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Abstract

There is growing evidence that the classical notion of adver-
sarial robustness originally introduced for images has been
adopted as a de facto standard by a large part of the NLP re-
search community. We show that this notion is problematic
in the context of NLP as it considers a narrow spectrum of
linguistic phenomena. In this paper, we argue for semantic
robustness, which is better aligned with the human concept
of linguistic fidelity. We characterize semantic robustness in
terms of biases that it is expected to induce in a model. We
study semantic robustness of a range of vanilla and robustly
trained architectures using a template-based generative test
bed. We complement the analysis with empirical evidence
that, despite being harder to implement, semantic robustness
can improve performance on complex linguistic phenomena
where models robust in the classical sense fail.

Introduction

In the last decade, deep learning has become the gold stan-
dard method to solve complex problems in Natural Lan-
guage Processing (NLP) (Brown et al. 2020). The range of
NLP applications encompasses text classification (Liu et al.
2019), language translation (Liu et al. 2020), and now also
ranking systems and large-scale search engines (Wang et al.
2021). With models whose complexity – and consequently,
size – has become ‘gargantuan’1, there is an increasing con-
cern about reproducibility (Liu et al. 2021b) and reliabil-
ity of those models (Song et al. 2020), as it is known that,
even for smaller networks, it is possible to exploit their
brittleness with techniques of adversarial machine learn-
ing (Zhang et al. 2020). Consequently, concepts of robust-
ness have been transferred from adversarial learning to NLP,
resulting in techniques and tools (Li et al. 2020a) that typ-
ically check that the network’s decision is invariant to a
simple bounded perturbation (word substitution or deletion)
for a given input (local robustness), working in the (con-
tinuous) embedding space or the (discrete) word neighbour-
hood. However, NLP still lacks a definition of robustness
that properly captures linguistic phenomena and is aligned
with human common sense (Xu et al. 2020). There is cur-
rently a debate in the NLP community about the internal
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1GPT-3’s full version has 175 billion learning parameters.

working of language models, with some believing they are
the ‘foundation’ for the entire discipline (Bommasani et al.
2021) and others arguing that they mostly learn higher-order
distributions of words frequency (Sinha et al. 2021).

In this work, we first review the classical notions of ro-
bustness adopted in NLP and identify their weaknesses, in
terms of the lack of expressiveness and over-reliance on the
neural model text representation. Next, to better align the
perception of human robustness to that implemented by a
neural model, we formalise (local) semantic robustness of
NLP as a notion that generalizes local discrete robustness
through measuring robustness to linguistic rules, rather than
to word substitution or deletion. This allows us to define
(global) semantic robustness for a linguistic task such as
sentiment analysis, which can be extended to higher-order
tasks. We contribute to the debate in the NLP community by
performing a systematic comparison, complemented by an
evaluation of different architectures, of the classical notions
of robustness in NLP. We further show that with semantic
robustness we can evaluate the performance of a model on
cogent linguistic phenomena, which are of interest for both
the NLP and the linguistics community. We achieve this by
proposing an assessment framework and a simple, yet effec-
tive, test bed based on data augmentation. Last but not least,
we wish to highlight the issue of NLP robustness, which
for the last few years has over-focused on trivial and often
machine-centric symbol manipulation. Using the terminol-
ogy drawn from cyber-security, this work is a ‘purple-team’
effort to align the key performance indicators of the ‘red-
team’ – whose role is to exploit NLP models with any kind
of vulnerability – with those of the ‘blue-team’, a.k.a. the
defenders, who aim to adopt a semantic notion of robustness
that implies robustness to linguistic phenomena.

Related Work

Brittleness of neural network models is a serious con-
cern, both theoretically (Biggio et al. 2013; Szegedy et al.
2014) and practically, including Natural Language Process-
ing (NLP) (Belinkov and Bisk 2018; Ettinger et al. 2017;
Gao et al. 2018; Jia and Liang 2017; Liang et al. 2017;
Zhang et al. 2020) and more recently complex Masked Lan-
guage Models (MLM) (Li et al. 2020b; Sun et al. 2020).
In NLP, attacks are usually conducted either at character
or word level (Ebrahimi et al. 2017; Cheng et al. 2018), or
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at the embedding level, exploiting (partially or fully) vul-
nerabilities in the symbols’ representation (Alzantot et al.
2018; La Malfa et al. 2021). Brittleness of NLP does not
pertain only to text manipulation, but also includes at-
tacks and complementary robustness for ranking sys-
tems (Goren et al. 2018). Neural network robustness nat-
urally complements the perspective offered by brittleness
as it involves the certification of a model against a wide
range of attacks (Huang et al. 2017). In NLP, similarly
to computer vision (Akhtar and Mian 2018), the majority
of works have adopted the narrow notion of robustness,
in terms of invariance to minor perturbations of an input
text (Gowal et al. 2018; Jia et al. 2019; Dong et al. 2021;
La Malfa et al. 2020), while only a minority have contested
these limitations, either implicitly (Ribeiro et al. 2020) or
explicitly (Morris 2020; Morris et al. 2020a; Xu et al. 2020),
mainly due to the difficulty of automatically generating
semantically involved test beds (Feng et al. 2021). Al-
though adversarial data augmentation in NLP is well estab-
lished (Morris et al. 2020b), robustness to semantically co-
herent, yet possibly diverging, examples is still in its ‘adoles-
cence’ (Ribeiro, Singh, and Guestrin 2018), as many highly
accurate NLP models cannot recognize cogent linguistic
phenomena even on low-order tasks such as binary classi-
fication (Barnes, Øvrelid, and Velldal 2019).

NLP Robustness: a Tale of Two Perspectives

In this section we discuss the merits of local robustness in
NLP, analysing existing concepts and highlighting the is-
sues with local continuous robustness. We then introduce the
notion of semantic robustness, aimed to better align the per-
ception of human robustness to those implemented by neural
models, together with an assessment framework. In the next
section, we complement the methodology part with an ex-
perimental evaluation, where neural networks’ robustness is
tested against linguistic phenomena. We complete the paper
with a study of the inductive biases that different notions of
robustness are expected to induce in a trained model.

Notation. We will refer to f(·) as a generic neural network
that solves a task T for an instance s, which is represented
as a piece of text written in natural language (e.g., sentiment
analysis). W.l.o.g., we will assume that texts are represented
as lists of words (features), namely s = (v1, .., vl). We will
denote with x ∈ R

ld a text s whose l features have been
mapped to vectors of real numbers through an embedding,
E : V → R

d, where V is a finite vocabulary of words. We
refer to a component of x along a generic embedding axis as

x(i) ∈ R, i ∈ {1, .., d}. Since the majority of the embed-
ding spaces are injective non-surjective functions, the nota-
tion xv = (xv1 , .., xvl) will serve to denote an embedded
text x that further admits, for each vector xvi , a preimage in
the vocabulary space, i.e., ∀xvi ∈ xv ∃! v ∈ V . E(v) = xvi .
With a slight abuse of notation, we will denote with E(s) =
(xv1 , .., xvl) a text whose words have each been embedded
through E . Finally, we will assume that the first operation of
the model f(·) involves a transformation through an embed-
ding representation E .

Classical Notions of NLP Robustness

We begin by discussing the concept of local continuous
robustness, which is widely used in computer vision and
has been applied to NLP (Huang et al. 2019a; Jia and Liang
2017; La Malfa et al. 2020). We then consider local discrete
robustness, which manipulates symbols rather than embed-
ding vectors (Alzantot et al. 2018). We show that the former
notion can be reduced to the latter: nonetheless, both def-
initions only allow one to express robustness to a limited
number of linguistic phenomena. We extensively discuss the
advantages and drawbacks of those two notions.

Definition 1 (Local Continuous Robustness). A model
f(·) is locally robust to ǫ-bounded perturbations when, given
a task T and one of its instances x, it holds that ∀x′ ∈
Ballǫ(x), f(x) = f(x′), where Ballǫ(x) = {x′ . ||x −
x′||p ≤ ǫ}, ||p is an Lp norm of choice and ǫ ≥ 0 a (small)
real number.

Observation 1. Natural language is discrete while local
continuous robustness is defined over a dense representa-
tion. Standard embedding techniques (Mikolov et al. 2013;
Pennington, Socher, and Manning 2020) define the word-to-
vector mapping over a continuous space, with the input vo-
cabulary discrete and finite (e.g., characters, words, sen-
tences) and the output dense and uncountable. On the other
hand, natural language is discrete and allows for finite, yet
combinatorial, outcomes. In this hybrid setting, ǫ-bounded
robustness implies that any vector in this dense ǫ-bounded
region is safe. This assumption is linguistically inconsistent,
as a network may present a decision boundary where an ad-
versarial attack that is not a proper word limits the verifi-
cation or severely reduces the safe region. We illustrate this
issue in Figure 1.

Definition 2 (Local Discrete Robustness). A model
f(·) is locally robust to discrete perturbations when,
given a task T and an instance xv embedded from s, it
holds that ∀x′

v ∈ D-Ballǫ(xv), f(xv) = f(x′

v), where
D-Ballǫ(xv) = E(V)l ∩Ballǫ(xv).

We exemplify the differences between Ballǫ and the
corresponding D-Ballǫ in Figure 2.

Proposition 1. Local continuous robustness implies local
discrete robustness, but the converse is generally false.
Proof. From a mathematical perspective, D-Ballǫ(x) ⊆
Ballǫ(x) but the opposite is not true. For ǫ = 0, both D-
Ballǫ and Ballǫ are singletons.

Observation 2. Continuous and discrete robustness allow
but limited syntax manipulations. As demonstrated empiri-
cally by many existing works in the literature (Alzantot et al.
2018; Jia et al. 2019; Huang et al. 2019a; Dong et al. 2021),
both formulations of robustness only allow for robustness
testing against symbol-to-symbol substitutions or deletions.
The limited degree of freedom of an operator that locally
substitutes a word with other words makes it hard, if not
impossible, to test for robustness against paraphrases. As
an example, if a model f(·) is robust for the sentence “the
movie was good”, which implies correct classification for
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Figure 1: In general, local continuous robustness is an ill-
posed property for NLP. A model can be robust to a large
surface of attacks in the input neighbourhood (green patch
(b)), yet a small region of adversarial attacks (red patch (c))
invalidates the verification of larger regions. In the exam-
ple, the safe input neighbourhood (blue patch (a)), a convex
region that includes safe replacements, cannot grow any fur-
ther without violating robustness by encroaching on patch
(c). Non-convex representations for an input neighborhood
(patch (a)) are possible, but computationally expensive and
not used in practice.

the texts “the film was good”, “the film was nice”, etc., we
cannot say the same for the sentence “an enjoyable thriller”.
From the linguistic perspective, this problem arises since the
frequency of words in natural language follows the Zipf’s
law (Zipf 2013), where rare terms and constructs – hence
edge cases – occur more frequently than in other natural phe-
nomena.

Observation 3. There is no guarantee that perturbations
in both discrete and continuous settings do not violate the
task under consideration. As the methods that implement
both discrete and continuous robustness allow for weak su-
pervision in the choice of the replacements, a perturbation
can diverge from the task under consideration. It is well
known that many recent embeddings have been developed
to be faithful to a (static) version of the “distributional hy-
pothesis” (Baroni, Dinu, and Kruszewski 2014), and thus it
is not unusual to find words like “bad” and “good” close
to each other in the representations. This could lead to po-
tentially disastrous effects when balancing local robustness,
e.g., (Gowal et al. 2018), with accuracy, especially for low-
order tasks such as sentiment analysis.

A Semantic Notion of Robustness

We now introduce a notion of robustness that goes beyond
word replacements, and thus permits an assessment of the
brittleness to linguistic phenomena that are cogent to hu-
mans. To do so, we first need to introduce some notation.

Definition 3 (Oracle). An OracleΩ solves a task T for any
input s that is compliant with T , while it rejects all those
instances that are not. We denote with Ω |= s the act of

movie

film

cinema

The  movie  was  good

Figure 2: Ballǫ (top) and D-Ballǫ (bottom) representations
of two words from the input sentence “the movie was good”
(s in our notation). For the same value of ǫ, Ballǫ contains
all the discrete replacements of the equivalent D-Ballǫ plus
all the vectors (infinitely many) that cannot be mapped back
to the vocabulary V (inside each blue ball around an input
word).

solving a task, and with Ω 6|= s the rejection. Solving and
rejection are mutually exclusive.

Observation 4. An Oracle is an augmented, idealized lin-
guistic model. There are two cogent differences between an
Oracle Ω and a standard model f(·): (i) a model can be
wrong on samples from T (e.g., misclassifications) while
the Oracle is always right about its decisions; (ii) the Ora-
cle (certainly) rejects inputs that are not compliant with the
task T .

Example 1. An Oracle for sentiment analysis. Given a
sentiment analysis task T for movie reviews, an Oracle Ω
correctly classifies any text that expresses a judgment about
the movie. As an example, “the movie was (not) good” will
be classified as positive (negative). An Oracle alternatively
rejects any piece of text that is inconsistent with T , i.e., all
those texts that do not explicitly (or implicitly) express a
judgment about a movie. An example is the text “recipe of
risotto with mushrooms: [...]”, which is rejected. From a
practical perspective, a classifier f(·) admits misclassifica-
tions in the sense that its accuracy may not be maximal (i.e.,
less than 1.) and it further cannot reject inputs that are not
compliant with the task: in the case it does, the task is not
fulfilled perfectly.

Definition 4 (Linguistic Rule). A linguistic rule is a sym-
bolic function that manipulates a text s according to a lin-
guistic phenomenon and a task T , whose generated texts S′,
along with the original input, are not rejected by Ω. For-
mally, R : (s, T ) 7→ S′ . ∀ s′ ∈ S′, Ω |= s ∧ s′.

Observation 5. Linguistic rules are flexible symbolic
methods. Since a linguistic variation of an input can be
very different from the original text, a rule should be al-
lowed to add/remove/replace words while remaining com-



pliant with the task T . As an example of a simple rule, one
can think of verb negation that acts on a text and negates
the action expressed by the subject (if any). While this task
is often trivial for humans, fully algorithmic solutions to
this problem are still limited in their capabilities (Guo et al.
2018). Hybrid methods, based on synthetic data augmenta-
tion, humans-in-the-loop and deep MLM (Feng et al. 2021;
Lin et al. 2019; Huang et al. 2019b), constitute currently an
active area of NLP research. One viable way to generate
the replacements is to use template-based data-augmentation
techniques (as employed in this paper and detailed in Ex-
perimental Evaluation). More complex approaches involve
MLM with humans-in-the-loop who validate the generated
perturbations. While for the generative process the MLM
can be trained to be controlled through textual ‘seeds’
(e.g., in the spirit of the works by (Wu et al. 2021) or
(Madaan et al. 2020)), humans play the role of the Oracle.

Example 2. A rule for shallow negation. For a sentiment
analysis task T with positive and negative instances and a
positive instance s “the movie was good”, the shallow nega-
tion rule R negates the sentiment expressed by s, and hence
valid perturbations generated by R on s are “the movie was
not good”, “a bad film”, but also more involved examples
like “it is false that the movie is good”, etc. We name this
rule shallow negation as it does not allow for nested nega-
tions, regardless of their grammatical consistency (i.e., “it is
false that the movie wasn’t good” cannot be generated by R
on s).

Definition 5 (Local Semantic Robustness). Formally,
given a model f(·), a linguistic rule R, an input s from
a task T , a measure of the performance of f(·) on T ,
namely p ∈ [0, 1] (with 0. denoting a random guess
and 1. perfect accuracy), a small number τ ≥ 0, and a
measure of performance p′ on samples S′ generated by
R(s, T ), we say f(·) is τ -semantically robust for R and
s if it holds that Es′∼S′ [p′] ≥ p−τ , with min(0, p−τ) = 0.

We further say that a model is bounded invariant to a rule
R when it holds that p− τ ≤ Es′∼S′ [p′] ≤ p+ τ .

Informally, a model f(·) that correctly classifies an in-
stance s of a task T is semantically robust to a linguistic
rule R when it exhibits at least the same performance on the
set S′ of perturbations s′ generated by applying R to s. We
further observe that this formulation allows for the perfor-
mance p′ to even surpass p, so this notion entails that f(·) is
no worse at correctly solving T for S′ than it is at solving
any other task, and is hence a stronger notion than bounded
invariance.

Observation 6. Local semantic robustness is linguistically
meaningful. The notion is local as linguistic rules act on a
single text s. It is further inherently linguistic as the trans-
formation R of an input text acts at the syntax level but then
the Oracle’s reject phase guarantees it has preserved the se-
mantics of each s′ w.r.t. T .

Observation 7. Local semantic robustness is entailed by
linguistic generalization, but not the other way round. Lin-
guistic robustness is different from generalization on unseen

test cases. The former is entailed by the latter, while the other
way round is not necessarily true. Semantic robustness is de-
fined over a rule while generalization is a more general and
hard to obtain/optimize objective.

Proposition 2. Local semantic robustness can be reduced
to local discrete robustness, but not to local continuous ro-
bustness.
Proof. For local discrete robustness, it is straightforward to
define a rule that generates perturbations according to the
definition of local discrete robustness. In this sense the se-
mantic rule R involves extracting the replacements in the
embedding’s neighborhood of each input word.
As regards local continuous robustness, the invariance over
all the input texts s′ in an ǫ-ball cannot be mapped back to
the embedding (a.k.a. input) vocabulary V by any combina-
tion of linguistic rules as they act, by definition, at the sym-
bol level. Since the majority of continuous embeddings are
injective non-surjective functions, almost all the vectors in
any non-empty region of the space cannot be mapped back
to a proper entry of V .

Definition 6 (Semantic Robustness). This notion extends
local semantic robustness beyond the single instance and to
a specific task T. A model f(·) exhibits global semantic ro-
bustness (or in general semantic robustness) to a rule R and
a task T when it is locally semantically robust for any input
s′ generated by applying R to a test set.

Assessment Framework for Semantic Robustness A
sufficient condition for quantifying the semantic robustness
of a model on an NLP task is that it is possible to measure the
performance of such a model on unseen input texts. In this
sense, we can measure the semantic robustness of a model
f(·) that solves a task T by comparing its performance p
with the performance p′ of the model on an unseen test bed
that contains one or more semantic phenomena.

We now describe some illustrative examples of measuring
semantic robustness, firstly for sentiment analysis and then
for more involved NLP tasks.

Example 3. Robustness to shallow negation in sentiment
analysis. Given a sentiment analysis task with positive and
negative instances, a model f(·) trained on a dataset (S, Y )
and validated on (Stest, Ytest) is robust to shallow negation
when ∀s ∈ Stest, ∀s′ ∈ S′ = R(s, T ), (Ω |= s ∧ s′) ⇒
Es′∼S′ [p′] ≥ p − τ for some τ ≥ 0, with R the negation
rule that acts on a specific text and negates the sentiment ex-
pressed by s. In this sense, p represents the accuracy of the
trained model on (Stest, Ytest), while p′ is the accuracy mea-
sured on a subset of samples that contain specific linguistic
phenomena. We remark that a test bed can be handcrafted,
as we show in our paper, or distilled from existing datasets,
as described in (Barnes, Øvrelid, and Velldal 2019).

Example 4. Semantic robustness in high-order NLP tasks.
We now briefly sketch how we would approach the measure-
ment of semantic robustness for higher-order NLP tasks. For
Question and Answer (QA) tasks, a measure of robustness
can be quantified as the gap between the ‘unexpectedness‘
of an Answer when the Question does/doesn’t contain a lin-



guistic phenomenon. In Natural Language Inference (NLI),
directly applying our framework would be straightforward
since NLI is reducible to a classification task. In the same
way, when Read and Comprehension (RC) is pursued in
the form of a classification task, the evaluation of semantic
robustness would be similar to sentiment analysis or NLI,
whereas when the answer requires re-elaborating the input,
the measurement of semantic robustness would be similar to
QA (with possibly a different evaluation metric for T).

Experimental Evaluation

We next conduct an extensive experimental evaluation2

designed to answer the following research questions: (i)
whether models robust in the classical sense are also seman-
tically robust; (ii) whether robustness to specific linguistic
phenomena is a by-product of training accurate NLP clas-
sifiers; (iii) whether, for different architectures, augmented
supervised training – with texts that contain a specific lin-
guistic phenomenon – induces generalization on unseen test
samples that contain the same phenomenon; (iv) whether it
is possible to train models that are both accurate and seman-
tically robust, and (v) to what extent unsupervised learning
contributes to semantic robustness.
We conduct the experiments on models trained – or fine-
tuned through data augmentation – on the Stanford Senti-
ment Treebank dataset (SST-2) (Socher et al. 2013) and on
the dataset collected by (Barnes, Øvrelid, and Velldal 2019).
The advantages of this approach are two-fold. Firstly, human
experts have collected/handcrafted sentences whose syn-
tax/semantics is rich and the level of noise restrained. Sec-
ondly, since in NLP spurious patterns and over-fitting play
a crucial role during training whose influence is hard to es-
timate and quantify, cogent compactness of those datasets
makes it relatively easy to assess the results. To further
estimate the robustness on linguistic phenomena, in the
spirit of the evaluation done in (Huang et al. 2019b), we
utilise a template-based method, whose details are given be-
low, for generating augmented samples for a selection of
linguistic phenomena to create a test bed, which we use
for systematic evaluation of semantic robustness. In order
to validate the soundness of our generative test bed, we
compare the performance of our rule-generated semanti-
cally robust models from our benchmark to those examples
in (Barnes, Øvrelid, and Velldal 2019) that exhibit the same
linguistic phenomenon, showing comparable accuracy.

Linguistic phenomena. Following the work
in (Barnes, Øvrelid, and Velldal 2019), we have cho-
sen interesting linguistic and para-linguistic phenomena,
taking care to exclude those that require external knowledge
to be solved (i.e., not explicitly expressed in the sentence).

2The code for full reproducibility of the experiments is avail-
able at https://github.com/EmanueleLM/the-king-is-naked. All of
the experiments have been conducted on a Fedora 32 mid-end
laptop equipped with 16GB of RAM and an Intel-i5 CORE 8

th-
generation. All the neural network models have been built, trained
and tested with Keras (Chollet et al. 2015), while for experiments
that involved BERT (Devlin et al. 2018) we relied on the PyTorch
implementation (Paszke et al. 2019).

As an example, consider the review “This movie is another
Vietnam”, which can be correctly classified as negative
if the model has some knowledge of that specific way
of saying (i.e., exogenous knowledge). We now briefly
describe the linguistic phenomena that are the object of our
robustness evaluation:

• Shallow negation: when the sentiment of a sentence is
negated. We do not consider nested negations, which
make the recognition of the phenomenon consider-
ably harder (Wiegand et al. 2010; Socher et al. 2013;
Pröllochs, Feuerriegel, and Neumann 2015).

• Mixed sentiment: when phrases of different polarity ap-
pear in the same sentence (Kenyon-Dean et al. 2018;
Barnes, Øvrelid, and Velldal 2019). We only consider
texts where the overall sentiment is still not ambiguous
for a human.

• Irony/sarcasm: when a sentence makes some premises
that are then violated (Hao and Veale 2010). This is
known to be one of the hardest, yet pervasive, linguistic
phenomena of human language.

Template-based linguistic rules. In addition to the test
beds provided by (Barnes, Øvrelid, and Velldal 2019), in our
work we consider a template-based method for generating
augmented samples that contain a specific linguistic phe-
nomenon. We pre-define a selection of templates for which
we know the corresponding output labels (i.e., positive or
negative). In a template, part of the text is fixed while the
remaining part is symbolically represented by tokens which
are iteratively replaced by combinations of words from can-
didate perturbation sets. The augmentation preserves the se-
mantics of the sentence while introducing a linguistic phe-
nomenon (such as shallow negation). In our implementation
of the rules, a perturbation cannot change the template’s la-
bel: in this sense, the rejection phase (see Definition 3) is
embedded in the generative pipeline, while a process that
involves an MLM and generations that are possibly label-
changing might be supervised by a human. Examples of
templates for each linguistic rule are included in Table 3,
along with candidate replacements for each token in Table 2.

Comparative Study

We compare architecturally different models on the
three linguistic phenomena we previously introduced.
We conduct an extensive evaluation on four neural ar-
chitectures, namely fully connected (FC), convolutional
(CNN) (Zhang, Zhao, and LeCun 2015), Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997) and
self-attention (Vaswani et al. 2017). We choose the number
of hidden units of each layer so that the number of parame-
ters is approximately the same and in the order of 40K3. For

3Each input text is 25 words long (eventually padded or
cut), while each word is mapped to a vector of real numbers
through a 50-dimensional embedding, pre-trained on the SST-2
task (Chollet et al. 2015). Each network is composed of 3 layers,
where the topology of the last two is shared, i.e., respectively a
32 hidden units ReLU and a 2 hidden units softmax layer (both
are dense). The first layer depends on the specific topology un-

https://github.com/EmanueleLM/the-king-is-naked


Train FCs CNNs LSTMs Self-attention

Shallow Negation
Vanilla
Augmented

0.4034 ± 0.0214

0.4062 ± 0.0167

0.4032± 0.0124
0.4249± 0.0255

0.4771± 0.0143
0.6387± 0.0387*

0.4790± 0.0059
0.5954± 0.0027*

Mixed Sentiment
Vanilla
Augmented

0.4707± 0.0360
0.4912± 0.0339

0.4986± 0.0415
0.5271± 0.0387

0.5110± 0.0251
0.6357± 0.0317*

0.5487± 0.0099
0.5617± 0.0048

Sarcasm
Vanilla
Augmented

0.5136± 0.0504
0.5297± 0.0657

0.4681± 0.0327
0.4678± 0.0317

0.5578± 0.0128*
0.4807± 0.0197

0.5240± 0.0132
0.6236± 0.0218*

Table 1: Comparison of accuracy of 20 vanilla and augmented models obtained for four different architectures (FCs, CNNs,
LSTMs and self-attention), on three linguistic phenomena (shallow negation, mixed sentiment and sarcasm). All the networks
have been trained on the SST-2 dataset. Augmented models are vanilla models fine-tuned on the linguistic rules of interest.
Symbol *, when present, means that the improved performance (from vanilla to augmented, or the other way round) is statis-
tically significant. Interestingly, sarcasm is harder to learn and models fine-tuned on this phenomenon perform as well as their
vanilla counterparts (when not worse).

Tokens Replacements

@NEGATIVE@ ’bad’, ’poor’, ’boring’, [...]

@POSITIVE@ ’good’, ’nice’, ’fantastic’, [...]

@NAME@ ’Uma’, ’Bruce’, ’Sandra’, [...]

@SURNAME@ ’Thurman’, ’Willis’, ’Bullock’, [...]

@CATEGORY@ ’thriller’, ’horror’, ’comedy’, [...]

@BOOLFALSE@ ’false’, ’wrong’, ’incorrect’, [...]

@AUGMENT@ ’very’, ’extremely’, ’incredibly’, [...]

Table 2: Candidate perturbation sets used to generate com-
binations of replacements in template-based texts (Table 3).

each linguistic phenomenon, we analyse and compare the
robustness of 20 models trained on plain SST-2 dataset (i.e.,
no semantic data augmentation of any kind) and then on a
semantically augmented version of the same dataset (details
of the augmentation are provided in the relevant subsection).

Vanilla Models. For each linguistic phenomenon intro-
duced in the previous section, we analyse and compare the
robustness of 20models trained on the SST-2 dataset without
augmentation. For FCs and CNNs the average accuracy on
the SST-2 test set is 0.8993±0.0029 and 0.9077±0.0038 re-
spectively, while the accuracies of LSTMs and self-attention
are 0.9101± 0.0033 and 0.8963± 0.0015. We report in Ta-
ble 1 the results of each population for the three linguistic
phenomena in this study. Self-attention and RNN-LSTMs
are the best performers, while FCs and CNNs have lower
accuracy in all the three tasks. Interestingly, none of the
models, despite having a high accuracy on the test set, is
able to recognize any linguistic construct we tested. On the
one hand, this analysis, which can guide the design when
seeking to enforce appropriate inductive biases of a neu-
ral architecture (Kharitonov and Chaabouni 2020), provides
additional evidence for the vast literature on the limitations
of accuracy when judging the linguistic performance of an
NLP model (Socher et al. 2013; Kenyon-Dean et al. 2018;

der examination (e.g., self-attention will have a self-attention layer,
LSTM a Long Short-term Memory cell, etc.): the first layer has 32
hidden units for the FCs, 44 ReLU kernels of size 3 for the CNNs,
75 tanh hidden units for the LSTMs and 32 ReLU hidden units for
the self-attention networks.

Barnes, Velldal, and Øvrelid 2021). On the other hand, it
motivates our next step, which involves fine-tuning the same
architectures on texts that exhibit these linguistic phenom-
ena.

Semantic robustness through data augmentation. In
this section, we study how – and to what extent – data aug-
mentation, along with architectural inductive biases, can be
used to inject semantic robustness to different linguistic phe-
nomena. We re-trained the models of the previous section
by adding samples from (Barnes, Øvrelid, and Velldal 2019)
that contain one of the specific rules used previously to the
training set, up to a multiplicative factor to balance the large
number of samples of the SST-2 dataset4. While for a mul-
tiplicative factor of 500 none of the models exhibit any im-
provement in the semantic tasks, for a multiplicative factor
of 750 we observe some improvement in LSTMs and self-
attention. While the experiments suggest that FCs and CNNs
cannot learn any of the three linguistic phenomena we stud-
ied, LSTMs and self-attention networks benefit from data
augmentation. With reference to Table 1, both LSTMs and
self-attention improve considerably on shallow negation. On
mixed sentiment, augmented LSTMs substantially improve
over the vanilla counterpart, while self-attention does not
seem to exploit the additional information (despite a slight
improvement over the vanilla case). Finally, data augmen-
tation allows self-attention to improve significantly on sar-
casm, though the same regime is detrimental for LSTMs,
where the vanilla networks consistently outperform those
trained on augmented data. Finally, for a multiplicative fac-
tor of 1K or superior, we observe a detrimental effect on the
robustness of each model that is comparable to the vanilla
SST-2 training.

Classic Robustness is Linguistically Brittle

We have compared robust models trained with IBP (Interval
Bound Propagation) (Gowal et al. 2018) with their vanilla
counterparts. For different values of ǫ = (0.001, 0.01) in the
L∞-norm, which makes the model-to-model results easy to

4With the SST-2 train set that accounts for approximately
112K input samples and each semantic rule that generates roughly
500− 1000 new samples, semantic data augmentation with a mul-
tiplicative factor of 1 accounts for additionally 1K samples, etc.



Shallow Negation Label

’This @CATEGORY@ movie is not @AUGMENT@ @NEGATIVE@.’ positive

’It is @BOOLFALSE@ that this @CATEGORY@ movie is @AUGMENT@ @POSITIVE@.’ negative

Mixed Sentiment

’Despite @NAME@ @SURNAME@ acted well, this @category@ movie is @augment@ @negative@.’ negative

’A @AUGMENT@ @NEGATIVE@ plot for a @AUGMENT@ @POSITIVE@ movie.’ positive

Sarcasm

’Starring @NAME@ @SURNAME@ i would prefer to be killed rather than watching this @CATEGORY@ movie.’ negative

’Please throw this @AUGMENT@ long @CATEGORY@ movie into the ocean, and thank me later.’ negative

Table 3: Examples of template-based reviews, along with the ground truth label, used to generate sentences that contain the
linguistic phenomena studied in the paper.

Accuracy
(Barnes et al., 2019)

Accuracy
(Our Benchmark)

Shallow Negation 0.8552 0.7928
Mixed Sentiment 0.6024 0.6974
Sarcasm 0.7111 0.8455

Table 4: Summary of BERT semantic robustness on
different linguistic phenomena, tested on samples
from (Barnes, Øvrelid, and Velldal 2019) (left column)
and from our template-based benchmark (right column).
For these results, a BERT model has been fine-tuned on the
SST-2 dataset.

compare (La Malfa et al. 2020), and an embedding diameter
of approximately 3.17, we assess IBP-induced robustness on
semantic rules. Interestingly, their performance is compara-
ble (when not worse) to the brittle counterparts for all the
linguistic phenomena we analyse, thus validating our previ-
ous Observation 2, i.e., that models robust in the classical
sense have an extremely limited syntax/semantic manipula-
tion capability. Results are reported in Table 5.

Accuracy is a red herring: the BERT case

We analyse the relationship between semantic robustness
and accuracy of a Masked Language Model (MLM): while
it is known that MLMs have an improved accuracy on
out-of-distribution (OOD) data (Hendrycks et al. 2020),
there is no clear agreement on the nature of the semantic
phenomena, i.e., whether they are linguistic outliers or
OODs. Although in deep learning a trade off has been
observed between the classical notions of robustness and
accuracy (Tsipras et al. 2018), semantic robustness does
not seem to exacerbate this phenomenon. We fine-tuned the
BERT language model (Devlin et al. 2018) on the SST-2
dataset and tested its robustness on the linguistic phenomena
we introduced in the previous section.
Despite an accuracy of 0.90, which is in line with the
accuracy of the (simpler) architectures we tested previously,
BERT’s semantic robustness is considerably higher than
the ”shallow” counterparts (BERT has 16 hidden layers,
the models in our benchmark 3). BERT has an accuracy of
0.7928 on shallow negation, 0.6974 on mixed sentiment,

and 0.8445 on sarcasm5. The linguistic phenomenon where
BERT performs worst is mixed sentiment, as: (i) a few
recent works point out the limitations of MLM models
such as BERT when learning complex syntactic/semantic
constructs (Sinha et al. 2021); (ii) we have shown in our
previous evaluation that self-attention (along with any other
model) is especially brittle to that linguistic construct,
despite the layer’s name suggesting the opposite. In general,
we interpret this linguistic performance as a result of the
huge amount of unsupervised training (i.e., the masked
language prediction) to which BERT is subjected before
being fine-tuned on our supervised task: in this sense,
the phase of pre-training, which shapes the dynamics of
BERT’s contextual embeddings, enables it to considerably
outperform shallow models on the linguistic phenomena.
We finally validate the results
of (Barnes, Øvrelid, and Velldal 2019), proving that on
their challenging dataset, which contains texts from other
non-movie-review datasets (so certainly out of distribution
samples), BERT has an accuracy of 0.8552, 0.6024 and
0.7111 on respectively shallow negation, mixed sentiment
and sarcasm. This therefore justifies that the task that we
set up with our synthetic augmentation through templates is
a solid alternative benchmark for semantic robustness. We
summarize the results in Table 4.

Ablation Study of BERT. We performed an ablation
study of BERT to assess the role of the stacked embed-
dings to semantic robustness. We hence trained different se-
mantic classifiers on top of a decreasing number of BERT
embedding layers. We then measured the semantic robust-
ness on shallow negation, mixed sentiment and sarcasm
on samples from (Barnes, Øvrelid, and Velldal 2019): we
found that, despite the accuracy on the task (SST-2) be-
ing strongly correlated with the depth of the BERT em-
bedding, semantic robustness is not, as depicted in Figure
3. While the best performing layer is the penultimate? (an
interesting phenomenon that is already known in the liter-
ature (Rogers, Kovaleva, and Rumshisky 2020)), we could
not find a layer that performed the best on all the tasks, a
result that leads us to conclude that stacked attention em-
beddings are fundamental but their internal representation

5Due to the high computational cost of fine-tuning BERT, we
could not carry out an extensive evaluation correlated by an std
interval, as done for the simpler networks.
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Figure 3: Ablation study of BERT on
(Barnes, Øvrelid, and Velldal 2019), measuring accu-
racy for 5 different network depths. While depth plays a
fundamental role in achieving accuracy on a test set (SST-2),
and certainly plays a role (albeit minor) on shallow nega-
tion, it seems not to be correlated to the model performance
on mixed sentiment and sarcasm.

w.r.t. linguistic phenomena (i.e., the ‘semantics of BERT’)
is still poorly understood. To complement the analysis, we
tried to disentangle the role of pre-training from that of the
embedding depth and attention (which are considered in the
design of each BERT hidden layer) by training a very deep
LSTM, with 100 input words and an embedding size of 100,
which we then tested on the same semantic phenomena as in
the previous evaluation. Interestingly, despite an accuracy of
0.9 on the SST-2 test set, the accuracy on shallow negation
is 0.5789, 0.6684 on mixed sentiment and 0.7 on sarcasm.
Although we cannot conclude anything definite, we suspect
that the role played by massive pre-training (next word/sen-
tence prediction) is much more important than that of depth
and attention, which is in agreement observations emerging
from other recent studies (Liu et al. 2021a).

Robustness Induced Biases

In this section we examine the relationship between
common inductive biases that have inspired the de-
sign of machine learning algorithms for the past
decades (Mitchell 1980), and recently also neural net-
works (Kharitonov and Chaabouni 2020), connecting them
to the notions of robustness we dissected in the previous
section. In particular, we compare local continuous to local
semantic robustness.

Minimum Cross-validation Error. There is empirical ev-
idence in the literature (Huang et al. 2019a; Jia et al. 2019)
that continuous robustness does not naturally induce better
performance on trained models. Indeed, most of the mod-
els that are trained to be robust are less accurate than the
brittle counterparts. This side-effect is caused by the mar-
gin that is propagated through the network to the output
to induce invariance to nearest neighbours of a given in-
put. “Shielding” the model with a thick margin of possi-
bly unrelated terms leads to an inconsistent treatment of
different sentences (as noted in Observation 2, human lan-
guage abounds in edge cases). This is testified by further
experiments shown in Figure 4 (top). Concerning seman-
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Figure 4: On the top plot, we show average accuracy of 30
trained FC models on the SST-2 dataset, compared for differ-
ent values of ǫ-robustness (w.r.t. the L∞-norm). For ǫ equal
to 0., a model is not robustly trained, and otherwise it is
through IBP (Gowal et al. 2018). There is clear a trade-off
between robustness and accuracy. On the bottom plot, the
average norm of the models’ parameters indicates that ro-
bust models tend to have lower variance, and hence arguably
lower complexity.

tic robustness, generalization on cogent linguistic rules does
not necessarily benefit a model’s performance, as demon-
strated by experiments we conducted on 30 networks trained
to be semantically robust against shallow negation vs. their
vanilla counterpart: both populations have been trained on
the SST-2 dataset (Socher et al. 2013). Robustness is en-
abled through simple data augmentation on the dataset pro-
vided by Barnes et al. (Barnes, Øvrelid, and Velldal 2019),
whereas the test is performed on unseen sentences that ex-
hibit the same linguistic phenomenon. While the vanilla net-
works have an average accuracy of 0.9036± 0.0019 on the
test set and 0.4916 ± 0.0074 on the shallow negation test
set, those that have been robustly trained have an accuracy
of 0.8838± 0.0049 and 0.5491± 0.0124, respectively.

Minimum Description Length. Local continuous robust-
ness is known to be a strong regularizer (Gowal et al. 2018).
In fact, classical methods used to induce local robustness
for NLP (such as IBP), which propagate through all the em-
bedding dimensions and thus amplify the noise, nonetheless
play an important role as they smooth out the network’s hid-
den activations. We report the results of experiments that
we conducted that support this hypothesis in Figure 4 (bot-
tom). As regards semantic robustness, we cannot conclude
anything definitive but the evidence suggests that semanti-
cally robust models are not necessarily smoother than the
vanilla counterparts. We compared the weights’ norm of
30 networks trained to be robust against shallow negation
vs. their vanilla counterparts (see previous paragraph for
details). While the difference between the performance of
the two networks on unseen texts that contain that linguis-
tic phenomenon is substantial, there is very little difference



Train FCs CNNs

Shallow Negation
(Our benchmark, Barnes et al., 2019)

Vanilla
IBP (ǫ = 0.001)
IBP (ǫ = 0.01)

0.4034± 0.0214
0.3852± 0.0071
0.4249± 0.0260

0.6303± 0.0231
0.6461± 0.0039
0.6145± 0.0263

0.3753± 0.0091
0.4954± 0.0273*
0.4715± 0.0134*

0.4553± 0.0719
0.5079± 0.0822
0.4320± 0.0501

Mixed Sentiment
(Our benchmark, Barnes et al., 2019)

Vanilla
IBP (ǫ = 0.001)
IBP (ǫ = 0.01)

0.4707± 0.0360*
0.2918± 0.0121
0.2824± 0.0169

0.6976± 0.0126
0.7205± 0.0048
0.7072± 0.0133

0.4764± 0.0327
0.5402± 0.0961
0.4485± 0.0844

0.5506± 0.1476
0.4590± 0.1205
0.5506± 0.1476

Sarcasm
(Our benchmark, Barnes et al., 2019)

Vanilla
IBP (ǫ = 0.001)
IBP (ǫ = 0.01)

0.5136± 0.0504
0.4333± 0.0092
0.4406± 0.0943

0.7133± 0.0156*
0.5578± 0.0185
0.5222± 0.0995

0.4799± 0.0393*
0.6352± 0.3962
0.1650± 0.1866

0.3067± 0.2883
0.5778± 0.3564
0.1593± 0.1030

Table 5: Comparison of 20 IBP-trained robust models (Gowal et al. 2018) and their vanilla counterparts on samples gen-
erated through templates on our benchmark (left subcolumn) and samples exhibiting the same linguistic phenomenon
from (Barnes, Øvrelid, and Velldal 2019) (right subcolumn): both populations of networks have been trained on the SST-2
dataset. IBP, which we use to train robust models for two different values of ǫ (0.001 and 0.01), cannot ensure robustness to
simple semantic rules and in a few cases worsens the performance of the classifier. Symbol *, when present, means that the
improved performance (from vanilla to IBP or vice-versa) is statistically significant. We consider the two architectures (FCs
and CNNs) supported by (Gowal et al. 2018).

in the norm of the two populations, which are respectively
0.0017± 0.0019 (vanilla) and 0.0064± 0.0032 (robust).

Nearest Neighbours. Local robustness induces a strong
bias towards nearest neighbours, by definition. This as-
sumption is critical as robust training underestimates the
effect of making a model robust, treating all the dimen-
sions in the embedding as equally important. We hypothe-
size this causes the deterioration of the performance of ro-
bust models in NLP. The induced invariance along any di-
mension reduces the effectiveness of the embedding repre-
sentation on cogent syntactic/semantic tasks such as word-
sense-disambiguation, polysemy, etc. Semantic robustness
takes a different approach and is expected not to be robust to
nearest neighbours in the embedding space, but rather to per-
turbations that are generated by the linguistic rules for which
they have been robustly trained. For an increasing number of
embedding dimensions, semantic robustness does not suffer
in principle from the trade-off between the performance on
linguistic tasks (Chen et al. 2013) and robustness guarantees
(La Malfa et al. 2020).

Conclusions

In this paper we formalise the concept of semantic robust-
ness, which generalizes the notion of NLP robustness by ex-
plicitly considering the measurement of robustness on co-
gent linguistic phenomena. We propose a template-based
generative test bed to evaluate semantic robustness. We
conduct an empirical analysis that demonstrates that, de-
spite being harder to implement, semantic robustness pro-
vides stronger guarantees for complex linguistic phenomena
where models robust in the classical sense fail. In future, we
aim to automate, when possible, the generation of semantic
test beds, aided by powerful Masked Language Models such
as GPT. We further plan to introduce a validation step for
the newly generated texts by involving humans to assess the
quality of the semantic perturbations (and consequently of
the semantic rules). Finally, we aim to extend our analysis to
high-order NLP tasks and study the relationship of linguistic
phenomena with out-of-distribution and outlier samples.
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