → evaluation set.

set is not i.i.d. We address both issues with the following
PAC-Bayes bound for DA.

Theorem 4. Assume that PD is G-invariant. Then The-
orem 1 holds with either of R̂◦` (Q,Dn) as in (5) or
R̂◦̂` (Q,Dn) as in (7) substituted for R̂`(Q,Dn).

See Appendix A for the proof, which uses a general formula
of Lever et al. (2013) and the invariance structure of PD.
The bound (6) is looser than what is theoretically possible
for DA. However, tighter bounds with an analytic form (see
Appendix B.3) are computationally intractable.

4. Feature Averaging Can Do More
In this section we establish that FA should be preferred over
DA in most situations. When the loss is convex, generaliza-
tion error decreases both in expectation and per-dataset, and
there is a further variance-reduction in risk estimates. More
importantly, symmetrization compresses the model, result-
ing in a symmetrization gap in the PAC-Bayes bound.

For a group G that acts onX , symmetrization of any function
f : X → R can be performed by averaging over G, as in
(2). Fix a function class F , and let F ◦ denote the class of G-
invariant functions obtained by symmetrizing the functions
belonging to F . Clearly, SG is surjective, but it may not
be injective. The inverse image of f◦, S−1

G f◦, yields the
set of functions in F whose G-symmetrization yields f◦.
Function symmetrization is naturally extended to probability
measures on function classes: for any probability measure
P on F , the induced probability measure on F ◦ is the image
of P under SG , P ◦ = P ◦ S−1

G .

4.1. Further Variance Reduction with Convex Loss

With convex loss, Jensen’s inequality can be applied to the
augmented risk to compare DA and FA risk estimates. The
proof of the following proposition is given in Appendix A.2.
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Proposition 5. Let ` : R×R→ R+ be a loss function that
is convex in its first argument. Then for any f : X → Y ,

R̂`(f
◦,Dn) = R̂◦` (f

◦,Dn) ≤ R̂◦` (f,Dn) ,

and therefore analogous inequalities hold for R̂`(Q◦,Dn),
R`(f), and R`(Q). Furthermore, if `(f( • ), • ) ∈ L2(PD)
(i.e., has finite second moment),

VarDn∼PnD
[
R̂`(f

◦,Dn)
]
≤ VarDn∼PnD

[
R̂◦` (f,Dn)

]
.

4.2. Reduction in KL via the Symmetrization Gap

In modern deep learning architectures, one typically has
sufficiently large capacity to drive the empirical risk arbi-
trarily close to zero. Although the variance-reduction of
the previous section can help during training, the dominant
term in the generalization bound (6) is KL(Q || P ). Indeed,
much of the recent literature on obtaining nonvacuous PAC-
Bayes bounds focuses on minimizing this term, subject to
not overly inflating the empirical risk.

Consider the approach of Zhou et al. (2019): train a deep
neural network, and use a compression algorithm to obtain
a lossy compression of the trained network. Countering
the potential for deterioration in the empirical risk, the KL
term applied to the compressed network achieves a massive
reduction in entropy; the compressed network is much less
complex. Those basic concepts apply more generally, as
formalized by the following lemma. Although fundamental,
we have been unable to find a published proof (though it
would be surprising if one does not exist). We give the proof
in Appendix A.3.

Lemma 6. Suppose that (Ei, Ei), i = 1, 2, are two measur-
able spaces, the second of which is standard, µ and ν are
two probability measures on (E1, E1), and ψ : (E1, E1)→
(E2, E2) is a measurable map. Then

KL(µ ◦ ψ−1 || ν ◦ ψ−1) ≤ KL(µ || ν) . (8)

Furthermore, if µ � ν with density m, then µ ◦ ψ−1 �
ν ◦ ψ−1 with density mψ , and the ψ-gap is

∆ψ(µ || ν) : = KL(µ || ν)− KL(µ ◦ ψ−1 || ν ◦ ψ−1)

=

∫
E1

µ(dx) log
m(x)

(mψ ◦ ψ)(x)
. (9)

In particular, when ψ is non-injective, points of (E1, E1)
become equivalent; (E2, E2) is a compressed version, and
the probability measures µ and ν are similarly compressed.

The symmetrization gap. Applying Lemma 6 with ψ =
SG indicates that symmetrization can reduce the KL diver-
gence term in the PAC-Bayes bound.

Theorem 7. Let X be a compact metric space and Y a
Polish space, G a group acting measurably on X , and F =

C(X ,Y) the class of continuous functions X → Y .3 Let Q
and P be probability measures on F such that Q� P with
density q, and Q◦ � P ◦ (density q◦) their images under
SG on F ◦. Then

KL(Q◦ || P ◦) ≤ KL(Q || P ) .

Furthermore, the symmetrization gap is

∆◦(Q || P ) = Ef∼Q
[

log
q(f)

q◦(SGf)

]
. (10)

Because Q◦ is the image of Q, the densities in (10) satisfy∫
S−1
G B

q(f)P (df) =

∫
S−1
G B

q◦(SGf)P (df) , (11)

for all setsB in the σ-algebra on F ◦. Although this imposes
a large number of constraints on q and q◦ ◦ SG , they may
differ greatly across F . In particular, consider a G-induced
equivalence class S−1

G SGf := {f ′ ∈ F : SGf
′ = SGf}. In

essence, the constraints (11) are integrals over one or more
equivalence classes. q◦ ◦ SG is constant on any equivalence
class, while q may vary arbitrarily subject to (11). Inspection
of (10) indicates that the symmetrization gap is zero if and
only if q is constant on each G-induced equivalence class of
F . Conversely, the more q varies across each equivalence
class, the higher the gap.

Symmetrization and compression via other means. The
benefits of compression are not limited to symmetriza-
tion via averaging. Any non-injective, G-invariant map
ψ will have a non-zero ψ-gap. For example, each of
supg∈G f(gX), infg∈G f(gX), and max{0, f◦(X)} satis-
fies the criteria.

4.3. Practical Feature Averaging

In practice, the expectation computed in FA may be com-
putationally intractable. Instead, one may sample a set of
k transformations with which to average the function out-
put. While this will not output the exact expectation, it still
takes advantage of a simplification of the function space via
Lemma 6, by aggregating functions that have some proba-
bility of being mapped to the same approximately averaged
function. To formalize the idea, let gk = {g1, g2, . . . , gk}
be a set of elements of G, and Gk a random realization
sampled i.i.d. from λ. Let Sgkf(x) = k−1

∑
j≤k f(gjx)

denote the approximate symmetrization of f by gk. Finally,
let Q◦̂gk = Q ◦ S−1

gk
denote the image of a distribution Q on

F under Sgk . The following result is a consequence of the
fact that Lemma 6 is true for every gk, and that for gk+1 =
gk ∪ {gk+1}, Sgk+1f(x) = f(gk+1x) + k

k+1Sgkf(x).

3The result can hold for other function classes F ; the key
requirement is that conditioning is properly defined in F and F ◦.
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Proposition 8. Assume the conditions of Theorem 7. Let
Gs = G1, G2, . . . be a sequence of elements sampled i.i.d.
from λ. Then with probability one over Gs,

KL(Q || P ) ≥ KL(Q◦̂G1 || P ◦̂G1) ≥ · · ·
≥ KL(Q◦̂Gk || P

◦̂
Gk) ≥ · · ·

≥ KL(Q◦ || P ◦) .

As with practical DA, the interplay between SGD and ap-
proximate symmetrization remains an open question. How-
ever, Proposition 8 makes it clear that at test time, FA—even
approximate—is favored.

Computing the symmetrized KL. One drawback to the
generic applicability of FA is the difficulty of computing
KL(Q◦ || P ◦) within current approaches to specifying Q
and P on neural networks. Specifically, in the approach
pioneered by Langford & Caruana (2002) and refined by
Dziugaite & Roy (2017) is (roughly) as follows: P is
a mean zero uncorrelated multivariate Gaussian distribu-
tion on the weights of the network; Q is an uncorrelated
multivariate Gaussian distribution, with mean equal to the
trained weights and variances optimized to minimize the
PAC-Bayes bound. Given that the the network represents a
non-linear function, KL(Q◦ || P ◦) cannot be computed in
closed form. Whether there is a feasible alternative method
to specifying P and Q that would allow for computation
of KL(Q◦ || P ◦) remains an open question. We give an
example of when it can be computed with a linear model in
Section 5 with a linear model.

Despite this drawback, the symmetrization gap in the theo-
retical bounds appears to have real effects on generalization,
as shown by the experiments in Section 6.

4.4. PAC-Bayes Bounds

As discussed in Section 3.2, DA symmetrizes the loss func-
tion, which does not guarantee that the learned function f∗

will be G-invariant. Moreover, the generalization error of
the learned predictor f∗ will be estimated on untransformed
test data, precluding randomized prediction distributions
Q based on f∗ from concentrating on F ◦. That is, the
PAC-Bayes bound for DA does not benefit directly from the
symmetrization gap.

Conversely, FA takes advantage of the symmetrization gap.
When the empirical risk R̂`(Q,Dn) is close to zero, which
will be the case for a trained neural network, the symmetriza-
tion gap is the primary contributor to reductions in the PAC-
Bayes generalization error bound. When the bound is non-
vacuous, the symmetrization gap is a measurement of the
benefit of invariance.

We formalize these statements in an ordering of the PAC-
Bayes generalization upper bounds. Let B0 be the upper

bound on the right-hand side of (6), withBDA andBFA corre-
sponding to the upper bounds for DA (using the augmented
empirical risk R̂◦` (Q,Dn)) and FA (using KL(Q◦ || P ◦)),
respectively. Finally, let BDA # denote the computationally
intractable bound for DA given in Appendix B.3.

Theorem 9. Assume the conditions of Theorem 1, and also
that PD is G-invariant. Then BFA ≤ BDA # ≤ BDA = B0.

Of course, without corresponding lower bounds, this does
not imply a strict ordering on generalization error. However,
the upper bounds are informative, they should carry some
information about relative performance. We demonstrate
this empirically in Section 6.

5. Example: Permutation-Invariant Linear
Regression

The following example is a simple toy model, but it adheres
to what may be done in practice. Specifically, consider
linear regression fw(X) = w>X , w ∈ Rk, with the PAC-
Bayes procedure of Dziugaite & Roy (2017): estimate ŵ to
optimize some loss function; define Q as a k-dimensional
normal distribution with mean ŵ, covariance S = s2Ik, and
P likewise with mean µ, covariance Σ = σ2Ik. Then

KL(Q || P ) =
k

2

(
s2

σ2
− 1 + ln

σ2

s2

)
+
||µ− w||22

2σ2
.

Alternatively, consider the same model averaged over
all permutations of the inputs. Then for any w in the
original model, there is the constant vector w◦1k =
1
d!

∑
π∈Sd πw = k−11k1>k w. The image of the prior there-

fore is equivalent to a 1-dimensional normal distribution
with mean µ◦ = k−11k1>k µ and variance k−1σ2, and simi-
larly for the image of the posterior. Therefore,

KL(Q◦ || P ◦) =
1

2

(
s2

σ2
− 1 + ln

σ2

s2

)
+
k(µ◦ − w◦)2

2σ2
.

In practice, the KL (and various measures of model complex-
ity) is dominated by the terms involving ||w||22. Focusing
on the difference in those terms, by the Cauchy–Schwarz
inequality the symmetrization gap is

∆◦(Q || P ) ≈ 1

2σ2

k∑
j=1

(
(µj − wj)2 − (µ◦ − w◦)2

)
≥ 0 .

We give a further example based on Boolean functions in
Appendix B.1.

6. Experiments
We provide two examples to illustrate the theoretical results
from sections Sections 3 and 4.
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Figure 2. Measurements over the course of training a convolutional neural network using different data augmentation and feature averaging
approaches. Left: models are trained with approximate feature averaging using k sampled rotations in the range {1, . . . , 360}, and then
evaluated with and without that averaging scheme. Middle: per-epoch gradient variance and test loss in the same setting. Right: same
dataset and architecture as before, but now augmentation set is composted or rotation by 90 degrees, so feature averaging is exact..

6.1. Training Behavior of DA and FA

In Section 3, we showed that feature averaging reduces vari-
ance in both function outputs and gradient steps when com-
pared to data augmentation. We provide a demonstration
of how this reduction in variance may play out in practice
to ground the previous theoretical analysis and to give the
reader a sense of the complexity of analyzing the interplay
between feature averaging on gradient descent dynamics.
For our evaluation, we train a series of convolutional neural
networks on an augmentation of the FashionMNIST dataset.
The class of an article of clothing is invariant to rotations:
put simply, there is no way of rotating a shoe such that it
can be mistaken for a t-shirt. We therefore consider two dif-
ferent augmentations of the dataset by rotations to construct
invariant training distributions.

In the first, we augment the dataset by the 4-element group
G of 90 degree rotations so that the data-generating distri-
bution P is invariant to the action of G, and train a simple
convolutional neural network (CNN) once with feature aver-
aging, and once without feature averaging. In this setting,
the average over G can be computed exactly. Our findings
agree with the results of Section 4: exact FA leads to a re-
duction in gradient variance, and also to lower training loss.
However, the model trained with FA demonstrates overfit-
ting, suggesting that the reduction in variance obtained by
exact FA may not always be desirable during training.

We next consider an additional augmentation of FashionM-
NIST via the group G of rotations in the set {1◦, . . . , 360◦}.
In this setting, we perform approximate feature averaging
with k samples, where k << |G|. We observe that the model

Table 2. Generalization performance for a permutation-invariant
point cloud classification task (see text for details).

Network Train Test KL PAC-Bayes
Error Error Divergence Bound

Fully connected 0.002 0.65 24957 1.75
Partial-Pointnet 0.172 0.248 1992 0.67

Pointnet 0.24 0.245 944 0.533

trained with FA becomes increasingly dependent on feature
averaging to obtain a low loss: the loss of each individual
function computed by the network increases during training,
and it is only when averaging over orbits that the network
attains the lowest loss. In other words, the trajectory of
the models trained with approximate feature averaging con-
verge to regions of parameter space that don’t correspond
to functions that attain low loss when evaluated without
feature averaging, and so may be quite different from the
parameters learned by data augmentation.

6.2. Generalization in Neural Networks

We next provide a demonstration of the effect of invariance
on PAC-Bayesian bounds for neural networks. We use the
ModelNet10 dataset, which consists of LiDAR point cloud
data for 10 classes of household objects. This dataset ex-
hibits permutation invariance: the LiDAR reading is stored
as a sequence of points defined by {x, y, z} coordinates,
and the order in which the points are listed is irrelevant
to the class. We consider three different architectures: a
PointNet-like architecture (Qi et al., 2017), which is invari-
ant to permutations; a partitioned version of the PointNet
architecture which is invariant to subgroups of the permuta-
tion group (details in the Appendix); and a fully connected
model where the invariant pooling operation in the PointNet
is replaced by a fully-connected layer. The invariance in
the network is implemented via a max-pooling layer instead
of an averaging layer and so is not a direct application of
feature averaging; however, the results of Eq. (8) would
apply, were we able to compute the PAC-Bayesian bound
for the model exactly.

We compute the PAC-Bayes bounds following the procedure
in Dziugaite & Roy (2017): we convert a deterministic
network to a stochastic network by adding Gaussian noise
to the weights, and then train this stochastic model using a
differentiable surrogate loss that bounds the true PAC-Bayes
bound. After this training procedure converges, we then
compute the true PAC-Bayes bound. We attain an ordering
consistent with the observations presented in the previous
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section: the invariant architecture attains the lowest bound,
followed by the partially invariant architecture, and finally
followed by the fully connected network. We provide a
decomposition of the distinct terms in the bound in Table 2.

7. Practical Implications and Conclusions
We refer back to Table 1 for a summary of our theoretical
results. A few practical guidelines emerge.

Train with approximate data augmentation or feature
averaging. The reduction in variance of risk estimates and
their gradients obtained by averaging over G appears to be
beneficial to training, though too much variance-reduction
seems undesirable. Based on the experiments in Section 6,
we advocate for training with approximate FA or DA.

Use feature averaging at test/deployment time. With a
convex loss function, the generalization error R`(f) of a
feature-averaged model is no worse, and possibly better,
than that of its non-averaged counterpart, even when DA was
used for training. Even with non-convex loss, a randomized
prediction rule Q has looser generalization bounds than
its G-averaged counterpart Q◦. Because of this, even a
model trained with DA should generalize better when its
outputs are averaged over G at test time. The experiments
in Section 6 demonstrate this empirically.
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A. Proofs
Proof of Proposition 3. Let w ∈ V ∗, and suppose that w is not invariant under the action of G. Let w◦ = EG∼λ[ρ∗Gw],
which is G-invariant by construction. Because X spans V , w − w◦ 6= 0 implies that w 6= w◦.

Consider the minimizer

ŵ = arg min
w∈V ∗

R̂◦` (fw,Dn) = arg min
w∈V ∗

1

n

n∑
i=1

EG∼λ[`(w>ρGXi, Yi)] ,

which is unique because ` is strictly convex by assumption. Assume that ŵ is not G-invariant. Applying Jensen’s inequality,
we have

R̂◦` (fŵ,Dn) =
1

n

n∑
i=1

EG∼λ[`(ŵ>ρGXi, Yi)]

>
1

n

n∑
i=1

`(EG∼λ[ŵ>ρGXi, Yi)]

=
1

n

n∑
i=1

`(EG∼λ[(ρ∗G−1ŵ)]>Xi, Yi)]

=
1

n

n∑
i=1

`(ŵ◦Xi, Yi) = R̂◦` (fŵ◦ ,Dn) ,

which cannot be the case because ŵ minimizes R̂◦` . Therefore, ŵ must be G-invariant.

A.1. Proof of Theorem 4

The proof of our PAC-Bayes bound for data augmentation makes use of the following result due to Lever et al. (2013).
Theorem 10 (Lever et al. (2013), Theorem 1). For any functions A(f), B(f) over F , either of which may be a statistic of
the training data Dn, any distribution P over F , any δ ∈ (0, 1], any t > 0, and a convex function D : R× R→ R, with
probability PnD at least 1− δ, for all distributions Q on F ,

D
(
Ef∼Q[A(f)],Ef∼Q[B(f)]

)
≤ 1

t

(
KL(Q || P ) + log

LP
δ

)
, (12)

where LP := EDn∼PD,f∼P [etD(A(f),B(f))] is the Laplace transform of D(A(f), B(f)).

As Lever et al. (2013) discuss, many PAC-Bayes bounds in the literature can be obtained as special cases of Theorem 10,
including Catoni’s bound in Theorem 1. In that case, which applies to 0-1 loss, t = n, A(f) = R̂`(f,Dn), B(f) = R`(f),
and

DC(q, p) := − log(1− p(1− e−C))− Cq , q, p ∈ (0, 1), C > 0 (13)

= − logEZ∼Bern(p)[e
−CZ ]− Cq . (14)

Basic calculations show that with these quantities, LP = 1.

Recall that

R̂`(f,Dn) :=
1

n

n∑
i=1

`(f(Xi), Yi) (15)

R̂◦` (f,Dn) :=
1

n

n∑
i=1

EG∼λ[`(f(GXi), Yi)] (16)

R̂◦̂` (f,Dn) :=
1

nm

n∑
i=1

m∑
j=1

`(f(GijXi), Yi) . (17)

Let (Gij) denote the collection of m · n random augmentation transformations sampled i.i.d. from λ.
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Lemma 11. Let ` be binary loss, P any distribution on F , and assume that PD is G-invariant. Then

Ef∼P
[
EDn∼PD

[
enDC(R̂◦` (f,Dn),R`(f))

]]
≤ Ef∼P

[
EDn∼PD [enDC(R̂`(f,Dn),R`(f))]

]
= 1 (18)

and

Ef∼P
[
EDn∼PD

[
enDC(R̂◦̂` (f,Dn),R`(f))

]]
≤ Ef∼P

[
EDn∼PD [enDC(R̂`(f,Dn),R`(f))]

]
= 1 . (19)

Proof. Since the observations (Xi, Yi) are i.i.d., the expectation over Dn on the left-hand side of (18) requires evaluating
EDn∼PD

[
e−CEG∼λ[`(f(Xi),Yi))]

]
. Using the convexity of e−x, Jensen’s inequality and Fubini’s theorem yield

E(Xi,Yi)∼PD
[
e−CEG∼λ[`(f(GXi),Yi))]

]
≤ E(Xi,Yi)∼PD

[
EG∼λ

[
e−C`(f(GXi),Yi))

]]
(20)

= EG∼λ
[
E(Xi,Yi)∼PD

[
e−C`(f(GXi),Yi))

]]
.

Now, G-invariance of PD implies that E(Xi,Yi)∼PD [h(gXi, Yi)] = E(Xi,Yi)∼PD [h(Xi, Yi)] for all measurable functions
h : X × Y → R+ and all g ∈ G, which extends to independent random G by Fubini’s theorem. Therefore,

EG∼λ
[
E(Xi,Yi)∼PD

[
e−C`(f(GXi),Yi))

]]
= E(Xi,Yi)∼PD

[
e−C`(f(Xi),Yi))

]
= EZ∼Bern(R`(f))[e

−CZ ] ,

which implies (18).

For the second inequality (19), observe that by Jensen’s inequality,

EDn∼PD
[
e−nCR̂

◦̂
` (f,Dn)

]
=

n∏
i=1

E(Xi,Yi)∼PD

[
E(Gij)mj=1∼λ

[
exp

(
− C

m

m∑
j=1

`(f(GijXi), Yi)

)]]

≤
n∏
i=1

E(Xi,Yi)∼PD

[
E(Gij)mj=1∼λ

[
1

m

m∑
j=1

e−C`(f(GijXi),Yi)

]]

=

n∏
i=1

E(Xi,Yi)∼PD
[
EG∼λ

[
e−C`(f(GXi),Yi)

]]
Using the G-invariance of PD once again, we have

EDn∼PD
[
e−nCR̂

◦̂
` (f,Dn)

]
≤ EDn∼PD

[
e−nCR̂`(f,D

n)
]

=
(
EZ∼Bern(R`(f))[e

−CZ ]
)n
,

which implies (19).

Proof of Theorem 4. Theorem 4 follows from Theorem 10 and Lemma 11. In particular, observe that the expectation of
any of the risks (15)–(17) over Dn and f ∼ Q is R`(Q). Therefore, using any of those risks as A(f) in Theorem 10 with
B(f) = R`(f) will result in valid a PAC-Bayes bound; the only quantity that changes between the three situations is LP
in (12). Lemma 11 establishes that LP when A(f) is either of R̂◦` (f,Dn) or R̂◦̂` (f,Dn) is upper-bounded by LP when
A(f) = R̂`(f,Dn), which is equal to 1.

The particular bound (6) follows from algebraic manipulations of (12).

A.2. Proof of Proposition 5

Proof of Proposition 5. Let G be a group with some probability measure λ, and F a class of functions f : X → R. Let
` : R × R → R+ be a loss function such that `(f( • ), • ) ∈ L2(PD) for every f ∈ F . Then the augmented risk of any
function f ∈ F is

R̂◦` (f,Dn) =
1

n

n∑
i=1

EG∼λ[`(f(GXi), Yi)] .

If ` is convex in the first argument, then by Jensen’s inequality,

EG∼λ[`(f(GXi), Yi)] ≥ `(EG∼λ[f(GXi)], Yi) , i = 1, 2, . . . , n . (21)
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On the other hand, the G-symmetrization of f(X) is f◦(X) = EG∼λ[f(GX)], with augmented risk

R̂◦` (f
◦,Dn) =

1

n

n∑
i=1

EG∼λ[`(EG∼λ[f(GXi)], Yi)]

=
1

n

n∑
i=1

`(EG∼λ[f(GXi)], Yi)

= R̂`(f
◦,Dn) .

Combined with (21), the reduction in empirical augmented risk follows. The reduction in R̂◦` (Q,Dn) follows trivially.

The variance-reduction is established by extending the argument in the proof of Proposition 2. Specifically, by the conditional
Jensen’s inequality,

VarDn∼PnD
[
R̂◦` (f,Dn)

]
= Var[E[R̂◦` (f,Dn) | Φn]] ≥ Var[E[R̂`(f

◦,Dn) | Φn]] = VarDn∼PnD
[
R̂`(f

◦,Dn)
]
.

A.3. Proof of Lemma 6 and Theorem 7

The proof of Lemma 6 relies on the chain rule of relative entropy. Let two probability measures, µ̃ � ν̃ defined on the
product space (E1 ×E2, E1 ⊗ E2), have marginal measures µ̃1 � ν̃1 on (E1, E1) (respectively, µ̃2 � ν̃2 on (E2, E2)) and
regular conditional probability measures µ̃2|1 � ν̃2|1 (resp. µ̃1|2 � ν̃1|2). Recall the chain rule of relative entropy is

KL(µ̃ || ν̃) = KL(µ̃1 || ν̃1) + Eµ̃
[

log
dµ̃2|1

dν̃2|1

]
= KL(µ̃2 || ν̃2) + Eµ̃

[
log

dµ̃1|2

dν̃1|2

]
. (22)

Observe that each of the terms in the equalities is non-negative.

Proof of Lemma 6. Given probability measures on (E1, E1) µ� ν (with density m such that µ = m · ν) and a measurable
map ψ : (E1, E1)→ (E2, E2), construct the probability measure µ̃ on (E1 × E2, E1 ⊗ E2) as

µ̃(A×B) = µ(A ∩ ψ−1B) =

∫
A

µ(dx1)

∫
B

δψ(x1)(dx2) , A ∈ E1, B ∈ E2 ,

and likewise for ν̃. Then in the notation of (22), µ̃1 = µ� ν = ν̃1, and µ̃2|1 = δψ(x1) = ν̃2|1. Therefore,

KL(µ̃ || ν̃) = KL(µ̃1 || ν̃1) = KL(µ || ν) . (23)

Alternatively, µ̃2 = µ ◦ ψ−1, ν̃2 = ν ◦ ψ−1, and it is straightforward to show that

Eµ̃
[

log
dµ̃1|2

dν̃1|2

]
= Eµ̃

[
log

dµ̃1

dν̃1

]
− Eµ̃

[
log

dµ̃2

dν̃2

]
= Eµ

[
log

m

m ◦ ψ

]
= ∆ψ(µ || ν) ≥ 0. . (24)

Therefore,

KL(µ̃ || ν̃) = KL(µ || ν) = KL(µ ◦ ψ−1 || ν ◦ ψ−1) + ∆ψ(µ || ν) . (25)

Proof of Theorem 7. For X a compact metric space and Y a Polish space, the space F = C(X ,Y) of continuous functions
f : X → Y is a Polish space, and therefore it (along with its Borel σ-algebra B(C(X ,Y))) is a standard Borel space.
For a group G acting measurably on X , the symmetrization operator SG : F → F ◦ is measurable, and the product space
(F ×F ◦,B(F )⊗B(F ◦)) is a standard Borel space. Thus, the conditions of Lemma 6 are satisfied and the result follows.
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B. Examples, Counterexamples, Tighter Bounds
B.1. Permutation-invariant Boolean Function

As an illustrative example, we consider the task of learning a permutation-invariant Boolean function. We consider the
following toy learning algorithm. For a training set Dn, each observation of which is a pair (Xi, Yi) ∈ {0, 1}k × {0, 1}, the
algorithm outputs a sample from QnD, the uniform distribution over all k-ary Boolean functions which agree with Dn. If the
full function space under consideration is the set of k-ary Boolean functions F = {f : {0, 1}k → {0, 1}}, then |F | = 22k .
Moreover, the number of Boolean functions consistent with a training data set containing |Dn| unique binary vectors is
22k−|Dn|. Thus, letting P denote the uniform distribution over k-ary Boolean functions,

KL(Q || P ) = log2

22k

22k−|Dn| = |Dn| ≤ n ,

where for convenience we have used log2 inside the KL.

In contrast, we can consider the same learning algorithm applied to the class of permutation-invariant Boolean functions.4

The permutation-invariant Boolean functions are those that are constant on all input vectors containing the same number of 1-
valued entries, and therefore is equivalent to the set of functions Finv = {f : {0, . . . , k} → {0, 1}}, with |Finv| = 2k+1. The
restriction of the uniform prior P to Finv remains uniform, Pinv(finv) = 2−(k+1). The restriction ofQ depends on |Dn|inv, the
number of j ∈ {0, · · · , k} such that at least observation in Dn has exactly j 1-valued entries: Qinv(finv) = 2−(k+1−|Dn|inv).
Thus,

KL(Qinv || Pinv) = |Dn|inv ≤ |Dn| .

In this simple case, if the observations are consistent with the assumptions, i.e., the output is constant across input vectors
with the same number of 1-valued entries, then the invariant model obtains a KL gap of |Dn| − |Dn|inv.

B.2. Counterexamples

Feature averaging and non-convex losses. We consider the binary classification setting with the zero-one loss and some
function class f bounded in [0, 1] – that is `(x, y) = 1[|f(x)− y| > 1]. Suppose that there exists some invariance G in the
data such that y(x) = y(gx) for all x, g. Then consider a function which, for some small ε, outputs f(x) = 1

2 + yε on
a 1 − 2ε fraction of each equivalence class of the inputs, and 1 − y on 2ε of the inputs in each equivalence class. Then
E[f(gx)] = (1− 2ε)( 1

2 + yε) + 2ε(1− y). When y = 0, this expectation is 1
2 + ε, and when y = 1 it is 1

2 [1− ε− 2ε2] < 1
2 ,

so the feature-averaged model would have risk 1 whereas the original model had risk 0.

Non-uniform data-generating distributions. When the data-generating distribution is not uniform over the set T , then
performing data augmentation with T will not necessarily lead to a more accurate estimate of the model’s empirical risk.
For example, consider the task of learning a function g satisfying g(x) = g(−x), bounded in magnitude by some constant A.
Suppose, however, that positive numbers are much more likely under the data generating distribution, with p(R+) = 1− ε
for small ε. Then the function f(x) = 1[x > 0]g(x) will satisfy E[‖f(XS) − g(Xs)‖] 6= E[‖f(XSaug) − g(XSaug)‖]. So
the augmented risk is no longer an unbiased estimator of the empirical risk. Further, in this particular case its variance is
also higher, as it will be equal to 1

2 Var(g(x)), in contrast to εVar(g(x)).

B.3. Tighter PAC-Bayes Bounds for Data Augmentation

Although Theorem 4 establishes that the i.i.d. PAC-Bayes bound (6) is valid for exact DA, the proof of Theorem 4 indicates
that a tighter bound is possible. In particular, recall that when PD is G-invariant (Bloem-Reddy & Teh; Chen et al., 2019),

EG∼λ[`(f(GX), Y )] = E(X,Y )∼PD [`(f(X), Y ) | Φ] := `◦f (Φ) .

`◦f (Φ) is a random variable, the average loss on the random orbit with representative Φ, whose distribution is induced by PD.
Therefore, we can write LP in (12) as

LP = Ef∼P
[(

EΦ∼PD
[
e−C`

◦
f (Φ)

]
EZ∼Bern(R`(f))[e−CZ ]

)n]
≤ 1 .

4Note that the class of permutation-invariant Boolean functions is a strict subset of the Boolean functions, because symmetrization via
averaging produces a function with image [0, 1] (and thus the Boolean functions are not closed under averaging).
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In general, this cannot be computed in closed form. However, it might be possible to estimate using the data (with appropriate
modifications to the resulting bound) and samples f ∼ P .

C. Computation Details for PAC-Bayes Bounds
PAC-Bayes bounds for neural networks are computed via the following procedure: a deterministic neural network is trained
to minimize the cross-entropy loss on the dataset. After it has reached a suitable training accuracy, we use these parameters
as the initialization for the means and variances of the stochastic neural network weights used for the PAC-Bayes bounds.
We directly optimize a surrogate of the PAC-Bayes bound (using the cross-entropy loss instead of the zero-one accuracy
and using the reparameterization trick to get the derivatives of the variance parameters). The exact computation of the
PAC-Bayes bound uses the union bound and discretization of the PAC-Bayes prior as described in (Dziugaite & Roy, 2017).
Reported values are at optimization convergence.

C.1. Experiment parameters and computation details

The experiment code is provided with the paper submission, but we describe here at a high level the different models used in
our empirical evaluations.

FashionMNIST CNN: the convolutional network used for FashionMNIST consists of two convolutional layers (with batch
norm and max pooling) followed by a single fully connected layer.

LiDAR Permutation-Invariant Network: we use a scaled-down version of the PointNet architecture (Qi et al., 2017). We
include two layers of 1D convolutions followed by a max-pooling layer that selects the maximum over input points for each
channel. This layer is followed by two fully-connected layers leading into the final output.

Partially-Invariant Network: we alter the previous architecture slightly so that it is only invariant to subgroups of
the permutation group on its inputs. Specifically, we partition the input into 8 disjoint subsets, and apply the previous
model’s permutation-invariant embedding layers to each partition. The result is a feature representation that is invariant to
permutations within each partition of the input, but not between partitions. This representation is then fed through the same
architecture. We note that we keep the number of convolutional filters per layer constant, which results in a larger feature
embedding by a factor of 8 that is fed into the first fully connected layer. As a result, this model has significantly more
parameters than the fully permutation-invariant model.

Fully Connected Network: the max-pooling operator of the previous two architectures is omitted. This network has many
more parameters than either of the first two models, and is not invariant to any subgroup of the permutation group.

D. Additional Empirical Evaluations
In addition to the results shown in Fig. 2, we include further plots to characterize training the FA as opposed to DA, and
provide some insights here.

1. Feature averaging at evaluation uniformly improves the loss function compared to sampling a single input.

2. Feature averaging at evaluation doesn’t appear to significantly harm accuracy (a non-convex loss function), but doesn’t
see the same improvement as for the cross-entropy loss.

3. Models trained with feature averaging tend to achieve lower training loss, but in the exact feature averaging setting this
improved training loss is accompanied by increased overfitting.

4. Models trained with feature averaging perform worse over time when evaluated with a single sample. This gap increases
as the model is trained.
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Figure 3. Measures of performance for networks trained with approximate feature averaging. Number of samples used in approximate FA
during training range from k = 1 to k = 64. FA indicates that the model was evaluated using the same number of samples that it was
trained on, while k=1 indicates that a single sample is drawn at evaluation time.
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Figure 4. Different measures of performance of networks under different training regimes. Evaluation format (with a single sample or
with averaging) is included in title, and training method (trained with data augmentation or feature averaging) is distinguished within each
plot by colour.


