
On Robustness for Natural
Language Processing

Emanuele La Malfa

Trinity College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2023

‘Vivere non è facile.’ (è vero, è una vita che lotti)

‘C’era una volta un autista su una Punto bordó.’ (sono felice che stai meglio

ora)

‘Avanti tutta non si molla un cazzo.’ (ogni parola è superflua qui)

‘Te quiero mucho Emmanuel. Que viva Mexico!’ (E sto fumando, Giro por la

calle e sono attento, Lei sopra di me lo muove lento, Steso dentro al letto, giuro che

la spengo, E dopo faccio, Ra-pa-pam-pam, ra-pa-pam-pam, Ra-pam-pam-pam-pam-

pam, Ra-pa-pam-pam, ra-pa-pam-pam, Ra-pam-pam-pam-pam-pam.)

‘Iiiiiiihhh, uuuuuuuhhhh! Comeeee...vó?’ ()

‘Mi fa male la gamba non riesco a giocare.’ (vedi Napoli e muori, diceva Goethe)

‘It is what it is.’ (fair enough, thank you for what you have done)

‘I am just stating a basic fact here.’ (never let me go)

‘If you ignore moral, it doesn’t exist.’ (I have learned a shitload from you)

Acknowledgments

I want to express my sincere gratitude to Prof. Marta Kwiatkowska, my supervi-

sor, for her unwavering patience, invaluable guidance, constant encouragement, and

profound advice throughout my academic journey under her mentorship. I consider

myself exceptionally fortunate to have worked with a supervisor who consistently ad-

dressed my inquiries and provided timely responses. As regards this thesis, and each

work that constitutes it, she contributed by giving me constant feedback, revising my

work periodically, and suggesting research directions to explore.

As regards funding, this work received support from Innovate UK (reference

104814) and the ERC under the European Union’s Horizon 2020 research and in-

novation program FUN2MODEL (grant agreement No. 834115).

3

Abstract

As a discipline, machine learning has contributed to significant breakthroughs in

Natural Language Processing (NLP), aiming to design algorithms to manipulate text

and produce insights, such as classification and summarization, comparable to those

of humans. Natural language poses challenges that reflect peculiarities of human

intelligence, such as grasping the meaning of a sentence or preserving long-term rela-

tionships between words that possibly appear distant from each other.

A considerable body of recent literature provides evidence that NLP models be-

have inconsistently on slight manipulations of a text, as in the case of word substi-

tution. Differently from computer vision (CV), where a pixel manipulation produces

a (possibly not natural) image, NLP algorithms rely on text representations in the

form of embedded vectors, where the linguistic constituents (i.e., words, phrases,

sentences) are transformed into multi-dimensional vectors of real-valued numbers,

marking a clear separation between human and machine representation.

In this thesis, we investigate guarantees and the formal explainability of NLP

models through the lens of adversarial robustness. We review the applicability of

adversarial robustness, as defined in CV, as the region of maximal safety of a neural

network (NN) decision against discrete and continuous perturbations. We develop

an evaluation framework that certifies adversarial robustness for different models,

and we analyze how the validity of such certificates vanishes in settings that grow in

complexity. This investigation is a prelude to novel definitions of robustness that are

aligned with linguistics, aiming to assess a model’s syntactic and semantic capabilities.

With semantic robustness, we introduce a framework to test a model against lin-

guistic phenomena. In contrast, syntax robustness aims to falsify the hypothesis that

NLP models embed high-order linguistic structures such as syntactic trees. Exten-

sive experimentation on various architectures and benchmarks validates the proposed

concepts and sheds light on how brittle these architectures are against slight linguistic

variations, against which humans are exceptionally robust.

We finally investigate the role of robustness as a property to explain neural net-

works: we propose the notion of optimal robust explanation (ORE) as the robust and

optimal portion of an input text that is nevertheless sufficient to imply a model’s de-

cision. We implement and test this notion of explanations on various neural networks

and datasets to reveal the explanatory landscape of NLP models through the lens of

robustness.

4

All the software and tools of this thesis have been released under permissive, open-

source licenses to satisfy reproducibility requirements and encourage other researchers

to develop tools to assess and improve the robustness of NLP models against edge

cases and linguistic phenomena, which by their nature constitute a non-negligible

part of the spectrum of human language.

5

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Contributions . 2

1.3 Publications . 4

1.4 Thesis Outline . 6

2 Background 8

2.1 Deep Learning . 8

2.1.1 Neural Networks . 9

2.1.2 Neural Architectures . 9

2.1.3 Training Procedures . 13

2.1.4 Natural Language Processing 16

2.1.5 On NLP Representations . 16

2.1.5.1 Word Embeddings 17

2.1.5.2 Attention-based Large Language Models 18

2.1.5.3 NLP Core Tasks . 20

2.2 Robustness . 22

2.2.1 Adversarial Attacks . 22

2.2.2 Adversarial Robustness . 24

2.2.2.1 ϵ-Ball Robustness . 25

2.2.2.2 Beyond ϵ-Ball Robustness 25

2.2.2.3 Robustness Guarantees and Robust Training 25

2.3 Robustness and Language . 27

2.3.1 Adversarial Attacks in NLP 29

2.3.2 Local Robustness . 31

2.3.3 Explainability and Robustness 32

2.3.3.1 Feature-based Explanations 33

i

3 Literature Review 36

3.1 Adversarial Attacks . 36

3.1.1 Adversarial Attacks and Language 37

3.2 Robustness and Verification . 38

3.3 Explainability . 41

4 Measuring Robustness in NLP 44

4.1 Motivation and Setting . 45

4.2 The Maximal Safe Radius Approach 45

4.2.1 Lower Bound . 47

4.2.2 Mind the (Discrete) Gap: the Upper Bound 49

4.2.3 MCTS Algorithm . 50

4.3 Experiments . 51

4.3.1 Experimental Setup . 54

4.3.2 Robustness to Word Substitutions 56

4.4 Continuous Robustness: a Critical Appraisal 59

5 On the Notion of Robustness for NLP 64

5.1 Chapter Overview and Contributions 64

5.2 The Standard Notion of Robustness 65

5.2.1 Continuous and Discrete Robustness 66

5.3 A Semantic Notion of Robustness . 67

5.3.1 Task-preserving Generative Method 71

5.4 Experimental Evaluation . 72

5.4.1 Experimental Setup . 73

5.4.2 Comparative Study . 74

5.4.3 Classic Robustness is Linguistically Brittle 75

5.4.4 Accuracy is a Red Herring: the BERT Case 76

5.4.5 Robustness Induced Biases . 78

5.5 Conclusions . 81

6 Robustness of Syntactic Structures 82

6.1 Motivation and Setting . 83

6.2 Probing Tasks for Model Introspection 85

6.2.1 Methodology . 85

6.2.2 Probing Tasks for Model Introspection 85

6.3 Measuring Syntactic Robustness . 88

ii

6.3.1 Syntax-preserving Perturbation Analysis 88

6.4 Algorithm for Evaluating Syntactic Robustness 91

6.4.1 Computing coPOS Perturbations 92

6.4.2 coCO and Baseline Perturbations 93

6.4.3 Average Worst-case Robustness Algorithm 93

6.5 Validating the Perturbation Method 95

6.6 Experimental Evaluation . 97

6.6.1 Experimental Setting . 103

6.6.2 Empirical Evaluation of Syntactic Robustness 106

6.7 Conclusions . 114

7 Robust Explainability 115

7.1 On the Necessity of Guaranteed Explanations 116

7.2 Optimal Robust Explanations . 118

7.2.1 Relation to Anchors . 120

7.3 Extracting OREs . 121

7.3.1 Minimum Hitting Set . 122

7.3.2 MHS Pseudocode . 122

7.3.3 OREs Use Cases . 123

7.3.4 OREs can Detect Model/Decision Biases 126

7.3.5 Enhancing Anchors Explanations 127

7.4 Experimental Evaluation . 128

7.4.1 Experimental Setup . 128

7.5 Conclusions . 134

8 Conclusions 136

iii

List of Figures

2.1 An FC architecture with one input, one output, and one hidden layer.

Each input is a 4-dimensional vector, while outputs are 2-dimensional. 10

2.2 A CNN architecture that processes 3D data (top). At the bottom-left,

an LSTM cell, a particular implementation of an RNN, recursively pro-

cesses the input unrolling it along its ‘temporal’ dimension (bottom-

right). While the LSTM processes an input with standard vectorial

operations (as per the legend, concatenation, dot-product, sum, and

layers activation), this architecture efficiently permits storing informa-

tion from the previous time steps. 11

2.3 An example of the self-attention architecture, where for each pair of

input features {x1, x2, x3}, the module computes the attention scores

(via dot-product). The attention scores (the green matrix) store an

importance score for each pair of input features. Intuitively, this infor-

mation is relevant to solve downstream NLP tasks where long-distance

relationships would be difficult to maintain by other architectures (e.g.,

co-reference resolution). 14

2.4 A Transformer architecture. An input sequence is initially turned into

a multi-dimensional representation, then a function (the positional en-

coding) calculates, for each token, a value that identifies its position

in the sequence. That is useful to compute self-attention at the suc-

cessive layers, which, followed by a few layers that normalize (layer

norm) and linearly transform the input, output a representation that

has been demonstrated to be very useful to solve both low-order tasks

such as sentiment analysis and language translation (despite, in this

case, both the input and the expected output each passing through a

transformation similar to that shown in this figure). 15

iv

2.5 An example of a masked sentence. This masking technique has become

very popular (Devlin et al., 2019a) and encompasses multiple masked

words per sentence. 19

2.6 A few examples of NLP tasks. Top: sentiment analysis. Middle: para-

phrases identification. Bottom: language translation. 21

2.7 An example of the difficulty of the problem of robustness in CV (top)

and NLP (bottom). Some adversarial examples on top are expected

to change the classifier’s decision, while others should not. The same

applies to the NLP examples. In this sense, robustness has to consider

whether the ground truth label, i.e., the semantics of the perturbation,

has been preserved. 23

2.8 An example of a projection of an NN’s decision boundary (class 0 in

lime vs. class 1) w.r.t. the input points. The NN admits an adversarial

attack (red point) inside an ϵ-Ball of the input x (boundaries in blue). 24

2.9 Linear bound propagation (left), with the upper- and lower-bound

highlighted respectively in lime and red (for details, check Eq. 2.20), al-

lows one to certify whether a model, whose non-linear activations maps

inputs to non-convex regions of the output space, through a convex

over-approximation of that space. Standard methods allow the certi-

fication of the robustness of multi-layer NNs activated via non-linear

functions. IBP (right) can be used to leverage this idea at training time

by propagating a convex approximation (in blue) of the projection of

an input (in lime) neighborhood to the decision boundary (in red),

which is then back-propagated to induce the decision of the model to

be uniform over that region. 28

2.10 A graphical representation of an attack conducted via FGSM against

an input point x, that identifies, within an ϵ-Ball (red), a successful

perturbation (green). If that perturbation does not correspond to a

discrete inverse image in the vocabulary space of the representation, it

is then projected to the closest point that admits it (orange). 30

2.11 A graphical representation of a knn-Ball perturbation set w.r.t. the ℓ∞

norm (blue), the convex hull around the input word (green), and the

ϵ-Ball. 32

v

2.12 Example of an NLP input s, its features set F, a feature-based ex-

planation, and the left-out set (F \ E). While the input text s is a

sentence, its features are a set of words (and possibly their position to

allow repetitions). Finally, a candidate explanation is a subset of F ,

while the left-out variables are not included in the explanation. 33

2.13 Example of LIME (left) and Anchors (right) explainers. LIME linearly

approximates the complex decision boundary of a model by repeatedly

sampling in the input’s neighborhood in the embedding space; then, an

explanation is an ordering over the features that influenced the decision

the most. The Anchors technique finds, via sampling and masking, the

subset of an input text that maximizes coverage while maintaining high

precision. Credits to (Ribeiro et al., 2016) and (Ribeiro et al., 2018a). 35

4.1 Maximal Safe Radius (MSR) and its upper and lower bounds. An up-

per bound of MSR is obtained by computing the distance of any dis-

crete perturbation resulting in a class change (blue ellipse) to the input

text. A lower bound certifies that perturbations of the words contained

within that radius are guaranteed not to change the classification de-

cision (green ellipse). Both upper and lower bounds approximate the

MSR (black ellipse). In this example, the word strange can be safely

substituted with odd. The word timeless is within the upper and

lower bound of the MSR, so our approach cannot guarantee it would

not change the neural network prediction. 47

vi

4.2 On the left, the tree’s structure after two iterations of the MCTS algo-

rithm. Simulations of 1-word substitutions are executed at each vertex

on the first level to update the UCT statistics. The most urgent vertex

is then expanded (e.g., word the), and several 2-words substitutions

are executed combining the word identified by the current vertex (e.g.,

word movie at the second level of the tree) and that of its parent, i.e.,

the. Redundant substitutions may be avoided (greyed-out branch).

On the right, MCTS selects substitutions randomly or according to a

score calculated as a function of the distance from the original word

(see Algorithm 1 for details). The sampling region (red circle) is a fi-

nite fraction of the embedding space (blue circle). Selected candidates

can be filtered to enforce semantic and syntactic constraints. Word

the has been filtered out because it is not grammatically consistent

with the original word strange, while words good, better and a are

filtered out as they lie outside the neighborhood of the original word. 53

4.3 Lower bounds indicate classification invariance to any substitution

when greater than the embedding diameter d, represented by the dot-

ted vertical line. Left: Examples of words safe to any substitution

(IMDB, Keras embedding 10d, text no 2). Middle: Examples of words

vulnerable to substitutions that may change the classification (IMDB,

Keras embedding 5d, text no 1). 57

4.4 Single-word substitutions found with MCTS in conjunction with POS-

tag filtering (as defined in Section 4.2.3). Grammatically consistent

substitutions are shown in green, inconsistent in red, and a dash indi-

cates that no substitution is found. 59

5.1 In general, local continuous robustness is an ill-posed property for NLP.

A model can be robust to a large surface of attacks in the input neigh-

borhood (green patch (b)), yet a small region of adversarial attacks (red

patch (c)) invalidates the verification of larger regions. In the exam-

ple, the safe input neighborhood (blue patch (a)), a convex region that

includes safe replacements, cannot grow any further without violating

robustness by encroaching on patch (c). Non-convex representations

for an input neighborhood (patch (a)) are possible but computationally

expensive and not used in practice. 66

vii

5.2 Ablation study of BERT on (Barnes et al., 2019), measuring accuracy

for 5 different network depths. While depth plays a fundamental role

in achieving accuracy on a test set (SST-2) and certainly plays a role

(albeit minor) on shallow negation, it seems not to be correlated to the

model performance on mixed sentiment and sarcasm. 78

5.3 On the top plot, we show the average accuracy of 30 trained FC mod-

els on the SST-2 dataset, compared for different values of ϵ-robustness.

Measurements are taken w.r.t. the ℓ∞-norm, as it allows us to com-

pare the maximum robustness variation along any dimension. For ϵ

equal to 0., a model is not robustly trained; otherwise, it is through

IBP (Gowal et al., 2018). There is a clear trade-off between robustness

and accuracy. On the bottom plot, the average norm of the models’

parameters indicates that robust models tend to have lower variance

and hence arguably lower complexity. 79

6.1 A syntax graph reconstructed via the structural probe task (see Def. 5)

from a RoBERTa representation is shown in the middle; for compari-

son, the ground truth structure is sketched on the left. On the right,

the same structure is displayed as a dependency tree (annotated with

additional information so that dependencies and hierarchies between

words are made clear) so that other supervised tasks can be instanti-

ated, e.g., identifying the root, or computing the depth of the tree. . . 84

6.2 The dependency parse tree of a sentence (left), alongside the matrix of

distances between pairs of words in the tree (right). 87

6.3 A sentence with its POS tags (left). A sentence in CONLL format tests

a model on multiple syntactic tasks (right). CONLL is a convenient

format as it provides sentences and information that can be used to

instantiate syntactic tasks such as tree reconstruction. 88

6.4 Two examples of coPOS and coCO perturbations applied on clean in-

put texts and the resulting syntax trees induced by such alterations.

Words perturbed are highlighted in red. coPOS perturbations are de-

signed to minimize the probability of disrupting the syntax of a sen-

tence (such as the substitution of ‘as’ with ‘because’). In contrast,

coCO can disrupt it (e.g., the substitution of ‘and’ with a period). . 89

viii

6.5 An example of a perturbed sentence s′ obtained through a coPOS

perturbation. Candidate substitutions are sampled from a pool of

WordNet synonyms, from which we select the one that maximizes the

Hamming distance and minimizes the syntactic disruption w.r.t. the

original input; see Section 6.4 for details. The perturbation is then

fed, through a linguistic representation ψθ, to a probe (neural network

trained directly on the representation) that predicts its syntax tree. . 92

6.6 Comparison of the disruption induced on the dependency syntax tree

by different perturbation methods and the syntactic distance between

trees. The representation of each dependency syntax tree has been

compacted to make the effect of the perturbation methods clear. Yet,

it is equivalent to that of Figures 6.2 and 6.4. The example sentence

belongs to the Ud-English-Pud dataset, and the perturbations are ac-

tual perturbations induced by our methods. In blue, the single word

that has been perturbed, while in red, the perturbation induced by

such perturbation on the tree. 98

6.7 Tree distance, measured with Stanza, between an input and its per-

turbed version, for different datasets and perturbation budgets: results

are averaged over the entire dataset. The coPOS perturbation method

(red) induces almost no disruption to a perturbation’s syntax tree, be-

ing always close to the level of syntactic equivalence, while injection

of random words (blue) and coPOS perturbations (green) both induce

some noticeable disruption. The disruption induced by comparing the

syntax tree of two randomly picked-up sentences that belong to the

same dataset is reported for further comparison (orange). 99

6.8 Examples of sentences and worst-case coCO and coPOS perturbations

that are reported in our experiments to highly disrupt the dependency

syntax tree according to Stanza (Qi et al., 2020) (the syntactic distance

between the original and perturbed sentence is shown on the right). We

show the original sentence for each of the 6 CoNLL datasets. For coCO,

perturbed words are highlighted in red, and replacements with empty

words (allowed from the vocabulary) are denoted with a red rectangle

. For coPOS, perturbed words are highlighted in blue. Results refer

to the perturbation regime with τ = 3, i.e., where at most three words

per sentence are perturbed. 100

ix

6.9 Examples of linguistically interesting sentences, perturbations, and

their syntactic distances (right), as calculated with Stanza (Qi et al.,

2020). We report the original sentence on top for each of the six CoNLL

datasets. For coCO, perturbed words are highlighted in red, while for

coPOS, in blue. Results refer to the perturbation regime with τ = 3,

i.e., where at most three words per sentence are perturbed. 101

6.10 Top two rows: performance of different linguistic representations on

syntax reconstruction and POS-tagging probing tasks. Bottom two

rows: performance on root identification (accuracy metric) and tree-

depth estimation (SDR and Spearman metric) probing tasks. For both

plots, the performance of the probing tasks is reported as shaded bars,

with the performance for the perturbed representation shown as a solid

overlapping bar: the results refer to the case where the coPOS pertur-

bation budget τ is equal to 3. We distilled BERT and RoBERTa’s

representations from the 5th and 9th hidden layers, resulting in the

highest performance on both tasks. 102

6.11 Left: For an increasing perturbation budget τ and the coPOS method,

cosine similarity between perturbed and original sentences drops while

the ℓ2-norm increases. Right: It is clear that, even with τ = 2 (i.e., at

most two words per sentence are perturbed), the models’ performance

already experiences a significant drop (the higher the curve, the worse

the model is on a syntactic task). Increasing the perturbation budget

only slightly increases a drop in robustness. 107

6.12 BERT model fine-tuned (and finally, overfitted) on the SST dataset,

while its representations are used to train a model to solve the struc-

tural probe task. Train and validation losses (left) and accuracies

(right) pertain to the fine-tuning task (SST), while SDR and UUAS

show the performance of the structural probe. The syntactic metrics

degrade as the fine-tuning process proceeds, yet severe over-fitting does

not harm syntactic structures. 110

x

6.13 Left: for an increasing perturbation budget τ and the coCO method,

cosine similarity between perturbed and original sentences drops, while

the ℓ2-norm increases. Right: It is clear that, even with τ = 2 (i.e., at

most two words per sentence are perturbed), the models’ performance

already experiences a significant drop (the higher the curve, the worse

the model is on a syntactic task). Increasing the perturbation budget

does not lead to a significant drop in robustness. 111

6.14 Left: For an increasing perturbation budget τ and the baseline method,

cosine similarity between perturbed and original sentences drops, while

the ℓ2-norm increases. Right: It is clear that, even with τ = 2 (i.e., at

most two words per sentence are perturbed), the models’ performance

already experiences a significant drop (the higher the curve, the worse

the model is on a syntactic task). Increasing the perturbation budget

does not lead to a significant drop in robustness. 111

7.1 Interpretability comparison of our framework with LIME. (a) Saliency

map produced with CNN-Cert (top) and LIME (bottom) on IMDB

(GloVeTwitter 25d embedding). (b) Saliency map produced with POPQORN

(top) and LIME (bottom) on NEWS dataset (GloVe 100d embedding). 117

7.2 Input texts are presented, accompanied by explanations generated us-

ing the LIME and Anchors methods. The text within the explanations

is highlighted in blue and green, respectively, and the corresponding

features are enclosed in boxes of matching colors. When the excluded

features in the explanations become targets of attacks, both methods

are susceptible to bounded perturbations (where the bound is calcu-

lated based on the ℓ2-norm). Attacks against LIME are indicated in

orange, as they cannot be traced back to specific words in the embed-

ding dictionary. Attacks against Anchors are shown in red, along with

a discrete replacement that leads to misclassification. 119

xi

7.3 An illustration of the execution of Algorithm 6 for a set of input fea-

tures F = {1, 2, 3} and a generic model Net. Please notice that the

lines at each iteration, in blue, correspond to the lines of the pseudo-

code of Algorithm 6. After the network has been initialized (Init:),

Net is checked to be robust against attacks that encompass all the

input features (iteration 1, line 4). An attack is found and added to

Γ (iteration 1, lines 6,7). At the second iteration, a valid minimum

hitting set for Γ is the set E = {1}, for which the network is proven

again not to be robust. An attack is found and added to Γ (iteration 2,

lines 6,7). In the third iteration, the network is still not robust to the

left-out features of the newly computed minimum hitting set (iteration

3, lines 3,4). The attack A = {1, 3} is found and added to Γ. In the

last iteration, the minimum hitting set, which now encompasses two

variables (iteration 4, lines 3), is enough to secure the network from

any attack on the left-out features, i.e., {3} = F \ {1, 2}, hence the

ORE {1, 2} is returned. 125

7.4 OREs for IMDB, SST, and Twitter datasets (all the texts are correctly

classified). Models employed are FC with 50 input words, each with

accuracies respectively 0.89, 0.77, and 0.75. OREs are highlighted in

blue. The technique used is knn boxes with k=15. 130

7.5 Comparison of OREs for SST and Twitter texts on FC (red) vs. CNN

(blue) models (common words in magenta). The first two are positive

reviews; the third is negative (all correctly classified). Accuracies of

FC and CNN models are 0.88 and 0.89 on SST, and 0.77 on Twitter.

Models have input lengths of 25 words; OREs are extracted with knn

boxes (k=25). 130

7.6 Comparison of OREs on negative IMDB and Twitter inputs for FC

models. The first and third examples are trained with 25 (red) VS

50 (blue) input words (words in common to both OREs are in ma-

genta). The second example uses an FC model trained with 100 input

words (words common to all three OREs are in orange). Accuracy is

respectively 0.7 and 0.77 and 0.81 for IMDB and 0.77 for both Twitter

models. All the examples are classified correctly. OREs are extracted

with knn boxes (k=25). 131

7.7 Two examples of decision bias from an FC model with an accuracy of

0.80. 131

xii

7.8 Examples of Optimal Robust Explanations, highlighted in blue. OREs

were extracted using kNN boxes with 25 neighbors per word: fixing

words in an ORE guarantees the model to be locally robust. The

examples come from the IMDB dataset; the model employed is an FC

network with 100 input words (accuracy 0.81). 132

7.9 Examples of explanations that were enabled by the adversarial attacks

routine. Timeout was set to 2 hours. 133

7.10 Two examples of over-sensitivity to polarized terms (in red). Other

words in the OREs are highlighted in green. Models used are FC with

25 input words (accuracy 0.82 and 0.74). The method used is knn with

k respectively equal to 8 and 10. 133

7.11 Examples of Anchors explanations (in blue) and the minimal exten-

sion required to make them robust (in red). Examples are classified

(without errors) with a 25-input-word CNN (accuracy 0.89). OREs are

extracted for knn boxes and k=25. 134

xiii

Chapter 1

Introduction

1.1 Introduction

In the last decade, Natural Language Processing (NLP) has made impressive ad-

vances, from neural network-aided search engines, to algorithms that smoothly trans-

late sentences to and from tens of languages (Devlin et al., 2019a; Jia et al., 2018;

Brown et al., 2020). However, these advances have not come with sufficient robustness

guarantees, as testified by a considerable body of recent literature that demonstrates

the brittleness of language models to slight variations of the inputs (Jia and Liang,

2017; Gowal et al., 2018; Cheng et al., 2020; Sun et al., 2020). This lack of robustness

poses a series of challenges that are not trivial to mitigate, rooted in problems that

are computationally hard to solve (Katz et al., 2017b). One must not underestimate

the psychological effect of errors caused by systems powered by Artificial Intelligence

(AI), as they erode trust to a level that is hard to rebuild. To name one case that

made the headlines, in 2016, a chat-bot released by Microsoft Corporation via Twitter

began to post inflammatory and offensive tweets through its Twitter account.1

While NLP systems are mostly employed in non-safety-critical processes, countless

scientific articles and reports have testified to potentially harmful and discriminat-

ing behaviors of these algorithms, especially when trained on data that explicitly or

implicitly encode human biases.

In this work, we elect as an object of our study Neural Networks (NN), as they

are universal function approximators employed at the forefront of computer vision

(CV), NLP, and reinforcement learning. In particular, we restrict our attention to

Deterministic Neural Networks (DNN). Despite being a popular area of research for

the past several years, robustness in NLP focuses on guarantees against threat models

1https://www.theguardian.com/world/2016/mar/29/microsoft-tay-tweets-antisemitic-racism.

1

https://www.theguardian.com/world/2016/mar/29/microsoft-tay-tweets-antisemitic-racism

whose linguistic expressiveness is limited. A reason for that is that language makes

the study of robustness challenging, as one cannot take advantage of smooth mathe-

matical formulations of the input space since language is discrete, combinatorial, and

infinite.

With attacks that can be conducted at a word or representation level, the ap-

proaches to NLP robustness are two-fold: on the one hand, those aimed to shield a

model from any perturbation that satisfies some specifics (e.g., locality), and on the

other, those that reduce the surface of attack to linguistically correct sentences. In

computer security, one would denote the latter as a white-box scenario and the former

as a black box: nuances between the two, which are also studied in the literature,

would go under the name of grey-box scenarios.

It is thus important to make clear the hypothesis under which one studies the

problem of robustness in NLP, starting from the models employed, which are rapidly

switching from ‘classic’ NNs to powerful yet extremely large, data-intensive, Large

Language Models (recently re-branded as foundational models (Bommasani et al.,

2021)). While the field lacks a formalized approach to robustness, we observe an

emergence of ‘linguistics for Language Models’ (Goldberg, 2019; Jawahar et al., 2019;

Manning et al., 2020).

Last but not least, since complex models come at the cost of less interpretable

decisions, this thesis tackles the problem of explainability from a formal perspec-

tive, showing the possibility of formally interpreting, debugging, and explaining NLP

models aided by robustness guarantees.

1.2 Contributions

With this thesis, we develop frameworks and conduct systematic analyses to quantify,

critique, and evaluate robustness in NLP. We also propose to use robustness as a

property to enhance the explainability of complex NLP models.

The principles of NLP robustness, inherited from CV, need to be aligned with a

model’s expectations, i.e., understanding, manipulating, and generating language at

a level comparable to that of humans. In this work, we explain why it is necessary

to take a step back from CV and rethink the notion of robustness through the lens

of linguistics. In this sense, we propose two notions of robustness inspired by the

linguistic dichotomy between syntax and semantics, namely semantic and syntactic

robustness. We also investigate the broader role of robustness as a property by showing

2

that NLP models’ decisions can be explained via robust and minimal, e.g., in the

number of features involved in the prediction subsets of the input.

The first contribution of the thesis consists of a framework to measure the robust-

ness of standard NLP architectures, such as Fully Connected (FC), Convolutional

(CNN), and Recurrent Neural Networks (RNN), on text classification tasks. This

approach extends the Maximal Safe Radius technique (MSR) (Wu et al., 2020a) to

language and computes a sound certificate of the robustness of a model against ad-

versarial attacks. The contribution here is two-fold: a method and an algorithm to

certify the region of maximal safety of different NNs against adversarial attacks, with

an extensive evaluation of text classification and varying neural topologies, and an as-

sessment of the limitations of such an approach in terms of scalability, flexibility, and

linguistic validity. Our empirical observations pave the way to the key contributions

presented in the following chapters, namely the necessity to introduce ad-hoc notions

of robustness for syntax and semantics, and further motivate our steps towards robust

explainability.

We discuss the inadequacy of the standard notion of robustness when applied

to NLP, as it does not satisfy linguistic requirements such as the invariance to (lin-

guistically similar) paraphrases; indeed, the standard notion of robustness limits its

guarantees to symbol substitutions, which is not appropriate for models that solve

low-order tasks such as sentiment analysis (Barnes et al., 2019). We thus define se-

mantic robustness to assess how a model behaves when targeted with high-quality

perturbations that contain linguistic phenomena, such as negation or sarcasm. We

build a simple yet semantically controlled, generative framework to measure the se-

mantic robustness of an NLP model, whose results we compare with an existing,

handcrafted test bed (Barnes et al., 2019), on a variety of NNs, including Large

Language Models (LLM) such as BERT (Devlin et al., 2019a). Results suggest that

semantic robustness is higher for those models that better represent language and

agree with the recently observed empirical law of scaling (the larger the model, the

better the linguistic capabilities).

Syntax, alongside semantics, shapes one of the cornerstone definitions in post-

structuralist linguistics (Chomsky, 2009): a natural complement to semantic robust-

ness is thus the concept of syntactic robustness, defined as the capacity of a model

to embed robust linguistic structures, such as syntax trees. We challenge the evi-

dence (Manning et al., 2020) that LLMs encode linguistic structures in their hidden

representations with an adequate measure that computes and numerically quanti-

fies the perturbation that disrupts the most the syntactic structures encoded by a

3

model. We provide evidence, through a series of experiments on a variety of em-

beddings and LLMs, that syntactic structures, when encoded by LLMs or standard

word embedding techniques, are very brittle to slight syntax-preserving manipula-

tions of an input text, to the point that one must seriously question their existence.

Our approach extensively uses probing tasks (Niven and Kao, 2019), namely linear

models that reveal features used by the original representation, whether an embed-

ding or an LLM. We propose and implement an algorithmic framework within which

one can assess whether powerful LLMs encode in their continuous representations

(enough information to reconstruct) symbolic structures that linguists have proposed

to characterize natural language.

In the thesis final contribution, we explore the role of robustness in explainability

and beyond being a desirable property of a model. We seek explanations of NLP

models (and, in general, of any machine learning model) that are robust to perturba-

tions. We define the notion of an Optimal Robust Explanation (ORE) as the optimal

(w.r.t. a cost function) subset of an input sufficient to entail a model’s decision. A

theoretical characterization, which includes the reconciliation of this concept with

that of popular explainers for NLP such as Anchors (Ribeiro et al., 2018a), followed

by an experimental evaluation on a variety of models on sentiment analysis tasks,

provides evidence that OREs are succinct yet interpretable explanations, which can

detect model as well as decision biases.

In synthesis, my thesis clarifies the role of robustness in NLP and mainly focuses

on low-order tasks such as sentiment analysis and classification. The contributions

in Chapters 5 and 6 can be applied to a wide range of models, from feed-forward

NNs to advanced Large Language Models, while Chapters 4 and 7 are pertinent to

guaranteed robustness, and thus suffer from limitations due to the limited scalability

of verification techniques. With the state-of-the-art verification tools that do not

scale to large attention-based models, we focused on simpler architectures such as

fully connected, convolutional and recurrent topologies, though the frameworks apply

to any neural architecture.

1.3 Publications

This thesis is based on 4 research papers. Three of the research papers have been

accepted for publication, while the remaining one is currently under submission to a

journal. Below I clarify my contribution to each piece of work.

4

Assessing Robustness to Text Classification with Maximal Safe Radius

Computation (La Malfa et al., 2020) - EMNLP’20 (findings). With a col-

league and co-author, I came up with the idea of a framework to measure robustness

for an NLP model in terms of an upper and a lower bound certificate, namely the

Maximal Safe Radius technique for NLP, that is interpretable in terms of guarantees

w.r.t. word substitutions. We defined the framework for the upper bound, while

another colleague helped me design the lower bound algorithm. I adapted existing

frameworks for the lower-bound and coded the upper-bound algorithm from scratch.

I conducted all the analyses in the published paper. All the authors collaborated on

the writing.

The King is Naked: on the Notion of Robustness for Natural Language

Processing (La Malfa and Kwiatkowska, 2022) - AAAI’22. I came up with

the idea of criticizing NLP robustness as inherited from CV, and the consequent

notion and formalization of semantic robustness in NLP as the invariance of a model to

slight variations of an input that contains a linguistic phenomenon, such as negation. I

designed and coded the framework to quantify semantic robustness for various models,

as well as the augmentation technique that introduces linguistic phenomena in a text.

I conducted all the experiments of the published paper and wrote the paper jointly

with my supervisor.

Emergent Linguistic Structures in Neural Networks are Fragile (La Malfa

et al., 2022) - Under Review. I developed the idea of measuring syntax ro-

bustness of NLP models through probing tasks. My co-authors and I proposed the

algorithm to quantify the average worst-case robustness against perturbations. At

the same time, I designed the perturbation techniques and the notion of syntax ro-

bustness. I wrote the code and conducted all the analyses. I wrote the paper jointly

with my supervisor.

On Guaranteed Optimal Robust Explanations for NLP Models (La Malfa

et al., 2021) - IJCAI’21. I developed the idea of distilling robust explanations for

NNs into a framework with my collaborator Nicola and Agnieszka. I coded the Hitting

Set algorithm to extract OREs from NNs with a uniform cost function, conducted all

the experiments, and then analyzed the results jointly with my collaborators. The

paper was written jointly.

5

1.4 Thesis Outline

In Chapter 1, we provide an overview of the thesis and set the stage for the subsequent

chapters. We introduce the main research question and outline the objectives and

significance of the study. Additionally, we establish the thesis scope and explain the

remaining chapters’ structure.

Chapter 2 is a foundation for the rest of the thesis. We present the necessary no-

tation, terminology, and theoretical concepts that underpin the subsequent chapters.

This chapter aims to ensure a common understanding of the technical aspects of the

research, providing readers with the tools to comprehend the following discussions

effectively.

In Chapter 3, we comprehensively survey the principal published works in robust-

ness and Natural Language Processing (NLP). We critically analyze and synthesize

existing research, identify gaps and limitations, and highlight relevant findings and

methodologies. This chapter thoroughly explains the current state of the art in ro-

bustness and NLP.

Chapter 4 introduces a novel framework, based on the Maximal Safe Radius

method, to quantify robustness in NLP, particularly for models that solve text clas-

sification tasks. We describe the approach, which consists of an upper and a lower

bound on the robustness of a model, its underlying principles, and the experimental

setup used to validate the method. While previous works focus on local guarantees,

our certification method is the first that applies formal techniques in conjunction

with attack-based methods to certify and characterise the robustness landscape of

neural networks to local attacks. This chapter presents the reader with a detailed

examination of the proposed measurement framework and its potential applications

in assessing the resilience of NLP models.

In Chapter 5, we delve into formalizing a notion of robustness focused explicitly

on semantics. We begin by criticizing the idea of continuous robustness inherited

from CV and adopted in NLP. We then explore NLP models’ inherent vulnerabili-

ties in handling texts containing semantic phenomena and propose a framework to

measure and evaluate semantic robustness, which we apply to texts generated via a

sample-based generative model and to samples handcrafted by human experts. Our

work proposes a novel approach to robustness that aligns with human language, is

probabilistic (as formal guarantees do not scale) and encompasses complex linguistic

phenomena, going beyond word substitution.

6

Chapter 6 extends the notion of robustness to the realm of syntax. We develop

a framework that captures and quantifies the syntactic robustness of NLP models,

examining their susceptibility to perturbations that vary in their degree of syntactic

disruption. By investigating various syntactic scenarios and conducting extensive

experiments on different linguistic representations, we provide insights into existing

models’ limitations to represent syntax consistently. We also analyze the performance

degradation on syntactic tasks of a fine-tuned model that solves low-order tasks such

as sentiment analysis. This chapter’s main contribution consists of a framework to

make the hypothesis on linguistic structures, as embedded by neural networks and

Large Language Models, falsifiable, and a comprehensive experimental evaluation.

In Chapter 7, we conclude the thesis by introducing a novel approach to generate

guaranteed optimal explanations for NLP models. We address the need for inter-

pretable models and propose a method that provides explanations and guarantees

their optimality. This chapter presents the reader with a tool to comprehend the

inner workings of NLP models, fostering trust and transparency in their decision-

making processes. Our work is the first to bridge formal explainability and NLP and

compares and enhances existing state-of-the-art methods such as Anchors.

7

Chapter 2

Background

This chapter reviews the background of Deep Learning (DL), and specifically neu-

ral networks (NN), training procedures, and the most influential DL architectures

proposed in the past decades. A discussion of NLP representation techniques then

follows. These underpin modern developments such as attention networks, Large

Language Models (LLM), and applications such as ChatGPT. We also discuss the

notion of the robustness of neural network models, their range of applicability, and

their computational aspects. We conclude with a concise yet comprehensive back-

ground section on explainability, which we build on in Chapters 4 and 7. This part

provides an overview of the tools and ideas used in the contribution chapters, while

we dedicate Chapter 3 to a comprehensive review of the existing literature.

2.1 Deep Learning

Machine learning (ML) leverages recent advances in computer architectures and com-

putational power (e.g., Moore’s law) to automate the solution of complex tasks. ML

algorithms are often formulated as optimization problems, where a model uses data

to fit a desired function (Bishop and Nasrabadi, 2006). Three learning paradigms

characterize the entire field: supervised, unsupervised, and reinforcement learning.

Supervised learning accomplishes the goal of finding a function of optimal parame-

ters W that maps input-output pairs, namely fW : X −→ Y ; when not necessary,

in this work we will omit the weights when referring to f , i.e., f : X −→ Y . Unsu-

pervised learning requires learning an alternative representation of solely the input

points X, and is generally employed to describe, compress, and cluster data. Finally,

in reinforcement learning an agent learns to interact with an environment that re-

sponds with feedback on the agent’s actions (Sutton and Barto, 2018). Supervised,

unsupervised, and reinforcement learning are formulated as optimization problems;

8

all the formulations aim to minimize a loss function L, which expresses how good/bad

the trained model is at solving the task (supervised and reinforcement learning) or

representing the input (unsupervised learning).

Deep Learning, which exploits neural network (NN) architectures, is sometimes

viewed as a standalone discipline at the intersection of AI, ML, and statistics (Salakhut-

dinov, 2014), with high-profile conferences dedicated entirely to neural-inspired ar-

chitectures. Historically, NNs were developed in the 1950s as sequential algorithms

loosely based on the human brain (Minsky and Papert, 2017). After initial successes,

followed by a decline in the 1980s known as the winter of Artificial Intelligence, NNs

have gained popularity in the 2010s due to their competitive advantage on tasks such

as computer vision and NLP (Krizhevsky et al., 2012). Nowadays, they form the

building blocks of translators and image recognition products, yet they are still far

from exhibiting what we could call intelligent, autonomous behavior. We next discuss

DL methods.

2.1.1 Neural Networks

We assume a supervised learning setting in this work when not explicitly stated. In

this sense, given a set of n inputs X = {x(1), .., x(n)} and outputs Y = {y(1), .., y(n)},
an NN learns a mapping from X, the input space, to Y , the output space, namely

f : X −→ Y . While in the general case, X is a d-dimensional real-valued subspace of

Rd, for which the domain is denoted as D(X), Y can be discrete, with the elements of

its domain referred to as ‘classes’; this specific setting is referred to as ‘classification’.

The complementary case, where Y ⊆ Rm, is instead referred to as ‘regression’.

2.1.2 Neural Architectures

We introduce the Neural Network model via its simplest architecture, namely the

Fully Connected (FC) topology. As sketched in Figure 2.1, an FC is a stacked ‘list’

of layers whose unitary elements are neurons. In FCs, a link connects each pair of

neurons in adjacent layers (hence Fully Connected): values assigned to each link have

been historically named weights. Additionally, neurons can have a further incoming

link/weight called bias. In the first layer, where the input X is fed, each neuron mul-

tiplies the input with its weights, sums the bias, and applies a (non-linear) activation

function a. Technically speaking, the output of the j-th neuron of the ℓ-th hidden

9

Layer 2 Output LayerInput Layer

x1

x2

x3

x4

y1

y2

W[ℓ]
W[ℓ+1]

b[ℓ+1]b[ℓ]

Figure 2.1: An FC architecture with one input, one output, and one hidden layer.
Each input is a 4-dimensional vector, while outputs are 2-dimensional.

layer of an FC network, namely z
[ℓ]
j , is computed as

z
[ℓ]
j = a(b

[ℓ]
j +

I∑
i=1

W
[ℓ]
j,i z

[ℓ−1]
i), (2.1)

where z
[ℓ−1]
i is the output of the previous layer (ℓ − 1), W [ℓ] and b[ℓ] are respectively

the matrix of weights and the bias vector at layer ℓ. Please notice that, according to

our notation, z[0] = x, while for an L-layers NN, z[l] = y. Furthermore, the output of

a layer can be expressed via the compact vectorial notation, i.e.,

z[ℓ] = a(b[ℓ] +W [ℓ]z[ℓ−1]), (2.2)

where W [ℓ]z[ℓ−1] expresses the dot-product between the weight matrix and the vector

z[ℓ−1]. In an NN with L > 0 layers, z[0] and z[ℓ] respectively correspond to the input

x and the output y, yet since the input-output mapping that an NN learns is often

an approximation of the true relationship between X and Y , it is common to denote

the output of a network, when evaluated for an instance of an input point x, with ŷ.

Standard activation functions include ReLU (Glorot et al., 2011), a step-wise

linear function that combines approximation capabilities with regularization effects

at training time, and the sigmoid (Bishop and Nasrabadi, 2006). In classification, the

output layer is often activated via the softmax function, which selects the most likely

class as the maximum value index.

10

1.0 5.0 8.28

10.0

2.5

2.25

0.75 7.25

5.15

4.1

1.1

2.2

3.33

4.88

7.0

6.32

x x x(1) (2) (T)

Convolution Dense Layer Output Layer

ht-1

Ct-1

xt-1

tanh

x

x

+

+

. concatenate dot-productxsum+

tanh

Ct

ht

LSTM Cell 2 LSTM Cell NLSTM Cell 1

LSTM Cell

...

Dense Layer Output Layer

ht

.
RNN/

RNN RNN RNN

Figure 2.2: A CNN architecture that processes 3D data (top). At the bottom-left, an
LSTM cell, a particular implementation of an RNN, recursively processes the input
unrolling it along its ‘temporal’ dimension (bottom-right). While the LSTM pro-
cesses an input with standard vectorial operations (as per the legend, concatenation,
dot-product, sum, and layers activation), this architecture efficiently permits storing
information from the previous time steps.

11

Neural network architectures. Neural Architecture Search (NAS) (Elsken et al.,

2019) is a branch of DL where researchers develop techniques to automate the search

of optimal architectural biases to solve a task that enables fast, stable, and efficient

training.1 In its simplest form, an architectural bias is a variation over the FC ar-

chitecture that provides some advantages on a task: it could enable faster training

time, regularize parameters that grow too big, or provide some desirable behavior that

depends on the task domain. Convolutional Neural Networks (CNN) are a notable

example as the convolution operator provides invariance to input scaling and are thus

widely employed to solve Computer Vision tasks (Zhang et al., 2015a). Formally, a

CNN layer is defined as follows:

z[ℓ] = a(b[ℓ] +W [ℓ] ∗ z[ℓ−1]), (2.3)

where the convolutional operator ∗ acts by multiplying, via classical dot-product, the

whole weights matrix to each locally-connected region of the input (such as a 3D

lattice), as sketched in Figure 2.2 (top).2

Regarding input-output pairs that require learning of long-term dependencies,

Recurrent Neural Networks (RNN) (Graves, 2013) show superior performance to FCs.

The idea behind RNNs is that input is fed sequentially, i.e., unrolled through one of

each dimension that we call ‘time’, to determine the value of the next ‘cell’ and

recursively until the last sequence produces the desired output. Formally, a 1-layer

RNN is defined as follows:

z(t) = a(b+W [h(t−1), x(t−1)]), (2.4)

where the classical operation of dot-product is now calculated between the weights

matrix W and the output computed at the previous time-step, to which the successive

input has been appended (i.e., [h(t−1), x(t−1)]). Each time-step thus corresponds to a

‘cell’ that provides part of the output, namely the hidden-state h(t−1), of the successive

‘cell’, as shown in Figure 2.2 (bottom-right).

RNNs have been a prevalent architectural choice in the last 2/3 decades, with

several variations of the original formulation that culminated in what is referred to as

the Long Short-term Memory Network (LSTM) (Hochreiter and Schmidhuber, 1997),

which allows, by stacking parallel FC gates inside each recurrent ‘cell’, to forget,

1Architectural biases are not related to neuron biases. An architectural bias is how neurons are
displaced in an NN and process data, while bias alone refers to the term b[ℓ] in Eq. 2.2.

2As they are not relevant for this thesis, we will skip the details regarding how each local region
of the input is multiplied with the weights, i.e., via stride, padding, and other convolution sub-
operators.

12

maintain and update the information stored at previous time-steps. A sketch of a

Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is displayed

in Figure 2.2 (bottom-left).

Another architecture the research community has positively received is self-attention

networks (Vaswani et al., 2017), which captures the relationships between distant el-

ements in a sequence by computing the so-called attention scores between each input

pair and has found wide applicability in NLP and many other fields. The input-output

relation in self-attention is defined as

σ(
QKT

q
)V, (2.5)

with Q = xW [Q], K = xW [K], and V = xW [V], with x ∈ Rn×d,W [Q],W [K],W [V] ∈
Rd×n, σ the softmax function, and q a normalization constant that usually depends

on the length of the input. Self-attention computes an importance score of each pair

of input features (xi, xj) ∈ x: see Figure 2.3. Self-attention has become a building

block for the next generation of linguistic representations that surpassed, in terms

of performance on downstream NLP tasks, classic word embeddings (Mikolov et al.,

2013). Self-attention is, in fact, the core block of Transformers (Vaswani et al.,

2017), which stacks advanced architectural layers such as positional embeddings and

layer norm in a sequential block and has permitted training, building, and deploying

large-scale Language Models such as GPT and BERT (Devlin et al., 2019a; Brown

et al., 2020). We illustrate the Transformers architecture in Figure 2.4 and explain

its internals.

2.1.3 Training Procedures

Training an NN is an iterative process that involves an optimization algorithm and

some training data to guide the process. The idea is to find an optimal set of param-

eters of the NN that guarantee high performance. A historical cornerstone of DL has

been the discovery of a training procedure that leverages the first-order derivatives

of the loss function L, i.e., the primary measure of performance of the NN. The pro-

cedure, baptized back-propagation algorithm (Linnainmaa, 1970; Rumelhart et al.,

1986), works as follows: for an input-output pair (x, y), back-propagation refines the

values of each parameter w of the NN via the update w = −η∇wL(y, f(x)), where

∇wL(y, f(x)) is the gradient of the loss function w.r.t. the parameter w, and η a

small quantity. However, optimization problems in NLP and CV, and DL in general,

are difficult; thus, the mapping that f learns from X to Y in order to minimize L is

13

x

x

attention
 scores

Q

KT

V

x

x1

x2

x3

Figure 2.3: An example of the self-attention architecture, where for each pair of input
features {x1, x2, x3}, the module computes the attention scores (via dot-product).
The attention scores (the green matrix) store an importance score for each pair of
input features. Intuitively, this information is relevant to solve downstream NLP tasks
where long-distance relationships would be difficult to maintain by other architectures
(e.g., co-reference resolution).

often non-convex, with the insurgence of local-minima and saddle-points that slow or

may even stop, the learning process.

Formally, a loss function quantifies the difference between the ground truth out-

come y and the outcome ŷ produced by the NN, namely

L : (y, ŷ) −→ R, (2.6)

where ŷ is the prediction of a network on a generic input x, i.e., f(x), while y is the

ground-truth value. In the general case, both y and ŷ are multi-dimensional vectors

of real numbers. A loss function that is widely employed in regression problems is

the Squared Error loss function, i.e., LSE(y, ŷ) = (y − ŷ)2, which computes the (av-

erage) square difference between the ground truth prediction y and the NN’s output

ŷ. Equally popular when solving a classification problem is the Cross-Entropy loss

function, formulated as

LCE(yc, ŷc) = −
C∑
c

yclog(ŷc), (2.7)

where yc (ŷc) expresses the numerical value of the c-th NN’s output (prediction),

14

 Add &
Layer Norm

 Add &
Layer Norm

Multi-head
 Attention

Linear

Tokenization &
 Embedding

This is an input sentence

Positional
Encoding

Figure 2.4: A Transformer architecture. An input sequence is initially turned into
a multi-dimensional representation, then a function (the positional encoding) calcu-
lates, for each token, a value that identifies its position in the sequence. That is useful
to compute self-attention at the successive layers, which, followed by a few layers that
normalize (layer norm) and linearly transform the input, output a representation that
has been demonstrated to be very useful to solve both low-order tasks such as senti-
ment analysis and language translation (despite, in this case, both the input and the
expected output each passing through a transformation similar to that shown in this
figure).

15

encoded as a one-hot vector (i.e., the i-th element of y would be equal to one, should

the expected output class be the i-th, out of C > 0 classes).

A generic learning problem in DL involves an NN that learns the f : X −→ Y

relationship via back-propagation on a finite amount of training data. One must

solve the following problem,

min E
(x,y)∼(X,Y)

[L(f(x), y)] , (2.8)

where E(x,y)∼(X,Y) represents the expected training loss in case of regression and clas-

sification.

While it is known that a powerful enough NN can learn a mapping f(x) that leads

the loss in Eq. 2.8 to zero (Bishop and Nasrabadi, 2006), such approximation capabil-

ity comes at the risk of overfitting on the training data, i.e., the model, aided by the

high number of parameters, ends up memorizing each (x, y) pair. Overfitting causes

a model to perform very well on the training data but produces significant errors on

unseen test points. One can mitigate this problem by choosing a different NN, adding

more training data, or stopping the learning procedure by adding a validation set,

which patrols over an excessive growth of the loss on unseen-at-training data. In the

next section, we will relate the problem of overfitting to that of robustness; but now,

we will introduce some NLP background.

2.1.4 Natural Language Processing

This section reviews NLP representations, related concepts, and methods. In con-

junction with linguistics considerations, these will be utilized in Chapters 5 and 6.

2.1.5 On NLP Representations

Natural Language Processing is an active area of study, where algorithms process

human language in all of its forms, thus including written and oral communication.

While it has nowadays grown to an independent field of research, it inherits most of its

concepts from linguistics and computational linguistics. With an oversimplification,

we can say that at a high level, NLP is concerned with designing scalable linguistic

representations that are close to those of humans. An NLP representation is a function

that maps symbols from a language to a vector of (real) numbers in some high-

dimensional space, namely

ψ : v ∈ V 7→ x ∈ Rd, (2.9)

16

where V a is a finite-length vocabulary of symbols, and v (or equivalently w, when

each symbol is a word) is one of those symbols. By extension, a list of l > 0 symbols

can be mapped by a representation, namely

ψ : s ∈ V l 7→ x ∈ Rl×d, (2.10)

where s usually indicates a sequence or, in NLP, a sentence that, with an abuse of

notation, can be denoted by D(V l).3 In the same way, we can denote the i-th symbol

of a sentence s as si.

Since this thesis focuses on NNs, we will only review techniques after the advent

of NNs. Nonetheless, Chapter 3 will include some key prior works for a historical

perspective on the origin/adaptation of seminal linguistic ideas to NNs.

2.1.5.1 Word Embeddings

While an exhaustive history of embeddings goes beyond the scope of this section,

early approaches based on latent factors distillation Schütze (1998), dimensionality

reduction Dumais (2004), as well as neural-based techniques Bengio et al. (2000) had

a profound impact on recent advancements in developing efficient linguistic represen-

tations. A significant step towards NN-based representations that capture rudiments

of human semantics has been achieved with Word2Vec (Mikolov et al., 2013). In

Word2vec each representation is a fixed (i.e., once it is learnt, it doesn’t change at

inference time) multi-dimensional vector whose values depend on the context, i.e., the

surrounding text. This is a direct application of the distributional hypothesis (Har-

ris, 1954): words with similar contexts are represented similarly. Each symbol/word

representation x = ψ(v), ∀v ∈ V , within the Word2Vec framework is computed to

minimize the following,

argmin
ψ(v)

log σ(ψ(v)Tψ(cv)) +
∑
v′∈V

log σ(−ψ(v′)Tψ(cv)) . (2.11)

In Eq. 2.11, ψ(v) is a d-dimensional vector (and the objective of the Word2Vec opti-

mization) that maximizes the distance, expressed as the dot-product plus a non-linear

function σ, between v and its surrounding context cv: the context cv is a number of

words that surround v, and in the limit can be an entire sentence s, or even larger.

Unfortunately, such methods’ computational intractability limits the context’s length

3Despite their fundamental importance in formal languages and logic, in this work we will not
discuss the rules underlying the membership decidability of a series of symbols from a vocabulary
(e.g., a sentence) within a language.

17

to a few words, thus making word embeddings local methods. To prevent an algo-

rithm from finding a naive solution for Eq. 2.11, the second summand, often referred

to as negative-sampling, prescribes that v′, i.e., words sampled randomly from vocab-

ulary V , are kept distant from their original context cv. Word2Vec training procedure

can also be interpreted via information theory (Goldberg and Levy, 2014), i.e., as the

procedure to find a low-rank representation of the word-to-word co-occurrences as

they appear in a text corpus.

While Word2Vec is a method that leverages mainly the local semantic/syntactic

information of a text, some popular methods mix this with global information on

word co-occurrences, producing some of the most advanced word embedding repre-

sentations (Pennington et al., 2014b).

2.1.5.2 Attention-based Large Language Models

The last five years (2017-2022) have seen the rise of attention-based models (Vaswani

et al., 2017), trained on massive text corpora.4 While they inherited many aspects

from word embeddings, LLMs benefited from advances in large-scale GPU-based in-

frastructure and increasingly complex architectures capable of building richer and

more context-aware language representations (Liang et al., 2018). LLMs have many

competitive factors over standard word embeddings: while we discuss them in the next

chapter, alongside a historical overview of a field that is running at a fast pace, here

we focus on the training technique, which, similarly to Word2Vec, aims at building

rich linguistic representations of symbols.

A generic LLM learns to predict ‘masked’ words in a sentence by minimizing

the Cross-Entropy loss function (see Eq. 2.7) between the NN prediction and the

ground-truth empirical probability of a word to appear in that context. A difference

between LLMs and word embedding techniques is that an LLM is trained to output

a probability distribution ϕ over ‘masked’ words. Thus the representations ψ are

computed as a by-product of such an operation. Formally, an LLM objective function

optimizes

min −ϕ(v|cv, v = m) log Prob(v|cv), (2.12)

where ϕ(v|cv, v = m) is the output of the LLM when it takes as input some context

(e.g., a sentence), it masks a word v with a special token m ∈ V (via the operation

v = m), while Prob(v|cv) is the empirical probability of the masked word v to appear

4BERT, a widely popular language model (Devlin et al., 2019a), has been trained on 180GB of
raw text, several orders of magnitude more than the amount of information an average human is
exposed to in their entire life.

18

This sentence is true and contains a [MASK] word.

This sentence is true and contains a masked word.

Figure 2.5: An example of a masked sentence. This masking technique has become
very popular (Devlin et al., 2019a) and encompasses multiple masked words per sen-
tence.

in that context. In doing so, attention-based LLMs (but not only (Liu et al., 2021))

learn useful hidden representations of a sentence, which we refer to, consistently

with Eq. 2.10, as ψ : s ∈ V l 7→ Rl×d. We show an example of a masked sentence

in Figure 2.5. Another popular category of LLMs is auto-regressive models, such

as GPT (Brown et al., 2020), which optimize the prediction of the next word, given

what has been generated so far by the model. In this sense, they are better generative

models, while LLMs such as BERT are good at predicting masked words anywhere in

a sentence. For the sake of this work, we can assume w.l.o.g. that LLMs are masked

LLMs.

Static vs. dynamic representations. The attention layer, and so most of all

modern LLMs, comes with an architectural bias that aims to preserve positional in-

formation throughout all its hidden layers. In this sense, in an NN, where multiple

attention layers are stacked, one can use each as standalone word embedding (Peters

et al., 2018; Devlin et al., 2019a). This represents a difference with Word2Vec-based

NNs, as the representations in hidden layers of topologies such as FC, CNN, RNN,

do not maintain a consistent position through each layer. While some works pointed

out that static representations can compete with attention-based LLMs (Liu et al.,

2021), without mentioning the fact that FCs are themselves universal approximators

and can hence mimic attention, the latter demonstrated to be more data-efficient

while allowing for inspection of the information encoded by each layer. Several works

leveraged this enhanced ‘inspectability’ (which one must not confound with inter-

pretability (Jain and Wallace, 2019)) to conduct impactful linguistics analyses on the

LLMs’ internals (Manning et al., 2020).

Probing tasks. Probing tasks are ‘thermometers’ to test the capabilities of an

LLM on a task for which it has not been specifically trained (Niven and Kao, 2019).

Technically speaking, a model h of parameters θ solves a probing task for pairs of

input-output (s, y) ∈ (ST, YT) by learning an optimal mapping between a linguistic

19

representation ψ : ST −→ X and the labels YT. Formally, a probe learns to minimize

the following loss function:

minLT(ŷ, y), (2.13)

where ŷ = h(ψ(s)) is the prediction of a network equipped with a representation ψ,

while y ∈ YT is the ground truth value/label associated with an input ST. While in

general, any (non-linear) mapping h(ψ(s)) between the input representation and the

expected output can be a probing task (Pimentel et al., 2020; White et al., 2021),

they are usually linear to show how much of the linguistically helpful information to

solve a task is immediately available from a representation ψ.

As a side note, any NLP task can be a probe, from sentiment analysis to language

translation, while any word embedding whose values are frozen at training time is,

in principle, a probe. However, probing tasks show how a linguistic representation

provides, in an immediately accessible way, linguistic information to solve the task

competitively. The following section introduces some of these ‘core NLP tasks’. Fi-

nally, the language translation task is reported as a case of a high-order NLP task,

i.e., one that requires powerful models and linguistic representations and for which

defining, measuring, and improving robustness is an open problem.

2.1.5.3 NLP Core Tasks

This subsection provides an overview of some of the most studied NLP tasks for

which robustness seems necessary. We will describe three settings: sentiment analysis,

paraphrase recognition, and language translation.

Sentiment analysis. Binary classification, which in NLP is well exemplified by

sentiment analysis, is one of the most studied problems in NLP: given a set of sen-

tences written in natural language, an algorithm is required to distinguish those that

belong to a particular semantic class (e.g., positive movie reviews) from all the others

(e.g., negative movie reviews). While usually considered a low-level task, sentences

in sentiment analysis can be expressive enough to make the task challenging even for

modern NLP techniques (Barnes et al., 2019). Binary classification falls under the

broader category of multi-class classification should the ground truth classes be more

than 2 (such as neutral, positive, and negative). In Figure 2.6 (top), we sketch some

examples of the task.

20

Sentment Analysis
s = "The movie is very nice." s = "A dreadful thriller."

Paraphrases Recognition

Ssrc= "The president gave a speech."

Sdst = "Obama talked to the electors.".

Ssrc = I like to walk at night."

Sdst = "A spider scared John."

y = 1 y = 0

y = 1 y = 0

Translation
Sdst= "[...] Colonel Aureliano Buendía was to remember

 that distant afternoon when his father took

 him to discover ice."

Ssrc = "[...] el coronel Aureliano Buendía había de recordar

 aquella tarde remota en que su padre lo llevó a

 conocer el hielo.".

Figure 2.6: A few examples of NLP tasks. Top: sentiment analysis. Middle: para-
phrases identification. Bottom: language translation.

Paraphrase recognition. Another task that requires some non-trivial manipula-

tion capabilities of natural language is paraphrase recognition, where an algorithm

must decide whether a given pair of sentences share the same meaning. Formally,

an NN learns the mapping f : (Ssrc, Sdst) −→ Y ∈ {0, 1}, where (Ssrc, Sdst) are re-

spectively the input sentences that are assigned to be either paraphrases (class 1) or

non-paraphrases (class 0). Similarly to binary classification, when multiple classes of

paraphrases are present (e.g., forward vs. reverse entailment (Williams et al., 2018)),

one can denote the problem as a multi-class paraphrases recognition task instance.

In Figure 2.6 (middle), we sketch some examples of the task.

Language translation. Last but not least, language translation is a high-order

NLP task that constitutes the backbone of commercial products millions of people

use daily. In its simplest form, it takes a sentence as input and produces its translation

to a target language as output. Formally, an NN learns the mapping f : Ssrc −→ Sdst,

where both the input and the output are sentences written in natural language, though

possibly in different languages (e.g., English to Chinese). In Figure 2.6 (bottom), we

sketch some examples of the task.

21

2.2 Robustness

The main reason behind DL’s success is its approximation capability of phenomena

ruled by complex behaviors. On the other hand, other factors risk impacting how

successful the NN framework will be in the long term, and one of them is undoubtedly

sensitivity to the initial conditions. In physics, a chaotic model is one whose final

conditions are heavily affected by slight variations of its initial state. With an analogy,

in DL a model whose output greatly varies on local perturbations of an input is said

to be non-robust or brittle. A few simple observations on the brittleness of widely

adopted DL models (Biggio et al., 2013; Szegedy et al., 2014b) have given rise to a

flourishing field of research named adversarial robustness, which we review in this

chapter, with particular emphasis on NLP techniques.

We first introduce adversarial attacks, which constitute a cogent motivating case

for local adversarial robustness, for which we present measurement techniques first,

then methods to enhance robustness for a generic NN model. In Chapter 5, we

challenge the standard de-facto notion of robustness in NLP, with one aligned with

linguistics. Furthermore, in Chapters 5 and 6, we will adapt local robustness to

encompass linguistic aspects of communication, such as syntax and semantics.

2.2.1 Adversarial Attacks

Similarly to Section 2.1.4 and when not mentioned explicitly, adversarial attacks will

be presented under the assumption that we are in a supervised classification setting,

where an NN learns to associate each input x = ψ(s) to a category/class y ∈ Y . A

classic case is a binary classification, as previously introduced. While Section 2.3 will

explore the attacks that can be conducted at the representation level, they primarily

concern the representation provided by an embedding or an LLM.

Despite NNs being accurate at solving increasingly complex tasks, there is litera-

ture that has furnished overwhelming empirical evidence that, for these models, there

are cases where f(x) ̸= f(x+γ), despite the magnitude of the so-called ‘perturbation

vector’ γ (Szegedy et al., 2014a) being small. Adversarial attacks, which we now

informally define as perturbations of an input point that produce an NN’s misclas-

sification, have emphasized the inconsistent behavior of DL models when tested on

out-of-distribution data, as well as outliers, but also on inputs that we would expect

to be correctly classified. In Figure 2.7, we provide a few examples of attacks and

perturbations in CV and NLP: as it is clear from the variety of inputs reported, the

22

Characters Level Words Level Phrases Level

Original Input

Expected Prediction: 7 Expected Prediction: 7 Expected Prediction: 9 Expected Prediction: 1

Adversarial Pixels Semantic Attack Adversarial Patch

Original Sentence

Expected Prediction: Positive Expected Prediction: Negative Prediction: Negative

Prediction: Positive

The movie is very n1ce despite being a bit
too long. It also has some g0od sequences.

The movie is very nice despite being a bit
too long. It also has some good sequences.

The movie is not very nice despite being a bit
too long. It also has some good sequences.

The movie is a mix of stuff that is a bit
too long. It also has some thriller scenes.

Figure 2.7: An example of the difficulty of the problem of robustness in CV (top)
and NLP (bottom). Some adversarial examples on top are expected to change the
classifier’s decision, while others should not. The same applies to the NLP examples.
In this sense, robustness has to consider whether the ground truth label, i.e., the
semantics of the perturbation, has been preserved.

notion of robustness requires flexibility to adapt to different, yet far from trivial,

scenarios.

Before we introduce adversarial attacks, we define the notion of ϵ-Ball as the set of

points that, w.r.t. an ℓp-norm of choice, lie in the proximity of an input x. Formally,

Ball(x, ϵ) = {x′ ∈ D(X) . ||x− x′||p ≤ ϵ}, (2.14)

where ||x−x′||p ≤ ϵ constrains the point that induces a misclassification to be distant,

concerning an ℓp-norm of choice, from the original input x by at most a (small)

quantity ϵ.

An adversarial attack is then defined as a point x′ in the vicinity of input x such

that

x′ ∈ Ball(x, ϵ) . f(x′) ̸= f(x), (2.15)

As previously reported, adversarial attacks are a critical concern for NNs, as their

approximation capabilities come at the cost of ‘jagged’ decision boundaries between

output classes, as sketched in Figure 2.8.

Gradient-based attacks. Since NN’s learning paradigm is based on calculating

the prime (or second) order derivative of the loss function w.r.t. each network pa-

rameter, in the same way, one can find a bounded perturbation of an input point

23

x1

x0

x

ℓ2 ε-Ball

adversarial attack

NN's decision
 boundary

class 0

class 1

Figure 2.8: An example of a projection of an NN’s decision boundary (class 0 in lime
vs. class 1) w.r.t. the input points. The NN admits an adversarial attack (red point)
inside an ϵ-Ball of the input x (boundaries in blue).

that is, w.r.t. the ground truth label, maximally misclassified. A simple yet widely

employed method to induce a misclassification is the Fast Gradient Sign Method

(FGSM), which exploits the first-order derivative of an NN function, namely

x′ = x+ ϵ sign(∇xL(y, f(x)), (2.16)

where sign is the signum function, and ∇x is the first order derivative of the loss

function w.r.t. the input point x, scaled by the value of ϵ so that the attack x′ is

contained in a neighborhood of x, as formally defined in Eq. 2.17. While this method

potentially produces guaranteed adversarial perturbations, one cannot conclude that

a network is robust should it return a point that does not induce misclassification:

FGSM is sound but not complete. Other methods explore the interior of an input

neighborhood by iteratively recomputing the gradients, for example, Projected Gra-

dient Descent (PGD): despite being empirically more effective, as FGSM will always

return a point at the edge of the neighborhood, PGD incurs higher computational

costs while still not being complete.

2.2.2 Adversarial Robustness

Motivated by the previous section, we now give an introduction to robustness. For

the previously defined definition of ϵ-Ball, we introduce the notion of local adversarial

robustness, which we then extend to encompass a generic measure of (local) distance.

We then discuss one method to quantify the robustness of a model, namely bound

24

relaxation, and two techniques to enhance robustness, namely augmented training

and Interval Bound Propagation (IBP). We next discuss the ontological differences

between robustness in Computer Vision and language. We will then review the adap-

tations of IBP and other robustness techniques to NLP. We conclude with an overview

of explainability and brittle explanations, as this will serve as a basis for Chapter 7.

2.2.2.1 ϵ-Ball Robustness

An NN f is said to be locally ϵ-robust, with respect to an input point x ∈ Rd, when

for a small positive number ϵ > 0, and an ℓp-norm of choice, it holds that

∀x′ ∈ Ball(x, ϵ), f(x) = f(x′). (2.17)

By extension, one can employ other distance measures than the ℓp-norm, to capture

different notions of proximity within an input neighborhood.

2.2.2.2 Beyond ϵ-Ball Robustness

As some examples in Figure 2.7 anticipated, the notion of robustness, as well as

that of adversarial attacks, can vary in nature: from perturbations that act on input

proximity (see Eq. 2.17) but require a model to be consistent with the original label,

to those that change the ground truth label. An often underestimated threat is that

an NN’s decision boundary can vary reasonably with slight perturbations of an input.

In the same way, we defined ϵ-robustness (Eq. 2.17) as a notion that assesses a model

invariance against points that lie in the proximity of the input, we now extend it to

encompass a generic distance function dist : (x, x′) −→ R+, namely

∀x′ . dist(x, x′) ≤ ϵ, f(x) = f(x′). (2.18)

When the distance function dist is further constrained to be an ℓp norm, Equa-

tions 2.18 and 2.17 become equivalent (trivially, a norm is always a distance in R).

2.2.2.3 Robustness Guarantees and Robust Training

We begin by describing a technique to quantify the robustness of a model; then,

we discuss two approaches to enhance robustness, namely adversarial/augmented

training and interval bound propagation (IBP).

25

Bound Relaxations. This method over-approximates an NN’s activations with a

sequence of linear functions for which robustness guarantees can be computed (while

in general, the problem is NP-hard (Katz et al., 2017a)). Bound relaxations compute

the maximal region of the robustness of a linearly approximated NN, thus guarantee-

ing that, for that region, no perturbation changes the classifier’s output. Technically

speaking, bound relaxations compute

argmax
ϵ∗

Ball(x, ϵ∗), ∀x′ ∈ Ball(x, ϵ∗) ∧ f(x) = f(x′), (2.19)

where two affine transformations {(Alb, Blb), (Aub, Bub)} over- and under-approximate

the input-output relation expressed by the each NN’s neuron, namely

{(Alb, Blb), (Aub, Bub)} . Aubx+Bub ≥ f(x) ≥ Albx+Blb. (2.20)

Each term in Equation 2.20 represents an approximation of a neuron’s output using

a hyperplane, thereby serving as either an upper or lower bound for the neuron’s

activation value.

Each NN layer is recursively approximated by a set of upper and lower bound trans-

formations, defined to bound in turn the output of the previous layer, namely A
[l]
ubz

[l]+

B
[l]
ub ≥ f [l](z[l]) ≥ A

[l]
lbz

[l]+B
[l]
lb . In this setting, certifying whether an over-approximated

network is robust is computationally feasible as the linear approximations correspond

to a convex input-to-output mapping. Generic certification tools, i.e., valid for any

NN block (FC, CNNs, etc.), might be loose and thus not practically useful: to over-

come this limitation, methods are designed specifically for each architectural bias,

as in the case of CNNs (Boopathy et al., 2019) and LSTMs (Ko et al., 2019a), and

known as CNN-Cert and POPQORN, respectively. A sketch of how an upper and a

lower bound are mapped to a convex region of the output space for an NN’s block is

reported in Figure 2.9. Various approaches in literature aim to estimate the Lipschitz

constant of a neural network, which quantifies the maximum change in the network’s

output resulting from a local change in the input (e.g., maxx∈Ball(x,ϵ)(
|f(x)− f(x′)|
|x− x′|

)).

Accurate estimation of the Lipschitz constant enables the calculation of robustness

guarantees by discretizing the search space for adversarial attacks. Although these

methods have been applied in numerous studies Wu et al. (2020a), the decision bound-

aries of complex models are often so fragile that the estimations become unreliable.

Consequently, we exclude these approaches from consideration in this thesis.

In Chapter 4, we will see how to tighten this bound in NLP via an iterative process

that leverages bounding techniques and adversarial attacks, to finally produce an

optimal certificate of the robustness of an NN.

26

Adversarial/augmented training. Augmented (adversarial) training mitigates

the brittleness of an NN by inserting and back-propagating, at training time, samples

meant to be adversarial, along with the correct ground truth label. A straightforward

approach consists of augmenting the training data with samples perturbed via FGSM

(Eq. 2.16), with the assumption that local variations of an input belong to the same

class.

Unlike adversarial training, augmented training collects samples that are not nec-

essarily built to induce an NN misclassification, and it is a more general technique

to make a model robust, yet without explicitly injecting malicious examples whose

ground truth label has been rectified. In Chapter 5, we will see how augmented train-

ing can benefit robustness, especially on edge cases ruled by linguistic phenomena.

Regarding formal guarantees, both augmented and adversarial training do not

guarantee a network to become robust to the misclassification of an input point, not

even to those samples that have augmented the training data.

Interval Bound Propagation. Similarly to bound relaxation, IBP produces a cer-

tificate of robustness for an NN using axis-aligned boxes. IBP can also be used during

training, where it can be incorporated into the loss function to enhance a network’s

robustness by maximizing both the performance on the training task and the local

robustness. Formally, by using IBP, one minimizes the following loss function:

min L(y, f(x)) + LIBP (y, f, Ball(x, ϵ)), (2.21)

where L(y, f(x)) is the standard loss on the training task, while LIBP (y, f, Ball(x, ϵ))

quantifies how close the network satisfies the requisites of local robustness.

IBP has been designed to enhance CV robustness and then adapted to NLP. In

the context of NLP representations, IBP assumes that points close to the input are

those for which one wants to guarantee robustness. As we will show in Chapter 5, this

notion of local robustness is simplistic in the context of NLP and offers guarantees

that can be, in practice, not linguistically meaningful.

2.3 Robustness and Language

In CV, local perturbations can be interpreted as slight variations of a pixel in an

image, with the non-trivial consequence that local robustness corresponds to a real,

interpretable threat (e.g., the brightness of an image is manipulated to induce an NN

misclassification). In NLP, this connection shows up differently: while language is an

27

z[l]

Convex-bound induced by IBP
around an input point

f[l](z[l])

Bound Relaxation IBP

f[l](z[l])

class 1

class 0

 linear
uper-bound

 linear
lower-bound

Figure 2.9: Linear bound propagation (left), with the upper- and lower-bound high-
lighted respectively in lime and red (for details, check Eq. 2.20), allows one to certify
whether a model, whose non-linear activations maps inputs to non-convex regions
of the output space, through a convex over-approximation of that space. Standard
methods allow the certification of the robustness of multi-layer NNs activated via
non-linear functions. IBP (right) can be used to leverage this idea at training time
by propagating a convex approximation (in blue) of the projection of an input (in
lime) neighborhood to the decision boundary (in red), which is then back-propagated
to induce the decision of the model to be uniform over that region.

infinite yet discrete system of symbols, NN’s representations are continuous. With

an analogy to number theory, the cardinality of the sentence space resembles that

of natural numbers, while the hidden representation’s that of reals. In this sense,

despite some exceptions that have not found much usage in the literature (Vilnis and

McCallum, 2015), there is no consistent linguistic interpretation of an attack unless

it is carried at the character/word/sentence level. Furthermore, slight perturbations

of a text produce utterances where the original semantics is twisted or not reversed.

One example comes from linguistics: the sentences ‘He appeared to Lisa to be

brave’ and ‘He appealed to Lisa to be brave’ differ in one character, yet have

opposite meanings (Chomsky, 2014b).

In the next section, we discuss techniques considered standard by the research

community. We then focus on aspects of robustness that differ from the standard

notion employed in CV. When a notion is inherited as is from DL or CV, we work

with the definition provided in Section 2.2.

We first introduce a taxonomy of adversarial examples in NLP, which motivate

the development of tools to measure and enhance robustness against attacks to NLP

models.

28

2.3.1 Adversarial Attacks in NLP

This subsection reviews how adversarial methods can be adjusted to work with dis-

crete sets of symbols, such as words. It is thus helpful to introduce a refinement to the

notion of ϵ-Ball that encompasses only those representations that admit an inverse

image in the vocabulary space, namely a discrete Ball, called DBall.

Given an input vocabulary of symbols V , a linguistic representation ψ : s ∈ V l 7→
X ⊆ Rl×d, a discrete-Ball is defined as

DBall(s, ϵ) = ψ(V l) ∩Ball(x, ϵ). (2.22)

In Eq. 2.22, ψ(V l) is the set of representations of all possible l-long sentences. At the

same time, Ball(x, ϵ) is the exact definition of ϵ-Ball defined in Eq. 2.14, applied to

the embedded representation of s.

Local discrete attacks. Local attacks identify those perturbations that act locally

(e.g., see Eq. 2.14) and induce a misclassification by manipulating only those vectors

that have an inverse image in the vocabulary space (e.g., in the case of a word em-

bedding, vectors that admit a word inverse image). As described in Section 2.2.1, one

way to find an adversarial attack w.r.t. an input point and a label is by exploiting

the gradient of an NN loss function, as in Def. 2.16. Unfortunately, gradient-based

attacks act at the representation level and thus do not guarantee for that point the

existence of an inverse image in the vocabulary space. One can enforce that, by

searching an attack via FGSM, PGD, or genetic algorithms (Alzantot et al., 2018),

then by filtering those with a vocabulary inverse image. Formally, a local discrete

attack is defined as

∀s′ ∈ DBall(s, ϵ), f(ψ(s)) ̸= f(ψ(s′)). (2.23)

where s and x = ψ(s) are the input sentence and the correspondent linguistic rep-

resentation. An example of an attack found according to this method is shown in

Figure 2.10. Unfortunately, even in this case, there is no guarantee that the discrete

version of a local attack causes a misclassification, thus making the technique, other

than linguistically unprincipled (we will discuss this in the following subsection and

extensively in Chapter 5), not sound.

29

gradient
attack

x

discrete
projection

network decision
 boundary

ε-Ball

x0

x1

Figure 2.10: A graphical representation of an attack conducted via FGSM against
an input point x, that identifies, within an ϵ-Ball (red), a successful perturbation
(green). If that perturbation does not correspond to a discrete inverse image in the
vocabulary space of the representation, it is then projected to the closest point that
admits it (orange).

30

k-distance linguistic perturbations. As NLP models can be targeted by discrete

and continuous adversarial attacks, i.e., w.r.t. sentences or their representations,

guarantees are to be granted at either embedding/representation or symbols level. It

is useful to define a generic set of perturbations that can describe the majority of the

perturbation-based strategies in adversarial NLP: given an l-long sentence s ∈ V l,

and a positive integer k > 0, we denote the set of at-least-k distant sentences as

Sperts = {s′ . s′ ∈ V l ∧
l∑
i

1si ̸=s′i ≤ k} (2.24)

where 1si ̸=s′i checks whether s and s’ differ on their i-th symbol.

In Chapter 5, we will show how this definition can be used to define substitution

and deletion-based perturbations. Unfortunately, both these sets are not linguistically

expressive enough to capture even simple linguistic phenomena such as negation, not

to mention paraphrases. We now take the opportunity to discuss the problem of

preserving the label when perturbing an input text.

2.3.2 Local Robustness

While the continuous version of robustness in NLP is the same as in CV (see Eq. 2.18),

we need an adaptation to language encompassing only discrete, symbol-based pertur-

bations of an input sentence. We begin by describing a notion of robustness that

provides guarantees of safety over the convex region that contains, for each input

word, the k nearest neighbors in terms of words in a linguistic representation to

introduce finally local discrete robustness.

knn box and knn box robustness. Given an input vocabulary of symbols V and

a linguistic representation ψ : s ∈ V l 7→ X ⊆ Rl×d, a knn-Ball is defined as

knn-Ball(s) = BB(ψ(knn(s))), (2.25)

where BB(·) is the minimum bounding box for each word of an input sentence s =

{w1, .., wl}, and knn(w) is the set of the k closest words to a generic input word w

in the representation space, i.e., words w′ with smallest dist(xw, ψ(w′)), where dist

is a valid notion of distance between embedded vectors, such as ℓp-norm or cosine

similarity, and xw is the embedded word corresponding to w.5 This provides an

over-approximation of the knn convex closure, for which constraint propagation (and

5even though the box closure can be calculated for any set of embedded words.

31

e1

e0

film

football

cinema

actor

director

movie

Figure 2.11: A graphical representation of a knn-Ball perturbation set w.r.t. the ℓ∞
norm (blue), the convex hull around the input word (green), and the ϵ-Ball.

thus robustness checking) is more efficient (Jia et al., 2019; Huang et al., 2019). An

illustrative example of knn-Ball is depicted in Figure 2.11.

Similarly to what we have done before, we can then define the knn box robustness

for a model as

∀x′ ∈ knn-Ball(s), f(ψ(s)) = f(x′). (2.26)

Local discrete robustness. In the light of Eq. 2.22, we can finally define the notion

of discrete robustness for an input text s, as the property of a model to consistently

assign the same label to all the local, discrete variations of such an input. Local

discrete robustness is defined as

∀s′ ∈ DBall(s, ϵ), f(ψ(s)) = f(ψ(s′)). (2.27)

2.3.3 Explainability and Robustness

Practically speaking, explainability aims to make the model’s decisions intelligible via

a surrogate technique that highlights only some of its peculiar aspects (Danilevsky

et al., 2020; Burkart and Huber, 2021). It is crucial here to anticipate that a model’s

decision does not coincide with its output, yet it encompasses it. In other words, a

model’s decision is the process that turns an input into output, and explainability

aims at making this process interpretable to humans. Similarly to robustness, the

explanation of a single input point is said to be local, and when it is representative

32

"I like this movie as it contains some good scenes." {like, movie, good, scenes}.

{I, this, as, it, contains, some}.{I, like, this, movie, as, it, contains, some, good, scenes}.

Explanation E

Left-out F \ E

Input s

Input Features F

Figure 2.12: Example of an NLP input s, its features set F, a feature-based explana-
tion, and the left-out set (F \ E). While the input text s is a sentence, its features
are a set of words (and possibly their position to allow repetitions). Finally, a candi-
date explanation is a subset of F , while the left-out variables are not included in the
explanation.

of multiple instances, it is said to be global. This section focuses on the relevant

background necessary to present the contributions of Chapter 7, which consider, in

particular, feature-based, post-hoc explanations.

While we will focus here on feature-based explainers and two prominent examples

from this category, in Chapter 3/Section 3.3, we discuss a taxonomy to frame the

different explainability techniques proposed by the DL research community.

2.3.3.1 Feature-based Explanations

Given an NN that solves a classification task for a pair of input-output (x, y), and the

set of input features xF (or F , for the sake of conciseness), a feature-based explanation

imposes a partition of the input features into (at least) two sets, the explanation

E ⊆ F and the left-out variables F \ E. We keep this notation consistent when

dealing with NLP so that a feature-based explanation E is defined as E ⊆ F , with

F the input text partitioned into its constituent symbols from V . An example of a

feature-based explanation is sketched in Figure 2.12.

A different connotation through which one can dissect explainability methods is

via its relationship with the NN model. An explainer is, in fact, directly interpretable,

or self-explanatory, when the explanation is produced at the same time as the pre-

diction, as opposed to post-hoc methods, which take as input the model, the input,

and then output the explanation. In the next paragraph, we discuss two widely em-

ployed feature-based explainability methods, which will recur throughout the thesis,

particularly in Chapters 4 and 7.

LIME and Anchors explainers. LIME and Anchors (Ribeiro et al., 2016, 2018a)

are two widely employed explainers that extract post-hoc, local explanations for NNs.

LIME approximates the local decision boundary of an NN via a linear surrogate model

g: for an input point x and its label y, LIME samples a set of points in the proximity of

33

x and, according to the NN output, computes a linear plane that separates instances

that belong to different classes. Formally, LIME computes

argmin
g∈G

L(f, g,Xpert) + Ω(g). (2.28)

In Eq. 2.28, g is the model, chosen from a class of linear surrogates G, that minimizes

the loss L between the model’s prediction f and a set of locally perturbed variations

of x, Xpert. Finally, Ω accounts for the complexity of the chosen surrogate model,

in line with Occam’s razor principle (the simpler, the better). As we will show in

Chapter 4, a linear approximation of an NN’s decision boundary can produce an

explanation that does not include the features that are the most brittle, for which

manipulation allows to change the decision of the classifier while maintaining the

same LIME explanation. A sketch of how LIME works is depicted in Figure 2.13.

Furthermore, an explanation produced by LIME is hard to interpret when adapted to

NLP, as in that case, proximity sampling poorly represents the decision boundary of

an NN as those samples do not necessarily possess an inverse image in the vocabulary

space.

Anchors succeeds LIME in overcoming this limitation. The idea is to find a

subset of the input features E ⊆ F that maximizes precision and coverage metrics.

Precision is defined as the number of times a model predicts label y solely based on

the presence of the features in the explanation, i.e., by leaving the left out features

(F \ E) free to vary. On the other hand, coverage accounts for how frequently the

candidate explanation occurs in practice. Formally, the precision of a candidate

Anchors explanation E ⊆ F is defined as

prec(E) = Es′∼D(s|E)[1f(ψ(s))=f(ψ(s′))], (2.29)

where D(s|E) is a discrete data distribution used to sample variations of the input

text s, with features in E that remain fixed. In the same way, coverage is defined as

cov(E) = Es′∼D(s)[E(s′)], (2.30)

E(s′) represents the probability of features E appearing when points are randomly

sampled from the discrete distribution D(s).

Thus, an Anchors explanation is a subset of the input features E∗ ∈ F such that

E∗ ∈ argmax
E⊆F

cov(E) . P rob(prec(E) ≥ τ) ≥ 1− λ, (2.31)

where τ and λ are two positive thresholds that make the extraction of such Anchors

feasible, as computing the explanation that maximizes both precision and coverage

34

Figure 2.13: Example of LIME (left) and Anchors (right) explainers. LIME linearly
approximates the complex decision boundary of a model by repeatedly sampling in
the input’s neighborhood in the embedding space; then, an explanation is an ordering
over the features that influenced the decision the most. The Anchors technique finds,
via sampling and masking, the subset of an input text that maximizes coverage while
maintaining high precision. Credits to (Ribeiro et al., 2016) and (Ribeiro et al.,
2018a).

from a generic distribution D(s′) is in general intractable. When Eq. 2.31 is maxi-

mized, precision and coverage produce an explanation with the desirable properties

of being representative of the decisions of a model for features E while being succinct,

discouraged by a high coverage. Figure 2.13 depicts a sketch of how Anchors works.

35

Chapter 3

Literature Review

In this chapter, we summarize the literature that is relevant to this thesis to provide

the more general context of our investigation and contributions. We cover adversarial

attacks in NLP, robustness techniques, and explainability. Each macro area is divided

into paragraphs, where the literature relative to several closely related subtopics is

presented. At the end of each section, we delineate the gaps in the literature that we

address in this thesis.

3.1 Adversarial Attacks

NNs are known to be vulnerable to adversarial attacks, i.e., small perturbations of

the network input that result in a misclassification (Huang et al., 2011). Seminal

works in the literature (Szegedy et al., 2014b; Biggio et al., 2013; Biggio and Roli,

2018) introduced techniques that target Deep Neural Networks, with emphasis on

large-scale datasets (Kurakin et al., 2017; Tramèr et al., 2018; Kurakin et al., 2018).

DNNs contain millions, when not billions, of parameters, which allow them to ap-

proximate very complex input-output relationships: this capacity comes at the cost

of a demonstrated vulnerability against slight input variations that possibly induce

a model’s misclassification. In CV, where DL has achieved unprecedented success in

the last decade (Russakovsky et al., 2015; Krizhevsky et al., 2012), a slight variation

is often associated with an imperceptible change of a few pixels on the input image,

thus making the threat real when deploying applications that deal with unseen, noisy

data.

While the main advances were made in CV, these ideas circulated and eventually

filtered to NLP, where they have been adapted to the peculiarities of language and

symbol representations.

36

3.1.1 Adversarial Attacks and Language

Similarly to CV, NLP models, which have proven capable of solving linguistic tasks

with a high degree of accuracy (Brown et al., 2020), have shown weaknesses soon ex-

ploited by malicious adversaries. A recent position paper highlights how robustness

in NLP is cogent to develop techniques that we trust, develop and deploy, and it is

thus crucial to assessing the risks and opportunities introduced by LLMs (Bommasani

et al., 2021). The emergence of Large Language Models as a service, specifically chat-

bots powered by such models accessible through web interfaces or programming APIs,

like ChatGPT (OpenAI, 2023), has not appeared to solve the problem entirely. Re-

cent studies have demonstrated that these models still face difficulties when handling

edge cases (Frieder et al., 2023; Kocoń et al., 2023).

Attacks in NLP. As in CV, several works in the literature propose techniques

to induce a model misclassification in various contexts just by slightly perturbing

an input text or its embedded representation. Attacks are effective when conducted

at different levels of granularity: initially guided by heuristic techniques and word

substitutions (Alzantot et al., 2018), these techniques evolved to include more sophis-

ticated methods, pipelines, and evaluation schemes (Ettinger et al., 2017; Alishahi

et al., 2019). While most of the works model perturbations as word substitutions,

some early attempts exist to produce attacks that possibly perturb an entire sen-

tence (Ribeiro et al., 2018b). However, there has yet to be an attempt to formulate

a notion of robustness to paraphrases.

A considerable engineering effort has been put recently into developing generative

models that augment or test a model against slight, linguistically controlled variations

of an input text (Ribeiro et al., 2020; Morris et al., 2020b; Shorten et al., 2021; Kiela

et al., 2021). The brittleness of NLP models does not pertain only to text classification

but also includes attacks and complementary robustness for a variety of techniques,

including ranking systems (Goren et al., 2018) and translation systems (Cheng et al.,

2020). LLMs themselves are not immune to attacks, with a growing body of research

aimed at studying failures and mitigating techniques for such models (Li et al., 2020),

which differ from the attacks which are undertaken solely at the symbols level, and

sometimes generated by the same architectures, whose robustness is then tested (Sun

et al., 2020).

Robustness to text manipulation is also strictly connected to the capacity of LLMs

to contextualize the information they digest and manipulate it accordingly. In (Niven

and Kao, 2019), the authors highlight the LLMs’ failure to perform simple linguistic

37

reasoning tasks, in which basic models seem to be still pretty limited, especially when

it comes to abstracting the usage of parts of the speech with the same flexibility as

that of humans (Mahowald et al., 2023). Furthermore, the authors of (Zhang et al.,

2020) provide a comprehensive survey of adversarial techniques for NLP and discuss

the intrinsic incompatibilities between CV and NLP robustness. In (Roth et al.,

2021), the authors provide a taxonomy of NLP adversarial attacks in terms of token

modification, i.e., constraints on how/what an adversary can manipulate an input

text to induce a misclassification. While a few general-purpose surveys on adversarial

attacks in NLP have been recently published (Huq et al., 2020; Qiu et al., 2022),

other works focus on domain-specific techniques such as social networks, security,

etc. (Alsmadi et al., 2021).

State of the art and open problems. Numerous studies implicitly suggest the

necessity of linguistically plausible adversarial attacks in natural language processing

(NLP) and delve into retrospective frameworks for evaluating robustness (Morris

et al., 2020a; Morris, 2020). Other research works establish certain principles for

assessing the linguistic plausibility of adversarial attacks (Xu et al., 2020).

Moreover, the current body of literature needs a systematic approach to achieving

robustness beyond mere word substitutions. It should encompass phenomena intrinsic

to human language, such as sarcasm. In several cases, vulnerabilities to adversarial

attacks can be attributed to inconsistencies at the representation level. For instance,

words like ‘good’ and ‘nice’ may possess different representations in the embedding

space, which can be detrimental to the robustness of sentiment analysis tasks.

An illustrative example of embedded human biases derived from data is examined

in (Bolukbasi et al., 2016), where the authors demonstrate that context-free embed-

dings exhibit gender bias. These issues persist in language models, including LLMs,

which have showcased impressive performance across various tasks, leading some to

claim they have mastered language (Johnson and Iziev, 2022). However, an alterna-

tive perspective argues that LLMs lack natural language understanding (Bender and

Koller, 2020).

3.2 Robustness and Verification

Formal verification in software refers to a rigorous and mathematical approach to

verifying the correctness of software systems or components. By extension, in neural

networks, it refers to ensuring the reliability and robustness of such models. In

38

this sense, formal verification can guarantee that an NN classification (and, more

generally, any output) is invariant to a specific class of perturbations, e.g., those

localized in the neighborhood of an input point. Both empirical and theoretical

works have demonstrated that verification is very challenging due to the intrinsic

complexity of NNs, and the variety of DL architectures. In the following sections, we

review verification methods for NNs, distinguishing between those that provide formal

vs. approximate guarantees and with particular emphasis on techniques developed

for the NLP setting.

Exact and approximate NLP robustness verification. One standard way to

dissect verification tools for NLP is in light of the formal guarantees they provide. On

the one hand, some tools provide formal guarantees on a model’s prediction at the

expense of an increased computational burden. On the other side of the spectrum,

approximate and heuristics-guided methods relax the robustness conditions to output

probabilistic or estimated guarantees.

A standard approach to formal verification of NNs consists of turning the model’s

decision into a constraint satisfiability problem, for which fast and reliable solvers

exist (Katz et al., 2017c, 2019b). These methods work with ReLU FC networks, and

while methods for CNNs exist (Wang et al., 2018b), they have not been adapted

to the NLP setting (i.e., to work with embeddings). Further, mixed integer pro-

gramming (Dutta et al., 2018; Cheng et al., 2017) can provide complete robustness

guarantees by computing exact bounds on an NN’s input-output relationship un-

der adversarial manipulations. Both satisfiability and mixed-integer programming

are computationally expensive techniques that hardly scale to real-world networks

because the problem of deducing exact guarantees for an NN is NP-hard.

Incomplete or approximate approaches set a trade-off between the computational

complexity of providing formal guarantees, with the necessity to make such methods

scale beyond toy-example NNs.

Recently, linear constraint relaxation methods (Weng et al., 2018a; Zhang et al.,

2018; Wong and Kolter, 2018), which compute for each neuron in an NN an upper and

a lower bound value on its activation, have been developed to leverage the peculiarities

of each architecture and achieve a trade-off between formal guarantees and scalability.

In this sense, methods have been successfully developed for CNNs (Boopathy et al.,

2019), RNNs (Ko et al., 2019b), and more recently for transformers (Shi et al., 2020b),

which can be used to compute robustness guarantees for text classification in the

NLP domain. We finally note that NLP robustness has also been addressed using

39

interval bound propagation (IBP) (Gowal et al., 2018), a method that trains NNs

provably robust against attacks w.r.t. ℓp-bounded perturbations (Huang et al., 2019;

Jia et al., 2019). A peculiarity of IBP is the possibility of balancing the accuracy of

the downstream task with a certificate of formal robustness guarantees against local

attacks.

Search-based and reachability computation methods (Huang et al., 2017; Ruan

et al., 2018; Wu and Kwiatkowska, 2020) output looser robustness bounds with much

greater scalability. In the same way, the maximal safe radius (Wu et al., 2020b) or,

dually, minimum adversarial distortion (Weng et al., 2018b) can provide sound ro-

bustness guarantees, albeit relying on the knowledge of the Lipschitz constants (local

or global) of a network. Unfortunately, estimating such quantity is itself known to

be an NP-hard problem, particularly for architectures popular in NLP (Kim et al.,

2021). As regards attention, a few works attempted to improve robustness for this

specific architecture (Zoran et al., 2020; Hong et al., 2021), yet the main contribu-

tions remain in the CV domain, though a few attempts to translate them to NLP

exist (Hsieh et al., 2019).

State of the art and open challenges. Many works provide surveys on robustness

techniques in NLP (Alshemali and Kalita, 2020; Goyal et al., 2022), with some sys-

tematically reviewing the various dimensions of robustness across techniques, metrics,

embeddings, and benchmarks (Omar et al., 2022), while only relatively few empha-

sizing how to enhance the robustness of NLP models at training time (Wang et al.,

2022). Researchers in this field are also concerned with domain-specific defensive

strategies, with works that summarize the effort by the community in that regard in

the recent years (Apostolidis and Papakostas, 2021; Tocchetti et al., 2022).

On the other hand, the NLP literature lacks a systematic approach to character-

izing a model’s region of maximal safety, similar to what has been done for image

and video classification Wu et al. (2020a); Wu and Kwiatkowska (2020).

In the domain of approximate approaches for assessing robustness in NLP, there

remains an unexplored avenue concerning the measurement of robustness against

linguistic phenomena, including mixed sentiment and negation. Taking inspiration

from the post-structuralist paradigm of linguistics and recent advancements in the

literature that demonstrate the encoding of syntactic structures within hidden repre-

sentations of LMs (Manning et al., 2020), a yet-unexplored direction emerges, namely

syntactic robustness. This refers to the ability of embeddings and LMs to retain in-

40

formation about the structural aspects of a sentence in a resilient manner, impervious

to adversarial manipulations.

3.3 Explainability

Explainability and interpretability of machine learning models are receiving increas-

ing attention from the research community (Chakraborty et al., 2017), as NN-based

solutions are now deployed and available as-a-product to a vast number of devices,

from smartphones to self-driving vehicles. Existing explainability methods broadly

fall into four categories: local vs. global explanations and post-hoc vs. self-explaining

methods (Danilevsky et al., 2020). Another taxonomy, which is more relevant for this

work of thesis, organizes explainability methods in feature attribution and feature se-

lection methods (Molnar, 2020; Samek et al., 2019). The former ranks features of

a classifier assigning an importance score to each of them, while the latter identifies

features relevant to the prediction.

Explainers. Generally speaking, methods tailored to (locally) explaining NLP model

decisions for a given input include (Li et al., 2016; Singh et al., 2019). These identify

input features, or clusters of input features, that most contribute to the prediction,

using saliency and agglomerative contextual decomposition, respectively. Layer-wise

relevance propagation (Bach et al., 2016) is also popular for NLP explanations and is

used in many works (Arras et al., 2016, 2017; Ding et al., 2017) due to the relatively

low computational complexity of such approaches, which usually reduces to one or

more forward/backward calculations. Similarly to the above, these methods do not

consider robustness.

A prominent example of a local, post-hoc explainer, which is also a feature attri-

bution method, is LIME (Ribeiro et al., 2016): LIME learns a linear model around

the neighborhood of input using sampled local perturbations randomly: despite being

useful in practice, LIME lacks robustness guarantees and may attribute importance

to features that do not enable robustness, or, equivalently, can be slightly manipu-

lated to induce a model misclassification or a drastic change in the explanation (Slack

et al., 2020).

Anchors (Ribeiro et al., 2018a), similarly to LIME, is a local, post-hoc explainer,

yet it splits the input into two sets. It is thus a feature selection method: a set of

features that maximizes precision and coverage, respectively, as the number of times

41

the explanation implies the model’s decision. It appears in the training set and the

left-out features.

Formal and guaranteed explainability. There has been increasing interest in

explainers whose principles are axiomatized to enhance the interpretability of the

results: SHAP (Lundberg and Lee, 2017), which takes inspiration from the Shapley

value in game-theory literature, attributes importance to a subset of the input fea-

tures as the average of all the marginal contributions to all possible set of features

(i.e., coalitions). SHAP, alongside many methods developed in the wake of its suc-

cess (Strumbelj and Kononenko, 2010; Covert et al., 2020; Burkart and Huber, 2021),

enhances the interpretability of thus obtained explanations. Nevertheless, these meth-

ods have yielded provably misleading information about the relative importance of

features for predictions (Huang and Marques-Silva, 2023).

A considerable body of recent literature proposes formal explainability methods

based on abductive explanations (Marques-Silva and Ignatiev, 2022; Marques-Silva,

2022), where the explainability process and the outcome follow that of logic abduc-

tion (Ignatiev et al., 2019d,b), yet solutions that scale to neural networks do only work

with toy-examples such as binarized neural architectures (Shi et al., 2020a; Darwiche

and Hirth, 2020; Darwiche, 2020), and with no works in the area of NLP.

Researchers have also devoted their attention to repairing non-formal explainers

(such as LIME) to make their explanations robust. In (Ignatiev et al., 2019a), the

authors repair non-robust explanations via formal methods based on logic abduction,

yet their technique works solely for boosted tree predictors and does not scale to real-

word NNs, not to mention NLP. Regarding Anchors, in (Narodytska et al., 2019),

the authors assess the quality of Anchors’ explanations by encoding the model and

explanation as a propositional formula. The explanation quality is then determined

using model counting but for binarized neural networks only.

State of the art and open challenges. The current literature reveals a notable

void concerning the existence of works that tackle the rigorous verification of neural

network explainability tools: existing works can only handle simple architectures

such as binarized neural networks (Narodytska et al., 2019). On the other hand,

popular explainers such as LIME and Anchors (Ribeiro et al., 2016, 2018a), which

work well in practice and can be adapted to the NLP scenario, do not provide any

guarantees regarding the explanations or the model. This gap can be attributed to the

inherent complexity and challenges associated with this setting. The intricate nature

42

of neural networks, coupled with the need to ensure the reliability and accuracy

of their interpretability methods, makes the development and evaluation of robust

verification techniques an arduous task: a few methods developed efficient tools to

verify the robustness of neural networks to adversarial perturbations (Wang et al.,

2018a; Katz et al., 2019b), yet the applicability of such tools to explainability is still

an unexplored field. As a result, the literature needs more extensive research efforts

to address this pressing issue, necessitating further exploration and advancements in

the field to bridge this gap and promote the trustworthy application of neural network

explainability tools.

43

Chapter 4

Measuring Robustness in NLP

In this chapter, we consider the problem of quantifying the robustness of an NN

model trained to solve an NLP classification task. Following Chapter 2, we show

how to define the problem of computing the region of maximal safety for a model

when perturbed via embedding/representation-based attacks. We also comment on

the hardness of computing such guarantees when a model or a representation scales in

size. This chapter proposes a method to find the region of maximal safety of different

NLP models, which can be equipped with various embeddings to solve multi-class

classification tasks. At the same time, this chapter emphasizes the critical issues of

making the exact robustness method scale to novel and larger architectures and the

limitations of the de facto standard adversarial robustness setting in NLP.

In short, these are the contributions of the chapter:

• We propose a comprehensive framework for quantifying the robustness of NLP

models, utilizing a certified lower bound and an upper bound to assess their

robustness against perturbations. The certified lower bound represents the re-

gion of maximal safety by considering ℓ2 and ℓ∞ norms, while the upper bound

ensures the generation of meaningful sentences within the representation space.

We adopt state-of-the-art methods to compute the certified lower bound, namely

CNN-Cert and POPQORN. Additionally, we employ a Monte Carlo Tree Search

method (MCTS) to generate an adversarial attack that satisfies two criteria: (i)

the attack corresponds to a sentence in the word space, and (ii) it minimizes

the distance from the original input, ultimately converging to the certified lower

bound.

• We conduct an experimental evaluation on CNN and LSTM sentiment and

news classification models on a range of embeddings and datasets, with the

scope to test the utility of such robustness measures in practice. We prove

44

that certificates of robustness are applicable in practice for small models, i.e.,

those equipped with low-dimensional embeddings. On the other hand, such

guarantees vanish with models that grow in the number of parameters and

embedding dimensions.

This chapter’s contributions first appeared as (La Malfa et al., 2020).

4.1 Motivation and Setting

Given a text classification task, where a model is required to learn an input-output

mapping between pairs of l-long short texts drawn from the vocabulary V and labels

(s, y), namely f : S ⊆ V l −→ Y , one wants to certify the local ℓp robustness of the

embedding of s, namely x = ψ(s). While one can provide probabilistic guarantees for

the robustness of an NN, such guarantees cannot prove a model immune to adversarial

attacks. Only formal guarantees leave no uncertainty on the existence of local adver-

sarial threats, though they incur much higher computational costs. The technique

presented in this chapter characterizes an NN’s region of maximal safety against at-

tacks applied to an input’s continuous embedding representation. Furthermore, our

method quantifies the gap between such a certificate of robustness and the closest

discrete adversarial attack with an approach that has three significant advantages:

(i) it characterizes the local decision boundary of a model; (ii) it provides a sound

certificate of robustness; (iii) it allows for comparison of different models. While we

focus on FCs, CNNs and recurrent networks, we notice that providing formal guaran-

tees for Transformer-based models Vaswani et al. (2017) is a complex challenge due

to their scale and intricacy. These models’ dynamic nature and the need for a solid

theoretical framework make it hard to establish reliable, scalable guarantees. My the-

sis acknowledges this limitation, emphasizing that while the framework presented is

potentially applicable to Transformers, it depends on future developments in scalable

guarantee techniques.

We begin by formally explaining the technicalities of our approach.

4.2 The Maximal Safe Radius Approach

Given an embedding/representation ψ : S −→ X, an NN architecture that embodies

such a representation, i.e., a classification task in the form of an input-output relation-

ship (X, Y) that the NN learns, namely f : X −→ Y . Given an input text s ∈ S, its

representation x = ψ(s), the corresponding output label y, and considering an ϵ-Ball

45

w.r.t. an ℓp norm, we recall that the region of maximal safety of f to perturbations

to x can be expressed as

ϵ∗ ∈ argmax
ϵ

Ball(x, ϵ) s.t. ∀x′ ∈ Ball(x, ϵ), f(x) = f(x′). (4.1)

Since the MSR problem is NP-hard (Katz et al., 2017a), one can only approximate

such a safety region with techniques that incur exponential computational time cost

(unless P=NP).

The discrepancy between symbols (discrete words) and the continuous represen-

tation space in NLP limits the interpretability of robustness certificates. There is no

guarantee that a region in the representation space contains vectors corresponding

to discrete words, except for the input point. This challenge hinders our ability to

understand and interpret the behavior of NLP models in terms of robustness certifi-

cation.

To enhance the characterization of a model’s robustness, we augment it with an

upper bound represented by the closest discrete adversarial attack to the input x.

Formally, one looks for

s∗ ∈ argmin
s′∈DBall(s,d)

||ψ(s)− ψ(s′)||p . f(ψ(s)) ̸= f(ψ(s′)). (4.2)

In the previous formula, DBall(s,d) (Eq. 2.22) contains all the possible discrete

combinations of l symbols, as d = max(x,x′)∼D(X)||x − x′||p is the diameter of the

embedding/representation space w.r.t. an ℓp norm of choice. The formulation in

Eq. 4.1 and 4.2 was initially proposed for generic NNs and continuous representations

in (Wu et al., 2020a), and called the Maximal Safe Radius (MSR), where the ‘radius‘ is

defined as the line segment extending from the center of a sphere, i.e., the input point

x, to the farthest points on the bounding surface identified by the ϵ-Ball (Eq. 2.14).

An illustrative example of the MSR scenario adapted to an NLP classification task is

reported in Figure 4.1.

Finally, to better judge the robustness of a model over a number of input points,

it is useful to introduce an average notion of robustness. For the upper and the lower

bound formulae introduced in Eq. 4.1 and 4.2, a dataset of input sentences S and its

embedded representation X, a model f equipped with a representation ψ, the average

robustness of f can be expressed as a tuple

(rlb, rub) s.t.
rlb = 1

n

∑
x∈X maxBall(x, ϵ) s.t. ∀x′ ∈ Ball(x, ϵ), f(x) = f(x′)

rub = 1
n

∑
s∈S min ||ψ(s)− ψ(s′)||p s.t. ∀s′ ∈ DBall(s,d), f(ψ(s)) ̸= f(ψ(s′)).

(4.3)

46

e1

e0

Safe N-Ball

Safe Rad
Maximu timeless

e

UPPER BOUND

LOWER BOUND

creativity

dL2 = 0.31

dL2 = 0.42

dL2 = 0.59

dL2 = 0.35

NEURAL NETWORK DECISION BOUNDARY

al

bad
MSR

Figure 4.1: Maximal Safe Radius (MSR) and its upper and lower bounds. An upper
bound of MSR is obtained by computing the distance of any discrete perturbation
resulting in a class change (blue ellipse) to the input text. A lower bound certifies that
perturbations of the words contained within that radius are guaranteed not to change
the classification decision (green ellipse). Both upper and lower bounds approximate
the MSR (black ellipse). In this example, the word strange can be safely substituted
with odd. The word timeless is within the upper and lower bound of the MSR, so
our approach cannot guarantee it would not change the neural network prediction.

With the MSR problem for NLP that is now mathematically formalized, we proceed

by illustrating how to compute a value for Eq. 4.1 and a value to which an input text

corresponds, as per Eq. 4.2.

4.2.1 Lower Bound

A lower bound for the MSR, and thus a solution to Eq. 4.1, is an optimal value ϵ > 0

such that all text representations in Ball(ψ(s), ϵ) are classified in the same class by

the NN. Intuitively, the region we are interested in computing is sketched in green in

Figure 4.1 and provides guarantees on perturbing each word that can be the target of

a local attack. For example, if one is interested in perturbing 2 words in a text, the

MSR will derive an upper/lower bound that quantifies the region of maximal safety

of each word, with an attack that belongs to the union of the neighbourhood of each

word in the pair.

To compute ϵ, we leverage constraint relaxation techniques developed for CNNs (Boopa-

thy et al., 2019) and LSTMs (Ko et al., 2019b), namely CNN-Cert and POPQORN.

For an input text s and a hyper-box around Ball(ψ(s), ϵ), these techniques linearly

approximate the lower and upper bounds for the activation functions of each layer of

the neural network and use these to propagate an over-approximation of the hyper-

47

box through the network. ϵ is then computed as the smallest real number such that all

the texts in Ball(ψ(s), ϵ) are in the same class, i.e., ∀x′ ∈ Ball(ψ(s), ϵ), f(x) = f(x′).

Technically speaking, CNN-Cert mathematically defines closed-form upper and lower

linear constraints that bound the activation function of a convolutional layer in the

form

{(Alb, Blb), (Aub, Bub)} . Aubz[ℓ] +Bub ≥ f [ℓ](z[ℓ] ∗W [ℓ] + b[ℓ]) ≥ Albz
[ℓ] +Blb, (4.4)

where f [ℓ](z[ℓ] ∗ W [ℓ] + b[ℓ]) represents the convolution, denoted by the operator ∗,
defined at layer ℓ. Specifically, the tuples (Alb, Blb), (Aub, Bub) represent fixed tensors

associated with the weights, biases, and activation function employed by the neural

network at layer ℓ.

The closed-form expression to compute Aub, for a 3D input x at coordinates (a, b, c)

and a generic tensor of weights W at coordinates (i, j, k), is the following:

Aub,(a,b,c),(i,j,k) = W+
(a,b,c),(i,j,k)αub,(a+i,b+j,k) +W−

(a,b,c),(i,j,k)αlb,(a+i,b+j,k), (4.5)

where αub,(a+i,b+j,k) is the corresponding parameter of a linear upper bound for the

activation of the neuron at coordinates (a, b, c), while W+ and W− contain only the

positive, negative entries of W , with other entries equal 0. In the same way, the

closed-form expression to compute Bub, for a 3D input x at coordinates (a, b, c) and

a generic tensor of weights W at coordinates (i, j, k), is the following:

Bub = W+ ∗ (αub ⊙ βub) +W− ∗ (αlb ⊙ βlb) + b, (4.6)

where βub is the corresponding parameter of a linear upper bound of the activation of

a neuron at a generic layer ℓ, while ⊙ represents the element-wise product between

tensors of the same shape. Notice that in Equations 4.5 and 4.6, one can obtain

the corresponding values for the lower bounds by substituting αub and βub with the

corresponding values of αlb and βlb.

A detailed derivation of each matrix tensor, which surpasses the scope of this sec-

tion, can be referenced from the original research paper by Boopathy et al. (Boopathy

et al., 2019), specifically in Table 2, and in section (a) of the Appendix included in

the publication mentioned above.

Similarly, the POPQORN technique imposes linear constraints to bound individ-

ual neurons within an LSTM cell. An additional challenge LSTM cells pose is the

non-linear nature of their activations, specifically the softmax and tanh functions em-

ployed in the vanilla version of an LSTM, as well as the recursive equation computed

48

for each temporized input point. However, the underlying principle remains consis-

tent with Equation 4.4, wherein the upper and lower bounds calculated at each stage

solely rely on the previous stage’s weights, biases, and activation. A comprehensive

derivation of the bounds for each component of an LSTM cell can be found in the

original paper by Ko et al. (Ko et al., 2019a), specifically in Table 4 and Section 3.2

of said publication.

Both CNN-Cert and POPQORN find a suitable solution for the problem formu-

lated in Equation 4.1, and for which more details have been provided in Chapter 2,

Eq. 2.19 and 2.20. As the MSR is defined in the continuous embedding space of an

NN representation, the perturbation space, Ball(ψ(s), ϵ), contains meaningful texts,

non-meaningful texts, and points that do not have a pre-image in the vocabulary

space. Thus, a discrete characterization of the upper bound is a valuable complement

to the robustness analysis of a model.

4.2.2 Mind the (Discrete) Gap: the Upper Bound

With the lower bound that guarantees for an input text, that a model is robust to

any perturbation within an ϵ-neighborhood, it is an interesting research question to

identify the closest discrete perturbation that induces a misclassification (see Fig. 4.1).

An upper bound for the MSR, which constitutes a (possibly sub-optimal) solution to

Eq. 4.2, is, in this sense, a perturbation of the input text s that is classified by the

NN differently than the original text.

We adapt the Monte Carlo Tree Search (MCTS) algorithm (Coulom, 2007) to

the NLP robustness scenario: MCTS is a heuristic search algorithm most notably

employed in discrete scenarios such as board games. It finds a suitable solution by

solving a problem whose search space is represented by a tree. In Figure 4.2, we

illustrate the MCTS procedure for a text (left), and an example of a filtering strategy

on substitutions (right). The algorithm takes as input an l-word long input text

s = {w1, .., wl} and builds a tree, where at each iteration, a set of indices I identifies

the words that have been modified so far. At the first level of the tree, a single word

is changed to manipulate the classification outcome. At the second, two words are

perturbed, with the former being the same word as for the parent vertex, and so on

(i.e., for each vertex, I contains the indices of the words that have been perturbed

plus that of the current vertex). Perturbations are sampled by considering a fixed

number of closest replacements in the word’s neighborhood: the distance between

words is measured in the ℓ2 norm, while the number of substitutions per word is

limited to a fixed constant (e.g., in our experiments this is either 1000 or 10000).

49

At each stage, the procedure outputs all the successful attacks (i.e., perturbed

texts that are classified by the neural network differently from the original text) that

have been found until the terminating condition is satisfied (e.g., a fixed fraction

out of the total number of vertices has been explored). Successful perturbations

can be used as diagnostic information in cases where ground truth information is

available. The algorithm explores the tree according to the UCT heuristic (Browne

et al., 2012), where urgent vertices are identified by the perturbations that induce

the most significant drop in the neural network’s confidence. A detailed description

of the heuristic, and the algorithm, which follows the classical algorithm (Coulom,

2007) while working directly with word embeddings, is reported in the next section.

4.2.3 MCTS Algorithm

We adapt the MCTS algorithm (Browne et al., 2012) to the NLP classification setting

with word embedding, which we report here for completeness as Algorithm 1. The

algorithm explores modifications to the original text by substituting one word at a

time with nearest-neighbor alternatives. It takes as input: text, expressed as a list

of l > 0 words; f , an NN f ; ψ, an embedding (linguistic representation); sims, an

integer specifying the number of Monte Carlo samplings at each step; and α, a real-

valued meta-parameter specifying the exploration/exploitation trade-off for vertices

that can be further expanded. The salient steps of the MCTS procedure are:

• Select: the most promising vertex to explore is chosen to be expanded (Line 15)

according to the standard UCT heuristic:

Q(v)

N(v)
+α

√
2lnN(v′)

N(v)
, where v and v′ are respectively the selected vertex and its

parent; α is a meta-parameter that balances exploration-exploitation trade-off;

N() represents the number of times a vertex has been visited, and Q() measures

the neural network confidence drop, averaged over the Monte Carlo simulations

for that specific vertex.

• Expand: the tree is expanded with T new vertices, one for each word in the

input text (avoiding repetitions). A vertex at index t ∈ {1, ...l} and depth

n > 0 represents the strategy of perturbing the t-th input word, plus all the

words whose indices have been stored in the parents of the vertex itself, up to

the root.

• Simulate: simulations are run from the current position in the tree to es-

timate how the neural network behaves against the perturbations sampled at

50

that stage (Line 27). Suppose one of the word substitutions induced by the sim-

ulation makes the network change the classification. In that case, a successful

substitution is found and added to the results, while the value Q of the current

vertex is updated. Many heuristics can be considered at this stage, for example,

the average drop in the network’s confidence over all the simulations. We have

found that the average drop is not a good measure of how the robustness of the

network drops when some specific words are replaced since, for a high number

of simulations, an effective perturbation might pass unnoticed. We thus work

with the maximum drop over all the simulations, which works slightly better in

this scenario (Line 33).

• Backpropagate: the reward received is back-propagated to the vertices visited

during selection and expansion to update their UCT statistics. When UCT is

employed (Browne et al., 2012; Kocsis and Szepesvári, 2006), MCTS guarantees

that the probability of selecting a sub-optimal perturbation tends to zero at a

polynomial rate when the number of games/branches explored grows to infinity

(i.e., it guarantees to find a discrete perturbation, if it exists).

Finally, and to enforce the syntactic consistency of the replacements, we consider

part-of-speech tagging of each word based on its context. Then, we filter all the

replacements found by MCTS to exclude those that are not of the same type, i.e.,

those that do not preserve the Part-of-the-Speech (POS) tag: POS-tags can be nouns,

verbs, adverbs, etc., and the objective is to perform a substitution that is syntactically

equivalent to that of the original word. To accomplish this task, we use the Natural

Language Toolkit (Bird et al., 2009), which provides a rudimentary, albeit consistent

in most cases, method to replace a word that has the equivalent POS-tag.

4.3 Experiments

In this section, we aim to assess the lower bounds of the MSR for CNNs and LSTM

models. To achieve this, we utilize the CNN-Cert and POPQORN tools. Additionally,

we employ the Monte Carlo Tree Search (MCTS) algorithm, as introduced in the

previous section, to explore meaningful perturbations (i.e., upper bounds) irrespective

of the neural network architecture used.

Our investigation evaluates models’ robustness against single and multiple-word

substitutions, with a maximum of 5 substitutions. We also delve into analyzing the

51

Algorithm 1 Monte Carlo Tree Search with UCT heuristic

1: procedure MCTS(s, f, ψ, sims, α)
2: Tree← createTree(s, f) ▷ Create the initial tree
3: root← getRoot(Tree) ▷ Store the initial vertex
4: P ← [] ▷ List of final perturbations
5: while terminate(Tree) ̸= True do ▷ Loop over the MCTS steps
6: v ←SELECT(Tree, α)
7: C ←EXPAND(v, s)
8: P.insert(SIMULATE(C, s, sims, f, ψ))
9: BACKPROPAGATE(v, root)
10: end while
11: return P
12: end procedure

13: procedure Select(Tree, α)
14: L← getLeaves(Tree)

15: return argmaxv∈L
Q(v)

N(v)
+ α

√
2lnN(v′)

N(v)
▷ UCT best leaf

16: end procedure

17: procedure Expand(v, s)
18: for i = 0, i < length(s), i++ do
19: v.expand(i) ▷ Create v’s i-th child
20: end for
21: return getChildren(v) ▷ Return the expanded children
22: end procedure

23: procedure Simulate(C, s, sims, f, ψ)
24: Perturbations← []
25: for c ∈ C do
26: for i = 0, i < sims, i++ do
27: s′ ← samplePerturbation(s, c) ▷ Ref. Figure 4.2
28: x← ψ(s); x′i ← ψ(s′) ▷ Embed inputs
29: if f(x′i) ̸= f(x) then ▷ The output class changes
30: Perturbations.append(s′)
31: end if
32: end for
33: Q(c) = maxi∈sims(f

[ℓ−1](x)− f [ℓ−1]
t (x′i)) ▷ Update vertex heuristic

34: end for
35: return Perturbations
36: end procedure

52

Algorithm 2 Monte Carlo Tree Search with UCT heuristic (Continuation)

1: procedure Backpropagate(v, root) ▷ Propagate UCT update
2: while v ̸= root do
3: updateUCT (v)
4: v ← getParent(v)
5: end while
6: end procedure

the movie is good

movie is good
the the the

the sample({a, all, for, ... })

movie sample({ lm, book, watch, ... })

the
the

the sample({a, all, for, ... })

vertex

MC simulation

vertex expansion

e1

e0

vivid

odd

strange

the

a better

good

U

Figure 4.2: On the left, the tree’s structure after two iterations of the MCTS algo-
rithm. Simulations of 1-word substitutions are executed at each vertex on the first
level to update the UCT statistics. The most urgent vertex is then expanded (e.g.,
word the), and several 2-words substitutions are executed combining the word iden-
tified by the current vertex (e.g., word movie at the second level of the tree) and
that of its parent, i.e., the. Redundant substitutions may be avoided (greyed-out
branch). On the right, MCTS selects substitutions randomly or according to a score
calculated as a function of the distance from the original word (see Algorithm 1 for
details). The sampling region (red circle) is a finite fraction of the embedding space
(blue circle). Selected candidates can be filtered to enforce semantic and syntactic
constraints. Word the has been filtered out because it is not grammatically consistent
with the original word strange, while words good, better and a are filtered out as
they lie outside the neighborhood of the original word.

53

implicit biases in CNN and LSTM architectures. Lastly, we investigate the impact of

different embedding types and sizes on the robustness of the models.

These analyses aim to provide insights into the lower bounds of MSR for CNNs and

LSTMs, explore the effects of perturbations, investigate implicit biases, and examine

the influence of embedding characteristics on model robustness.

4.3.1 Experimental Setup

Multi-class classification tasks constitute our test bed, thus including sentiment anal-

ysis. We evaluate more than 20 vanilla CNN and LSTM models trained on datasets

that differ in the length of each input, the number of target classes, and the difficulty

of the learning task. All our experiments were conducted on a server with two 24 core

Intel Xenon 6252 processors and 256GB of RAM. Although the experiments reported

here have been performed on a cluster, all the algorithms are reproducible on a mid-

end laptop; we used a machine with 16GB of RAM and an Intel-5 8th-gen. processor.

For our experiments, we consider a 3-layer CNN, where the first layer consists of bi-

dimensional convolution with 150 filters, each of size 3×3, and an LSTM model with

256 hidden neurons on each gate. We note that, though other architectures might

offer higher accuracy for sentence classification (Kim, 2014), this vanilla setup has

been chosen intentionally not to be optimized for a specific task, thus allowing us

to measure the robustness of baseline models. Both CNNs and LSTMs predict the

output with a softmax output layer, while the Categorical Cross-entropy loss function

(see Eq. 2.7) is used during the optimization phase, which employs Adam (Kingma

and Ba, 2015) algorithm (without early-stopping).

We consider the IMDB (Maas et al., 2011b) and the Stanford Sentiment Treebank

(SST) dataset (Socher et al., 2013b), two standard sentiment analysis tasks which

differ in the number of test samples, the length of each input text, and the quality

of the data, with the former collected from movie reviews. At the same time, human

experts have handcrafted the latter. We further conduct experiments on the AG

News Corpus (Zhang et al., 2015b) and the NEWS dataset (Vitale et al., 2012), two

multi-class classification datasets.

The datasets mentioned in the paragraph above are relevant to the problem stud-

ied as they provide the necessary resources for conducting sentiment analysis and

multi-class classification experiments. The IMDB dataset contains movie reviews,

making it valuable for sentiment analysis research. The Stanford Sentiment Treebank

(SST) dataset offers fine-grained sentiment labels and allows for studying the hier-

archical structure of sentiment within sentences. The AG News Corpus and NEWS

54

NEWS SST AG NEWS IMDB

Inputs (Train, Test) 22806, 9793 117220, 1821 120000, 7000 25000, 25000

Output Classes 7 2 4 2

Average Input Length 17± 2.17 17.058± 8.27 37.295± 9.943 230.8± 169.16

Max Input Length 88 52 136 2315

Max Length Considered 14 25 49 100

Table 4.1: Datasets used for the experimental evaluation. We report the number of
samples (training/test ratio as provided in the original works) and output classes,
the average and maximum length of each input text before pre-processing, and the
maximum length considered in our experiments.

datasets are multi-class classification datasets that can be used for text classification

tasks, such as news categorization and topic identification. These datasets contribute

to the paper by providing diverse data sources and allowing researchers to explore

various aspects of sentiment analysis and multi-class classification. The details of

each dataset are provided in Table 4.1 for transparency and reproducibility.

As regards the embeddings used to ‘equip’ each NN model, we balance probabilistically-

constrained representations from GloVe and GloVeTwitter (Pennington et al., 2014a),

which are trained on global word-word co-occurrence statistics from a corpus, with

embeddings provided by the Keras Python Deep Learning Library (referred to as

Keras Custom) (Chollet et al., 2015), which allows one to fine-tune the exact dimen-

sion of the vector space and only aims at minimizing the loss on the classification

task. The resulting learned Keras Custom embeddings do not capture complete word

semantics, just their emotional polarity, unlike GloVe, whose words encode each statis-

tic on local and global word co-occurrences. In general, we refer to the number of

dimensions of a model by reporting it after its name; e.g., GloVe-100d refers to GloVe

embedding, which represents each word as a 100-dimensional floating-point vector.

Finally, we conduct our experiments alternating upper and lower bounds measure-

ments using the ℓ2 and ℓ∞ norms. This choice is motivated by two distinct reasons.

Firstly, from a technological standpoint, both CNN-Cert and POPQORN are lim-

ited in their capability to perform experiments with specific ℓp norms. Consequently,

they do not encompass distance measures such as cosine similarity. Secondly, the ℓ∞

norm incorporates the dimension of maximum variation in an input, in contrast to

the ℓ2 norm, which corresponds to the Euclidean distance between an input and its

perturbations. Further, to enhance the comparison of embeddings with different di-

mensions, both the training and the certification phases are conducted on embedding

normalised to have the diameter equal to one.

55

4.3.2 Robustness to Word Substitutions

Interestingly, our framework can prove that certain input texts and architectures are

robust for any single-word substitution, that is, replacing a single word of the text

(any word) with any other possible other words, and not necessarily with a synonym

or a grammatically correct word, will not affect the classification outcome. Figure 4.3

shows that for CNN models equipped with Keras Custom embedding the lower bound

of the MSR on some texts from the IMDB dataset is greater than the diameter of the

embedding space.

In Table 4.2, models that employ embeddings with low-dimensional representa-

tions (up to 25 dimensions) are more robust to perturbations. On the contrary,

average robustness decreases, from one to two orders of magnitude, when words are

mapped to high-dimensional spaces, a trend that we will show is also confirmed by

the upper bound results. This may be explained by the fact that adversarial pertur-

bations are inherently related to the dimensionality of the input space (Goodfellow

et al., 2015), and in general to the fact that high-dimensional models offer a wide

surface of attack that makes it hard to escape the presence of adversarial attacks.

This hypothesis has a complementary reformulation that is supported by extensive

empirical validation. It suggests a trade-off between a model’s robustness and per-

formance, as evidenced by a few influential works in literature (Madry et al., 2018;

Deng and Tian, 2020).

DIMENSION LOWER BOUND

Keras

5 0.278

10 0.141

25 0.023

50 0.004

100 0.002

GloVe
50 0.007

100 0.002

GloVeTwitter
25 0.013

50 0.008

100 0.0

Table 4.2: Comparison of lower bounds for single-word substitutions computed by
CNN-Cert on the SST dataset. In order to compare different embeddings, values of
the lower bounds are averaged over 100 input texts (approx. 2500 measurements)
and normalized by the embedding diameter (ℓ2-norm). While we keep the same
architecture for all the experiments, i.e., a 2-layers, ReLU-activated CNN network,
the number of parameters of each model varies accordingly to the dimensionality of
the embedding.

56

the

rest

of

the

cast

rendered

terrible

performances

0.0 3.0 102101 0.0 2.0 102101

please

give

this

one

a

miss

rest

of

ε-radius L2-norm

embedding's diameter

word

e1

x

Certified robustness region
 (Safe case)

Embedding diameter
 (ℓ2 ε-Ball)

e0

Certified robustness region
 (Unsafe case)

Figure 4.3: Lower bounds indicate classification invariance to any substitution when
greater than the embedding diameter d, represented by the dotted vertical line. Left:
Examples of words safe to any substitution (IMDB, Keras embedding 10d, text no
2). Middle: Examples of words vulnerable to substitutions that may change the
classification (IMDB, Keras embedding 5d, text no 1).

For the upper bound, which we calculate via the MCTS algorithm and POS-tag

filtering on replacements, an example of a successful perturbation is shown in Fig-

ure 4.4, where we evidence the effectiveness of single-word substitutions on inputs that

differ in the confidence of the neural network prediction. Another interesting observa-

tion is that it is possible to identify perturbations where replacements are meaningful,

even with a simple perturbation strategy such as POS-tagging. As shown in the first

example in Figure 4.4 (top), the network changes the output class to World when

the word China is substituted for U.S.. Although this substitution may be relevant

to that particular class, we note that the perturbed text is coherent, and the main

topic remains sci-tech. Furthermore, the classification also changes when the word

exists is replaced with a plausible alternative misses. This perturbation is neutral,

i.e., not informative for any possible output classes. In the third sentence in Figure 4.4

(bottom), we note that replacing championship with wrestling makes the model

output class World, where initially it was Sport, indicating that the model relies on a

small number of keywords to make its decision. We report a few additional examples

of word replacements for a CNN model equipped with GloVe-50d embedding. Given

as input the review ’this is art paying homage to art’ (from the SST dataset),

when art is replaced by graffiti the network misclassifies the review (from posi-

tive to negative). Further, as mentioned earlier, the MCTS framework is capable of

finding multiple word perturbations: considering the same setting as in the previ-

ous example, when in the review ‘it’s not horrible just horribly mediocre’

the words horrible and horribly are replaced, respectively, with gratifying and

57

decently, the review is classified as positive, while for the original sentence, it was

negative.

The upper/lower bound gap. Robustness results for high-dimensional embed-

dings are included in Table 4.7, where we report the trends of the average lower and

upper bounds of MSR and the percentage of successful perturbations computed over

100 texts (per dataset) for different architectures and embeddings. Further results,

including statistics on lower and upper bounds, are reported in Tables 4.4, 4.3, 4.5,

and 4.6. They show, both for ℓ2 and ℓ∞ norms, the degradation of lower bound

robustness guarantees for high dimensional embeddings and an increased number of

allowed substitutions, with values that in practice are very distant from the closest

attack found by the MCTS. As observed, for example, in Table 4.3, with the number

of word substitutions that grows, the highest drop, in absolute value, is when we

allow more than one substitution. A possible explanation that connects robustness

to linguistics is that the models employed in the analysis build their robustness on

n-grams representations, with n > 1: while perturbing a single word is not enough

to induce a misclassification, they are brittle to substitutions that target two or more

words. Conversely, MCTS is more effective when allowed to perturb multiple words,

yet the success rate does not increase as the robustness drop of the lower bound, as

shown in Table 4.6.

At least three hypotheses explain the discrepancy between the upper and the

lower bounds, with some degree of complementarity among all of them. The first

hypothesis is that the lower bound is very conservative, and its accuracy depends

on the complexity of the model, being deduced from methods that approximate the

activation of each neuron of a network. In the same way, MCTS employs heuristics

to identify the closest discrete attack, and only in the limit converges to an optimal

solution in the sense of closeness to the original input point. The second hypothesis,

already discussed in Section 4.3.2, is that high-dimensional embeddings (more than

25 dimensions) suffer from a surface of attack that grows exponentially with the

number of dimensions. The third and last hypothesis is that, since the upper bound

is a discrete attack, it is implausible that the closest adversarial perturbation in the

representation space has an inverse image in the vocabulary. Thus a margin between

the (optimal) upper and lower bounds is inevitable.

Results further include an assessment of the effects of counter-fitting to robust-

ness (Mrkšić et al., 2016) as a technique that injects antonyms and synonyms into an

58

dell exits lowend china consumer pc market [..]

MCTS ATTACKS - AG DATASET

parsons misses founds u.s. bene ts parsons wall

ORIGINAL :

REPLACEMENT :

AG Test Set n° 47, Model Prediction = CLASS "sci-tech", Con dence = 0.53, Words Perturbed = 47/48

dutch retailer beats local download market [..]

 - - - - - -

ORIGINAL :

REPLACEMENT :

AG Test Set n° 12, Model Prediction = CLASS "sci-tech", Con dence = 0.86, Words Perturbed = 0/42

ranked player who has not won a major champ. since his [..]

 - replacements - - - - - - wrestling - joke

ORIGINAL :

REPLACEMENT :

AG Test Set n° 49, Model Prediction = CLASS "sport", Con dence = 0.75, Words Perturbed = 3/33

green: meaningful replacement red: replacement (grammatically inconsistent) - : no replacement found

Figure 4.4: Single-word substitutions found with MCTS in conjunction with POS-
tag filtering (as defined in Section 4.2.3). Grammatically consistent substitutions are
shown in green, inconsistent in red, and a dash indicates that no substitution is found.

embedding space representation in order to improve the vectors’ capability for judg-

ing semantic similarity. While, in principle, counter-fitting is expected to enhance

local robustness, we could not confirm this hypothesis, as both the lower and upper

bounds seem not to benefit from such treatment, as shown in Tables 4.3.

4.4 Continuous Robustness: a Critical Appraisal

In this chapter, we have proposed an upper/lower-bound framework to quantify and

characterize the region of maximal safety of an NN that solves an NLP task. The

experimental results show that meaningful lower-bound robustness guarantees hold

only for low-dimensional embeddings: furthermore, there is no guarantee that the

region of maximal safety contains words that are expected to preserve the decision

of a model (e.g., substituting good with bad in a sentiment analysis input text can

change its ground truth label). At the same time, they vanish for any NN equipped

with embeddings with more than 25/50 dimensions (per word). Further, MCTS can

efficiently produce attacks that induce a model’s misclassification by perturbing only

a few words of an input text, also with replacements that should not cause such

behavior. All these discrepancies between the formal notion of robustness defined

here and a notion that encompasses simple linguistic rules of human language will

be the subject of discussion in the next chapter, where we challenge the de facto

accepted notion of robustness with one that is more aligned with linguistics.

59

AG News Results: Single Word Substitution

DIMENSION ACCURACY LOWER BOUND

Vanilla Counter-fitted Vanilla Counter-fitted

Keras

5 0.414 0.464 0.072± 0.066 0.145± 0.147

10 0.491 0.505 0.026± 0.025 0.088± 0.087

25 0.585 0.597 0.022± 0.025 0.032± 0.026

50 0.692 0.751 0.015± 0.009 0.024± 0.015

100 0.779 0.807 0.011± 0.007 0.015± 0.009

GloVe
50 0.892 0.879 0.04± 0.028 0.043± 0.03

100 0.901 0.887 0.027± 0.018 0.0± 0.0 (NaN)

GloVeTwitter
25 0.848 0.846 0.033± 0.025 0.046± 0.036

50 0.877 0.866 0.05± 0.012 0.033± 0.018

100 0.833 0.883 0.019± 0.012 0.026± 0.005

AG News Results: Multiple Words Substitutions

DIMENSION L.B. 2 SUBSTITUTIONS L.B. 3 SUBSTITUTIONS

Vanilla Counter-fitted Vanilla Counter-fitted

Keras

5 0.029± 0.024 0.065± 0.059 0.025± 0.017 0.054± 0.044

10 0.013± 0.012 0.043± 0.042 0.008± 0.008 0.028± 0.028

25 0.011± 0.008 0.015± 0.012 0.007± 0.006 0.01± 0.008

50 0.007± 0.004 0.012± 0.007 0.005± 0.003 0.008± 0.005

100 0.006± 0.004 0.006± 0.004 0.003± 0.003 0.003± 0.002

GloVe
50 0.02± 0.013 0.02± 0.014 0.013± 0.009 0.016± 0.01

100 0.015± 0.007 0.0± 0.0 (NaN) 0.01± 0.006 0.0± 0.0 (NaN)

GloVeTwitter
25 0.014± 0.011 0.023± 0.017 0.01± 0.008 0.0015± 0.012

50 0.024± 0.005 0.015± 0.009 0.016± 0.004 0.011± 0.007

100 0.009± 0.006 0.013± 0.002 0.006± 0.004 0.008± 0.002

DIMENSION L.B. 4 SUBSTITUTIONS L.B. 5 SUBSTITUTIONS

Vanilla Counter-fitted Vanilla Counter-fitted

Keras

5 0.018± 0.012 0.035± 0.028 0.014± 0.009 0.03± 0.021

10 0.006± 0.005 0.02± 0.019 0.005± 0.004 0.016± 0.015

25 0.005± 0.004 0.007± 0.006 0.004± 0.003 0.006± 0.004

50 0.003± 0.002 0.005± 0.002 0.003± 0.002 0.005± 0.003

100 0.003± 0.002 0.003± 0.002 0.002± 0.001 0.002± 0.001

GloVe
50 0.009± 0.006 0.01± 0.006 0.008± 0.005 0.008± 0.006

100 0.007± 0.004 0.0± 0.0 (NaN) 0.005± 0.003 0.0± 0.0 (NaN)

GloVeTwitter
25 0.007± 0.005 0.011± 0.008 0.006± 0.004 0.009± 0.006

50 0.008± 0.004 0.008± 0.006 0.009± 0.001 0.006± 0.004

100 0.004± 0.003 0.006± 0.001 0.003± 0.002 0.005± 0.001

Table 4.3: Lower bound results for single (top) and multiple words (middle and
bottom) substitutions, comparing vanilla and counter-fitted models. The robust-
ness of counter-fitted models is superior to the vanilla counterpart, except for high-
dimensional embeddings such as GloVe 100d, where it has not been possible to obtain
a bound for the counter-fitted embedding due to computational constraints (nonethe-
less, the counterpart lower bound is close to zero). Values reported refer to measure-
ments in the ℓ∞-norm.

60

IMDB
DIMENSION ACCURACY LOWER BOUND

Keras

5 0.789 1.358± 0.604

10 0.788 2.134± 1.257

25 0.78 1.234± 2.062

50 0.78 0.394± 0.079

100 0.778 0.31± 0.041

GloVe
50 0.758 0.133± 0.054

100 0.783 0.127± 0.055

GloVeTwitter
25 0.739 0.168± 0.093

50 0.752 0.143± 0.02

100 0.77 0.177± 0.057

Stanford Sentiment Treebank (SST)

DIMENSION ACCURACY LOWER BOUND

Keras

5 0.75 0.623± 0.28

10 0.756 0.449± 0.283

25 0.757 0.116± 0.14

50 0.811 0.029± 0.012

100 0.818 0.023± 0.006

GloVe
50 0.824 0.053± 0.023

100 0.833 0.028± 0.015

GloVeTwitter
25 0.763 0.065± 0.023

50 0.826 0.059± 0.031

100 0.823 0.0± 0.0 (NaN)

NEWS Dataset
DIMENSION ACCURACY LOWER BOUND

GloVe
50 0.625 0.013± 0.015

100 0.7 0.018± 0.017

GloVeTwitter
50 0.627 0.009± 0.006

100 0.716 0.008± 0.009

Table 4.4: Lower bound results for single-word substitutions as found by CNN-
Cert and POPQORN, respectively, on the IMDB, SST, and NEWS datasets. Values
reported refer to measurements in the ℓ2-norm.

61

MCTS Results
EMBEDDING EXEC TIME [s] SUB. (% per-text) SUB. (% per-word) UB

IMDB

Keras50d 29.52 6.0 1.4 0.41± 0.04

GloVe50d 39.61 39.7 5.1 0.39± 0.016

GloVeTwitter50d 54.1 47.0 7.7 0.329± 0.015

AG NEWS

Keras50d 21.09 50.0 15.6 0.396± 0.02

GloVe50d 19.25 22.4 10.8 0.438± 0.042

GloVeTwitter50d 17.75 21.4 6.6 0.336± 0.019

SST

Keras50d 8.36 52.2 19.9 0.444± 0.077

GloVe50d 11.94 81.1 37.4 0.385± 0.024

GloVeTwitter50d 11.96 78.1 36.3 0.329± 0.024

NEWS

GloVe50d 75.76 96.5 34.0 0.405± 0.045

GloVe100d 79.31 89.7 29.1 0.442± 0.042

GloVeTwitter50d 77.74 90.9 30.6 0.314± 0.033

GloVeTwitter100d 81.29 89.7 27.7 0.417± 0.042

Table 4.5: Upper bound results for single-word substitutions as found by MCTS. We
report: the average execution time for each experiment; the percentage of texts for
which we have found at least one successful single-word substitution (which results in a
class change); the approximate ratio that by selecting randomly one word from a text
we find a successful replacement; the distance to the closest meaningful perturbation
to the original word found, and namely an upper bound (differently from Table 4.7 and
for completeness, here values are reported only considering the values for those words
where the perturbations were successful). Values reported refer to measurements in
the ℓ2-norm.

MCTS Multiple Substitutions

EMBEDDING 2 SUBSTITUTIONS 3 SUBSTITUTIONS 4 SUBSTITUTIONS

% per-text % per-word % per-text % per-word % per-text % per-word

IMDB

Keras50d 8.5 5.0 13.4 5.9 18.2 6.6

GloVe50d 43.8 17.7 52.0 21.6 57.5 24.5

GloVeTwitter50d 44.1 18.3 49.3 23.0 57.1 26.4

AG NEWS

Keras50d 68.1 27.5 72.7 38.3 83.3 47.9

GloVe50d 31.4 15.8 33.7 16.8 37.0 19.7

GloVeTwitter50d 23.8 12.5 23.8 15.3 38.0 18.4

SST

Keras50d 64.8 33.0 74.7 40.2 78.0 48.7

GloVe50d 89.4 58.0 96.4 70.8 97.6 76.5

GloVeTwitter50d 88.3 57.8 94.1 69.1 95.3 74.9

NEWS

GloVe50d 98.8 55.4 97.3 62.5 97.3 68.6

GloVe100d 100.0 46.8 95.0 68.0 96.0 65.2

GloVeTwitter50d 94.5 50.5 97.5 63.0 97.5 71.9

GloVeTwitter100d 92.7 49.9 98.1 58.2 98.3 65.3

Table 4.6: Upper bound results for multiple-word substitutions as found by MCTS.
We report the percentage of texts for which we have found at least a single-word
substitution, and the number of times, expressed as a ratio, of finding a successful
replacement by perturbing k words randomly from a text (where k is the number
of substitutions allowed). We do not report the average execution times as they
are (roughly) the same as in Table 4.5. Values reported refer to measurements in
the ℓ2-norm. For more than 1 substitution, values reported are an estimate on sev-
eral random replacements, as it quickly becomes prohibitive to cover all the possible
multiple-word combinations.

62

Single-Word Substitutions

EMBEDDING LOWER BOUND SUBSTITUTIONS UPPER BOUND

% per text % per word

IMDB

Keras50d 0.055± 0.011 6.0 1.4 0.986

GloVe50d 0.018± 0.007 39.7 5.1 0.951

GloVeTwitter50d 0.02± 0.002 47.0 7.7 0.926

AG News

Keras50d 0.002± 0.001 50.0 15.6 0.852

GloVe50d 0.005± 0.004 22.4 10.8 0.898

GloVeTwitter50d 0.007± 0.001 21.4 6.6 0.937

SST

Keras50d 0.004± 0.001 52.2 19.9 0.813

GloVe50d 0.007± 0.003 81.1 37.4 0.646

GloVeTwitter50d 0.008± 0.004 78.1 36.3 0.653

NEWS

GloVe50d 0.001± 0.002 96.5 34.0 0.679

GloVe100d 0.002± 0.002 89.7 29.1 0.727

GloVeTwitter50d 0.001± 0.001 90.9 30.6 0.707

GloVeTwitter100d 0.001± 0.001 89.7 27.7 0.739

Table 4.7: Statistics on single-word substitutions averaged on 100 input texts of each
dataset. We report: the average lower bound of the MSR as measured with either
CNN-Cert or POPQORN, w.r.t. the test-set; the approximate ratio that given the
word from a text we find a single-word substitution and the average number of words
that substituted for a given word change the classification; and the average upper
bound computed as the distance between the original word and the closest substitu-
tion found by MCTS (when no successful perturbation is found we over-approximate
the upper bound for that word with the diameter of the embedding). Each embed-
ding diameter has normalized values reported for lower bounds (measurements in the
ℓ2-norm).

63

Chapter 5

On the Notion of Robustness for
NLP

There is growing evidence that a large part of the NLP research community has

adopted the classical notion of adversarial robustness originally introduced for images

as a de facto standard. In this chapter, we show that this notion is problematic

in the context of NLP as it considers a narrow spectrum of linguistic phenomena,

namely symbol substitution and deletion. We argue for semantic robustness, which

is better aligned with the human concept of linguistic fidelity. We discuss which

biases semantic robustness is expected to induce in a model. We study semantic

robustness of a range of vanilla and robustly trained architectures using a template-

based generative test bed. We complement the analysis with empirical evidence that

semantic robustness is improved in LLMs and not through data augmentation.

5.1 Chapter Overview and Contributions

We first review the classical notions of robustness adopted in NLP and identify their

weaknesses in terms of the lack of expressiveness and over-reliance on the neural model

text representation. Next, to better align the perception of human robustness to that

implemented by a neural model, we formalize (local) semantic robustness of NLP as

a notion that generalizes local discrete robustness through measuring robustness to

linguistic rules rather than word substitution or deletion. This allows us to define

(global) semantic robustness for a linguistic task such as sentiment analysis, which can

be extended to higher-order tasks. We further show that with semantic robustness,

we can evaluate the performance of a model on cogent linguistic phenomena, which

are of interest to both the NLP and the linguistics community. We achieve this by

proposing an assessment framework and a simple yet effective testbed based on data

64

augmentation. Last but not least, we wish to highlight the issue of NLP robustness,

which has over-focused on trivial and often machine-centric symbol manipulation for

the last few years. In short, with this chapter, we make the following contributions:

• We critically appraise the standard notion of robustness in NLP, showing its

inconsistency and limited scope when applied to language. We propose a notion

of semantic robustness, better aligned with human linguistics, as it encompasses

phenomena such as sarcasm and mixed sentiment.

• We investigate the merits and limitations of both standard and semantic ro-

bustness by conducting an extensive experimental evaluation on different archi-

tectures and datasets. In particular, we show that LLMs are naturally more

robust to linguistic phenomena than standard architectures. We introduce a

simple, yet scalable, template-based generation technique to test the semantic

robustness of a model, which we compare to an existing dataset of handcrafted

sentences that contains the same linguistic phenomena (Blaas et al., 2020).

With the terminology drawn from cyber-security, this work is a ‘purple-team’

effort to align the key performance indicators of the ‘red-team’ – whose role is to

exploit NLP models with any vulnerability – with those of the ‘blue-team’, a.k.a. the

defenders, who aim to adopt a semantic notion of robustness that implies robustness

to linguistic phenomena and are both inadequate when dealing with paraphrases as

well as semantically rich tasks.

The contributions presented in this chapter first appeared as (La Malfa and

Kwiatkowska, 2022).

5.2 The Standard Notion of Robustness

We begin by discussing the concept of local continuous robustness in its formulation

that from computer vision has been applied straight to NLP (Huang et al., 2019; Jia

and Liang, 2017; La Malfa et al., 2020). We then consider local discrete robustness,

which, differently from the continuous counterpart, manipulates symbols instead of

‘numerical’ embedding vectors (Alzantot et al., 2018). Nonetheless, we show that the

former can be reduced to the latter. Despite this, both definitions only allow one to

express robustness to a limited number of linguistic phenomena.

65

Figure 5.1: In general, local continuous robustness is an ill-posed property for NLP.
A model can be robust to a large surface of attacks in the input neighborhood (green
patch (b)), yet a small region of adversarial attacks (red patch (c)) invalidates the
verification of larger regions. In the example, the safe input neighborhood (blue patch
(a)), a convex region that includes safe replacements, cannot grow any further without
violating robustness by encroaching on patch (c). Non-convex representations for an
input neighborhood (patch (a)) are possible but computationally expensive and not
used in practice.

5.2.1 Continuous and Discrete Robustness

We begin with a simple yet often ignored observation that natural language is discrete

while local continuous robustness (Def. 2.18) is defined over a dense representation.

Standard embedding techniques (Mikolov et al., 2013; Pennington et al., 2014a) define

the word-to-vector mapping over a continuous space, with the input vocabulary being

discrete and finite while the output is dense and uncountable. In this setting, local

continuous robustness prescribes that a model must consistently classify any vector

in the dense region around the input point. This assumption needs to be more

linguistically consistent, as a network may present a decision boundary where an

adversarial attack that is not a proper word severely reduces the safe region. We

graphically illustrate this point in Figure 5.1.

Considering the relationship between local continuous and discrete robustness in

NLP, one can easily demonstrate that the former (as expressed in Def. 2.18), ceteris

66

paribus, is a general case of the latter (Def. 2.22).

Proposition 1. Local continuous robustness implies local discrete robustness, but the

converse is generally false.

Proof. With the notions of ϵ-Ball and discrete-Ball as introduced in Def. 2.14

and 2.22, it follows that D-Ball(x, ϵ) ⊆ Ball(x, ϵ) but the opposite is not true. For

ϵ = 0, both D-Ball and ϵ-Ball are singletons.

Linguistically, both formulations allow testing robustness against symbol-to-symbol

substitutions or deletions so that the guarantees are valid only for the sentences that

differ from the original by at most k-symbols (see Def. 2.24). Robustness to substi-

tutions severely limits and, in practice, makes it computationally intractable to test

a model against paraphrases, namely those sentences with overlapping semantics yet

different syntax. As an example, if a model f is robust for the sentence ‘the movie

was good’, which implies correct classification for the texts ‘the film was good’,

‘the film was nice’, etc., we cannot say the same for the sentence ‘an enjoyable

thriller’, as we do not know where the sentence’s representation lies in the NLP

representation. This problem arises with the frequency of words in natural language

that follows Zipf’s law (Zipf, 2013), where rare terms and constructs – hence edge

cases – occur more frequently than in other natural phenomena.

Last but not least, both local and discrete robustness does not assess whether the

safe region includes perturbations that violate the task under consideration: consider

the case of sentiment analysis, and a perturbation that turns the sentence ‘The movie

is so bad’ into ‘The movie is not bad’ (Hermann et al., 2013).

It is, in fact, well known that, in embeddings and linguistic representations, words

like ‘bad’ and ‘good’ are close to each other in the representation space. This could

lead to potentially disastrous effects when balancing local robustness, e.g., (Gowal

et al., 2018), with accuracy, especially for semantically rich tasks such as sentiment

analysis.

5.3 A Semantic Notion of Robustness

We now introduce a notion of robustness that goes beyond word replacements and

thus permits an assessment of the brittleness of linguistic phenomena that are cogent

to humans. To do so, we first need to introduce some notation.

Definition 1 (Oracle). An Oracle Ω for a task T generates samples s compliant with

T. We denote with Ω, s |= T an input generated by Ω and perturbed by Ω that is

67

compliant with the task T, and with Ω, s ̸|= T the converse. In the case of an Oracle,

it holds that Prob(Ω, s |= T) = 1.

An Oracle is an augmented, idealized linguistic/generative model. There is a

clear difference between an Oracle Ω and a standard generative model, i.e., that Ω

generates samples consistent with T with certainty. Thus, measurements of a model’s

performance on samples from Ω are exact.

An Oracle for sentiment analysis. Given a sentiment analysis task T for movie

reviews, an Oracle Ω generates the text ‘the movie was (not) good’ and cor-

rectly assigned it a positive (negative) label. An Oracle cannot generate any text

inconsistent with T, i.e., all those texts that do not explicitly (or implicitly) ex-

press a judgment about a movie. An example is the text ‘recipe of risotto with

mushrooms’, which is rejected as not compliant with the task, i.e., Ω, s ̸|= T.

Definition 2 (Linguistic Rule). A linguistic rule is a symbolic generator that manip-

ulates a text s according to a linguistic phenomenon. Those generated texts D′, along

with the original input, are not rejected by T. Formally, R : (s,T) 7→ S ′ . ∀ s′ ∈
D′, Ω, s′ |= T.

Linguistic rules are flexible symbolic generators: furthermore, since such genera-

tors are always consistent, linguistic rules are Oracles.

From a linguistic perspective, since a variation of an input can be very different

from the original text, a rule should be allowed to add/remove/replace words while

remaining compliant with the task T. For example, one can think of verb negation

that acts on a text and negates the action expressed by the subject (if any). While

this task is often trivial for humans, fully algorithmic solutions to this problem are still

limited in their capabilities (Guo et al., 2018), especially in supervised classification,

where the verb may or may not be related to the ground truth label. Hybrid meth-

ods, based on synthetic data augmentation, humans-in-the-loop and deep LLM (Feng

et al., 2021; Lin et al., 2020; Huang et al., 2020), are a possible way to proceed. One

viable way to generate the replacements is to use template-based data-augmentation

techniques (as employed in this chapter and detailed in Section 5.4). More complex

approaches involve LLM with humans in the loop who validate the generated per-

turbations. While for the generative process, LLMs can be trained to be controlled

through textual ‘seeds’ (e.g., in the spirit of the works by (Wu et al., 2021) or (Madaan

et al., 2021)), humans play the role of the Oracle.

68

A rule for shallow negation. For a sentiment analysis task T with positive and

negative instances and a positive instance s ‘the movie was good’, the shallow

negation rule R negates the sentiment expressed by s, and hence valid perturbations

generated by R on s are ‘the movie was not good’, ‘a bad film’, but also more

involved examples like ‘it is false that the movie is good’, etc. We name

this rule shallow negation as it does not allow for nested negations, regardless of

their grammatical consistency (i.e., ‘it is false that the movie wasn’t good’

cannot be generated by R on s).

Definition 3 (Local Semantic Robustness). Given a classification task T : X −→ Y ,

a model f that approximates T, a dataset D pertinent to T, a dataset D′ generated

by applying a linguistic rule R to (a subset of) D, a measure of performance π of f ,

and a small positive quantity δ, f is semantically robust iff

E(x,y)∈D[π(f(x), y)]− E(x′,y′)∈D′ [π(f(x′), y′)] ≤ δ. (5.1)

Informally, a model f that correctly classifies an instance s of a task T is seman-

tically robust to a linguistic rule R when it exhibits at least the same performance

on the set D′ of perturbations s′ generated by applying R to any subset of D: an

example of a simple measure of performance is accuracy, i.e., π(f(x), y) = 1 if f(x) =

y, 0 otherwise. We further observe that this formulation allows for the performance

E(x′,y′)∈D′ [π(f(x′), y′)] to even surpass those on D, so this notion entails that f is no

worse at correctly solving T for D′ than it is at solving any other task, and is hence

a stronger notion than bounded invariance.

A noticeable fact is that local semantic robustness as defined is linguistically

meaningful as the Oracle rejection of inconsistent samples guarantees it has preserved

the semantics of each s′ ∈ D′ w.r.t. T.

Furthermore, local semantic robustness is entailed by linguistic generalization,

but not the other way round. Linguistic robustness is different from generalization

on unseen test cases. The former is entailed by the latter, while the other way round is

not necessarily true. Semantic robustness is defined over a rule, while generalization

is a more general and hard-to-obtain/optimize objective.

Proposition 2. Local semantic robustness can be reduced to local discrete robustness

but not to local continuous robustness.

Proof. For local discrete robustness, it is straightforward to define a rule that

generates perturbations according to the definition of local discrete robustness. In this

69

sense, the semantic rule R involves extracting the replacements in the embedding’s

neighborhood of each input word.

As regards local continuous robustness, the invariance over all the input texts s′

in an ϵ-ball cannot be mapped back to the embedding (a.k.a. input) vocabulary V

by any combination of linguistic rules as they act, by definition, at the symbol level.

Since most continuous embeddings are injective non-surjective functions, almost all

the vectors in any non-empty region of the space cannot be mapped back to a proper

entry of V .

A sufficient condition for quantifying the semantic robustness of a model on an

NLP task is that it is possible to measure the performance of such a model on unseen

input texts. In this sense, we can measure the semantic robustness of a model f

that solves a task T by comparing its performance π with the performance π′ of the

model on an unseen test bed that contains one or more semantic phenomena. We now

describe some illustrative examples of measuring semantic robustness for sentiment

analysis and then for more involved NLP tasks.

Robustness to shallow negation in sentiment analysis. Given a sentiment

analysis task T with positive and negative instances, a model f validated on a dataset

D = (S, Y) is robust to shallow negation when ∀(s, y) ∈ D, ∀(s′, y′) ∈ R(S ∈
D,T), E(s,y)∈D[π(f(s), y)] − E(s′,y′)∈D′ [π(f(s′), y′)] ≤ δ for some δ ≥ 0, with R the

negation rule that acts on a specific text and negates the sentiment expressed by s.

In this sense, π measures the model’s accuracy on D and D′ (samples that contain

specific linguistic phenomena). As described in the next section, a test bed can be

handcrafted, or distilled from existing datasets, as described in (Barnes et al., 2019).

Semantic robustness in higher-order NLP tasks. We now briefly sketch how

we would approach the measurement of semantic robustness for higher-order NLP

tasks. For Question and Answer (QA) tasks, a measure of robustness can be quanti-

fied as the gap between the ‘unexpectedness‘ of an Answer when the Question does/-

does not contain a linguistic phenomenon. In Natural Language Inference (NLI),

directly applying our framework would be straightforward since NLI is reducible to a

classification task. In the same way, when Reading Comprehension (RC) is pursued

as a classification task, the evaluation of semantic robustness would be similar to

sentiment analysis or NLI. In contrast, when the answer requires re-elaborating the

input, the measurement of semantic robustness would be similar to QA (with possibly

a different evaluation metric for T).

70

Tokens Replacements
@NEGATIVE@ ‘bad’, ‘poor’, ‘boring’, [...]

@POSITIVE@ ‘good’, ‘nice’, ‘fantastic’, [...]

@NAME@ ‘Uma’, ‘Bruce’, ‘Sandra’, [...]

@SURNAME@ ‘Thurman’, ‘Willis’, ‘Bullock’, [...]

@CATEGORY@ ‘thriller’, ‘horror’, ‘comedy’, [...]

@BOOLFALSE@ ‘false’, ‘wrong’, ‘incorrect’, [...]

@AUGMENT@ ‘very’, ‘extremely’, [...]

Table 5.1: Candidate perturbation sets used to generate combinations of replacements
in template-based texts (Table 5.2).

5.3.1 Task-preserving Generative Method

In this section, we present a concise and scalable generative approach designed to

evaluate the semantic robustness of a model when confronted with various linguistic

phenomena. We provide a comprehensive analysis of the advantages and limitations

associated with this method, complementing it with an established dataset comprising

sentences featuring the same linguistic phenomena under investigation.

Template-based linguistic rules. We develop a template-based method for gen-

erating augmented samples that contain a specific linguistic phenomenon. We pre-

define a selection of templates (around 50 and 1200 before and after augmentation) for

which we know the corresponding output labels (i.e., positive or negative). In a tem-

plate, part of the text is fixed while the remaining part is symbolically represented

by tokens which are iteratively replaced by combinations of words from candidate

perturbation sets. The augmentation preserves the semantics of the sentence while

introducing a linguistic phenomenon (such as shallow negation). In our implementa-

tion of the rules, a perturbation cannot change the template’s label. In this sense,

the rejection phase (see Definition 3) is embedded in the generative pipeline, while

a human might supervise a process that involves an LLM and generations that are

possibly label-changing. Examples of templates for each linguistic rule are included

in Table 5.2, along with candidate replacements for each token in Table 5.1.

Manually extracted examples. Another viable methodology to obtain sentences

containing linguistic phenomena is manually inspect existing datasets. On one side,

this approach has the advantage that sentences have already been collected and are, in

some cases, the result of meticulous work conducted by human experts (Socher et al.,

2013a). On the other hand, this approach is expensive as its cost scales linearly with

71

Shallow Negation Label
‘This @CATEGORY@ movie is not @AUGMENT@ @NEGATIVE@.’ positive
’It is @BOOLFALSE@ that this @CATEGORY@ movie is @AUGMENT@ @POSITIVE@.’ negative

Mixed Sentiment
’Despite @NAME@ @SURNAME@ acted well, this @CATEGORY@ movie is @AUGMENT@ @NEGATIVE@.’ negative
’A @AUGMENT@ @NEGATIVE@ plot for a @AUGMENT@ @POSITIVE@ movie.’ positive

Sarcasm
’Starring @NAME@ @SURNAME@ I’d prefer to die rather than watching this @CATEGORY@ movie.’ negative
’Please throw this @AUGMENT@ long @CATEGORY@ movie into the ocean, and thank me later.’ negative

Table 5.2: Examples of template-based reviews, along with the ground truth label,
used to generate sentences that contain the linguistic phenomena studied in Sec-
tion 5.4.

Shallow Negation Label
‘It was not good.’ negative

Mixed Sentiment
‘The plot was nice, but a little slow.’ negative

Sarcasm
‘I love it when people yell at me first thing in the morning.’ negative

Table 5.3: Examples of sentences that contain linguistic phenomena from (Barnes
et al., 2019).

the number of people employed in the collection process. For this chapter, we use

examples collected in (Barnes et al., 2019). Their methodology entails the acquisition

of a specific set of sentences derived from an ensemble of cutting-edge sentiment clas-

sifiers, wherein misclassifications occur. These erroneous instances are meticulously

singled out to form a subset for further analysis. Subsequently, a comprehensive

annotation process is conducted, encompassing several linguistic and paralinguistic

phenomena, including but not limited to negation, sarcasm, modality, and various

others. A few examples of sentences that contain linguistic phenomena are reported

in Table 5.3.

5.4 Experimental Evaluation

We proceed with an extensive experimental evaluation to address the following re-

search inquiries consistently and rigorously. After an introduction to the experimental

setup, in terms of linguistic phenomena and architectures employed, we investigate

whether models that exhibit robustness in the classical sense also demonstrate se-

mantic robustness. Secondly, we explore whether robustness to specific linguistic

phenomena arises as a by-product of training accurate NLP classifiers. We then ex-

amine whether augmented supervised training, utilizing texts containing a particular

linguistic phenomenon, induces generalization across unseen test samples with the

same phenomenon, considering different architectural variations. We finally explore

72

the feasibility of training models that exhibit both accuracy and semantic robust-

ness, and we assess how unsupervised learning contributes to the concept of semantic

robustness.

5.4.1 Experimental Setup

We conduct the experiments on models trained – or fine-tuned through data augmen-

tation – on the Stanford Sentiment Treebank dataset (SST-2) (Socher et al., 2013a)

and on the dataset collected by (Barnes et al., 2019). The advantages of this ap-

proach are two-fold. Firstly, human experts have collected/handcrafted sentences

whose syntax/semantics is rich and the level of noise restrained. Secondly, since spu-

rious patterns and over-fitting play a crucial role during training and their influence

is hard to estimate and quantify, the cogent compactness of those datasets makes it

relatively easy to assess the results. To further estimate the robustness of linguistic

phenomena, in the spirit of the evaluation done in (Huang et al., 2020), we utilize

a template-based method, whose details are given below, for generating augmented

samples for a selection of linguistic phenomena to create a test bed, which we use for

systematic evaluation of semantic robustness.

Regarding the reproducibility of the results we present, all of the experiments have

been conducted on a Fedora 32 mid-end laptop equipped with 16GB of RAM and an

Intel-i5 CORE 8th-generation. All the neural network models have been built, trained,

and tested with Keras (Chollet and others, 2018), while for experiments that involved

BERT (Devlin et al., 2019b) we relied on the PyTorch implementation (Paszke et al.,

2019).

Linguistic phenomena. Following the work in (Barnes et al., 2019), we have cho-

sen interesting linguistic and para-linguistic phenomena, excluding those that require

external knowledge to be solved (i.e., not explicitly expressed in the sentence). For

example, consider the review ‘This movie is another Vietnam’, which can be cor-

rectly classified as unfavorable if the model knows that specific way of saying (i.e.,

exogenous knowledge). We now briefly describe the linguistic phenomena that are

the object of our robustness evaluation:

• Shallow negation: when the sentiment of a sentence is negated. We do not

consider nested negations, which make the recognition of the phenomenon con-

siderably harder (Wiegand et al., 2010; Socher et al., 2013a; Pröllochs et al.,

2015).

73

• Mixed sentiment : when phrases of different polarity appear in the same sen-

tence (Kenyon-Dean et al., 2018; Barnes et al., 2019). We only consider texts

where the overall sentiment is still not ambiguous for a human.

• Irony/sarcasm: when a sentence makes some premises that are then violated (Hao

and Veale, 2010). This is known to be one of the hardest yet pervasive linguistic

phenomena of human language.

5.4.2 Comparative Study

We compare architecturally different models on the three linguistic phenomena we

previously introduced. We conduct an extensive evaluation on four neural archi-

tectures, namely fully connected (FC), convolutional (CNN) (Zhang et al., 2015b),

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and self-

attention (Vaswani et al., 2017). We choose the number of hidden units of each layer

so that the number of parameters is approximately the same and in the order of

40K. Each input text is 25 words long (eventually padded or cut), while each word is

mapped to a vector of real numbers through a 50-dimensional embedding, pre-trained

on the SST-2 task (Chollet and others, 2018). Each network comprises 3 layers, where

the topology of the last two is shared, i.e., a 32 hidden units ReLU and a 2 hidden

units softmax layer (both are dense). The first layer depends on the specific topology

under examination (e.g., self-attention will have a self-attention layer, LSTM a Long

Short-term Memory cell, etc.): the first layer has 32 hidden units for the FCs, 44

ReLU kernels of size 3 for the CNNs, 75 tanh hidden units for the LSTMs and 32

ReLU hidden units for the self-attention networks.

For each linguistic phenomenon, we analyze and compare the robustness of 20

models trained on plain SST-2 dataset (i.e., no semantic data augmentation of any

kind) and then on a semantically augmented version of the same dataset, whose details

we provide in the next paragraph.

Semantic robustness through data augmentation. In this section, we study

how – and to what extent – data augmentation, along with architectural inductive

biases, can be used to enhance semantic robustness to different linguistic phenomena.

We re-trained the models of the previous section by adding samples from (Barnes

et al., 2019) that contain one of the specific rules used previously in training set up

to a multiplicative factor to balance a large number of samples of the SST-2 dataset.

With the SST-2 train set that accounts for approximately 112K input samples and

74

Train FCs CNNs LSTMs Self-attention

Shallow Negation
Vanilla
Augmented

0.4034 ± 0.0214

0.4062 ± 0.0167

0.4032± 0.0124
0.4249± 0.0255

0.4771± 0.0143
0.6387± 0.0387*

0.4790± 0.0059
0.5954± 0.0027*

Mixed Sentiment
Vanilla
Augmented

0.4707± 0.0360
0.4912± 0.0339

0.4986± 0.0415
0.5271± 0.0387

0.5110± 0.0251
0.6357± 0.0317*

0.5487± 0.0099
0.5617± 0.0048

Sarcasm
Vanilla
Augmented

0.5136± 0.0504
0.5297± 0.0657

0.4681± 0.0327
0.4678± 0.0317

0.5578± 0.0128*
0.4807± 0.0197

0.5240± 0.0132
0.6236± 0.0218*

Table 5.4: Comparison of accuracy of 20 vanilla and augmented models obtained for
four different architectures (FCs, CNNs, LSTMs, and self-attention), on three linguis-
tic phenomena (shallow negation, mixed sentiment and sarcasm). All the networks
have been trained on the SST-2 dataset. Augmented models are vanilla models fine-
tuned on the linguistic rules of interest. Symbol *, when present, means that the
improved performance (from vanilla to augmented, or the other way round) is statis-
tically significant. Interestingly, sarcasm is harder to learn, and models fine-tuned on
this phenomenon perform as well as their vanilla counterparts (when not worse).

each semantic rule that generates roughly 500 − 1000 new samples, semantic data

augmentation with a multiplicative factor of 1 accounts for additional 1K samples,

etc. While for a multiplicative factor of 500, none of the models exhibit any im-

provement in the semantic tasks, for a multiplicative factor of 750 we observe some

improvement in LSTMs and self-attention. While the experiments suggest that FCs

and CNNs cannot learn any of the three linguistic phenomena we studied, LSTMs

and self-attention networks benefit from data augmentation. Concerning Table 5.4,

both LSTMs and self-attention improve considerably on shallow negation. On mixed

sentiment, augmented LSTMs substantially improve over the vanilla counterpart. At

the same time, self-attention does not seem to exploit the additional information (de-

spite a slight improvement over the vanilla case). Finally, data augmentation allows

self-attention to improve significantly on sarcasm. However, the same regime is detri-

mental for LSTMs, where the vanilla networks consistently outperform those trained

on augmented data.1 Finally, for a multiplicative factor of 1K or superior, we observe

a detrimental effect on the robustness of each model that is comparable to the vanilla

SST-2 training.

5.4.3 Classic Robustness is Linguistically Brittle

We have compared robust models trained with IBP (Interval Bound Propagation) (Gowal

et al., 2018) with their vanilla counterparts. For different values of ϵ = (0.001, 0.01) in

1For FCs and CNNs the average accuracy on the SST-2 test set is 0.8993± 0.0029 and 0.9077±
0.0038 respectively, while the accuracies of LSTMs and self-attention are 0.9101±0.0033 and 0.8963±
0.0015.

75

Accuracy
(Barnes et al., 2019)

Accuracy
(Our Benchmark)

Shallow Negation 0.8552 0.7928
Mixed Sentiment 0.6024 0.6974
Sarcasm 0.7111 0.8455

Table 5.5: Summary of BERT semantic robustness on different linguistic phenomena,
tested on samples from (Barnes et al., 2019) (left column) and from our template-
based benchmark (right column). A BERT model has been fine-tuned on the SST-2
dataset for these results.

the ℓ∞-norm, which makes the model-to-model results easy to explain (La Malfa et al.,

2020), and an embedding diameter of approximately 3.17, we assess IBP-induced ro-

bustness on semantic rules. Interestingly, their performance is comparable (when not

worse) to the brittle counterparts for all the linguistic phenomena we analyze, thus

validating our previous observation, i.e., that models robust in the classical sense

have a minimal syntax/semantic manipulation capability. Results are reported in

Table 5.6.

5.4.4 Accuracy is a Red Herring: the BERT Case

We analyze the relationship between semantic robustness and accuracy of a Large

Language Model (LLM): while it is known that LLMs have an improved accuracy on

out-of-distribution (ood) data (Hendrycks et al., 2020), there is no explicit agreement

on the nature of the semantic phenomena, i.e., whether they are linguistic outliers

or ood. Although, in deep learning, a trade-off has been observed between the clas-

sical notions of robustness and accuracy (Tsipras et al., 2019), semantic robustness

does not seem to exacerbate this phenomenon. We fine-tuned the BERT language

model (Devlin et al., 2019b) on the SST-2 dataset and tested its robustness on the

linguistic phenomena we introduced in the previous section.

Despite an accuracy of 0.90, which is in line with the accuracy of the (simpler) ar-

chitectures we tested previously, BERT’s semantic robustness is considerably higher

than the shallow counterparts (BERT has 16 hidden layers, the models in our bench-

mark 3). BERT has an accuracy of 0.7928 on shallow negation, 0.6974 on mixed sen-

timent, and 0.8445 on sarcasm. The linguistic phenomenon where BERT performs

worst is mixed sentiment, as (i) a few recent works point out the limitations of LLM

models such as BERT when learning complex syntactic/semantic constructs (Sinha

et al., 2021); (ii) we have shown in our previous evaluation that self-attention (along

with any other model) is especially brittle to that linguistic construct, despite the

76

layer’s name suggesting the opposite. In general, we interpret this linguistic perfor-

mance as a result of the massive amount of unsupervised training (i.e., the masked

language prediction) to which BERT is subjected before being fine-tuned on our su-

pervised task: in this sense, the phase of pre-training, which shapes the dynamics

of BERT’s contextual embeddings, enables it to outperform shallow models on the

linguistic phenomena considerably.

We finally validate the results of (Barnes et al., 2019), proving that, on their

challenging dataset, which contains texts from other non-movie-review datasets (so

certainly out of distribution samples), BERT has an accuracy of 0.8552, 0.6024 and

0.7111 on respectively shallow negation, mixed sentiment and sarcasm. Therefore, this

justifies that the task we set up with our synthetic augmentation through templates

is a solid alternative benchmark for semantic robustness. We summarize the results

in Table 5.5.

Ablation Study of BERT. We performed an ablation study of BERT to assess

the role of the stacked embeddings for semantic robustness. We trained different

semantic classifiers on top of a decreasing number of BERT embedding layers. We

then measured the semantic robustness on shallow negation, mixed sentiment and

sarcasm on samples from (Barnes et al., 2019): we found that, despite the accuracy

on the task (SST-2) being strongly correlated with the depth of the BERT embedding,

semantic robustness is not, as depicted in Figure 5.2. While the best performing layer

is the penultimate layer (a phenomenon that is already known in the literature (Rogers

et al., 2020)), we could not find a layer that performed the best on all the tasks, a

result that leads us to conclude that stacked attention embeddings are fundamental

but their internal representation w.r.t. linguistic phenomena (i.e., the ‘semantics of

BERT’) is still poorly understood.

To complement the analysis, we tried to disentangle the role of pre-training from

that of the embedding depth and attention (which are considered in the design of

each BERT hidden layer) by training a very deep LSTM, with 100 input words and

an embedding size of 100, which we then tested on the same semantic phenomena

as in the previous evaluation. Interestingly, despite an accuracy of 0.9 on the SST-2

test set, the accuracy on shallow negation is 0.5789, 0.6684 on mixed sentiment and

0.7 on sarcasm. Although we cannot conclude anything definite, we suspect that the

role played by massive pre-training (next word/sentence prediction) is much more

important than that of depth and attention, which is in agreement with observations

emerging from other recent studies (Liu et al., 2021).

77

Figure 5.2: Ablation study of BERT on (Barnes et al., 2019), measuring accuracy
for 5 different network depths. While depth plays a fundamental role in achieving
accuracy on a test set (SST-2) and certainly plays a role (albeit minor) on shallow
negation, it seems not to be correlated to the model performance on mixed sentiment
and sarcasm.

5.4.5 Robustness Induced Biases

In this section, we examine the relationship between common inductive biases that

have inspired the design of machine learning algorithms for the past decades (Mitchell,

1980), and recently also neural networks (Kharitonov and Chaabouni, 2021), connect-

ing them to the notions of robustness we dissected in Chapter 4. In particular, we

compare local continuous to local semantic robustness.

Minimum Cross-validation Error. There is empirical evidence in the litera-

ture (Huang et al., 2019; Jia et al., 2019) that continuous robustness does not natu-

rally induce better performance on trained models. Indeed, most of the models that

are trained to be robust are less accurate than their brittle counterparts. The margin

causes this side-effect to propagate through the network to the output and to induce

invariance to the nearest neighbors of a given input. “Shielding” the model with

a wide margin of possibly unrelated terms leads to inconsistent treatment of differ-

ent sentences (human language abounds in edge cases). This is testified by further

experiments shown in Figure 5.3 (top). Concerning semantic robustness, generaliza-

tion on cogent linguistic rules does not necessarily benefit a model’s performance, as

demonstrated by experiments we conducted on 30 networks trained to be semantically

78

ε (L∞ norm)

ac
cu

ra
cy

||
 W

 |
|

0.8740 ± 0.0038

0.8012 ± 0.0043

0.6238 ± 0.1018

0. 0.01 0.05

0.0

-0.2

0.2

0.003 ± 0.1623 0.0005 ± 0.0510 0.0082 ± 0.0436

0. 0.01 0.05

0.8

0.7

0.9

Figure 5.3: On the top plot, we show the average accuracy of 30 trained FC models
on the SST-2 dataset, compared for different values of ϵ-robustness. Measurements
are taken w.r.t. the ℓ∞-norm, as it allows us to compare the maximum robustness
variation along any dimension. For ϵ equal to 0., a model is not robustly trained;
otherwise, it is through IBP (Gowal et al., 2018). There is a clear trade-off between
robustness and accuracy. On the bottom plot, the average norm of the models’ pa-
rameters indicates that robust models tend to have lower variance and hence arguably
lower complexity.

robust against shallow negation vs. their vanilla counterpart. Both populations have

been trained on the SST-2 dataset (Socher et al., 2013a). Robustness is enhanced

through simple data augmentation on the dataset provided by Barnes et al. (Barnes

et al., 2019), whereas the test is performed on unseen sentences that exhibit the

same linguistic phenomenon. While the vanilla networks have an average accuracy

of 0.9036 ± 0.0019 on the test set and 0.4916 ± 0.0074 on the shallow negation test

set, those that have been robustly trained have an accuracy of 0.8838 ± 0.0049 and

0.5491± 0.0124, respectively.

Minimum Description Length. Local continuous robustness is a strong regu-

larizer (Gowal et al., 2018). Classical methods used to induce local robustness for

NLP (such as IBP), which propagate through all the embedding dimensions and

thus amplify the noise, are nonetheless playing an important role as they smooth

79

Train FCs CNNs

Shallow Negation

(Our, Barnes et al., 2019)

Vanilla

IBP (ϵ = 0.001)

IBP (ϵ = 0.01)

0.4034± 0.0214

0.3852± 0.0071

0.4249± 0.0260

0.6303± 0.0231

0.6461± 0.0039

0.6145± 0.0263

0.3753± 0.0091

0.4954± 0.0273*

0.4715± 0.0134*

0.4553± 0.0719

0.5079± 0.0822

0.4320± 0.0501

Mixed Sentiment

(Our, Barnes et al., 2019)

Vanilla

IBP (ϵ = 0.001)

IBP (ϵ = 0.01)

0.4707± 0.0360*

0.2918± 0.0121

0.2824± 0.0169

0.6976± 0.0126

0.7205± 0.0048

0.7072± 0.0133

0.4764± 0.0327

0.5402± 0.0961

0.4485± 0.0844

0.5506± 0.1476

0.4590± 0.1205

0.5506± 0.1476

Sarcasm

(Our, Barnes et al., 2019)

Vanilla

IBP (ϵ = 0.001)

IBP (ϵ = 0.01)

0.5136± 0.0504

0.4333± 0.0092

0.4406± 0.0943

0.7133± 0.0156*

0.5578± 0.0185

0.5222± 0.0995

0.4799± 0.0393*

0.6352± 0.3962

0.1650± 0.1866

0.3067± 0.2883

0.5778± 0.3564

0.1593± 0.1030

Table 5.6: Comparison of 20 IBP-trained robust models (Gowal et al., 2018) and their
vanilla counterparts on samples generated through templates on our benchmark (left
subcolumn) and samples exhibiting the same linguistic phenomenon from (Barnes
et al., 2019) (right subcolumn): both populations of networks have been trained on
the SST-2 dataset. IBP, which we use to train robust models for two different values
of ϵ (0.001 and 0.01), cannot ensure robustness to simple semantic rules and, in a few
cases, worsens the classifier’s performance. Symbol *, when present, means that the
improved performance (from vanilla to IBP or vice-versa) is statistically significant.
We consider the two architectures (FCs and CNNs) supported by (Gowal et al., 2018).

out the network’s hidden activations. We report the results of experiments that we

conducted that support this hypothesis in Figure 5.3 (bottom). Regarding semantic

robustness, we cannot conclude anything definitively, but the evidence suggests that

semantically robust models are not necessarily smoother than the vanilla counter-

parts. We compared the weights’ norm of 30 networks trained to be robust against

shallow negation, i.e., whose training data was augmented with samples that contain

that phenomenon, vs. their vanilla counterparts, i.e., no data augmentation. While

the difference between the performance of the two networks on unseen texts that

contain that linguistic phenomenon is substantial, there is very little difference in the

norm of the two populations, which are respectively 0.0017 ± 0.0019 (vanilla) and

0.0064± 0.0032 (robust).

Nearest Neighbors. Local robustness induces a strong bias towards nearest neigh-

bors, as it imposes the same classification label on all the perturbations close to the

input point (see Def. 2.18). This assumption is critical as robust training under-

estimates the effect of making a model robust, treating all the dimensions in the

embedding equally important. We hypothesize this causes the the deterioration of

the performance of robust models in NLP. The induced invariance along any dimen-

sion reduces the effectiveness of the embedding representation on cogent syntactic/se-

mantic tasks such as word-sense-disambiguation, polysemy, etc. Semantic robustness

takes a different approach and is expected not to be robust to nearest neighbors in

80

the embedding space but rather to perturbations that are generated by the linguistic

rules for which they have been robustly trained. For an increasing number of embed-

ding dimensions, semantic robustness does not suffer in principle from the trade-off

between the performance on linguistic tasks (Chen et al., 2013).

5.5 Conclusions

In this chapter, we have discussed the limitations of standard approaches to robust-

ness. The main concerns of such approaches are to guarantee a model’s invariance

against word substitution and deletion: two perturbation approaches that are lin-

guistically limited. We thus introduce a notion of robustness encompassing linguistic

phenomena and a generative approach to control the generation of test beds. We have

performed an extensive experimental evaluation on standard models (FCs, CNNs,

LSTMs, and attention-based networks) and LLMs to answer pertinent research ques-

tions that lie at the root of the lack of robustness of such models against linguistic

phenomena. We have further characterized the notion of semantic robustness in terms

of inductive biases that induces in a model. The strengths of our approach are the

intuitive and interpretable results in terms of the capacity of a model to represent

and classify sentences that contain linguistic phenomena that are cogent for humans.

Our framework also shows that LLMs are inherently more robust to linguistics phe-

nomena than models trained on standard word embedding representations. On the

other hand, for our notion of Oracle to work correctly, it needs to be supported

by a human expert or a generative process that almost always produces consistent

utterances. While possible in principle, as testified by our simple, template-based

generative method or by the examples collected by human experts in (Barnes et al.,

2019), these approaches either lack linguistic variability of the augmented dataset or

do scale linearly with the number of human experts involved in the generative process.

In the next chapter, we introduce syntax robustness as a complementary notion

of semantic robustness. Such a notion leverages syntax as a cornerstone of post-

structuralist linguistics and assesses whether LLMs robustly encode abstract repre-

sentations such as trees.

81

Chapter 6

Robustness of Syntactic Structures

Recent works investigated whether linguistic representations, and in particular LLMs,

encode syntactic information of a text (Manning et al., 2020). Surprisingly, the results

suggest that LLMs’ embeddings store structured information sufficient to reconstruct

the syntax tree of a sentence alongside further information that has been thought

impossible to keep within a continuous representation. In this chapter, we test the

validity of this theory through the lens of robustness: we propose the notion of syn-

tactic robustness as the consistency of a representation to retrieve coherent syntactic

information under perturbations that preserve the syntax of the original text.

We propose a method to evaluate the syntactic consistency and robustness of

linguistic representations that leverages probing tasks (Conneau et al., 2018; Man-

ning et al., 2020), namely, neural networks trained directly on the representation

embedding to evaluate the representation’s ability to encode a specific linguistic phe-

nomenon, such as the syntax tree of a sentence. To this end, we propose an efficient

probing method to perturb the input text so that its syntax (or context) is largely

preserved. We validate the perturbations to show they can serve as an effective

proxy for syntax-preserving perturbations. We focus on syntactic robustness, which

informs our selection of four probing tasks, but note that other tasks can be easily

incorporated.

To assess robustness, we aim to measure the performance of a language model to

probing tasks on the original and perturbed datasets. More specifically, we define a

measure of robustness in terms of aggregating (averaging) the worst-case drop of per-

formance of a collection of probing tasks over a given dataset for a given perturbation

budget, which then captures the model’s ability to encode the linguistic phenomena,

and is, therefore, more appropriate for NLP settings.

In summary, in this chapter, we make the following contributions:

82

• Propose measures to evaluate the robustness of linguistic representations that

leverage probing tasks.

• Develop a methodology for analyzing an LLM’s ability to capture complex syn-

tactical information underlying its training data robustly.

• Demonstrate how our robustness metrics reveal that context-free representa-

tions are equally brittle to manipulations as more sophisticated context-dependent

representations.

• Provide empirically insightful observations into feature collapse, training dura-

tion, and depth of pre-trained LLM heads from the robustness perspective.

The chapter, based on the preprint (La Malfa et al., 2022), is structured as follows.

We introduce some background notation, along with definitions that will be use-

ful throughout the investigation; in particular, we describe how through probes and

probing tasks (see Def. 2.13), we inspect a representation’s ability to store syntactic

information within its embedding. We then define syntax robustness and a perturba-

tion scheme that is expected to preserve the syntax correctly, as opposed to one that

does not necessarily satisfy this requirement. The chapter proceeds with an extensive

empirical evaluation of the robustness of static and dynamic representations over four

syntactic probing tasks and six datasets. This serves as a prelude to the conclusion,

where we critically analyze the results and their impact on the field.

6.1 Motivation and Setting

The unprecedented and indisputable progress made by NLP techniques is nonetheless

counteracted by a series of critiques that show how LLMs are unable to perform basic

reasoning (Niven and Kao, 2019), have considerable biases (Bras et al., 2020), are not

well aligned to stakeholder values (Bender et al., 2021), and are brittle in the face of

adversarial examples (La Malfa and Kwiatkowska, 2022). Such studies clarify that

sustainable, long-term advances in NLP must be facilitated by appropriate metrics

that capture how LLMs represent the complex linguistic patterns underlying their

training data (Bender and Koller, 2020).

In this sense, representing the linguistic and grammatical structure underlying

linguistic data plays an influential role in the robust generalization of any NLP system.

There are at least two standard representations of syntax trees in NLP and linguis-

tics, namely dependency and constituency trees. In the former, each word corresponds

83

Ground Truth Syntax Graph Predicted Syntax Tree

Representation: RoBERTa-base
Model: 6 layers FC with ReLU activations
Dataset: UD-English-lines test #843

has

do it mostly .

to autorship

book of

wrote

of

who itwritten

Ground Truth Syntax Tree

root depth

0

1

2

3

4

root

root

Figure 6.1: A syntax graph reconstructed via the structural probe task (see Def. 5)
from a RoBERTa representation is shown in the middle; for comparison, the ground
truth structure is sketched on the left. On the right, the same structure is displayed
as a dependency tree (annotated with additional information so that dependencies
and hierarchies between words are made clear) so that other supervised tasks can be
instantiated, e.g., identifying the root, or computing the depth of the tree.

to a node, and the tree structure reflects the word order, while, in the latter, words

themselves are terminal nodes whose order follows the ‘bare phrase structure’ (as

per the minimalist program by Noam Chomsky (Chomsky, 2014a)). We work with

dependency tree representations in this chapter, but the methodology and results can

be extended to the constituency representation standard.

Two of the most influential NLP papers written in recent years directly leverage

linguistics: in (Mikolov et al., 2013), the authors build representations as prescribed

by the distributional hypothesis (Harris, 1954), while in (Devlin et al., 2019a) as well

as (Brown et al., 2020), LLMs are trained to predict masked or following words in

context, an activity supported by substantial evidence of its occurrence in the hu-

man brain (Schrimpf et al., 2021). Remarkably, linguistic representations such as

LLMs are also arguably capable of accurately representing structures such as syntax

trees (Manning et al., 2020), which has motivated researchers to investigate their

linguistic capabilities (Rogers et al., 2020; Sinha et al., 2021). An example of a tree,

rebuilt with a neural network that learns from a sentence via its embedding represen-

tation, to approximate the distance between words in the dependency tree (Manning

et al., 2020), is reported in Figure 6.1.

Last but not least, the extent to which LLMs represent structured linguistic infor-

mation can help us better understand the foundations of statistically-based language

learning, particularly its relationship with symbolic structures (such as trees).

84

6.2 Probing Tasks for Model Introspection

6.2.1 Methodology

As introduced in Chapter 2, a sentence s = {s1, .., sl} is a finite sequence of l > 0

symbols (here words) defined over finite vocabulary V . A linguistic rule assesses the

violation of a property by a sentence s, and we denote a sentence s satisfying a rule,

R, with R |= s. A language, L, is defined by an alphabet V and a (possibly infinite)

set of rules R = {R1, .., Rn}. Given a linguistic representation/embedding ψ and

a sentence s, this chapter’s central question of interest is what information does ψ

extract robustly from s? To answer this question, we consider using a perturbation-

based analysis. Specifically, given another sentence s′ that is semantically similar to s,

how does ψ(s) differ from ψ(s′)? As posed, such perturbation analysis is reminiscent

of the problem posed by adversarial examples (Szegedy et al., 2014a), but a naive

adaptation to NLP is devoid of the nuance of natural language and inappropriate

for this setting (see Chapter 5). We address this shortcoming with a two-phased

framework. Firstly, we seek to gain insights into the syntactic properties a language

model understands through a probing task. Secondly, we propose an efficient scheme

for computing perturbations that preserve the syntax of a given sentence s as much as

possible and study how such perturbations affect the model insights from the probing

task.

6.2.2 Probing Tasks for Model Introspection

Probing tasks have emerged as a valuable way to assess a language model’s grasp

of complex linguistic concepts. These tasks are categorized into surface, syntax,

and semantic probing tasks, as described in (Conneau et al., 2018). While surface

tasks can be solved by looking at information that is immediately accessible to the

model, such as the number of tokens in the input sentences, semantic tasks require

understanding what a sentence denotes (e.g., guessing the number of the subject of

the main clause). Finally, as in the case of this chapter, syntactic tasks check whether

a model can infer the hierarchical structure of sentences, for example, reconstructing

its dependency tree.

The key idea is to design a probing task that is linguistically specific and easy

enough to ensure that solid performance on the task indicates that the language

model has accurately captured the linguistic phenomenon. We select four probing

tasks, which we design to assess the presence of syntactic structures in linguistic

85

representations, but stress that our framework could be extended to any of the ten

probing tasks presented in (Conneau et al., 2018).

We report the definition of a generic probing task, which serves as a basis to

describe the four syntactic tasks that our robustness framework will test.

Definition 4. (Probing Task) Given a set S = {s(1), .., s(n)} of n > 0 sentences from

a language L, each paired with a label T = {t(1), .., t(n)}, a probing task consists of

finding a mapping f from each sentence representation ψθ(s) s.t.

E(s(i),t(i))∼(S,T) [L(f(ψθ(s)), t)] > p, where ψθ(s) is a representation of an input sen-

tence returned by an embedding or an LLM representation, and L is a measure of

performance of such a reconstruction and p some positive quantity that certifies a

given level of performance.

The first syntactic probing task we propose to study is the syntax reconstruction

task. An accurate understanding of the information content of a sentence s depends

on the reader’s ability to understand the intra-word relationships in s. This applies

to natural and programming languages, where parse trees are essential to understand

source code.

A syntax tree t is an undirected, acyclic graph G := (s, A), where the words of

s are vertices and A is an edge list that contains an edge between two words if they

modify each other or are contextually linked, see (Manning and Schutze, 1999) for

more details. As stated previously, we work with dependency tree representations in

this chapter, but the methodology and the results can be extended to the constituency

representation standard. Formally, the syntax reconstruction probing task is given as

follows:

Definition 5. (Syntax Reconstruction) Given a set S = {s(1), .., s(n)} of n > 0 sen-

tences from a language L and their syntax-tree representation T = {t(1), .., t(n)}, syn-
tax reconstruction is a probing task f from S to T that guarantees sufficient perfor-

mance.

This task, called the ‘linear structural probe‘ (Manning et al., 2020), is commonly

used as a proxy of the capabilities of a representation to recognize the mutual rela-

tionships between words in a sentence.

In practice, the syntax probing task consists of extracting, from a sentence repre-

sentation, the distance between each pair of words, as they are arranged in the depen-

dency parse tree of the sentence itself (see Figure 6.2): the task is commonly used as a

86

proxy of the capabilities of a representation to recognize the mutual dependency rela-

tionships between words in a sentence, represented as a directed graph. Using probing

tasks to assess the capabilities of a model has become a popular approach with the

development of increasingly complex linguistic representations. However, some stud-

ies have shown that probes can only reveal the correlation between the traces of a

symbolic structure in a representation and its performance on a task (Belinkov, 2022;

Ravichander et al., 2020). In this thesis, we use probes to provide evidence of the

existence of syntactic structures in linguistic representations rather than testing their

performance on higher-level NLP tasks.

0 1 2 1
1 0 1 2
2 1 0 3
1 2 3 0

liked

Sarah liked

like
d

Sarah

the

movie

S
a
ra

h

th
e

m
o
v
ie

movie

the

Figure 6.2: The dependency parse tree of
a sentence (left), alongside the matrix of
distances between pairs of words in the tree
(right).

Another aspect of interest is that

probes are usually linear, as one wants

to assess how representations encode fea-

tures that are immediately available to

solve the task (Niven and Kao, 2019), de-

spite a few recent works criticizing their

excessive simplicity in favor of non-linear

ones (Pimentel et al., 2020; White et al.,

2021).

The second probing task disregards

intra-word relationships and focuses on

a language model’s ability to identify the

part of speech of a given word. Formally, the part-of-speech (POS) tagging task is

given as:

Definition 6. (POS-tagging) Given a set S = {s(1), .., s(n)} of n > 0 sentences

from a language L and the POS-tags for each sentence, POS = {pos(1), .., pos(n)},
POS-tag reconstruction is a probing task g from S to POS that guarantees sufficient

performance.

Def. 6 describes a task commonly used as a proxy for a representation’s capabil-

ities to represent a word’s role in its context: an example is shown in Figure 6.3.

These two tasks allow us to inspect how a language model identifies and semantically

links entities in a sentence, thus giving us a comprehensive, linguistically informed

perspective on what a language model captures.

We complete the benchmark with two further syntactic tasks, namely root iden-

tification and the tree-depth estimation, which we present and comment on below.

87

movie the liked Sarah

NNP VBD CC NN
Index

1

2

3

4

5

Thousands

of

demonstrators

have

marched

Word Relationship POS-tag

3

3

4

5

-

NNS

IN

NNS

VBP

VBN

Figure 6.3: A sentence with its POS tags (left). A sentence in CONLL format tests
a model on multiple syntactic tasks (right). CONLL is a convenient format as it
provides sentences and information that can be used to instantiate syntactic tasks
such as tree reconstruction.

Definition 7. (Root Identification) Given S and T as in Def. 5, and the root of the

tree R = {r(1), .., r(n)} where r(i) ∈ t(i), root identification is a probing task h from S

to R that guarantees sufficient performance.

Definition 8. (Tree-depth Estimation) Given S and T as in Def. 5, and the depth

D = {d(1), .., d(n)} of dependency trees in T, where d(i) ∈ N+, tree-depth estimation

is a probing task u from S to D that guarantees sufficient performance.

With the tasks in Def. 7 and 8, we assess a representation’s capacity to distill single

units of information (root and depth), which can be extracted from a tree’s sentence

representation. We sketch the two tasks in Figure 6.1 (right). When compared to the

structural probe task, root identification and tree depth are easier to solve. They are

meant to show to what extent high vs. low-order syntax information is encoded in a

linguistic representation.

6.3 Measuring Syntactic Robustness

This section introduces the perturbation methods used to define syntactic robustness.

We propose a perturbation method, and an algorithm, to compute perturbations that

largely preserve the syntax of the original sentence and another method that instead

proposes context-based substitutions, which tries to preserve a sentence’s original

intent while possibly disrupting syntax.

6.3.1 Syntax-preserving Perturbation Analysis

The second phase of our methodology involves perturbation-based analysis. It is

widely known and confirmed by neuroscience that human language exhibits very

robust linguistic representations (Chomsky, 2009; Gibson et al., 2019). At the same

88

"Sarah enjoyed the movie."

"I go as I need some food."

 Sarah
liked

hated

enjoyed

like

WordNet

"Sarah liked the movie." "Sarah and the movie."

"I go because I need some food." "I go . I need some food."

liked

movie

the

Sarah

enjoyed

movie

the

Sarah and movie

the

Sarah

go

need

as

I

I food

some

go

need

because

I

I food

some

go need

I I food

some
.

coPOS coCOOriginal

Hamming

 Syntax
distance

Figure 6.4: Two examples of coPOS and coCO perturbations applied on clean input
texts and the resulting syntax trees induced by such alterations. Words perturbed are
highlighted in red. coPOS perturbations are designed to minimize the probability of
disrupting the syntax of a sentence (such as the substitution of ‘as’ with ‘because’).
In contrast, coCO can disrupt it (e.g., the substitution of ‘and’ with a period).

time, NLP models suffer from brittleness against perturbations, which are often easily

transferable across models yet difficult to detect (Kuleshov et al., 2018). Though many

works have shown how brittle NLP models are in the presence of bounded attacks

on embedding space (see Chapter 4), such attacks do not necessarily preserve human

meaning. They are, therefore, arguably of questionable merit (see Chapter 5). We

define two types of perturbations: the first aims to preserve syntax (coPOS) and

constitutes the backbone of our empirical evaluation. The second exploits context

to preserve the semantics (coCO) and is introduced to strengthen our comparison

of models’ syntactic robustness. As a baseline, we add a perturbation method with

words randomly sampled from the English vocabulary. We now introduce the coPOS

and the coCO perturbation methods, illustrated in Figure 6.4.

Definition 9. (Consistent POS Substitution) A consistent POS substitution (coPOS)

consists of the replacement of one or more words in a sentence s with words that keep

unaltered the POS-tag of the perturbed sentence, i.e., if s/s′ are the original/perturbed

sentence, pos/pos′ the ground-truth POS-tag of s/s′, and s′ = sub(s), the perturbation

procedure, then it holds for coPOS that sub(s) =⇒ pos ≡ pos′.

89

Ensuring that a perturbation satisfies the coPOS definition enables the inter-

pretability of our results. Specifically, a coPOS perturbation aims to preserve the

word’s syntactic role in a sentence. Therefore one can impute any probe misclassi-

fications to a lack of robustness of the linguistic representation. Since guaranteeing

that a perturbation always preserves its coPOS tag is challenging due to the intrinsic

complexity of natural language, we rely on an efficient algorithmic implementation

to generate proxy coPOS perturbations, described in Section 6.4, which we carefully

validate on the datasets used in our experimental evaluation (see Section 6.5).

Definition 10. (Context Consistent Substitution) A context consistent substitution

(coCO) consists of the replacement of one or more words in a sentence s with a

generative model that maintains semantic closeness but does not strictly enforce the

substitution to be syntactically coherent. While many alternative methods exist in the

literature to generate coCo perturbations, we rely on GPT-2 (Radford et al., 2019)

next-word predictions, which serve as a benchmark for syntactically-informed methods

such as coPOS. In other words, a substitution w′ of a word w ∈ s is generated

by a generative model ϕ conditioned on the context where the word appears, i.e.,

w′ = argmaxw∈V ϕ(s|s \ w).

Initially, our experiments involved using BERT as the generative process for cre-

ating coCO perturbations. The robustness results, which can be found in Section 6

of this paper indicated that all models were susceptible and, in fact, brittle to these

perturbations. We then realized that using BERT might have biased the results, as

BERT itself was being evaluated for robustness. Consequently, we replaced BERT

with GPT-2 as the generative model for the coCO perturbations. Section 6.5 of this

thesis shows that GPT-2 maintains good generative quality, particularly in terms of

syntactic preservation. However, we did not explore any bidirectional models other

than BERT, which could be considered a limitation of our approach. This aspect

presents an opportunity for future research.

Below, we formally define the conditions under which we consider a linguistic

model robust: informally, for a linguistic representation to be robust, we desire it to

accurately solve a family of probing tasks and behave consistently on slight syntax-

preserving perturbations of an input text. We assume that coPOS substitutions are

used as perturbations but note that the concept of linguistic robustness can also be

instantiated with Def. 10.

First, we introduce the notion of consistency of representations, termed ϵ-robustness.

90

https://arxiv.org/pdf/2210.17406v5.pdf

Definition 11. (ϵ-robust Representations) Given a linguistic representation ψθ, a

set of sentences S, a set of perturbed sentences S ′ which are coPOS perturbations

of S, and a measure of distance dist : (s, s′) −→ R between representations (e.g., ℓp-

norm, cosine similarity), we say that the representation ψθ is ϵ-robust w.r.t. dist if

∀(s, s′) ∈ (S, S ′), max(dist(ψθ(s), ψθ(s′))) < ϵ.

Despite its simplicity, ϵ-robustness is linguistically informed, as all sentences in S ′

are coPOS to those in S, and thus we can be confident that the perturbations are

syntactically consistent for the given probing task. Moreover, this metric can serve

as a valuable tool for developing robust language models in the sense of maximizing

ϵ while maintaining good performance on the underlying task.

While ϵ-robust representations are desirable, what is more informative is the abil-

ity for a representation, ψθ, to be robust concerning a distance metric and a probing

task. Formally, we define a language model ψθ to be syntactically robust if the per-

formance on multiple proxy tasks is not adversely affected by perturbations that are

close in some representation space (e.g., Def. 9).

Definition 12. (Syntactically Robust Representation) Given an input s, its represen-

tation ψθ(s), a set of probing tasks {T1, ..,Tm}, a set of mappings {f1(s), .., fm(s)}
that take as input the representation ψθ(s) and solve the respective i-th probing task,

a set of strictly positive quantities {τ1, .., τm} and a small quantity ϵ > 0, a set of

measures of performance on each task {L1, ..,Lm}, a consistent perturbation s′ =

sub(s), and a measure of distance between representations dist : (s, s′) −→ R, ψθ is

syntactically robust iff ∀(Ti, fi,Li, τi) ∈ (T, f,L, τ), dist(ψθ(s), ψθ(s′)) < ϵ =⇒
Li(fi(ψθ(s)), fi(ψθ(s′))) < τi.

6.4 Algorithm for Evaluating Syntactic Robust-

ness

In this section, we describe a procedure to assess the robustness of the syntactic

structures encoded by a linguistic representation, as formalized in Def. 12. We outline

the complete algorithm and give step-by-step comments. Before that, we provide

details about the perturbation methods, particularly how candidate perturbations

for the coPOS, the coCO, and the baseline methods are extracted.

91

 Sarah

movie the liked Sarah

movie theenjoyed Sarah

coPOS generation

Ψθ

 Linguistic
Representation

Trained Neural
 Model Sarah

enjoyed

the
movie

Prediction

Predicted Syntax Tree

 Sarah
liked

hated

enjoyed

like

WordNet

Hamming

+
 Syntax
distance

Figure 6.5: An example of a perturbed sentence s′ obtained through a coPOS per-
turbation. Candidate substitutions are sampled from a pool of WordNet synonyms,
from which we select the one that maximizes the Hamming distance and minimizes
the syntactic disruption w.r.t. the original input; see Section 6.4 for details. The
perturbation is then fed, through a linguistic representation ψθ, to a probe (neural
network trained directly on the representation) that predicts its syntax tree.

6.4.1 Computing coPOS Perturbations

Given an l > 0 word long sentence s, we formulate a method to obtain a perturbed

sentence s′, where τ ≤ l words in s are replaced while keeping the syntax of the original

input largely preserved. WordNet synonyms (obtained by confining the substitutions

to ones that are in the same ‘Synset’), or any similar technique, are specifically crafted

to maintain the syntactic structure of word replacements. However, it is essential to

acknowledge that no technique can offer a guarantee of preserving syntactic integrity

when replacing a word in a sentence with a generic alternative. Our procedure is

sketched in Algorithm 3.

We replace each candidate word in s with one drawn from the WordNet synonym

graph (Miller, 1998). We further ensure that a perturbation is, among the input-

perturbation pairs generated by a WordNet replacement, the one that minimizes the

syntactic distance of the tree representations while maximizing the Hamming distance

between the actual sentences, i.e., the number of words that are actually perturbed.

The syntactic distance of each pair of inputs and perturbations is computed via

the Stanza dependency parser (Qi et al., 2020). In contrast, the Hamming distance

between two sentences is the number of word positions in which two words differ.

In practice, for each input, a constant number of sentences b > 0 are generated

by perturbing τ words via WordNet (line 3): the syntactic distance between the de-

pendency tree of each input/perturbation pair is computed alongside their Hamming

distance (line 6), which could be less than τ if WordNet does not return a viable

92

substitution and only the sentence that minimizes the syntactic distance while max-

imizing the Hamming is used to test the representation’s robustness.

Algorithm 3 coPOS perturbations.

Require: s, b, τ,WordNet(·, ·), distham(·, ·),
distsyntax(·, ·)

Ensure: A coPOS perturbation.
1: s∗, d∗h, d

∗
t ← (s, 0., inf)

2: for j ∈ [1, .., b] do
3: s′ ←WordNet(s, τ) ▷ Perturb τ

random words in s with synonyms
4: dh ← distham(s, s′)
5: dt ← distsyntax(s, s

′)
6: if dh > d∗h ∧ dt < d∗t then
7: s∗, d∗h, d

∗
t ← (s′, dh, dt)

8: end if
9: end for
10: return s∗

While this procedure is designed to

preserve syntax between s and s′, seman-

tics, in general, is not: though one may

want to introduce further constraints on

the replacement procedure to ensure the

semantics is preserved, our primary in-

tent is to assess robustness against syn-

tax manipulations. We will show in the

experiments that, even for these simple

proxy syntax-preserving perturbations,

a linguistic representation’s performance

degrades significantly, and in some cases,

it is comparable with random guessing,

which indicates that this perturbation

scheme is powerful enough to benchmark

current language models. Further, this method has a clear advantage in simplicity

and computational efficiency as multiple word substitutions can be parallelized. We

sketch the procedure above in Figure 6.5 (left).

6.4.2 coCO and Baseline Perturbations

Our results are complemented by experiments with coCo perturbations (Def. 10),

which consist of generating τ replacements via a conditioned LLM. While we employ

GPT-2 (Radford et al., 2019) for generating a replacement, any generative LLM, thus

including masked LLMs such as BERT or RoBERTa (Devlin et al., 2019a), is suitable

for this task. The process of coCO perturbation is sketched in Figure 6.4.

Finally, we add a baseline perturbation method that involves substituting τ > 0

words in a sentence with random replacements from the English vocabulary. In this

case, the syntactic consistency of a sentence is not guaranteed to be maintained and

thus serves as a base case for our analysis.

6.4.3 Average Worst-case Robustness Algorithm

In this section, we describe a procedure to assess the robustness of the syntactic

structures encoded by a linguistic representation, as formalized in Def. 12. The general

93

framework requires several inputs, including a language model ψ, a collection of m

probing tasks {Ti}mi=1 and performance metrics {Li}mi=1, a perturbation function sub,

which w.l.o.g. can be a coPOS, a coCO or any other perturbation method, and three

constants, τ and k and b, which control the number of perturbations generated per-

input point. For each task T, we collect a number n > 0 of input sentences and apply

k coPOS or coCO perturbations to each of them, with each perturbation targeting τ

words and with an overall budget per-sentence equal to b (see Alg. 3). We then employ

the task’s corresponding performance function to measure L(f(ψ(s)), f(ψ(s′))), where

s′ is the sentence that maximizes this quantity and is regarded as the approximate

worst-case perturbation. We also record the corresponding drop in performance that

s′ causes. Finally, we calculate the average performance decrease across all n sentences

as an approximation of the worst-case performance of the language model on the given

probing task. In line with standard works on adversarial robustness, our framework

discovers the cases where a model failure is the most severe, yet our approach allows

us to conduct experiments and return the average-case robustness. In this sense,

the average-case robustness measure is interpretable as the syntactic robustness of

a model to a pool of samples from a not-necessarily adversarial set and reflects a

model’s sensitivity rather than its robustness.

We propose a technique for generating a modified sentence s′ from a sentence s

of length l > 0, where up to τ words in s are replaced while preserving the original

sentence’s syntax. We substitute each word in s with a synonym drawn from the

WordNet synonym graph (Miller, 1998). Although this approach guarantees that

the syntax of s′ remains essentially unchanged from s, the semantics of the sentence

may not be preserved. While it is possible to introduce additional constraints to

maintain semantic coherence, our primary goal is to assess the models’ robustness

against syntax manipulations. Our experiments indicate that even these basic syntax-

preserving substitutions result in a severe drop in performance, comparable to random

guessing, demonstrating this perturbation scheme’s power as a benchmark for current

language models. Additionally, this method is simple and computationally efficient

since multiple-word substitutions can be parallelized. The procedure is outlined in

Figure 6.5 (left), and we also conduct experiments with coCo perturbations (Def. 10),

which involve generating replacements using a conditioned LLM.

Average distance of the farthest representation. As a measure of distance

between sentences, we rely on the ℓ2-norm and the cosine similarity, whose usage

is widespread in NLP robustness (Huang et al., 2019; Jia et al., 2019), noting that

94

other measures are also possible (Dong et al., 2021; Kusner et al., 2015; La Malfa

et al., 2021). We provide a sketch of the procedure in Alg. 4. It estimates the

average distance of the farthest perturbation in the representation space of ψθ, w.r.t.

a distance measured like an ℓp norm. The procedure easily accounts for similarity

measures, like the cosine similarity, by substituting max with min at line 9.

Average worst-case syntactic robustness. Complementary to Algorithm 4, Al-

gorithm 5 permits us to evaluate syntax robustness of a linguistic representation ψθ.

For each pair of a model and a probing task (fi, Ti), we draw a pool of sentences Si

from a CONLL corpus of choice (lines 2, 4): CONLL is a convenient text format as

it provides sentences along with information that can be used to instantiate probing

tasks such as tree reconstruction (see Figure 6.3). Then, for each sentence s ∈ Si, we

compute a set of coPOS perturbations (lines 7, 8). The ratio between the number of

sentences in Si and the perturbations depends on the budget parameter k, as well as

the number of words per sentence τ that are perturbed; e.g., with τ = k = 1, each

sentence in Si is perturbed once via a single-word substitution. We rely on WordNet

(Miller, 1998) and its graph of synonyms to draw, for each sentence s, a substitute s′

that is drawn accordingly to Alg. 3 and aims to be syntax-preserving. We exemplify

this process in Figure 6.5. We then quantify the drop of performances of fi on the

original vs. perturbed input representations via the performance measure Li (line

10). As we aim for a measure of robustness against perturbations, we return for each

sentence s ∈ Si the worst-case drop induced by any of the s′ generated previously,

averaged over the number of test cases (lines 11, 13 and 15). We can now pair the

measure of robustness with the ϵ-distance between S and the set of worst-case pertur-

bations S ′ (Def. 11) as the most significant deviation of a pair of input/perturbation

w.r.t. the representation ψθ.

6.5 Validating the Perturbation Method

In this section, we report the results of the validation process of the coPOS and the

coCO perturbation methods. For each perturbation method, and for each dataset that

we then employ in the experimental evaluation, we calculate the syntactic distance

between the syntax tree of a sentence and a perturbed candidate: the distance between

trees is automatically computed as that minimum number of operations of addition

and deletion of a node to turn a tree into another, via Stanza (Qi et al., 2020)

dependency parses. We report the results regarding the distance between dependency

95

Algorithm 4 Estimate the average distance of the farthest perturbations w.r.t. a
representation ψ.

Require: ψ(·), S, sub(·), τ, k, b, dist(·, ·)
Ensure: Average distance of the farthest representation of ψs∼S(s) against

subs′∼S′(s′)
1: rob = 0.
2: for s ∈ S do
3: x← ψ(s)
4: worst = 0
5: for j in [1, .., k] do
6: s′ ← sub(s, τ, b)
7: x′ ← ψ(s′) ▷ Obtain the representation of a perturbed input
8: d = dist(x, x′) ▷ Calculate the distance between input and perturbation
9: worst = max(worst, d) ▷ Worst-case as farthest perturbation
10: end for
11: rob += worst
12: end for
13: return rob/|S| ▷ Average over each worst-case.

Algorithm 5 Estimate the average worst-drop of robustness of ψ on probing tasks
T.
Require: ψ(·), {T1, ..,Tm}, {f1(s), .., fm(s)}, {L1, ..,Lm}, sub(·), τ, k, b
Ensure: Average worst-drop of robustness of ψs∼S(s) against subs′∼S′(s′) on each

task {T1, ..,Tm}
1: Drop = {} ▷ Will contain the average worst-case drop per task Ti

2: for i ∈ [1, ..,m] do
3: drop = 0. ▷ Average worst-case drop of robustness
4: Si ← data(Ti) ▷ Get data from each task
5: for s ∈ Si do
6: d = 0.
7: for j in [1, .., k] do
8: s′ ← sub(s, τ, b) ▷ τ words are perturbed to obtain s′ from s
9: x, x′ ← ψ(s), ψ(s′) ▷ Input/perturbation pairs
10: ∆d = Li(fi(x), fi(x

′)) ▷ Drop of robustness
11: d = max(d,∆d) ▷ Get the case that minimizes syntax robustness
12: end for
13: drop += d
14: end for
15: Drop

+←− drop/|Si|
16: end for
17: return Drop

96

trees, as that is the representation provided by the CoNLL format and that employed

in (Manning et al., 2020). However, our methodology also permits us to compute the

distance between sentences via their constituency representation.

Examples of the perturbed syntax tree of a sentence from the Ud-English-Pud

dataset are shown in Figure 6.6 for each perturbation method. In Figure 6.7, we

report, for each of the six datasets used in the experimental evaluation, the syntactic

distance between trees, for the coPOS, coCO, and baseline method, with varying

perturbation budget τ equal to 1, 2, and 3. We further compute the average distance

between pairs of sentences randomly sampled from each dataset, for which we expect

the distance between trees to be higher than for any other method.

As one can notice from Figure 6.7, the coPOS method induces the slightest changes

in a syntax tree, and it is thus expected to disrupt the performance of the probing

tasks only if the representations are inherently brittle. On the other hand, both coCO

and baseline are expected to challenge a probe’s capacity to represent a sentence’s

syntactic information correctly. We will show with the proxy coPOS method that

probes, and their representations, are very brittle to syntax-preserving manipulations.

Finally, we show examples of perturbations that our methods produce. In Fig-

ure 6.8, we report example sentences that induce, according to Stanza (Qi et al.,

2020), a high degree of disruption in the dependency syntax tree representation, with

those produced by the coCO perturbation method the most disrupted for each in-

put/perturbation pair (not counting the baseline, which almost indeed disrupts the

syntactic tree of a sentence through random replacements). On the other hand, the

coPOS perturbation method can be seen to preserve the structure of each sentence.

In Figure 6.9, we present linguistically interesting perturbations that do not induce

the maximum syntactic disruption.

6.6 Experimental Evaluation

We implement and empirically validate our framework by demonstrating how it can

provide insights into the robustness of language models. We start with details on

linguistic representations, datasets, and probing task models. We then discuss the

effect of latent feature depth and the duration of fine-tuning. Finally, we summarise

the results of applying our framework in these settings.

97

told: (Root) (VBD)
├── man: 1 (NN)
│ └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
 ├── that: 2 (IN)
 ├── warfare: 2 (NN)
 │ ├── a: 3 (DT)
 │ └── between: 3 (IN)
 │ └── universes: 4 (NNS) (Plural)
 │ ├── the: 5 (DT)
 │ └── two: 5 (CD)
 ├── is: 2 (VBZ)
 ├── ,: 2 (,)
 └── predicted: 2 (VBN)
 ├── as: 3 (IN)
 ├── he: 3 (PRP)
 │ ├── and: 4 (CC)
 │ └── Walter: 4 (NNP)
 └── had: 3 (VBD)

told: (Root) (VBD)
├── man: 1 (NN)
│ └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
 ├── that: 2 (IN)
 ├── war: 2 (NN)
 │ ├── a: 3 (DT)
 │ └── between: 3 (IN)
 │ └── universes: 4 (NNS) (Plural)
 │ ├── the: 5 (DT)
 │ └── two: 5 (CD)
 ├── is: 2 (VBZ)
 ├── ,: 2 (,)
 ├── as: 2 (IN)
 │ └── the: 3 (DT)
 ├── and: 2 (CC)
 └── predicted: 2 (VBN)
 ├── Walter: 3 (NNP)
 └── had: 3 (VBD)

told: (Root) (VBD)
├── man: 1 (NN)
│ └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
 ├── that: 2 (IN)
 ├── dog: 2 (NN)
 │ ├── a: 3 (DT)
 │ └── war: 3 (NN)
 ├── universes: 2 (NNS) (Plural)
 │ ├── the: 3 (DT)
 │ └── two: 3 (CD)
 ├── is: 2 (VBZ)
 ├── ,: 2 (,)
 └── predicted: 2 (VBN)
 ├── as: 3 (IN)
 ├── he: 3 (PRP)
 │ ├── and: 4 (CC)
 │ └── Walter: 4 (NNP)
 └── had: 3 (VBD)

told: (Root) (VBD)
├── man: 1 (NN)
│ └── The: 2 (DT)
├── him: 1 (PRP)
└── coming: 1 (VBG)
 ├── that: 2 (IN)
 ├── war: 2 (NN)
 │ ├── a: 3 (DT)
 │ └── between: 3 (IN)
 │ └── universes: 4 (NNS) (Plural)
 │ ├── the: 5 (DT)
 │ └── two: 5 (CD)
 ├── is: 2 (VBZ)
 ├── ,: 2 (,)
 └── predicted: 2 (VBN)
 ├── as: 3 (IN)
 ├── he: 3 (PRP)
 │ ├── and: 4 (CC)
 │ └── Walter: 4 (NNP)
 └── had: 3 (VBD)

coPOS coCO baseline

original

syntactic distance: 0. syntactic distance: 0.289 syntactic distance: 0.263

input sentence

'The man told him that a war between the two universes is coming, as he and Walter had predicted;’

Figure 6.6: Comparison of the disruption induced on the dependency syntax tree
by different perturbation methods and the syntactic distance between trees. The
representation of each dependency syntax tree has been compacted to make the effect
of the perturbation methods clear. Yet, it is equivalent to that of Figures 6.2 and 6.4.
The example sentence belongs to the Ud-English-Pud dataset, and the perturbations
are actual perturbations induced by our methods. In blue, the single word that has
been perturbed, while in red, the perturbation induced by such perturbation on the
tree.

98

randomcoCOcoPOS baseline

Perturbation Budget τ=1

Perturbation Budget τ=3

syntactic equivalence
syntactic equivalence

syntactic equivalence

syntactic equivalencesyntactic equivalence

syntactic equivalence

syntactic equivalence
syntactic equivalence

syntactic equivalence

syntactic equivalence

syntactic equivalence syntactic equivalence

Perturbation Budget τ=2

syntactic equivalence
syntactic equivalence

syntactic equivalence

syntactic equivalence

syntactic equivalence syntactic equivalence

Figure 6.7: Tree distance, measured with Stanza, between an input and its perturbed
version, for different datasets and perturbation budgets: results are averaged over the
entire dataset. The coPOS perturbation method (red) induces almost no disruption to
a perturbation’s syntax tree, being always close to the level of syntactic equivalence,
while injection of random words (blue) and coPOS perturbations (green) both induce
some noticeable disruption. The disruption induced by comparing the syntax tree
of two randomly picked-up sentences that belong to the same dataset is reported for
further comparison (orange). 99

[src] Manufacturers Hanover had a loss due to a big reserve addition .
[coCO] Manufacturers Hanover , a loss due to a big reserve of .
[coPOS] producer Hanover had a loss due to a big taciturnity addition .

En-Universal

[src] And those are usually the basic scientists , The bottom is usually the surgeons .
[coCO] And those are usually the ones that , The bottom line usually the surgeons .
[coPOS] And those are usually the basic scientist , The bottom is usually the surgeons .

Ted

[src] Drs. Ali work wonders .
[coCO] Drs. work in the
[coPOS] Drs. Ali oeuvre wonders .

UD-English-Ewt

[src] Environment Canada spokeswoman Sujata Raisinghani told CBC News
 the department will look into the incident .

[coCO] Canada , Sujata Raisinghani told CBC News the agency will be
 into the incident .

[coPOS] surround Canada spokeswoman Sujata Raisinghani told CBC News
 the department will look into the incident .

Ud-English-Gum

[src] Break with a Banshee by Gilderoy Lockhart
[coCO] Break with the best by the Lockhart
[coPOS] prison-breaking with a banshie by Gilderoy Lockhart

Un-English-Lines

[src] However , they were intercepted and had to do battle in Freeman , close to
 the Hudson River .
[coCO] However , they were able and had to do battle with Freeman , close to the
 Hudson River .
[coPOS] However , they were intercepted and had to do struggle in Freeman , finis to
 the Hudson River .

Un-English-Pud

(11.0)

(10.0)

(0.875)

(0.875)

(2.5)

(2.0)

(1.428)

(0.714)

(0.428)

(0.714)

(0.266)

(0.333)

Figure 6.8: Examples of sentences and worst-case coCO and coPOS perturbations
that are reported in our experiments to highly disrupt the dependency syntax tree
according to Stanza (Qi et al., 2020) (the syntactic distance between the original and
perturbed sentence is shown on the right). We show the original sentence for each
of the 6 CoNLL datasets. For coCO, perturbed words are highlighted in red, and
replacements with empty words (allowed from the vocabulary) are denoted with a
red rectangle . For coPOS, perturbed words are highlighted in blue. Results refer
to the perturbation regime with τ = 3, i.e., where at most three words per sentence
are perturbed.

100

[src] But the report says : The only way sex is sex between uninfected partners .
[coCO] But the report says that The only way sex is sex between uninfected partners .
[coPOS] But the reputation says : The only safe sex is sex between uninfected partners .

En-Universal

[src] A windpipe cell already knows it 's a windpipe cell .
[coCO] A windpipe is a knows it 's a windpipe cell .
[coPOS] A trachea cubicle already knows it 's a windpipe cubicle .

Ted

[src] I loved the atmosphere here and the food is good , however the tables are so
 close together .

[coCO] I loved the atmosphere here . the food is good . however the tables are so
 close together .

[coPOS] I loved the aura here and the nutrient is good , however the tables are so
 close together .

UD-English-Ewt

[src] The purple spheres represent atoms of another element .
[coCO] The purple and gold atoms are another element .
[coPOS] The purple spheres represent atoms of another constituent .

Ud-English-Gum

[src] Can't anyone help you ?
[coCO] Can't anyone else you know
[coPOS] Can't anyone service you ?

Un-English-Lines

[src] Meanwhile , his place in tribune was occupied by Marco Antonio , who held the
 position until December .
[coCO] Meanwhile , his wife in tribune , occupied by Marco Antonio , who held the
 position until December .
[coPOS] Meanwhile , the place in tribune was occupied by the Antonio , who held the
 position until dec. .

Un-English-Pud

(2.0)

(0.0)

(0.272)

 (0.0)

(0.684)

 (0.0)

(0.666)

 (0.0)

(1.0)

(0.0)

(0.473)

(0.157)

Figure 6.9: Examples of linguistically interesting sentences, perturbations, and their
syntactic distances (right), as calculated with Stanza (Qi et al., 2020). We report the
original sentence on top for each of the six CoNLL datasets. For coCO, perturbed
words are highlighted in red, while for coPOS, in blue. Results refer to the perturba-
tion regime with τ = 3, i.e., where at most three words per sentence are perturbed.

101

Glo
Ve

W
or

d2
Ve

c
BE

RT
-L

ay
er

-5
Ro

BE
RT

a-
La

ye
r-5

BE
RT

-L
ay

er
-9

Ro
BE

RT
a-

La
ye

r-9

Glo
Ve

W
or

d2
Ve

c
BE

RT
-L

ay
er

-5
Ro

BE
RT

a-
La

ye
r-5

BE
RT

-L
ay

er
-9

Ro
BE

RT
a-

La
ye

r-9

Glo
Ve

W
or

d2
Ve

c
BE

RT
-L

ay
er

-5
Ro

BE
RT

a-
La

ye
r-5

BE
RT

-L
ay

er
-9

Ro
BE

RT
a-

La
ye

r-9

Structural probe

UUAS Sp Acc.SDR

POS-tag

Pe
rf

o
rm

a
n
ce

Pe
rf

o
rm

a
n
ce

Tree-depth estimation

SpSDR

Pe
rf

o
rm

a
n
ce

Pe
rf

o
rm

a
n
ce

Ro
BE

RT
a-

La
ye

r-9

Acc.

Root identification

Glo
Ve

W
or

d2
Ve

c
BE

RT
-L

ay
er

-5
Ro

BE
RT

a-
La

ye
r-5

BE
RT

-L
ay

er
-9

Ro
BE

RT
a-

La
ye

r-9

Glo
Ve

W
or

d2
Ve

c
BE

RT
-L

ay
er

-5
Ro

BE
RT

a-
La

ye
r-5

BE
RT

-L
ay

er
-9

Glo
Ve

W
or

d2
Ve

c
BE

RT
-L

ay
er

-5
Ro

BE
RT

a-
La

ye
r-5

BE
RT

-L
ay

er
-9

Ro
BE

RT
a-

La
ye

r-9

Figure 6.10: Top two rows: performance of different linguistic representations on syn-
tax reconstruction and POS-tagging probing tasks. Bottom two rows: performance on
root identification (accuracy metric) and tree-depth estimation (SDR and Spearman
metric) probing tasks. For both plots, the performance of the probing tasks is re-
ported as shaded bars, with the performance for the perturbed representation shown
as a solid overlapping bar: the results refer to the case where the coPOS perturbation
budget τ is equal to 3. We distilled BERT and RoBERTa’s representations from the
5th and 9th hidden layers, resulting in the highest performance on both tasks.

102

6.6.1 Experimental Setting

Datasets and metrics. We assess the syntactic robustness of different language

models using syntax reconstruction, POS-tagging, root identification and tree-depth

estimation on six datasets from the Universal Dependencies collection (Nivre et al.,

2016). We chose datasets standardized according to the CONLL format (Hajič et al.,

2009), consisting of sentences split into words, each indexed and annotated with mul-

tiple syntactic information such as POS-tags and the relationship with other words or

tokens. Figure 6.3 reports an example of a sentence in CONLL format: relationship

tags between words and part-of-speech tags produce the ground truth labels for our

probing tasks.

We measure the performance on syntax reconstruction in terms of the ‘undi-

rected unlabeled attachment score‘ (UUAS), i.e., the fraction of edges in the ground

truth syntax tree that is correctly predicted by a model, the ‘same distance ratio‘

(SDR), i.e., the number of times a model correctly guesses the distance between each

pair of words in the ground truth syntax tree, and the Spearman correlation (used

in (Manning et al., 2020)), which summarizes the strength of the relationship between

the matrix representation of the original vs. reconstructed syntax tree. Regarding

POS-tagging, we evaluate a model in terms of the accuracy of estimating the correct

POS-tag as shown in Figure 6.10 (top). On root identification (see Def. 7) we use the

accuracy of correct vs. wrong estimates, while on tree-depth estimation (Def. 8), we

use the SDR, along with the Spearman correlation, so as not to penalize too many

models that do not infer the label precisely.

Syntactic robustness (Def. 12) is measured in terms of the drop in the performance

of a model when targeted with a coPOS or a coCO perturbation, e.g., ∆UUAS rep-

resents the drop of the UUAS metric on the syntax robustness task, comparing the

performance of the original sentence with its perturbed version. Regarding POS tags,

we convert the drop of accuracy into the more intuitive difference between words cor-

rectly guessed on the original sentence compared to its perturbed version, denoted

‘# Words Adv’ in Tables 6.1, 6.2, and 6.3.

Models and probing tasks. We perform our analyses on four linguistic represen-

tations, of which two are context-free, namely GloVe (Pennington et al., 2014b) and

Word2Vec (Mikolov et al., 2013), and two context-dependent, namely, BERT (Devlin

et al., 2019a) and RoBERTa (Liu et al., 2019). As LLMs employ deep attention-based

architectures, we perform experiments on sentences distilled from the −5th (i.e., the

103

6.1.1 Robustness

Syntax Reconstruction POS-tagging
∆SDR ∆UUAS ∆Sp ∆Acc. (# words)

GloVe 0.2066± 0.1243 0.2444± 0.1298 0.0062± 0.0032 6.4897± 3.0856
Word2Vec 0.1553± 0.1161 0.1145± 0.1004 0.0052± 0.0048 6.831± 2.2698
BERT layer -1 0.2011± 0.0784 0.1607± 0.0835 0.0032± 0.0077 3.0803± 2.9857
RoBERTa layer -1 0.193± 0.0808 0.1752± 0.1117 0.0019± 0.0039 4.1293± 3.3021
BERT layer -5 0.2287± 0.0817 0.2451± 0.1212 0.005± 0.003 3.243± 3.0814
RoBERTa layer -5 0.2038± 0.0758 0.2086± 0.1052 0.0024± 0.0379 3.0607± 3.0132
BERT layer -9 0.2307± 0.0838 0.281± 0.1142 0.0035± 0.0037 3.544± 3.2826
RoBERTa layer -9 0.2045± 0.0763 0.2148± 0.1116 0.0017± 0.0023 3.4723± 3.1265

6.1.2 Robustness

Root Identification Tree Depth Estimation
∆Acc. ∆Acc. ∆Sp

GloVe 0.4387± 0.1953 0.2663± 0.235 0.0174± 0.0189
Word2Vec 0.5251± 0.1123 0.2582± 0.2712 0.0093± 0.0285
BERT layer -1 0.5015± 0.2135 0.3495± 0.2139 0.0209± 0.0159
RoBERTa layer -1 0.5286± 0.1661 0.3193± 0.2348 0.0261± 0.0126
BERT layer -5 0.6039± 0.1383 0.3314± 0.2401 0.0086± 0.0158
RoBERTa layer -5 0.5211± 0.168 0.2829± 0.2524 −0.0062± 0.0379
BERT layer -9 0.612± 0.1216 0.3256± 0.2423 0.0159± 0.018
RoBERTa layer -9 0.5151± 0.1773 0.3312± 0.2365 −0.0002± 0.0222

6.1.3 Distance/Similarity Metrics

ℓ2-norm distance Cosine similarity
GloVe 0.023± 0.0032 0.9352± 0.0132
Word2Vec 0.0038± 0.0005 0.9231± 0.0161
BERT layer -1 0.0299± 0.0036 0.8994± 0.0221
RoBERTa layer -1 0.0103± 0.0013 0.9835± 0.0039
BERT layer -5 0.0388± 0.0045 0.926± 0.0196
RoBERTa layer -5 0.0259± 0.0032 0.9764± 0.0059
BERT layer -9 0.0377± 0.0045 0.9296± 0.0186
RoBERTa layer -9 0.0188± 0.0018 0.9843± 0.0026

Table 6.1: Relationship between the syntactic robustness metrics for four probing
tasks on coPOS perturbations with budget τ = 2 (top and middle row) and the
distance between pairs of perturbed and original inputs measured via cosine simi-
larity and ℓ2-norm distance (bottom row). The accuracy drop of the POS-tag task
is reported as the number of words correctly guessed in both cases. The reported
standard deviation is measured by averaging over the 6 training corpora. Whilst the
distance (similarity) between inputs and perturbations is low (high), we observe that
all embeddings/representations are brittle to syntax-preserving perturbations.

104

6.2.1 Robustness

Syntax Reconstruction POS-tagging
∆SDR ∆UUAS ∆Sp ∆Acc. (# words)

GloVe 0.2098± 0.124 0.2616± 0.1411 0.139± 0.0106 6.743± 3.0337
Word2Vec 0.1655± 0.1114 0.1232± 0.1014 0.0118± 0.014 7.071± 2.1687
BERT layer -1 0.208± 0.0773 0.1782± 0.0862 0.0285± 0.0177 3.1592± 3.0359
RoBERTa layer -1 0.1989± 0.0823 0.1951± 0.116 0.02± 0.0146 4.2887± 3.3774
BERT layer -5 0.235± 0.082 0.267± 0.1293 0.0261± 0.0191 3.286± 3.1258
RoBERTa layer -5 0.2093± 0.0767 0.2319± 0.1117 0.0133± 0.0126 4.2887± 3.3774
BERT layer -9 0.235± 0.0859 0.2988± 0.154 0.0162± 0.0135 3.613± 3.3219
RoBERTa layer -9 0.2109± 0.0774 0.2378± 0.1227 0.0135± 0.012 3.561± 3.205

6.2.2 Robustness

Root Identification Tree Depth Estimation
∆Acc. ∆Acc. ∆Sp

GloVe 0.4987± 0.1827 0.293, 0.2024 0.0417, 0.0134
Word2Vec 0.5785± 0.1462 0.2915, 0.2444 0.0174, 0.0184
BERT layer -1 0.5526± 0.202 0.3863, 0.2054 0.0838, 0.0494
RoBERTa layer -1 0.5449± 0.1804 0.3567, 0.2166 0.0993, 0.0531
BERT layer -5 0.6374± 0.1483 0.3937, 0.2247 0.0633, 0.0374
RoBERTa layer -5 0.5448± 0.1735 0.3267, 0.2338 0.0672, 0.0215
BERT layer -9 0.6293± 0.1408 0.3726, 0.2217 0.054, 0.0512
RoBERTa layer -9 0.549± 0.1786 0.3613, 0.2317 0.0471, 0.0326

6.2.3 Distance/Similarity Metrics

ℓ2-norm distance Cosine similarity
GloVe 0.0344± 0.0018 0.8783± 0.0271
Word2Vec 0.0059± 0.0002 0.8572± 0.0331
BERT layer -1 0.0487± 0.0063 0.7951± 0.0433
RoBERTa layer -1 0.0195± 0.0016 0.9597± 0.0064
BERT layer -5 0.0652± 0.0058 0.8432± 0.0316
RoBERTa layer -5 0.0488± 0.0037 0.9416± 0.0102
BERT layer -9 0.058± 0.004 0.8768± 0.0173
RoBERTa layer -9 0.0373± 0.0024 0.9557± 0.0057

Table 6.2: Relationship between the syntactic robustness metrics for four probing
tasks on coCO perturbations with budget τ = 2 (top and middle row) and the dis-
tance between pairs of perturbed and original inputs measured via cosine similarity
and ℓ2-norm distance (bottom row). The reported standard deviation is measured
by averaging over the 6 training corpora. The accuracy drop of the POS-tag task is
reported as the number of words correctly guessed in both cases. Whilst the distance
(similarity) between inputs and perturbations is low (high), we observe that all em-
beddings/representations are brittle to syntax-preserving perturbations.

105

fifth counting from the most external), the −9th and the last (i.e., −1th or the out-

put) hidden layer of a representation. While in (Manning et al., 2020) researchers

observed that the most hidden layers perform the best on syntactic tasks, we also

provide results for an intermediate and the last hidden layer.

For each probing task (in our setting, syntax reconstruction, POS-tagging, root

identification, and tree-depth estimation, as per Def. 5, 6, 7 and 8), we stack a deep

neural network on top of a linguistic representation ψθ, thus obtaining a set of models

{f1(s), .., fm(s)}: we optimize each model fi via supervised learning on the i-th task

Ti, leaving the representation’s parameters θ fixed. We note that the measures of

performance {L1, ..,Lm} vary from one probing task to another, as we detail in the

experimental evaluation.

When training the probing task models, we searched for a typical architecture that

performs well for each of the four language models. We tested FCs, CNNs, and RNNs

and found that FCs probing models performed best across the language models. For

each combination of datasets, probing tasks, models, perturbation methods (coPOS,

coCO), and for a varying perturbation budget τ , we train a 3-layer deep FC network

with a varying number of parameters in the order of 10M. In this sense, both the

static and dynamic representations are kept fixed (i.e., their parameters are ‘frozen’

at training time) not to invalidate the scope of the probing tasks and to allow full

reproducibility of the results.

6.6.2 Empirical Evaluation of Syntactic Robustness

We now report the results of our robustness evaluation; in particular, we quantify the

syntactic robustness of the representation ψθ according to Def. 12.

Performance on probing tasks. In Figure 6.10, we observe that, across the struc-

tural probe task and the POS-tag, all the models have similar performances, with an

average POS-tag accuracy of around 0.8 and syntax reconstruction SDR around 0.7.

Of the context-dependent language models, RoBERTa and BERT are comparable,

although we cannot definitively conclude which is better. Similarly, GloVe slightly

outperforms Word2Vec on tree-depth estimation, while Word2Vec is better on the

structural probe. Interestingly, word embeddings are only slightly worse than BERT

and RoBERTa. The same trends emerge on root identification and tree-depth esti-

mation, as shown in Figure 6.10 (bottom): while BERT generally outperforms the

competitors and Word2Vec struggles to compete, GloVe is a competitor of both the

language models. We conclude with a final remark on the lack of performance gap

106

ℓ2 norm Structural Probe Cosine Similarity POS-tag

Perturbation Budget Perturbation Budget Perturbation Budget Perturbation Budget

A
cc

u
ra

cy
 d

ro
p

A
cc

u
ra

cy
 d

ro
p

Figure 6.11: Left: For an increasing perturbation budget τ and the coPOS method,
cosine similarity between perturbed and original sentences drops while the ℓ2-norm
increases. Right: It is clear that, even with τ = 2 (i.e., at most two words per
sentence are perturbed), the models’ performance already experiences a significant
drop (the higher the curve, the worse the model is on a syntactic task). Increasing
the perturbation budget only slightly increases a drop in robustness.

between GloVe and Word2Vec, as it suggests that pre-training a representation on lo-

cal and global word co-occurrences (Pennington et al., 2014b) does not help syntactic

structures to emerge, a controversial yet intriguing discovery.1

Robustness on probing tasks. In Figure 6.10, solid bars represent the perfor-

mance of a trained model subjected to a coPOS perturbation under the perturbation

budget of τ = 3: in other words, we generate an approximate worst-case coPOS per-

turbation given that we can only change at most three words in the given sentence.

The drop in performance of a model on a task can be inferred via the gap between

the solid and shaded bars (the latter corresponding to the unperturbed sentence). We

notice that each metric has a substantial drop in performance, which suggests that

each language model represents a brittle understanding of syntactic concepts.

In particular, in the syntax reconstruction task (Figure 6.10, top), we notice a

dramatic decrease in UUAS of more than 50% on any task and any model, while the

SDR drop is of around 20 − 30%. Thus, for each language model and dataset, the

syntax reconstruction task is now incorrect more often than it is correct.

For UUAS, this indicates that our coPOS scheme can find syntactically meaningful

perturbations which reduce the model’s performance to random guessing. Secondly,

1http://languagelog.ldc.upenn.edu/myl/PinkerChomskyMIT.html

107

http://languagelog.ldc.upenn.edu/myl/PinkerChomskyMIT.html

we highlight that, for UUAS and SDR, the most significant decrease in performance

comes for the datasets for which the performance was the highest. This indicates

that robust representation of syntax may be at odds with performance. The same

considerations are valid for the POS-tag probing task, with the accuracy that drops to

a random guess with the perturbation budget τ equal to 1. The coPOS perturbation

method degrades the performance on root identification and tree-depth estimation as

much as in the previous tasks. Performances drop to a random guess on any task and

for any representation, providing evidence that these representations are brittle and,

thus, not suited to domain shifts.

On the correlation between robustness and sentence similarity. In this

batch of experiments, we keep track of the farthest distance between an input and

its coPOS perturbation (see Def. 11) using the ℓ2-norm and the cosine similarity be-

tween each pair of input/perturbation. We then measure the performance drop of each

model to assess any correlation with the abovementioned measures of distance/sim-

ilarity. As reported in Table 6.1, we find that high drops in performance can be

caused by perturbations with small ℓ2-norm compared to the unperturbed sentence,

and conversely high cosine similarity. This confirms that linguistic representations are

remarkably brittle even to local perturbations, i.e., those whose representation lies in

the proximity of the original input. We replicate the results using the coCO pertur-

bation method (Table 6.2), which confirms that perturbations extracted via GPT-2

conditioning are farther than the coPOS in the representation space and equally ef-

fective at dismantling a model’s robustness. Similar observations can be made with

the baseline perturbation method, as reported in Table 6.3.

Varying the perturbation budget. While we have already shown that a small

perturbation budget τ exposes a representation to effective performance-degrading

attacks, we now investigate the relationship between the distance/similarity metrics

and robustness concerning various coPOS perturbations. In Figure 6.11, the cosine

similarity and the ℓ2-norm behave monotonically as τ increases. Deeper LLM’s layers

are less affected by an increased perturbation budget, with BERT less prone than

RoBERTa to maintaining the internal consistency of its representation of the original

and perturbed sentences (Figure 6.11, top-left). In word embeddings (Figure 6.11,

bottom-left), while the trends of cosine similarity between GloVe and Word2Vec are

similar, the ℓ2-norm of Word2Vec does not change as much as for GloVe, a sign that

in this representation words lie very close to each other w.r.t. the Euclidean distance.

108

6.3.1 Robustness

Syntax Reconstruction POS-tagging
∆SDR ∆UUAS ∆Sp ∆Acc. (# words)

GloVe 0.2087± 0.123 0.2822± 0.1498 0.0545± 0.0097 6.583± 2.9971
Word2Vec 0.161± 0.1137 0.139± 0.0996 0.035± 0.0079 6.8977± 2.2552
BERT layer -1 0.208± 0.0803 0.1787± 0.0827 0.0289± 0.0156 3.1208± 3.0138
RoBERTa layer -1 0.2026± 0.0805 0.1954± 0.1129 0.013± 0.0154 4.2408± 3.3794
BERT layer -5 0.2395± 0.0804 0.2599± 0.1287 0.023± 0.0196 3.289± 3.1118
RoBERTa layer -5 0.2123± 0.0764 0.2303± 0.1094 0.0137± 0.0098 3.1448± 3.1161
BERT layer -9 0.2345± 0.0938 0.2828± 0.162 0.0204± 0.0126 3.6504± 3.7005
RoBERTa layer -9 0.2151± 0.0773 0.2372± 0.1189 0.009± 0.0106 3.568± 3.2097

6.3.2 Robustness

Root Identification Tree Depth Estimation
∆Acc. ∆Acc. ∆Sp

GloVe 0.4853± 0.1776 0.2796± 0.2265 −0.0108± 0.1222
Word2Vec 0.6118± 0.1342 0.3115± 0.2495 0.0407± 0.0156
BERT layer -1 0.5466± 0.2041 0.3883± 0.2186 0.103± 0.0784
RoBERTa layer -1 0.5557± 0.1783 0.3586± 0.2312 0.0818± 0.0306
BERT layer -5 0.6466± 0.1421 0.3896± 0.2246 0.0317± 0.0575
RoBERTa layer -5 0.5464± 0.1778 0.3252± 0.2351 0.0225± 0.0704
BERT layer -9 0.6462± 0.1392 0.3927± 0.2461 0.0314± 0.0464
RoBERTa layer -9 0.5563± 0.1834 0.3485± 0.2493 0.0344± 0.046

6.3.3 Distance/Similarity Metrics

ℓ2-norm distance Cosine similarity
GloVe 0.0427± 0.001 0.8156± 0.0391
Word2Vec 0.0059± 0.0002 0.8606± 0.0184
BERT layer -1 0.0538± 0.0052 0.7401± 0.0418
RoBERTa layer -1 0.0211± 0.0014 0.9519± 0.006
BERT layer -5 0.0731± 0.0041 0.8059± 0.0299
RoBERTa layer -5 0.0539± 0.004 0.9302± 0.0122
BERT layer -9 0.0669± 0.0035 0.8382± 0.0199
RoBERTa layer -9 0.0375± 0.0021 0.9553± 0.0051

Table 6.3: Relationship between the syntactic robustness metrics for four linear prob-
ing tasks on baseline perturbations with budget τ = 2 (top and middle row) and the
distance between pairs of perturbed and original inputs measured via cosine simi-
larity and ℓ2-norm distance (bottom row). The accuracy drop of the POS-tag task
is reported as the number of words correctly guessed in both cases. The reported
standard deviation is measured by averaging over the six training corpora. While
the distance (similarity) between inputs and perturbations is low (high), all embed-
dings/representations are brittle to syntax-preserving perturbations.

109

training epochs

Fine-tuning task dataset: SST-2

loss (train)
loss (validation)

training epochs

Metrics: Training/Validation Loss, Training/Validation Accuracy

Structures Collapse on Fine-tuning BERT

 Robustness Metrics: UUAS, Same Distance Ratio (SDR)

Structural-probe dataset: TED Dataset

Figure 6.12: BERT model fine-tuned (and finally, overfitted) on the SST dataset,
while its representations are used to train a model to solve the structural probe task.
Train and validation losses (left) and accuracies (right) pertain to the fine-tuning
task (SST), while SDR and UUAS show the performance of the structural probe.
The syntactic metrics degrade as the fine-tuning process proceeds, yet severe over-
fitting does not harm syntactic structures.

Regarding performance drop (Figure 6.11, right), static and dynamic representations

are comparable. The distance between representations, the performance drop on

the coPOS, and the baseline method are reported in Figures 6.13 and 6.14. Results

concerning both the perturbation methods are similar to those obtained with the

coPOS method. In this case, we do not expect a model to be syntactically robust to

such perturbation schemes.

An interesting phenomenon is the drop in performance that occurs when the

number of perturbations is strictly greater than one (τ > 1). Interestingly, such a

drop does not correspond to a drop in the linguistic similarity between sentences

(i.e., the ℓ2-norm and the cosine similarity between input-perturbation pairs), a sign

that brittleness is not immediately relatable to the distance, or conversely, the lack

of similarity, of sentences in their embedding representations.

The effect of fine-tuning and overfitting on syntactic structures. We fi-

nally conduct an analysis whose primary intent is to understand the effect of counter-

fitting (Mrkšić et al., 2016) and fine-tuning on syntactic structures, respectively, for

context-free and context-dependent representations. We train a counter-fitted version

of GloVe. We observe and report in Table 6.4 that any metric of a counter-fitted model

has inferior performance on any task and any dataset while being equally brittle to

coPOS perturbations, thus limiting the utility of counter-fitting on models aimed at

110

ℓ2 norm Structural Probe Cosine Similarity POS-tag

A
cc

u
ra

cy
 d

ro
p

A
cc

u
ra

cy
 d

ro
p

Perturbation Budget Perturbation Budget Perturbation Budget Perturbation Budget

Figure 6.13: Left: for an increasing perturbation budget τ and the coCO method,
cosine similarity between perturbed and original sentences drops, while the ℓ2-norm
increases. Right: It is clear that, even with τ = 2 (i.e., at most two words per
sentence are perturbed), the models’ performance already experiences a significant
drop (the higher the curve, the worse the model is on a syntactic task). Increasing
the perturbation budget does not lead to a significant drop in robustness.

C
o
si

n
e
 S

im
ila

ri
ty

ℓ2 norm Structural Probe Cosine Similarity POS-tag

A
cc

u
ra

cy
 d

ro
p

A
cc

u
ra

cy
 d

ro
p

Perturbation Budget Perturbation Budget Perturbation Budget Perturbation Budget

Figure 6.14: Left: For an increasing perturbation budget τ and the baseline method,
cosine similarity between perturbed and original sentences drops, while the ℓ2-norm
increases. Right: It is clear that, even with τ = 2 (i.e., at most two words per
sentence are perturbed), the models’ performance already experiences a significant
drop (the higher the curve, the worse the model is on a syntactic task). Increasing
the perturbation budget does not lead to a significant drop in robustness.

111

capturing different aspects of human linguistics: performance and robustness are in

line with those of standard GloVe embedding (i.e., Table 6.1 and Figure 6.10).

We also fine-tune, and finally overfit, a BERT-based representation on the SST-2

dataset (Socher et al., 2013a): differently from previous experiments; we update the

weights of the language model (i.e., we do not keep them frozen) to investigate the

existence of some form of catastrophic forgetting of the syntactic structures encoded

in the model. By performing the robustness analysis introduced in this chapter, we

observe that fine-tuning negatively affects the performance of both shallow and deep

context-dependent representations; despite this, excessive fine-tuning is not signif-

icantly harmful as the performance does not collapse even after many epochs the

model has overfitted on the training set. The task’s validation loss is informative to

prevent overfitting on the structural probe task, while accuracy on the fine-tuning

task can be misleading and hide syntax collapse. We sketch the training dynamics,

along with the accuracy of the model on the classification task and the structural

probe metrics, in Figure 6.12.

Justification for the linguistic structures collapse. In light of the empirical ev-

idence in this chapter, we conclude with some hypotheses on why high performances of

linguistic representations, whether LLMs or standard word embeddings, come at the

cost of brittleness on high-order syntactic tasks. Indeed, the robustness-performance

trade-off accounts for the frailty of over-fitted probes (Madry et al., 2018). On the

other hand, the absence stricto sensu of adversarial attacks, replaced by coPOS and

coCO perturbations, forces us to second-guess the existence of such structures. In

high-dimensional spaces, vectors (i.e., words) become progressively harder to distin-

guish. At the same time, the high dimensionality allows one to optimize a decision

boundary that is overfitted on the training set but fails poorly on slight input vari-

ations. The hypothesis that we put forward in this chapter, to stimulate discussion

among NLP researchers as well as linguists, is that linguistic structures emerge as

a process of fitting between static sentences and their syntax trees, granted by rich

linguistic representations which nonetheless collapse as soon as the input distribution

allows for word substitution, a shift against which human linguistic structures are

indeed highly robust.

112

6.4.1 Robustness

Syntax Reconstruction POS-tagging
∆SDR ∆UUAS ∆Sp ∆Acc. (# words)

TED 0.167 0.0872 0.0011 4.470
En-Universal 0.2360 0.29931 0.0056 9.456
Ud-English-ewt 0.1463 0.3124 0.0.106 6.951
Ud-English-gum 0.1678 0.3252 0.0025 3.253
Ud-English-lines 0.2599 0.2981 0.0022 7.402
Ud-English-pud 0.0574 0.0.0612 0.0010 5.746

6.4.2 Robustness

Root Identification Tree Depth Estimation
∆Acc. ∆Acc. ∆Sp

TED 0.3753 0.0727 0.0165
En-Universal 0.5288 0.2215 −0.0011
Ud-English-ewt 0.816 0.7751 0.0102
Ud-English-gum 0.389 0.3065 0.0028
Ud-English-lines 0.4493 0.314 0.0037
Ud-English-pud 0.3894 0.2583 −0.0189

6.4.3 Distance/Similarity Metrics

Cosine similarity ℓ2-norm distance
TED 0.881 0.006
En-Universal ≈ 1. 0.0033
Ud-English-ewt 0.9295 0.005
Ud-English-gum ≈ 1. 0.005
Ud-English-lines ≈ 1. 0.0058
Ud-English-pud 0.881 0.0058

Table 6.4: Robustness of GloVe counter-fitted models, with an analysis, w.r.t. each
dataset (one per row), of the relationship between the syntactic robustness metrics
for coCO perturbations with budget τ = 2 (top and middle) and the distance be-
tween pairs of perturbations and original inputs (bottom). The accuracy drop of
the POS-tag task is reported in number of words correctly guessed. Results confirm
that counter-fitting does not improve robustness at any level (in this case, syntactic
robustness).

113

6.7 Conclusions

In this chapter, we have examined the concept of syntactic robustness in linguistic

representations. Robustness is a highly desirable characteristic for models of this

nature, as such models have been reported to represent, with high fidelity, complex

structures that researchers believed belong to the realm of linguistics rather than NLP

models; however, we have demonstrated the potential risk associated with assuming

their inherent robustness without sufficient scrutiny. Through empirical analysis, we

have provided evidence of the substantial fragility exhibited by both LLMs and word

embeddings when subjected to restrained perturbations using the coPOS and coCO

methods. We have also investigated the robustness dynamics concerning overfitting

and counter-fitting to complement these findings.

In the next chapter, we describe how robustness can enhance the explainability of

an NLP model through the concept of optimal robust explanation (ORE).

114

Chapter 7

Robust Explainability

In this chapter, which concludes this thesis, we investigate the relationship between

robustness and explainability. It is desirable to develop explainability methods that

provide sound guarantees on the decision of a neural network model. Standard ap-

proaches, such as LIME and Anchors, could produce explanations whose constituent

features differ from those that enhance the robustness and can thus be targeted by

adversarial manipulations.

We introduce a notion of explanation that comes with robustness guarantees and

optimality w.r.t. a cost function, which allows one, for example, to distill the shortest

subset of features that logically imply a model’s decision. In short, in this chapter,

we make the following contributions:

• We define the concept of Optimal Robust Explanation (ORE) for NLP models as

an explanation sufficient to preserve the model’s decision while being optimal

w.r.t. a cost function (e.g., the minimal in length). We provide a solution

algorithm to extract such explanations from neural network models. We also

show how OREs relate to Anchors (Ribeiro et al., 2018a) in terms of metrics

optimized by the explanation.

• We show how OREs can be used to detect biases in a model and how to ‘adjust’

the explanation of a non-robust classifier by minimally enlarging its output with

robust features.

• We conduct an experimental evaluation on different datasets and sentiment

analysis models, which shows that OREs are compact and often identify terms

in line with human expectation, alongside biases and spurious terms, which help

to debug their complex internal.

115

We begin the study with two motivating examples, which show that standard

(NLP) explainers can output explanations that are not locally consistent in the sense

that a small perturbation of the features not included in the explanations induces

a model’s misclassification. We then provide a formal introduction to Optimal Ro-

bust Explanations, a notion of explanation meant to be locally robust and, at the

same time, optimal w.r.t. a cost function. Such a notion extends abductive explana-

tions (Ignatiev et al., 2018) to NNs. It is computationally challenging to calculate:

we thus provide an algorithm to extract an ORE from NNs trained on standard NLP

tasks such as sentiment analysis, improving the convergence on challenging instances

and long input texts via heuristics that exploit adversarial attacks. OREs can be

further used to check whether a model is biased, i.e., it leverages spurious patterns

to solve a task and makes existing explainers robust by minimally extending their

outputs with robust features.

Finally, after illustrating how ORE explanations compare to those obtained via

Anchors in terms of precision and coverage (ref. Chapter 2/Section 2.3.3.1), we

conclude the chapter with an extensive experimental evaluation where we extract

OREs for FC and CNN models on different sentiment analysis tasks.

This chapter first appeared as (La Malfa et al., 2020), where additional results are

reported.

7.1 On the Necessity of Guaranteed Explanations

Explainability in NLP focuses on understanding and interpreting the decision-making

processes of complex models, enabling transparency and trustworthiness in their out-

comes. One common way to approach explainability is via post-hoc explainers, as

introduced in Section 3.3, a wide variety of techniques that partition the input fea-

tures into subsets, guided by their influence on a model’s classification.

On the other hand, salient features, i.e., those that influence the classification

the most, can differ from those that enable robustness, thus exposing a model to an

inconsistency between an explanation and its reliability against (adversarial) attacks.

We show that a lower-bound measure of the robustness of a model can be used to

perform interpretability analysis on a given text, that is, to quantify a robustness-

based importance score of each word in the text.

For each word of a given text, one can compute the lower bound of the MSR as

introduced in Chapter 4 and use this as a measure of its saliency, where small values

of MSR indicate that minor perturbations of that word can significantly influence the

116

Figure 7.1: Interpretability comparison of our framework with LIME. (a) Saliency
map produced with CNN-Cert (top) and LIME (bottom) on IMDB (GloVeTwitter
25d embedding). (b) Saliency map produced with POPQORN (top) and LIME (bot-
tom) on NEWS dataset (GloVe 100d embedding).

classification outcome. We use the above measure to compute saliency maps for both

CNNs and LSTMs, and compare our results with those obtained by LIME, which

assigns saliency to input features according to the best linear model that locally

explains the decision boundary. This method has the advantage of being able to

account for non-linearities in the decision boundary that a local approach such as

LIME cannot handle, albeit at the cost of higher computational complexity (a similar

point was made in (Blaas et al., 2020) for Gaussian processes). As a result, we show

words that our framework views as important but LIME does not, and vice versa.

In Figure 7.1, we report two examples, one for an IMDB positive review (Figure 7.1

(a)) and another from the NEWS dataset classified using an LTSM (Figure 7.1 (b)).

In Figure 7.1 (a) our approach finds that the word ‘many’ is salient, i.e., slightly

117

perturbing it, can make the NN change the review class to negative. In contrast,

LIME does not identify ‘many’ as significant. In order to verify this result empirically,

we run our MCTS algorithm and find that simply substituting ‘many’ with ‘worst’

changes the classification to ‘negative’. Similarly, for Figure 7.1 (b), where the input

is assigned to class 5 (‘health’), perturbing the punctuation mark (‘:’) may alter

the classification, whereas LIME does not recognize its saliency.

One could argue that LIME has yet to be developed to work with NLP models, as

it solves an optimization problem by sampling in the embedding space (as described in

Section 2.3.3.1). Unfortunately, even NLP-specific explainers suffer from brittleness

to local perturbations of an input. Consider an NN that solves a sentiment analysis

task, thus distinguishing between texts with positive and negative semantics (e.g.,

movie reviews). While explainers such as Anchors can provide helpful introspection

of a model’s behavior by highlighting positively/negatively polarized features, such

explanations lack robustness guarantees. As shown in Figure 7.2, the left-out features

of an Anchors explanation (middle) can be manipulated to induce a misclassification

of the model. Note that the attacks are conducted in the neighborhood of each input

word and are thus local.

Our contribution thus consists of a notion of an explanation that comes with local

robustness guarantees, in addition to optimality concerning a cost function that, for

example, one can use to distill the shortest explanations (i.e., those that encompass

the minimal number of words): examples of shortest robust explanations from the

SST dataset are shown in Figure 7.2 (left).

7.2 Optimal Robust Explanations

In this section, we seek to provide a formal definition for local explanations for the

predictions of a neural network NLP model. For a text embedding x = ψ(s) and a

prediction f(x), a local explanation E is a subset of the features of s, i.e., E ⊆ F where

F = {w1, . . . , wl}, expressed in terms of word constituents of the input sentence.

Our contribution consists of deriving robust explanations, i.e., on extracting a

subset E of the text features F , which ensures that the neural network prediction

remains invariant for any perturbation of the other features F \E. Thus, the features

in a robust explanation are sufficient to imply the prediction that we aim to explain,

a desirable feature for a local explanation. In particular, we focus on robust expla-

nations w.r.t. bounded perturbations in the embedding space of the input text, i.e.,

locally robust.

118

CounterexampleLIME/Anchors Explanations

At least one scene is so
disgusting that viewers [...]

The film might just turn on
many people to opera [...]

The gorgeously elaborate
continuation of the Lord of
the Rings [...]

It is a satisfying summer
blockbusterand worth a look.

At least one scene is so
disgusting that viewers [...]

The film might just turn on
many people to opera [...]

The gorgeously elaborate
continuation of the Lord of
the Rings [...]

It is a satisfying summer
blockbusterand worth a look.

ε = 0.01

irritating

boring

ε = 0.01

ε = 0.05

ε = 0.1

ε-radius ℓ2-norm

Figure 7.2: Input texts are presented, accompanied by explanations generated using
the LIME and Anchors methods. The text within the explanations is highlighted in
blue and green, respectively, and the corresponding features are enclosed in boxes of
matching colors. When the excluded features in the explanations become targets of
attacks, both methods are susceptible to bounded perturbations (where the bound is
calculated based on the ℓ2-norm). Attacks against LIME are indicated in orange, as
they cannot be traced back to specific words in the embedding dictionary. Attacks
against Anchors are shown in red, along with a discrete replacement that leads to
misclassification.

Definition 13 (Left-out knn-Ball). For some word-level perturbations contained in

a knn-Ball (see Def. 2.25), a set of features E ⊆ F , and input text s with embedding

(x1, . . . , xl), we denote with BE(s) the set of text-level perturbations obtained from s

by keeping constant the features in E and perturbing the others according to B:

BE(s) = {(x′1, . . . , x′l) ∈ Rl·d | x′w = xw if w ∈ E;

x′w ∈ knn-Ball(w) otherwise}.
(7.1)

A robust explanation E ⊆ F ensures prediction invariance for any point in BE(s),

i.e., any perturbation (within B) of the features in F \ E.

Definition 14 (Robust Explanation). For a text s = (w1, . . . , wl) with linguistic

representation x = ψ(s), word-level perturbation B, and classifier f , a subset E ⊆ F

of the features of s is a robust explanation iff

∀x′ ∈ BE(t). f(x′) = f(x). (7.2)

We denote (7.2) with predicate Robf,x(E).

While robustness is desirable, stronger characteristics are needed to produce valu-

able explanations. Indeed, we can see that an explanation E including all the features,

i.e., E = F , trivially satisfies Definition 14. Typically, one seeks short explanations

119

because these can generalize to several instances beyond the input x and are more ac-

cessible for human decision-makers to interpret. We thus introduce Optimal Robust

Explanations (OREs), that is, explanations that are both robust and optimal w.r.t.

an arbitrary cost function that assigns a penalty to each word.

Definition 15 (Optimal Robust Explanation). Given a cost function C : W → R+,

and for s = (w1, . . . , wl), x, B, and f as in Def. 14, a subset E∗ ⊆ F of the features

of s is an ORE iff

E∗ ∈ argmin
E⊆F

∑
w∈E

C(w) s.t. Robf,x(E). (7.3)

Note that (7.3) is always feasible because its feasible set always includes at least

the trivial explanation E = F . A particular case of our OREs is when C is uniform

(it assigns uniform cost to all words in s), in which case E∗ is (one of) the robust

explanations of smallest size, i.e., with the least number of words. On the other

hand, cost functions that weigh each word differently allow ignoring and/or giving

importance to specific inputs: one can, for example, assign a uniform cost function

to a sentence while forcing the ORE to ignore the padding tokens by assigning them

a very high cost.

7.2.1 Relation to Anchors

We now characterize an ORE in terms of the metrics that Anchors optimizes, namely

precision and coverage, which we discussed in Section 2.3.3.1.

OREs precision. As discussed previously, precision is the probability that the pre-

diction is invariant for any perturbation x′ to which explanation A applies. To discuss

the relation between Anchors and OREs, for an input text s, consider an arbitrary

distribution D with support in B∅(s) (the set of all possible text-level perturbations),

see (7.1); and consider anchors A defined as subsets E of the input features F , i.e.,

AE(x) =
∧
w∈E xw = ψ(w). Then, our OREs enjoy the following properties.

Proposition. If E is a robust explanation, then prec(AE) = 1.

Proof. A robust explanation E ⊆ F guarantees prediction invariance for any x′ ∈
BE(s), i.e., for any x′ (in the support of D) to which anchor AE applies.

120

OREs coverage. cov(A) is the probability that explanation A applies to a pertur-

bation. With that being said, we note that when D is continuous, cov(AE) is always

zero unless E = ∅, in which case cov(A∅) = 1 (as A∅ = true). Indeed, for E ̸= ∅, the

set {x′ | AE(x′)} has |E| fewer degrees of freedom than the support of D, and thus

has both measure and coverage equal to zero. We thus illustrate the next property

assuming that D is discrete (when D is continuous, the following still applies to any

empirical approximation of D).

Proposition. If E ⊆ E ′, then cov(AE) ≥ cov(AE′).

Proof. For discrete D with pmf pD, we can express cov(AE) as

cov(AE) =
∑

x′∈supp(D)

pD(x′) · 1AE(x′) =
∑

x′∈supp(D)

pD(x′) ·
∏
w∈E

1x′w=ψ(w).

To see that, for E ′ ⊇ E, cov(AE′) ≤ cov(AE), observe that cov(AE′) can be expressed

as

cov(AE′) =
∑

x′∈supp(D)

pD(x′) ·
∏
w∈E′

1x′w=ψ(w) =

∑
x′∈supp(D)

pD(x′) ·
∏
w∈E

1x′w=ψ(w) ·
∏

w∈E\E′

1x′w=ψ(w),

and that for any x′,
∏

w∈E\E′ 1x′w=ψ(w) ≤ 1.

The above proposition suggests that using a uniform C, i.e., minimizing the ex-

planation’s length is a sensible strategy to obtain high-coverage OREs.

7.3 Extracting OREs

We present a solution algorithm to derive OREs, based on the hitting-set (HS)

paradigm of (Ignatiev et al., 2019c): we will rely on a few standard notions from

first-order logic. The algorithm depends on repeated entailment/robustness checks

B ∧ E ∧ Net |= ŷ for a candidate explanation E ⊂ C, where C is a cube, i.e., the

equivalent representation of an explanation as a conjunction of literals in first-order

logic, B the first-order logic specification of BE as per Eq. 7.1, and Net the logi-

cal encoding of the classifier (or equivalently, any classification algorithm). For this

check, we employ Marabou (Katz et al., 2019a), a state-of-the-art neural network

verification tool, which gives provably correct answers and, when the entailment is

not satisfied, produces a counter-example x′ ∈ BE(s), i.e., a perturbation that agrees

with E and such that B ∧ C ′ ∧ Net ̸|= ŷ, where C ′ is the cube representing x′. We

121

now outline the algorithm. We first provide the rationale behind the two procedures,

while an in-depth discussion and the novel contributions, including the pseudo-code,

are presented in Section 7.3.2.

7.3.1 Minimum Hitting Set

For a counter-example C ′, i.e., a cube that represents an attack that effectively

changes the classification of a model, let I ′ be the set of feature variables where

C ′ does not agree with C (the cube representing the input). Then, every explanation

E that satisfies the entailment must hit all such sets I ′ built for any counter-examples

C ′ (Ignatiev et al., 2016). Thus, the HS paradigm iteratively checks candidates E

built by selecting the subset of C whose variables form a minimum HS (w.r.t. cost C)
of said I ′s.

However, this method does not always converge for our NLP models, especially

with large perturbation spaces (i.e., large ϵ or k). We solved this problem by extending

the HS approach with a sub-routine that generates batches of sparse adversarial

attacks for the input C. This has a two-fold benefit: 1) we reduce the number of

entailment queries required to produce counter-examples, and 2) sparsity results in

small I ′ sets, further improving convergence.

7.3.2 MHS Pseudocode

In this section, we provide a complete description and the pseudo-code of the MHS

algorithm. We report a line-by-line description of the HS procedure (Algorithm 6).

We further describe how the adversarial attacks procedure is used to generate candi-

dates that help the HS approach converge on hard instances. An illustrative example

of the execution of the algorithm is presented in Figure 7.3

Minimal hitting-sets and explanations. One way to compute optimal explana-

tions against a cost function C is through the hitting set paradigm (Ignatiev et al.,

2019c), which exploits the relationship between diagnoses and conflicts (Reiter, 1987):

the idea is to collect perturbations and to calculate on their indices a minimum hitting

set (MHS), i.e., a minimum-cost explanation whose features are in common with all

the others. We extend this framework to find a word-level explanation for non-trivial

NLP models. At each iteration of Algorithm 6, a minimum hitting set E is extracted

(line 3) from the (initially empty, line 1) set Γ. If function Entails evaluates to False

122

(i.e., the neural network Net is provably safe against perturbations on the set of fea-

tures identified by F \ F) the procedure terminates, and E is returned as an ORE.

Otherwise, (at least) one feasible attack is computed on F \E and added to Γ (lines

7-8): the routine then re-starts. Differently from (Ignatiev et al., 2019c), as we have

experienced that many OREs whose large perturbation space – i.e., when ϵ or k are

large – do not terminate in a reasonable amount of time, we have extended the vanilla

hitting set approach by introducing SparseAttacks function (line 7). At each iteration

SparseAttacks introduces in the hitting set Γ a large number of sparse adversarial at-

tacks on the set of features F \ E: it is, in fact, known (Ignatiev et al., 2016) that

attacks that use as few features as possible help the convergence on instances that

are hard (intuitively, a small set is harder to “hit” hence contributes substantially to

the optimal solution compared to a longer one). SparseAttacks procedure is based on

random search and is inspired by recent works in image recognition and malware de-

tection (Croce et al., 2022): pseudo-code is reported as Algorithm in 7, and a detailed

description follows in the next paragraph.

Sparse adversarial attacks. In Algorithm 7, we present a method to generate

sparse adversarial attacks against features (i.e., words) of a generic input text.

GeneratePerturbations(k, n,Q) (line 2) returns a random population of n pertur-

bations that succeed at changing Net’s classification: for each successful attack p,

a subset of k out of d features has been perturbed through a Fast Gradient Sign

attack (FGSM), while it is ensured that the point lies inside a convex region Q,

which in our case will be the ϵ-hyper-cube around the embedded text. Suppose no

perturbation is found in this way (i.e., the population size of the attacks is zero,

as in line 3). In that case, the budget decreases (line 4), and another trial of

GeneratePerturbations(k, n,Q) is performed (e.g., with few features as targets and

a different random seed to guide the attacks). The function AccuracyDrop(Net, P)

returns the best perturbation a where k is increasingly minimized (line 7). The algo-

rithm terminates when either no attacks are possible (all the combinations of features

have been explored) or after a fixed number of iterations has been performed (line 1).

7.3.3 OREs Use Cases

This section introduces how OREs can be leveraged to inspect a model’s behavior and

eventually find biases. It proceeds with a subsection dedicated to Anchors explana-

tions and how they can be minimally adjusted to become locally robust (as motivated

in Figure 7.2). OREs use-cases are discussed before the experimental results, which

123

Algorithm 6 ORE computation via implicit hitting sets and sparse attacks.

Require: a network Net, the input text s, the initial set of features F, a network
prediction ŷ , a cost function C against which the explanation is minimised

Ensure: an optimal ORE E
1: Γ = ∅
2: while true do
3: E = MinimumHS(Γ, C)
4: if Entails(E, (Net ∧ BF\E(s))→ E) then return E
5: else
6: A = SparseAttacks(E,Net)
7: Γ = Γ ∪ {A}
8: end if
9: end while

Algorithm 7 Computing a perturbation that is successful and minimizes the number
of features that are perturbed.

Require: Net - neural network model, F - input text from feature space; k ∈ N+
\{0} -

number of perturbations initially tested; Q ⊆ F - (sub)set of features where per-
turbations are found; n ∈ N+

\{0} - number of elements generated at each iteration
of the algorithm; budget - number of iterations allowed before stopping.

Ensure: a perturbation that is optimal w.r.t. the number of perturbed features,
1: while k > 0 ∧ budget > 0 do
2: P ←− GeneratePerturbations(k, n,Q)
3: if length(P) == 0 then
4: budget←− budget− 1
5: continue
6: end if
7: a←− arg maxp∈P AccuracyDrop(M,P)
8: k ←− k − 1, budget←− budget− 1
9: end while
10: return a

124

Init: Net, F = {1,2,3}, y=Net(s)
1: Γ = {∅}
3: E = {∅} // MinimumHS({∅})

4: Net, E, BF \E ⊭ y // Verify the robustness

6: A = {1,2,3} // SparseAttacks(E, Net) finds an attack

7: Γ = {{1,2,3}} // Γ U A

3: E = {1} // MinimumHS({{1,2,3}})

4: Net, E, BF \E ⊭ y
6: A = {2,3} // attack found on variables {2,3}

7: Γ = {{1,2,3}, {2,3}}
3: E = {2} // MinimumHS({{1,2,3}, {2,3}})

4: Net, E, BF \E ⊭ y
6: A = {1,3}
7: Γ = {{1,2,3}, {2,3}, {1,3}}
3: E = {1,2}
4: Net, E, BF \E ⊨ y then return E

iteration 1

iteration 2

iteration 3

iteration 4

Figure 7.3: An illustration of the execution of Algorithm 6 for a set of input features
F = {1, 2, 3} and a generic model Net. Please notice that the lines at each iteration,
in blue, correspond to the lines of the pseudo-code of Algorithm 6. After the network
has been initialized (Init:), Net is checked to be robust against attacks that encompass
all the input features (iteration 1, line 4). An attack is found and added to Γ (iteration
1, lines 6,7). At the second iteration, a valid minimum hitting set for Γ is the set
E = {1}, for which the network is proven again not to be robust. An attack is
found and added to Γ (iteration 2, lines 6,7). In the third iteration, the network is
still not robust to the left-out features of the newly computed minimum hitting set
(iteration 3, lines 3,4). The attack A = {1, 3} is found and added to Γ. In the last
iteration, the minimum hitting set, which now encompasses two variables (iteration
4, lines 3), is enough to secure the network from any attack on the left-out features,
i.e., {3} = F \ {1, 2}, hence the ORE {1, 2} is returned.

125

provide empirical evidence of the applicability of robust explanations to the model’s

introspection and debugging.

7.3.4 OREs can Detect Model/Decision Biases

By adding a simple constraint to the optimization problem formulated in Eq. 7.3, one

can enforce specific features F ′ to be included/excluded from the explanation:

E∗ ∈ argmin
E⊆F

∑
w∈E

C(w) s.t. Robf,x(E) ∧ ξ(E), (7.4)

where ξ(E) is one of F ′∩E = ∅ (exclude) and F ′ ⊆ E (include). Note that adding

include constraints does not affect the feasibility of our problem, as the feasible region

of (7.4) always contains at least the explanation E∗∪F ′, where E∗ is a solution of (7.3),

and F ′ are the features to include. See Def. 14. Conversely, exclude constraints might

make the problem infeasible when the features in F ′ do not admit perturbations, i.e.,

they are necessary for the prediction and thus cannot be excluded. Any solution

algorithm for non-constrained OREs can easily accommodate such constraints: for

include ones, it is sufficient to restrict the feasible set of explanations to the supersets

of F ′; for exclude constraints, we can manipulate the cost function to make any

explanation with features in F ′ strictly sub-optimal w.r.t. explanations without. That

is, we use cost C ′ such that ∀w∈F\F ′C ′(w) = C(w) and ∀w′∈F ′C ′(w′) >
∑

w∈F\F ′ C(w).

The ORE obtained under cost C ′ might still include features from F ′, which implies

that (7.4) is infeasible (i.e., no robust explanation without elements of F ′ exists).

Constrained OREs enable two crucial use cases: detecting biased decisions, and

enhancing non-formal explainability frameworks. As we described at the beginning

of the chapter, explainers can be brittle to adversarial perturbations; hence their

output is not reliable even for slight variations of the input. We conclude this section

by formally defining how an ORE can be used to detect a model bias. At the same

time, we reserve the following section to discuss how to improve Anchors explanations

by making them robust and then discuss how OREs relate to Anchors in terms of

precision and coverage (see Section 2.3.3.1).

Detecting bias. Following (Darwiche and Hirth, 2020), we deem a classifier deci-

sion biased if it depends on protected features, i.e., a set of input words that should

not affect the decision (e.g., a movie review affected by the director’s name). In

particular, a decision f(x) is biased if we can find, within a given set of text-level

126

perturbations, an input x′ that agrees with x on all but protected features and such

that f(x) ̸= f(x′).

Definition 16. For classifier f , text s with features F , protected features F ′ and

embedding x = ψ(s), decision f(x) is biased w.r.t. some word-level perturbation B, if

∃x′ ∈ BF\F ′(s).f(x) ̸= f(x′).

The proposition below allows us to use ‘exclude constraints’ to detect bias.

Proposition 3. For f , s, F , F ′, x and B as per Def. 16, decision f(x) is biased

iff (7.4) is infeasible under F ′ ∩ E = ∅.
Proof. Call A = “f(x) is biased” and B = “ (7.4) is infeasible under F ′ ∩ E = ∅”.

Let us prove first that B → A. Note that B can be equivalently expressed as

∀E ⊆ F.(E ∩ F ′ ̸= ∅ ∨ ∃x′ ∈ BE(s).f(x) ̸= f(x′))

If the above holds for all E then it holds also for E = F \ F ′, and so it must be that

∃x′ ∈ BF\F ′(s) . f(x) ̸= f(x′) because the first disjunct is clearly false for E = F \F ′.

We now prove A→ B by showing that ¬B → ¬A. Note that ¬B can be expressed

as

∃E ⊆ F.(E ∩ F ′ = ∅ ∧ ∀x′ ∈ BE(s).f(x) = f(x′)), (7.5)

and ¬A can be expressed as

∀x′ ∈ BF\F ′(s).f(x) = f(x′). (7.6)

To see that (7.5) implies (7.6), note that any E that satisfies (7.5) must be such that

E ∩ F ′ = ∅, which implies that E ⊆ F \ F ′, which in turn implies that BF\F ′(s) ⊆
BE(s). By (7.5), the prediction is invariant for any x′ in BE(s), and so is for any x′

in BF\F ′(s) .

7.3.5 Enhancing Anchors Explanations

The local explanations produced by heuristic approaches such as LIME or Anchors do

not enjoy the same robustness/invariance guarantees as our OREs. We can use our

approach to minimally extend (e.g., w.r.t. the uniform cost function) any non-robust

local explanation F ′ in order to make it robust, by solving (7.4) under the include

constraint F ′ ⊆ E. In particular, with a uniform C, our approach would identify one

127

of the smallest sets of extra words that make F ′ robust. Such an extension retains to

a large extent the original explainability properties.

The experimental section will show how this approach practically applies to an

NN classifier.

7.4 Experimental Evaluation

We proceed with an extensive experimental evaluation aimed at addressing the fol-

lowing research inquiries consistently and rigorously. After an introduction to the

experimental setup, in terms of datasets and architectures employed, we show some

examples of OREs. Secondly, we show how one can detect biases in a model, and use

OREs to debug a model when it misclassifies an example. We finally compare our

method with Anchors, showing that the latter is not robust, yet can be combined with

OREs to minimally extend it and make an Anchors explanation robust to adversarial

perturbations.

7.4.1 Experimental Setup

We have trained fully connected (FC) and convolutional neural networks (CNN) mod-

els on sentiment analysis datasets that differ in the input length and difficulty of the

learning task. We performed our experiments on NNs with up to 6 layers and 20K

parameters. FCs are constituted by a stack of dense layers. At the same time, CNNs

additionally employ convolutional and max-pooling layers: for both CNNs and FCs,

the decision is taken through a softmax layer, with dropout that is added after each

layer to improve generalization during the training phase. As regards the embeddings

that the models are equipped with, we experienced that the best trade-off between

the accuracy of the network and the formal guarantees that we need to provide is

reached with low-dimensional embeddings; thus, we employed optimized vectors of

dimension 5 for each word in the embedding space: this is in line with the experimen-

tal evaluations conducted in (Patel and Bhattacharyya, 2017), where for low-order

tasks such as sentiment analysis, compact embedding vectors allow one to obtain

good performance, as shown in Table 7.1.

Experiments were parallelized on a server with two 24-core Intel Xenon 6252 pro-

cessors and 256GB of RAM, but each instance is single-threaded and can be executed

on a low-end laptop. We considered 3 well-established benchmarks for sentiment anal-

ysis, namely SST (Socher et al., 2013b), Twitter (Go et al., 2009) and IMDB (Maas

128

Training
TWITTER SST IMDB

Inputs (Train, Test) 1.55M, 50K 117.22K, 1.82K 25K, 25K

Output Classes 2 2 2

Input Length (max, max. used) 88, 50 52, 50 2315, 100

Neural Network Models FC, CNN FC, CNN FC, CNN

Neural Network Layers (min,max) 3,6 3,6 3,6

Accuracy on Test Set (min, max) 0.77, 0.81 0.82, 0.89 0.69, 0.81

Number of Networks Parameters (min,max) 3K, 18K 1.3K, 10K 5K, 17K

Explanations
TWITTER SST IMDB

Sample Size 40 40 40

Review Length (min-max) 10, 50 10, 50 25, 100

Table 7.1: Datasets used for training/testing and extracting explanations. In the
top table, we report various metrics concerning the networks and the training phase
(including accuracy on the test set), while in the bottom table, we report the number
of texts for which we have extracted explanations along with the number of words
considered when calculating OREs: samples were chosen to reflect the variety of the
original datasets, i.e., a mix of long/short inputs equally divided into positive and
negative instances.

et al., 2011a) datasets. The characteristics of both the SST-2 and the IMDB datasets

have been discussed extensively in the previous chapters.

We have chosen 40 representative input texts from each dataset, balancing positive

and negative examples. Embeddings are pre-trained on the same datasets used for

classification (Chollet et al., 2015). The HS algorithm has been implemented in

Python and uses Marabou (Katz et al., 2019a) to answer robustness queries. In the

experiments below, we opted for the knn-box perturbation space, as we found that

the k parameter was easier to interpret and tune than the ϵ parameter for the ϵ-Ball

space and improved verification time.

Effect of classifier’s accuracy and robustness. Our approach generally results

in meaningful and compact explanations for NLP. In Figure 7.4, we show a few OREs

extracted for negative and positive texts, where the returned OREs are both concise

and semantically consistent with the predicted sentiment. However, the quality of

our OREs depends on that of the underlying classifier. Indeed, enhanced models

with better accuracy and/or trained on longer inputs tend to produce higher-quality

OREs. We show this in Figures 7.5 and 7.6, where we observe that enhanced models

tend to result in more semantically consistent explanations. For lower-quality models,

129

'# this movie is really stupid and very boring most of the time there are

almost no ghoulies in it at all there is nothing good about this movie on

any level just more bad actors pathetically attempting to make a movie

so they can get enough money to eat avoid at all costs.' (IMDB)

'The main story ... is compelling enough but it is difficult to shrug off the

 annoyance of that chatty fish.' (SST)

'i couldn't bear to watch it and I thought the UA loss was embarrassing

 ...' (Twitter)

'# well I am the target market I loved it furthermore my husband also a

 boomer with strong memories of the 60s liked it a lot too i haven't read

 the book so i went into it neutral i was very pleasantly surprised its now

 on our highly recommended video list br br.' (IMDB)

'Still this flick is fun and host to some truly excellent sequences.' (SST)

'Is delighted by the beautiful weather.' (Twitter)

Figure 7.4: OREs for IMDB, SST, and Twitter datasets (all the texts are correctly
classified). Models employed are FC with 50 input words, each with accuracies re-
spectively 0.89, 0.77, and 0.75. OREs are highlighted in blue. The technique used is
knn boxes with k=15.

'Star/producer Salma Hayek and director Julie Taymor have infused Frida

 with a visual style unique and inherent to the titular character paintings

 and in the process created a masterful work of art of their own.' (SST)

'The film just might turn on many people to opera in general, an art form

 at once visceral and spiritual wonderfully vulgar and sublimely lofty

 and as emotionally grand as life.' (SST)

'Nah I haven't received my stimulus yet.' (Twitter)

Figure 7.5: Comparison of OREs for SST and Twitter texts on FC (red) vs. CNN
(blue) models (common words in magenta). The first two are positive reviews; the
third is negative (all correctly classified). Accuracies of FC and CNN models are 0.88
and 0.89 on SST, and 0.77 on Twitter. Models have input lengths of 25 words; OREs
are extracted with knn boxes (k=25).

some OREs include seemingly irrelevant terms (e.g., ‘film’, ‘and’), thus exhibiting

shortcomings of the classifier.

Detecting biases. As per Prop. 7.3.4, we applied exclude constraints to detect

biased decisions. In Figure 7.7, we provide a few example instances exhibiting such a

bias, i.e., where any robust explanation contains at least one protected feature. These

OREs include proper names that should not constitute a sufficient reason for the

model’s classification. When we try to exclude proper names, no robust explanation

exists, indicating a decision bias.

Debugging prediction errors. A relevant use case for OREs is when a model

commits a misclassification. Misclassifications in sentiment analysis tasks usually

depend on the over-sensitivity of the model to polarized terms. In this sense, knowing

a minimal, sufficient reason behind the model’s prediction can be helpful in debugging

130

'# what a waste of talent a very poor semi coherent script cripples this
 film rather unimaginative direction too some very faint echoes of Fargo
 here but it just doesnt come off.' (IMDB)

'I couldn't bear to watch it and I thought the UA loss was embarrassing

 ...' (Twitter)

ORE, FC 25 Inp. Words

ORE, FC 50 Inp. Words ORE, FC 25 ∩ FC 50

ORE, FC 100 Inp. Words

'# a few words for the people here in cine club the worst crap ever

seen on this honorable cinema a very poor script a very bad actors

and a very bad movie [...]' (IMDB)

ORE, FC 25 ∩ FC 50 ∩ FC 100

Figure 7.6: Comparison of OREs on negative IMDB and Twitter inputs for FC mod-
els. The first and third examples are trained with 25 (red) VS 50 (blue) input words
(words in common to both OREs are in magenta). The second example uses an FC
model trained with 100 input words (words common to all three OREs are in orange).
Accuracy is respectively 0.7 and 0.77 and 0.81 for IMDB and 0.77 for both Twitter
models. All the examples are classified correctly. OREs are extracted with knn boxes
(k=25).

'Star/producer Salma Hayek and director Julie Taymor have infused Frida [...]'

(SST, FC 10 Input Words, k-NN (k=375))

Austin Powers in Goldmember has the right stuff for silly [...]'

(SST, FC 10 Input Words, k-NN (k=27))

Words to excludeORE

Figure 7.7: Two examples of decision bias from an FC model with an accuracy of
0.80.

131

'# I've seen Foxy Brown, Coffy Friday Foster Bucktown, and Black Mama White
 Mama of these this is Pam Griers worst movie poor acting bad script boring
 action scenes theres just nothing there avoid this and rent Friday Foster
 Coffy or Foxy Brown instead' (IMDB, predicted as negative)

'# a few words for the people here in cine club the worst crap ever seen on this
honorable cinema a very poor script a very bad actors and a very bad movie
dont waste your time looking this movie see the very good or any movie have
been good commented by me say no more' (IMDB, predicted as negative)

'# I gave this a 2 and it only avoided a 1 because of the occasional unintentional
laugh the film is excruciatingly. Boring and incredibly cheap its even worse if you
know anything at all about the Fantastic Four.', (IMDB, predicted as negative)

Figure 7.8: Examples of Optimal Robust Explanations, highlighted in blue. OREs
were extracted using kNN boxes with 25 neighbors per word: fixing words in an
ORE guarantees the model to be locally robust. The examples come from the IMDB
dataset; the model employed is an FC network with 100 input words (accuracy 0.81).

it. As shown in the first example in Figure 7.10, the model cannot recognize the double

negation constituted by the terms ‘not’ and ‘dreadful’ as a syntax construct, hence

it exploits the negation term ‘not’ to classify the review as negative.

Making OREs scale. We also investigated the relationship between a model’s

complexity and the execution time of the hitting set algorithm, with and without

the improvement brought by the sparse adversarial attacks routine (see Algorithms 6

and 7). We tested a model trained on the IMDB dataset whose explanations are

extracted from texts with 100 input words. While the vanilla hitting set algorithm

cannot solve any instance within a 2-hour timeout, aiding it with sparse attacks allows

us to extract OREs, which we report in Figure 7.8. Other examples of the execution

time of the hitting set routine, with and without the sparse attacks improvement,

and for varying values of ϵ, are reported in Figure 7.9. It is interesting to notice that

when the region to certify grows too large, the hitting set paradigm requires sparse

attack improvements; otherwise, it does not terminate within a 2-hours timeout.

Comparison to Anchors. We evaluate the robustness of Anchors for FC and

CNN models on the SST and Twitter datasets: accuracies are respectively of 0.89

for FC+SST, 0.82 for FC+Twitter, 0.89 for CNN+SST, and 0.77 for CNN+Twitter.

We assume a knn-box perturbation space B with k = 15 for FC and k = 25 for

CNN models to compute robustness. To extract Anchors, we set D to the standard

perturbation distribution of (Ribeiro et al., 2018a), defined by a set of context-wise

perturbations generated by a powerful language model. Thus defined Bs are small

compared to the support of D. Therefore, one would expect high-precision Anchors

132

INPUT INSTANCE EXECUTION TIME [s]

'insanely hilarious!'ε = 0.05

'this one is not nearly as
 dreadful as expected'

(HS Vanilla, HS + Adversarial Attacks)

87.66, 8.67

ε = 0.05 114.99, 10.49

'this one is baaaaad movie!'ε = 0.05

'I just seen ur tweetz plz write
 bak' [...]

Timeout, 79.2

ε = 0.05 Timeout, 159.11

'so your entire day was spent
 doing chores ay??!!' [...]

ε = 0.1 Timeout, 1520.80

Figure 7.9: Examples of explanations that were enabled by the adversarial attacks
routine. Timeout was set to 2 hours.

'Morning!! Beautiful isn't it! What you got planned for today?' (Twitter,

 predicted as negative)

'This one is not nearly as dreadful as expected.' (SST, predicted as

 negative)

ORE's polarized wordsORE

Figure 7.10: Two examples of over-sensitivity to polarized terms (in red). Other
words in the OREs are highlighted in green. Models used are FC with 25 input words
(accuracy 0.82 and 0.74). The method used is knn with k respectively equal to 8 and
10.

133

`The film just might turn on many people to opera in general,
an art form at once visceral and spiritual wonderfully vulgar
and sublimely lofty.` (SST)

`There are far worse messages to teach a young audience

which will probably be perfectly happy with the sloppy

slapstick comedy.` (SST)

`This one is not nearly as dreadful as expected.` (SST)

Anchors Minimal Robust Extension

Figure 7.11: Examples of Anchors explanations (in blue) and the minimal extension
required to make them robust (in red). Examples are classified (without errors) with
a 25-input-word CNN (accuracy 0.89). OREs are extracted for knn boxes and k=25.

to be relatively robust w.r.t. said Bs. On the contrary, the Anchors extracted for the

FC models attain an average precision of 0.996 on SST and 0.975 on Twitter, but

only 12.5% of them are robust for the SST case and 7.5% for Twitter. With CNN

models, high-quality Anchors are even more brittle: 0% of Anchors are robust on

SST reviews and 5.4% on Twitter, despite an average precision of 0.995 and 0.971,

respectively.

We remark, however, that Anchors are not designed to provide such robustness

guarantees. Our approach becomes helpful in this context because it can minimally

extend any local explanation to make it robust by using include constraints as ex-

plained in Section 3. In Figure 7.11, we show a few examples of how, starting from

non-robust Anchors explanations, our algorithm can find the minimum number of

words to make them provably robust.

7.5 Conclusions

In the final chapter of this thesis, we proposed Optimal Robust Explanations as a

novel approach for enhancing the interpretability of NLP models. The introduction of

OREs aims to address the limitations of existing methods by leveraging the concept

of robustness. In synthesis, OREs provide a concise and comprehensive justification

for specific predictions, incorporating both minimality with respect to a given cost

function and robustness. OREs further ensure that a model’s prediction remains

unaffected by any bounded replacement of the omitted features.

The utilization of OREs facilitates various crucial use cases, including detecting bi-

ased decisions, identifying and rectifying misclassifications, and correcting non-robust

134

explanations. By employing OREs, users gain valuable insights into the decision-

making process of NLP models while ensuring that the explanations provided are

both trustworthy and robust.

This chapter demonstrates the broader significance of robustness as a desirable

quality in a model, extending beyond its formal guarantee applicability. Incorporating

robustness into the interpretability framework enhances the explanations provided by

NLP models, affording users greater confidence in the reliability and consistency of

the model’s behavior. Ultimately, OREs represent a significant step towards achieving

a more transparent and understandable NLP landscape.

In contrast, OREs encounter challenges regarding scalability due to the necessity

of solving an NP-hard problem to obtain guaranteed explanations. Our research

demonstrated that the convergence of the HS routine can be enhanced through the

utilization of sparse adversarial attacks. However, it is important to note that this

augmentation does not inherently ensure improved performance outcomes.

135

Chapter 8

Conclusions

In this thesis, we have examined the interplay between language, robustness, and

machine learning.

Through our assessment of NLP model robustness (Chapter 4), we have uncovered

issues with the current standard definition inherited from computer vision. Despite

being widely used, this definition exhibits limitations when applied to language, and in

particular to increasingly complex models, as it tends to yield robustness bounds that

diminish rapidly. Such shortcomings undermine the reliability and effectiveness of

these models, particularly in scenarios where robustness is crucial, such as adversarial

environments or real-world applications with high-stakes implications.

This finding has prompted the formulation of a novel concept, termed seman-

tic robustness in this study, which specifically addresses a model’s ability to handle

linguistic phenomena that hold substantial importance in human language compre-

hension (refer to Chapter 5). We characterized this newly defined notion of semantic

robustness, providing a comprehensive understanding of its underlying principles and

properties. We conducted an extensive experimental evaluation to assess the effec-

tiveness and validity of this concept, employing diverse architectural configurations.

The results of these experiments demonstrate that language modeling, specifically

through unsupervised training techniques, offers superior robustness guarantees when

compared to models trained using augmented training approaches.

By adopting a post-structuralist approach to language analysis, our research has

comprehensively examined the notion of syntactic robustness within NLP models.

This investigation encompasses an assessment of the model’s capacity to capture and

encode syntactic structures within its hidden representations consistently. Through

analysis and experimentation, we have uncovered compelling evidence regarding the

fragility of diverse linguistic representations when subjected to moderate text manip-

ulations that preserve syntactic integrity, as explicated in Chapter 6. These findings

136

underscore the urgent imperative for enhancing robustness in NLP models to address

the vulnerabilities observed in processing syntax effectively.

We conclude by showing that robustness, while being per se a valuable property

of a model, can be used to rigorously explain, debug and interpret the decisions of a

model. With the concept of ORE (Chapter 7), we distill minimal-length input words

sufficient to imply a model’s decision while being robust to local manipulations. This

final chapter demonstrates that robustness can be integrated into explanations, as

our findings pave the way for future research endeavors to extend formal robustness

guarantees to the realm of explainable deep neural networks, thereby fortifying the

foundations of reliable and accountable AI systems.

There are several directions that future research could take based on the findings

and contributions of this thesis. One possible avenue is to explore more advanced

methods for incorporating robustness into NLP models.

An important avenue of research lies in developing robust generative models that

offer control and guarantee the adherence of the output to human-defined constraints.

One illustrative example of such models is the syntactically controlled paraphrase

generators, which have the potential to generate previously unseen sentences that

are consistent and adhere to linguistic norms while simultaneously exhibiting a high

degree of linguistic variability.

We believe expanding the concept of semantic robustness to include noisy data

generators is also crucial. This extension becomes particularly valuable considering

the limitations we have observed in the scalability of our template-based generator and

the shortcomings inherent in handcrafted or manually distilled samples, as illustrated

in Chapter 5.

While our work proposes Optimal Robust Explanations (OREs) to distill optimal-

cost input words sufficient to imply a model’s decision, several other potential methods

could be explored. For example, researchers could investigate the extension of OREs

to complex LMs (especially the emerging trend of models provided as-a-service, such

as ChatGPT (OpenAI, 2023)) to provide more transparent decision-making processes.

Another promising direction for future research is to investigate the interplay be-

tween robustness and fairness in NLP models. Recent studies have shown that NLP

models can exhibit biases that reflect underlying societal biases and prejudices, which

can lead to harmful downstream effects. Therefore, there is a need for models that

are robust to text manipulations and fair and unbiased in their decision-making pro-

cesses. While recent works show that it is possible to train models that are provably

fair (Benussi et al., 2022), future research could explore the development of methods

137

that scale to the size of NLP models, whose complexity and prominence have grown

at an unprecedented pace in the last decade.

Future research could aim to design models that develop a sound understanding

of the deep structures of language and its connection to the world while being reliable

and robust by design. This would require the development of models that can learn to

reason about the world based on natural language input, which would be a significant

breakthrough in AI.

In summary, there are several exciting directions for future research based on the

contributions of this thesis. The proposed methods and principles could be extended

to other domains, and more advanced techniques could be explored to enhance the

robustness and interpretability of NLP models. Additionally, the interplay between

robustness and fairness in NLP models is a crucial area of research that requires

further attention. Ultimately, developing reliable and robust models that can reason

about the world based on natural language input is a significant challenge that requires

continued efforts from the research community.

138

Appendix

Reproducibility for Chapter 4

Preliminary

The code used to carry out the experiments has been successfully tested on a Linux

server running Ubuntu 18.04. The server boasts 90 CPU cores, 6 NVIDIA GTX 2080

Ti GPUs, and 256GB of RAM.

To run the upper bound experiments’ code, one must clone the code stored at the

following repository: https://github.com/EmanueleLM/MCTS. Once the repository

is copied, one will find a folder named MCTS/ containing the code necessary to

replicate the simulations, along with a README file containing further instructions.

For the lower bound computation, we provide links to the tools used in our exper-

imental evaluation, namely CNN-Cert and POPQORN Boopathy et al. (2019); Ko

et al. (2019a). Where necessary, we also provide additional instructions on replicating

the experiments described in this chapter.

Dependencies

The code is written in Python and was tested using version 3.8. Additionally, the

following packages are required, and the versions we used are reported below:

• Numpy 1.17.2

• Nltk 3.4.5

• Pandas 0.25.1

• Progress 1.5

• Tensorflow 1.14.0

• Torch 1.3.1

139

https://github.com/EmanueleLM/MCTS

• Torchtext 0.4.0

Further, one needs to download the GloVe and GloVeTwitter pre-trained embed-

dings respectively from http://nlp.stanford.edu/data/glove.6B.zip and http:

//nlp.stanford.edu/data/glove.twitter.27B.zip. Once archives have been un-

zipped, one must move them inside the ./data/embeddings folder. Please note that

naming should be consistent with variables in ub CNN models.py and ub LSTM models.py

files, i.e., glove.6B.<DIMS>d.txt and glove.twitter.27B.<DIMS>d.txt, where

<DIMS> is the dimensionality of the embedding, which can be specified as a parame-

ter in the upper bound computation. For example, to test GloVe50d, the embedding’s

name should be glove.6B.50d.txt.

Lower and Upper Bound Characterization

Lower Bound Computation

To compute the lower bound of a CNN’s robustness, one must install CNN-Cert from

the following URL: https://github.com/AkhilanB/CNN-Cert. This tool was ini-

tially designed to compute a certified robustness lower bound for CNNs in computer

vision and requires some adaptations to be used with NLP word embeddings. Specif-

ically, one will need to modify the file cnn bounds full core.py as described in this

link: https://github.com/IBM/CNN-Cert/issues/4.

To compute the lower bound of LSTMs’ robustness, one must install POPQORN

and follow the instructions provided in this link: https://github.com/ZhaoyangLyu/

POPQORN.

Upper Bound Computation

To run an MCTS experiment on a CNN model, launch from the console:

python3 ub CNN models.py , while for an LSTM, run python3 ub LSTM models.py .

Please note that these scripts can accept multiple arguments:

-s, --sims: number of Monte Carlo simulations per-vertex

-m, --max-depth: maximum depth of the tree (i..e, number of perturbations)

-e, --eps: max-distance (in L2 norm) for collecting neighbors

-l, --lrate: UTC learning rate

-d, --discount: UTC discount factor

-ed, --emb-dims: embeddings dimension

-hu, --lstm-hu: LSTM hidden units (applicable only to ‘ub_LSTM_models.py‘)

140

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.twitter.27B.zip
http://nlp.stanford.edu/data/glove.twitter.27B.zip
https://github.com/AkhilanB/CNN-Cert
https://github.com/IBM/CNN-Cert/issues/4
https://github.com/ZhaoyangLyu/POPQORN
https://github.com/ZhaoyangLyu/POPQORN

The first time one runs the MCTS algorithm, it will take a while to compute and

store the neighbors of each input word in a separate file.

141

Reproducibility for Chapter 5

Preliminary

The code has been successfully tested on Linux Fedora 32, a low-end machine with

8GB of RAM, an Intel Core i5, and no dedicated GPUs.

In order to run the code of the experiments, one needs to clone the follow-

ing GitHub folder https://github.com/EmanueleLM/the-king-is-naked. Once

copied, a folder named the-king-is-naked will be created; the folder contains the

code necessary to replicate a few simulations, alongside a README file that provides

further details on how to run the code.

Python Dependencies

The code is written in Python and was tested using version 3.8. Additionally, the

following packages are required, and the versions we used are reported below:

• gensim 3.8.3

• Keras 2.4.3

• keras-self-attention 0.49.0

• nltk 3.5

• numpy 1.18.4

• pandas 1.1.4

• tensorflow 2.3.1

• torch 1.7.1

• tqdm 4.53.0

In order to install the dependencies, you can run the command

pip install PACKAGENAME==X.Y.Z --user where PACKAGENAME is the name of the

missing dependency and X.Y.Z is the version, for example,

pip install numpy==1.18.4 --user . If no specific version is specified in the pre-

vious list, you can run

pip install PACKAGENAME --user .

142

https://github.com/EmanueleLM/the-king-is-naked

External Dependencies

Additionally, the code we provide relies on DeepBayesHS for experiments that in-

volve comparing a semantically enhanced model to an IBP-robust model (see Chap-

ter 5/Section 5.4). Please note that DeepBayesHS is an external tool with its specific

license and must be installed on the system separately. To run DeepBayesHS, one

must clone the code from the following folder: https://github.com/matthewwicker/

deepbayesHF, and train some augmented models. The repository comes with a

README file that provides instructions on how to train a simple model.

Preparing the pre-trained embeddings

To run the experiments presented in Section 5.4, you need to download and place a

word embedding inside the the-king-is-naked/data/embeddings/ folder.

Before running any experiments from the paper, please rename the embedding to

the following name: custom-embedding-SST.50d.txt. Please note that this is just

a placeholder name; any embedding can be used.

Measuring Semantic Robustness

Train a Model

To train a model - with or without data augmentation - go to the

the-king-is-naked/train/ folder and run the file train sst.py . The command

comes along with many command-line arguments, like architecture, which specifies

what architecture to choose among {fc, lstm, cnn1d, cnn2d, and attention},
and finetune on hard instances, which enables fine-tuning on hard instances with

samples from (Barnes et al., 2019). One can then select the regime of data aug-

mentation with data augmentation (500, 1000 etc.) and choose which semantic rule

you want to learn between negated (shallow negation), mixed (mixed sentiment) and

sarcasm (sarcasm). Models will be saved under the folder

the-king-is-naked/models/[ARCHITECTURE]/[RULE] where [ARCHITECTURE] is ei-

ther {fc, cnn1d, cnn2d, lstm, attention} while [RULE] is either

{vanilla, shallow negation, mixed sentiment, sarcasm}.

Test a Model

To test the semantic robustness of a trained model, navigate to the

the-king-is-naked/train/ directory and execute the test sst.py script. This

script provides several options, such as setting the test set to linguistic phenomena

143

https://github.com/matthewwicker/deepbayesHF
https://github.com/matthewwicker/deepbayesHF

(our benchmark), sentiment not solved (Barnes et al., 2019), or sst dataset using

the test type variable. The test augmented networks variable can be set to either

test semantically-augmented networks or vanilla networks. The test IBP variable is

used to select the networks from the IBP folder, and the test rule variable can be

used to select the semantic rule one wants to test.

BERT Experiments

Finally, the the-king-is-naked\train\train BERT.py script allows to train BERT

on SST dataset.

The same model can then be tested to measure its semantic robustness: to do so,

run

the-king-is-naked\verify\semantic robustness bert.py , setting test type to

either ”sentiment not solved” (Barnes et al., 2019) or ”linguistic phenomena” (our

benchmark), linguistic phenomena to either

texttt{shallow negation, mixed sentiment, sarcasm} and test rule1, test rule2 to

respectively ("negated","negated"), ("mixed", "mixed") or ("irony","sarcasm")

depending on the value of linguistic phenomena you chose previously.

144

Reproducibility for Chapter 6

Preliminary

This code has been successfully tested on a Linux server with Ubuntu 18.04 LTS. The

server boasts 90 CPU cores, 6 NVIDIA GTX 2080 Ti GPUs, and 256GB of RAM.

To run the experiments’ code, one must first clone the repository at the following

address: https://github.com/EmanueleLM/emergent-linguistic-structures. Upon

cloning, a folder named robust-linguistic-structures is created. The code

specifically related to Chapter 6 can be executed under the folder path

robust-linguistic-structures\verify \MLM internals \syntax-integrity .

Python Dependencies

We coded the framework with Python 3.6.9: dependencies can be installed via the

official pip installer (i.e., package installer for Python). Since this code requires

numerous dependencies to be installed, we suggest installing a virtual environment.

It follows the list of Python dependencies alongside the version we used to code our

framework:

• numpy 1.18.5

• tensorflow 2.3.1

• torch 1.3.1

• seaborn 0.11.2

• tqdm 4.60.0

• Keras 1.1.2

• scikit-image 0.18.1

• scikit-learn 0.24.2

• scikit-learn-extra 0.2.0

• scipy 1.6.3

• transformers 4.16.2

• matplotlib 3.4.2

145

https://github.com/EmanueleLM/emergent-linguistic-structures

• networkx 2.5.1

• pandas 1.3.4

• nltk 3.5

• pickleshare 0.7.5

In order to install these or other packages, you can run the command pip install

PACKAGENAME==X.Y.Z --user where PACKAGENAME is the name of the missing depen-

dency and X.Y.Z is the version, for example, pip install numpy==1.18.4 --user .

If no specific version is specified in the previous list, one can run

pip install PACKAGENAME --user .

Robustness Measurement of All the Probing Tasks

One can run the robustness training and measurements for all the probing tasks

through the Python script probing robustness.py. In order to do so, cd into

robust-linguistic-structures\verify \MLM internals \syntax-integrity folder and launch

it.

This script comes with many command-line arguments, whose semantics is ex-

plained through the --help command. An example of an experiment that involves

several command line arguments run the following command:

python3 probing robustness.py --seed 42 --mlm bert --dataset ted

--layer-p1 -5 --layer-t1 -5 --perturbation-budget 1 --copos True

--perturbation-scenario worst --lp-norm 2 --wordnet-mode True .

Results and details of each of these experiments are collected under the

robust-linguistic-structures\verify \MLM internals \syntax-integrity \results \robustness

folder.

The folder contains many scripts that allow scheduling the execution for multiple

models and datasets.

146

Reproducibility for Chapter 7

Preliminary

This code has been successfully tested on a Linux server with Ubuntu 18.04 LTS. The

server is equipped with 90 CPU cores, 6 NVIDIA GTX 2080 Ti GPUs, and 256GB

of RAM.

In order to run the code of the experiments, one first needs to clone the Github

repository at the following link https://github.com/EmanueleLM/OREs. Having

completed this operation, one should find a folder named OREs anonym that con-

tains the code necessary to replicate a few simulations of the experiments presented

in Chapter 7.

Python Dependencies

The framework was developed using Python 3.8, and the dependencies can be installed

using the official pip installer for Python. Below is the list of Python dependencies

we used to code our framework, along with their respective versions:

• numpy 1.18.5

• python-sat

• tensorflow 2.3.0

• Keras 2.3.1

In order to install these or other packages, you can run the command pip install

PACKAGENAME==X.Y.Z --user where PACKAGENAME is the name of the missing depen-

dency and X.Y.Z is the version, for example, pip install numpy==1.18.4 --user .

If no specific version is specified in the previous list, one can run

pip install PACKAGENAME --user .

External Dependencies

We use Marabou, an SMT-based tool that can answer queries about neural net-

works and their properties (Katz et al., 2019b), to assess the robustness of a net-

work against perturbations. Our experiments were conducted using the software

that can be downloaded and installed from this address: https://github.com/

NeuralNetworkVerification/Marabou/. Specifically, all the experiments in the pa-

per were performed using the version with the commit hash 228234ba, which can be

147

https://github.com/EmanueleLM/OREs
https://github.com/NeuralNetworkVerification/Marabou/
https://github.com/NeuralNetworkVerification/Marabou/

found at this link: https://github.com/NeuralNetworkVerification/Marabou/

tree/228234ba6c8242bc2463f4f0678164ca4c4ede7e.

One should start by cloning Marabou into the OREs anonym folder, which should

be at the same level as the Explanations folder. The Marabou repository on GitHub

provides detailed instructions on installing and setting up the tool properly. Upon the

completion of the previous tasks, one should have the Marabou and Explanations

subdirectories within the OREs anonym folder.

Run Experiments

To launch an experiment that extracts an Optimal Robust Explanation (ORE), go

to the

Explanations\abduction algorithms\experiments\{DATASET}\ folder, where {DATASET}
is either SST Twitter or IMDB, and run one of the python files (.py extension). We

report a few usage examples.

ORE for a Fully Connected Model on a Sample Review

We now show how to extract an ORE from a sample review and an already trained

FC model with 25 input words, using the k Nearest Neighbours bounding box tech-

nique with k=10. You first have to navigate to

Explanations\abduction algorithms\experiments\SST\ folder and run the fol-

lowing command:

python3 smallest explanation SST fc knn linf.py -k 10 -w 5 -n 25

-i ’This is a very bad movie’

The algorithm identifies the words is and bad as an ORE. Additionally, results

are logged and stored in a folder inside results\HS-clear (the complete path that

is reported in the logs of the execution).

Solving a hard instance with Adversarial Attacks

Suppose one wants to extract an ORE from a Twitter text using a CNN model

with 25 input words and the k Nearest Neighbours bounding box technique with

k=8. Since this instance will not easily converge due to the complexity of the model,

one can improve the convergence by employing the sparse adversarial attacks algo-

rithm. It is enough to specify the number of attacks that one wants to launch at

each iteration of the HS routine (parameter -a/–adv). One has to navigate to the

148

https://github.com/NeuralNetworkVerification/Marabou/tree/228234ba6c8242bc2463f4f0678164ca4c4ede7e
https://github.com/NeuralNetworkVerification/Marabou/tree/228234ba6c8242bc2463f4f0678164ca4c4ede7e

Explanations\abduction algorithms\experiments\Twitter\ folder and run the

following:

python3 smallest explanation Twitter cnn2d knn linf.py -k 8 -w 5

-n 25 -a 500 -i ’Spencer is not a good guy’

The algorithm identifies the words Spencer and not as an ORE (alongside a

PAD token that highlights a problem with the model robustness). Results are stored

in a folder inside results\HS-clear (the complete path that is reported in the logs

of the execution).

Detecting Decision Bias Using Cost Functions

Suppose one wants to check whether an explanation always contains the name of a

character, an actor, or a director. To do this, one can run the following command:

python3 smallest HScost explanation SST fc knn linf.py -k 27 -w 5

-a 0 -i "Austin Powers in Goldmember has the right stuff for

summer entertainment and has enough laughs to sustain interest to

the end" -u False -x ’austin,powers,goldmember’

If the excluded words still appear in the ORE, then the model suffers from a

decision bias.

If one wants to exclude a word from the explanation permanently, they should

run the following command:

python3 smallest cost explanation SST fc knn linf alternate cost exclude.py

-k 27 -w 5 -i "Austin Powers in Goldmember has the right stuff for

summer entertainment and has enough laughs to sustain interest to

the end"

Run multiple instances in parallel

One can run several ORE instances in parallel (e.g., on a server) by launching

the run-exp MODEL DATASET knn linf.sh script in each Experiments\DATASET

folder, where DATASET is either ‘IMDB‘, ‘SST‘ or ‘Twitter‘ and MODEL is either

‘fc‘ (FC) or ‘cnn‘ (CNN).1

1You can use the screen command (available on any Linux distribution) to manage the different
instances.

149

Bibliography

Afra Alishahi, Grzegorz Chrupa la, and Tal Linzen. Analyzing and interpreting neural

networks for NLP: A report on the first BlackboxNLP workshop. Natural Language

Engineering, 25(4):543–557, 2019.

Basemah Alshemali and Jugal Kalita. Improving the reliability of deep neural net-

works in NLP: A review. Knowledge-Based Systems, 191:105210, 2020.

Izzat Alsmadi, Kashif Ahmad, Mahmoud Nazzal, Firoj Alam, Ala Al-Fuqaha, Abdal-

lah Khreishah, and Abdulelah Algosaibi. Adversarial attacks and defenses for social

network text processing applications: Techniques, challenges and future research

directions. ArXiv preprint, abs/2110.13980, 2021.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava,

and Kai-Wei Chang. Generating natural language adversarial examples. In Proceed-

ings of the 2018 Conference on Empirical Methods in Natural Language Processing,

pages 2890–2896, Brussels, Belgium, 2018. Association for Computational Linguis-

tics.

Kyriakos D Apostolidis and George A Papakostas. A survey on adversarial deep

learning robustness in medical image analysis. Electronics, 10(17):2132, 2021.

Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Müller, and Wojciech

Samek. Explaining predictions of non-linear classifiers in NLP. In Proceedings of the

1st Workshop on Representation Learning for NLP, pages 1–7, Berlin, Germany,

2016. Association for Computational Linguistics.

Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. Ex-

plaining recurrent neural network predictions in sentiment analysis. In Proceedings

of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and

Social Media Analysis, pages 159–168, Copenhagen, Denmark, 2017. Association

for Computational Linguistics.

150

S. Bach et al. On pixel-wise explanations for non-linear classifier decisions by layer-

wise relevance propagation. ArXiv preprint, abs/1604.00825, 2016.

Jeremy Barnes, Lilja Øvrelid, and Erik Velldal. Sentiment analysis is not solved!

assessing and probing sentiment classification. In Proceedings of the 2019 ACL

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,

pages 12–23, Florence, Italy, 2019. Association for Computational Linguistics.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Com-

putational Linguistics, 48(1):207–219, 2022.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form,

and understanding in the age of data. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 5185–5198, Online, 2020.

Association for Computational Linguistics.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret

Shmitchell. On the dangers of stochastic parrots: Can language models be too

big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and

Transparency, pages 610–623, 2021.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic lan-

guage model. Advances in neural information processing systems, 13, 2000.

Elias Benussi, Andrea Patane, Matthew Wicker, Luca Laurenti, and Marta

Kwiatkowska. Individual fairness guarantees for neural networks. ArXiv preprint,

abs/2205.05763, 2022.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial

machine learning. Pattern Recognition, 84:317–331, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel

Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning

at test time. In Joint European conference on machine learning and knowledge

discovery in databases, pages 387–402. Springer, 2013.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,

2009.

151

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine

learning, volume 4. Springer, 2006.

Arno Blaas, Andrea Patane, Luca Laurenti, Luca Cardelli, Marta Kwiatkowska, and

Stephen J. Roberts. Adversarial robustness guarantees for classification with gaus-

sian processes. In Silvia Chiappa and Roberto Calandra, editors, The 23rd Inter-

national Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28

August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine

Learning Research, pages 3372–3382. PMLR, 2020.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and

Adam Tauman Kalai. Man is to computer programmer as woman is to home-

maker? debiasing word embeddings. In Daniel D. Lee, Masashi Sugiyama, Ulrike

von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural In-

formation Processing Systems 29: Annual Conference on Neural Information Pro-

cessing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4349–4357,

2016.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Syd-

ney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brun-

skill, et al. On the opportunities and risks of foundation models. ArXiv preprint,

abs/2108.07258, 2021.

Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Cnn-

cert: An efficient framework for certifying robustness of convolutional neural net-

works. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI

2019, The Thirty-First Innovative Applications of Artificial Intelligence Confer-

ence, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Arti-

ficial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,

2019, pages 3240–3247. AAAI Press, 2019.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers,

Matthew E. Peters, Ashish Sabharwal, and Yejin Choi. Adversarial filters of dataset

biases. In Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine

Learning Research, pages 1078–1088. PMLR, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

152

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,

editors, Advances in Neural Information Processing Systems 33: Annual Confer-

ence on Neural Information Processing Systems 2020, NeurIPS 2020, December

6-12, 2020, virtual, 2020.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. A survey of monte carlo tree search methods. IEEE

Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

Nadia Burkart and Marco F Huber. A survey on the explainability of supervised

machine learning. Journal of Artificial Intelligence Research, 70:245–317, 2021.

S. Chakraborty et al. Interpretability of deep learning models: a survey of results. In

SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, pages 1–6. IEEE, 2017.

Yanqing Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. The expressive

power of word embeddings. arXiv:1301.3226, 2013.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of

artificial neural networks. In Deepak D’Souza and K. Narayan Kumar, editors,

Automated Technology for Verification and Analysis, pages 251–268, Cham, 2017.

Springer International Publishing.

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. Seq2sick:

Evaluating the robustness of sequence-to-sequence models with adversarial exam-

ples. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,

The Thirty-Second Innovative Applications of Artificial Intelligence Conference,

IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial

Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3601–

3608. AAAI Press, 2020.

François Chollet and others. Keras: The Python Deep Learning library, 2018.

François Chollet et al. keras, 2015.

153

Noam Chomsky. Syntactic structures. De Gruyter Mouton, 2009.

Noam Chomsky. 153A Minimalist Program for Linguistic Theory. In The Minimalist

Program. The MIT Press, 12 2014a.

Noam Chomsky. Aspects of the Theory of Syntax, volume 11. MIT press, 2014b.

Alexis Conneau, German Kruszewski, Guillaume Lample, Löıc Barrault, and Marco

Baroni. What you can cram into a single $&!#* vector: Probing sentence embed-

dings for linguistic properties. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 2126–

2136, Melbourne, Australia, 2018. Association for Computational Linguistics.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.

In H. Jaap van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers,

editors, Computers and Games, pages 72–83, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

Ian Covert, Scott M. Lundberg, and Su-In Lee. Understanding global feature contri-

butions with additive importance measures. In Hugo Larochelle, Marc’Aurelio Ran-

zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances

in Neural Information Processing Systems 33: Annual Conference on Neural In-

formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,

2020.

Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion,

and Matthias Hein. Sparse-rs: A versatile framework for query-efficient sparse

black-box adversarial attacks. In Thirty-Sixth AAAI Conference on Artificial In-

telligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of

Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Ad-

vances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March

1, 2022, pages 6437–6445. AAAI Press, 2022.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and

Prithviraj Sen. A survey of the state of explainable AI for natural language pro-

cessing. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the

Association for Computational Linguistics and the 10th International Joint Con-

ference on Natural Language Processing, pages 447–459, Suzhou, China, 2020. As-

sociation for Computational Linguistics.

154

Adnan Darwiche. Three modern roles for logic in ai. In Proceedings of the 39th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages

229–243, 2020.

Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. ArXiv preprint,

abs/2002.09284, 2020.

Congyue Deng and Yi Tian. Towards understanding the trade-off between accuracy

and adversarial robustness. abs/2002.10716, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pages 4171–4186, Minneapolis, Minnesota, 2019a. Association for

Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pages 4171–4186, Minneapolis, Minnesota, 2019b. Association for

Computational Linguistics.

Yanzhuo Ding, Yang Liu, Huanbo Luan, and Maosong Sun. Visualizing and under-

standing neural machine translation. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1150–1159, Vancouver, Canada, 2017. Association for Computational Linguistics.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. Towards robustness

against natural language word substitutions. In 9th International Conference on

Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

OpenReview.net, 2021.

Susan T Dumais. Latent semantic analysis. Annual Review of Information Science

and Technology (ARIST), 38:189–230, 2004.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output

range analysis for deep feedforward neural networks. In NASA Formal Methods,

pages 121–138, 2018.

155

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:

A survey. The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Allyson Ettinger, Sudha Rao, Hal Daumé III, and Emily M. Bender. Towards linguis-

tically generalizable NLP systems: A workshop and shared task. In Proceedings of

the First Workshop on Building Linguistically Generalizable NLP Systems, pages

1–10, Copenhagen, Denmark, 2017. Association for Computational Linguistics.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi,

Teruko Mitamura, and Eduard Hovy. A survey of data augmentation approaches for

NLP. In Findings of the Association for Computational Linguistics: ACL-IJCNLP

2021, pages 968–988, Online, 2021. Association for Computational Linguistics.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas

Lukasiewicz, Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Math-

ematical capabilities of chatgpt. abs/2301.13867, 2023.

Edward Gibson, Richard Futrell, Steven P Piantadosi, Isabelle Dautriche, Kyle Ma-

howald, Leon Bergen, and Roger Levy. How efficiency shapes human language.

Trends in cognitive sciences, 23(5):389–407, 2019.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics, pages 315–323. JMLR Workshop and Conference Pro-

ceedings, 2011.

A. Go et al. Twitter sentiment classification using distant supervision. CS224N

project report, Stanford, 2009.

Yoav Goldberg. Assessing bert’s syntactic abilities. ArXiv preprint, abs/1901.05287,

2019.

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s

negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-

ing adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-

tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

156

Gregory Goren, Oren Kurland, Moshe Tennenholtz, and Fiana Raiber. Ranking ro-

bustness under adversarial document manipulations. In Kevyn Collins-Thompson,

Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz, editors, The 41st

International ACM SIGIR Conference on Research & Development in Information

Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, pages 395–404.

ACM, 2018.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,

Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On

the effectiveness of interval bound propagation for training verifiably robust models.

ArXiv preprint, abs/1810.12715, 2018.

Shreya Goyal, Sumanth Doddapaneni, Mitesh M Khapra, and Balaraman Ravin-

dran. A survey in adversarial defences and robustness in NLP. ArXiv preprint,

abs/2203.06414, 2022.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text

generation via adversarial training with leaked information. In Sheila A. McIlraith

and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Con-

ference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of

Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Ad-

vances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, Febru-

ary 2-7, 2018, pages 5141–5148. AAAI Press, 2018.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,

Maria Antònia Mart́ı, Llúıs Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó,

Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. The

CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple lan-

guages. In Proceedings of the Thirteenth Conference on Computational Natural

Language Learning (CoNLL 2009): Shared Task, pages 1–18, Boulder, Colorado,

2009. Association for Computational Linguistics.

Yanfen Hao and Tony Veale. An ironic fist in a velvet glove: Creative mis-

representation in the construction of ironic similes. Minds and Machines, 20(4):

635–650, 2010.

157

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and

Dawn Song. Pretrained transformers improve out-of-distribution robustness. In

Proceedings of the 58th Annual Meeting of the Association for Computational Lin-

guistics, pages 2744–2751, Online, 2020. Association for Computational Linguistics.

Karl Moritz Hermann, Edward Grefenstette, and Phil Blunsom. “not not bad” is not

“bad”: A distributional account of negation. In Proceedings of the Workshop on

Continuous Vector Space Models and their Compositionality, pages 74–82, Sofia,

Bulgaria, 2013. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

Jie Hong, Pengfei Fang, Weihao Li, Tong Zhang, Christian Simon, Mehrtash Harandi,

and Lars Petersson. Reinforced attention for few-shot learning and beyond. In IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,

June 19-25, 2021, pages 913–923. Computer Vision Foundation / IEEE, 2021.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, and Cho-

Jui Hsieh. On the robustness of self-attentive models. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 1520–1529,

Florence, Italy, 2019. Association for Computational Linguistics.

Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug

Tygar. Adversarial machine learning. In Proceedings of the 4th ACM workshop on

Security and artificial intelligence, pages 43–58, 2011.

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven

Gowal, Krishnamurthy Dvijotham, and Pushmeet Kohli. Achieving verified ro-

bustness to symbol substitutions via interval bound propagation. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 4083–4093, Hong Kong, China, 2019. Association for Computa-

tional Linguistics.

Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stanforth, Johannes Welbl, Jack Rae,

Vishal Maini, Dani Yogatama, and Pushmeet Kohli. Reducing sentiment bias in

language models via counterfactual evaluation. In Findings of the Association for

158

Computational Linguistics: EMNLP 2020, pages 65–83, Online, 2020. Association

for Computational Linguistics.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of

deep neural networks. In International Conference on Computer Aided Verification,

pages 3–29. Springer, 2017.

Xuanxiang Huang and Joao Marques-Silva. The inadequacy of shapley values for

explainability. ArXiv preprint, abs/2302.08160, 2023.

Aminul Huq, Mst Pervin, et al. Adversarial attacks and defense on texts: A survey.

ArXiv preprint, abs/2005.14108, 2020.

A. Ignatiev et al. On finding minimum satisfying assignments. In CP, volume 9892

of LNCS, pages 287–297. Springer, 2016.

A. Ignatiev et al. A SAT-based approach to learn explainable decision sets. In IJCAR,

volume 10900 of Lecture Notes in Computer Science, pages 627–645. Springer, 2018.

A. Ignatiev et al. On validating, repairing and refining heuristic ml explanations.

ArXiv preprint, abs/1907.02509, 2019a.

Alexey Ignatiev, António Morgado, Georg Weissenbacher, and João Marques-Silva.

Model-based diagnosis with multiple observations. In Sarit Kraus, editor, Proceed-

ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,

IJCAI 2019, Macao, China, August 10-16, 2019, pages 1108–1115. ijcai.org, 2019b.

Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. Abduction-based ex-

planations for machine learning models. In The Thirty-Third AAAI Conference

on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of

Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-

ucational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,

January 27 - February 1, 2019, pages 1511–1519. AAAI Press, 2019c.

Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. On relating explanations

and adversarial examples. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-

imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 32: Annual Conference on Neural Infor-

mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,

BC, Canada, pages 15857–15867, 2019d.

159

Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Proceedings of

the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 3543–3556, Minneapolis, Minnesota, 2019. Association for Compu-

tational Linguistics.

Ganesh Jawahar, Benôıt Sagot, and Djamé Seddah. What does BERT learn about

the structure of language? In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages 3651–3657, Florence, Italy, 2019.

Association for Computational Linguistics.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading compre-

hension systems. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 2021–2031, Copenhagen, Denmark, 2017.

Association for Computational Linguistics.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. Certified robust-

ness to adversarial word substitutions. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4129–4142,

Hong Kong, China, 2019. Association for Computational Linguistics.

Ye Jia, Yu Zhang, Ron J. Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng Chen,

Patrick Nguyen, Ruoming Pang, Ignacio Lopez-Moreno, and Yonghui Wu. Trans-

fer learning from speaker verification to multispeaker text-to-speech synthesis. In

Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-

Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing

Systems 31: Annual Conference on Neural Information Processing Systems 2018,

NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 4485–4495, 2018.

Steven Johnson and Nikita Iziev. A.i. is mastering language. should we trust what it

says?, Apr 2022.

G. Katz et al. The Marabou framework for verification and analysis of deep neural

networks. In CAV, volume 11561 of LNCS, pages 443–452. Springer, 2019a.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Re-

luplex: An efficient smt solver for verifying deep neural networks. In International

Conference on Computer Aided Verification, pages 97–117. Springer, 2017a.

160

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Re-

luplex: An efficient smt solver for verifying deep neural networks. In International

Conference on Computer Aided Verification, pages 97–117. Springer, 2017b.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Re-

luplex: An efficient smt solver for verifying deep neural networks. In International

Conference on Computer Aided Verification, pages 97–117. Springer, 2017c.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel

Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The

marabou framework for verification and analysis of deep neural networks. In In-

ternational Conference on Computer Aided Verification, pages 443–452. Springer,

2019b.

Kian Kenyon-Dean, Eisha Ahmed, Scott Fujimoto, Jeremy Georges-Filteau, Christo-

pher Glasz, Barleen Kaur, Auguste Lalande, Shruti Bhanderi, Robert Belfer, Nir-

mal Kanagasabai, Roman Sarrazingendron, Rohit Verma, and Derek Ruths. Sen-

timent analysis: It’s complicated! In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), pages 1886–1895, New Orleans,

Louisiana, 2018. Association for Computational Linguistics.

Eugene Kharitonov and Rahma Chaabouni. What they do when in doubt: a study of

inductive biases in seq2seq learners. In 9th International Conference on Learning

Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-

view.net, 2021.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengx-

uan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi

Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin

Jia, Mohit Bansal, Christopher Potts, and Adina Williams. Dynabench: Rethink-

ing benchmarking in NLP. In Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 4110–4124, Online, 2021. Association for Computational

Linguistics.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of

self-attention. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th

161

International Conference on Machine Learning, volume 139 of Proceedings of Ma-

chine Learning Research, pages 5562–5571. PMLR, 18–24 Jul 2021.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1746–1751, Doha, Qatar, 2014. Association for Computational

Linguistics.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua Lin.

POPQORN: quantifying robustness of recurrent neural networks. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Interna-

tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,

California, USA, volume 97 of Proceedings of Machine Learning Research, pages

3468–3477. PMLR, 2019a.

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua Lin.

POPQORN: quantifying robustness of recurrent neural networks. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Interna-

tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,

California, USA, volume 97 of Proceedings of Machine Learning Research, pages

3468–3477. PMLR, 2019b.

Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szyd lo,

Joanna Baran, Julita Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz,

et al. Chatgpt: Jack of all trades, master of none. abs/2302.10724, 2023.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Euro-

pean conference on Machine Learning, pages 282–293. Springer, 2006.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In Peter L. Bartlett, Fernando C. N.

Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors,

Advances in Neural Information Processing Systems 25: 26th Annual Conference

on Neural Information Processing Systems 2012. Proceedings of a meeting held

December 3-6, 2012, Lake Tahoe, Nevada, United States, pages 1106–1114, 2012.

162

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung Lau, and Stefano Ermon. Ad-

versarial examples for natural language classification problems. arxiv pre-print,

2018.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning

at scale. In 5th International Conference on Learning Representations, ICLR 2017,

Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,

2017.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the

physical world. In Artificial intelligence safety and security, pages 99–112. Chapman

and Hall/CRC, 2018.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. From word

embeddings to document distances. In Francis R. Bach and David M. Blei, edi-

tors, Proceedings of the 32nd International Conference on Machine Learning, ICML

2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference

Proceedings, pages 957–966. JMLR.org, 2015.

Emanuele La Malfa and Marta Kwiatkowska. The king is naked: On the notion of

robustness for natural language processing. In Thirty-Sixth AAAI Conference on

Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Appli-

cations of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educa-

tional Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 -

March 1, 2022, pages 11047–11057. AAAI Press, 2022.

Emanuele La Malfa, Min Wu, Luca Laurenti, Benjie Wang, Anthony Hartshorn, and

Marta Kwiatkowska. Assessing robustness of text classification through maximal

safe radius computation. In Findings of the Association for Computational Linguis-

tics: EMNLP 2020, pages 2949–2968, Online, 2020. Association for Computational

Linguistics.

Emanuele La Malfa, Rhiannon Michelmore, Agnieszka M. Zbrzezny, Nicola Paoletti,

and Marta Kwiatkowska. On guaranteed optimal robust explanations for nlp mod-

els. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Con-

ference on Artificial Intelligence, IJCAI-21, pages 2658–2665. International Joint

Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.

2021/366. URL https://doi.org/10.24963/ijcai.2021/366. Main Track.

163

https://doi.org/10.24963/ijcai.2021/366

Emanuele La Malfa, Matthew Wicker, and Marta Kiatkowska. Emergent linguistic

structures in neural networks are fragile. ArXiv preprint, abs/2210.17406, 2022.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understand-

ing neural models in NLP. In Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 681–691, San Diego, California, 2016. Association for

Computational Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-

ATTACK: Adversarial attack against BERT using BERT. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 6193–6202, Online, 2020. Association for Computational Linguistics.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi.

Deep text classification can be fooled. In Jérôme Lang, editor, Proceedings of the

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI

2018, July 13-19, 2018, Stockholm, Sweden, pages 4208–4215. ijcai.org, 2018.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula,

Yejin Choi, and Xiang Ren. CommonGen: A constrained text generation challenge

for generative commonsense reasoning. In Findings of the Association for Compu-

tational Linguistics: EMNLP 2020, pages 1823–1840, Online, 2020. Association for

Computational Linguistics.

Seppo Linnainmaa. The representation of the cumulative rounding error of an al-

gorithm as a Taylor expansion of the local rounding errors. PhD thesis, Master’s

Thesis (in Finnish), Univ. Helsinki, 1970.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention to mlps.

In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and

Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing

Systems 34: Annual Conference on Neural Information Processing Systems 2021,

NeurIPS 2021, December 6-14, 2021, virtual, pages 9204–9215, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized bert pretraining approach. ArXiv preprint, abs/1907.11692, 2019.

164

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predic-

tions. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,

Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in

Neural Information Processing Systems 30: Annual Conference on Neural Infor-

mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages

4765–4774, 2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and

Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of

the 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies, pages 142–150, Portland, Oregon, USA, 2011a. Association

for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and

Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of

the 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies, pages 142–150, Portland, Oregon, USA, 2011b. Association

for Computational Linguistics.

Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Diptikalyan Saha. Generate

your counterfactuals: Towards controlled counterfactual generation for text. In

Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third

Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The

Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI

2021, Virtual Event, February 2-9, 2021, pages 13516–13524. AAAI Press, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In

6th International Conference on Learning Representations, ICLR 2018, Vancou-

ver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-

view.net, 2018.

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenen-

baum, and Evelina Fedorenko. Dissociating language and thought in large language

models: a cognitive perspective. ArXiv preprint, abs/2301.06627, 2023.

Christopher Manning and Hinrich Schutze. Foundations of statistical natural language

processing. MIT press, 1999.

165

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer

Levy. Emergent linguistic structure in artificial neural networks trained by self-

supervision. Proceedings of the National Academy of Sciences, 117(48):30046–

30054, 2020.

Joao Marques-Silva. Logic-based explainability in machine learning. ArXiv preprint,

abs/2211.00541, 2022.

João Marques-Silva and Alexey Ignatiev. Delivering trustworthy AI through for-

mal XAI. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI

2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelli-

gence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial

Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 12342–

12350. AAAI Press, 2022.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

Distributed representations of words and phrases and their compositionality. In

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 26: 27th An-

nual Conference on Neural Information Processing Systems 2013. Proceedings of

a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages

3111–3119, 2013.

George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

Marvin Minsky and Seymour A Papert. Perceptrons, Reissue of the 1988 Expanded

Edition with a new foreword by Léon Bottou: An Introduction to Computational

Geometry. MIT press, 2017.

Tom M Mitchell. The need for biases in learning generalizations. Department of

Computer Science, Laboratory for Computer Science Research . . . , 1980.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

John Morris. Second-order NLP adversarial examples. In Proceedings of the Third

BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP,

pages 228–237, Online, 2020. Association for Computational Linguistics.

166

John Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji, and Yanjun Qi. Reevaluating

adversarial examples in natural language. In Findings of the Association for Com-

putational Linguistics: EMNLP 2020, pages 3829–3839, Online, 2020a. Association

for Computational Linguistics.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Tex-

tAttack: A framework for adversarial attacks, data augmentation, and adversarial

training in NLP. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing: System Demonstrations, pages 119–126, Online,

2020b. Association for Computational Linguistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić, Lina M. Rojas-

Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young.

Counter-fitting word vectors to linguistic constraints. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 142–148, San Diego, California,

2016. Association for Computational Linguistics.

N. Narodytska et al. Assessing heuristic machine learning explanations with model

counting. In SAT, pages 267–278. Springer, 2019.

Timothy Niven and Hung-Yu Kao. Probing neural network comprehension of natural

language arguments. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 4658–4664, Florence, Italy, 2019. Association

for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič,

Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia

Silveira, Reut Tsarfaty, and Daniel Zeman. Universal Dependencies v1: A multi-

lingual treebank collection. In Proceedings of the Tenth International Conference

on Language Resources and Evaluation (LREC’16), pages 1659–1666, Portorož,

Slovenia, 2016. European Language Resources Association (ELRA).

Marwan Omar, Soohyeon Choi, DaeHun Nyang, and David Mohaisen. Robust natural

language processing: Recent advances, challenges, and future directions. ArXiv

preprint, abs/2201.00768, 2022.

OpenAI. GPT-4 technical report. ArXiv preprint, abs/2303.08774, 2023.

167

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. Pytorch: An imperative style, high-performance deep learning library.

In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,

Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Pro-

cessing Systems 32: Annual Conference on Neural Information Processing Systems

2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–

8035, 2019.

Kevin Patel and Pushpak Bhattacharyya. Towards lower bounds on number of di-

mensions for word embeddings. In Proceedings of the Eighth International Joint

Conference on Natural Language Processing (Volume 2: Short Papers), pages 31–

36, Taipei, Taiwan, 2017. Asian Federation of Natural Language Processing.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vec-

tors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,

2014a. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vec-

tors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,

2014b. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In

Proceedings of the 2018 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume 1

(Long Papers), pages 2227–2237, New Orleans, Louisiana, 2018. Association for

Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams,

and Ryan Cotterell. Information-theoretic probing for linguistic structure. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, pages 4609–4622, Online, 2020. Association for Computational Linguistics.

168

Nicolas Pröllochs, Stefan Feuerriegel, and Dirk Neumann. Enhancing sentiment anal-

ysis of financial news by detecting negation scopes. In 2015 48th Hawaii Interna-

tional Conference on System Sciences, pages 959–968. IEEE, 2015.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning.

Stanza: A python natural language processing toolkit for many human languages.

In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 101–108, Online, July 2020. Association

for Computational Linguistics.

Shilin Qiu, Qihe Liu, Shijie Zhou, and Wen Huang. Adversarial attack and defense

technologies in natural language processing: A survey. Neurocomputing, 492:278–

307, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,

2019.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the prob-

ing paradigm: Does probing accuracy entail task relevance? arXiv preprint

arXiv:2005.00719, 2020.

R. Reiter. A theory of diagnosis from first principles. Artificial intelligence, 32(1):

57–95, 1987.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust you?”:

Explaining the predictions of any classifier. In Balaji Krishnapuram, Mohak Shah,

Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors,

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages

1135–1144. ACM, 2016.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision

model-agnostic explanations. In Sheila A. McIlraith and Kilian Q. Weinberger, ed-

itors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,

(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),

and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence

(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1527–1535.

AAAI Press, 2018a.

169

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent

adversarial rules for debugging NLP models. In Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), pages 856–865, Melbourne, Australia, 2018b. Association for Computational

Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond

accuracy: Behavioral testing of NLP models with CheckList. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, pages

4902–4912, Online, 2020. Association for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What

we know about how BERT works. Transactions of the Association for Computa-

tional Linguistics, 8:842–866, 2020.

Tom Roth, Yansong Gao, Alsharif Abuadbba, Surya Nepal, and Wei Liu. Token-

modification adversarial attacks for natural language processing: A survey. ArXiv

preprint, abs/2103.00676, 2021.

Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep

neural networks with provable guarantees. In Jérôme Lang, editor, Proceedings

of the Twenty-Seventh International Joint Conference on Artificial Intelligence,

IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 2651–2659. ijcai.org, 2018.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-

agenet large scale visual recognition challenge. International journal of computer

vision, 115:211–252, 2015.

Ruslan Salakhutdinov. Deep learning. In Sofus A. Macskassy, Claudia Perlich, Jure

Leskovec, Wei Wang, and Rayid Ghani, editors, The 20th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’14, New York,

NY, USA - August 24 - 27, 2014, page 1973. ACM, 2014.

Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-

Robert Müller. Explainable AI: interpreting, explaining and visualizing deep learn-

ing, volume 11700. Springer Nature, 2019.

170

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hos-

seini, Nancy Kanwisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural

architecture of language: Integrative modeling converges on predictive processing.

Proceedings of the National Academy of Sciences, 118(45):e2105646118, 2021.

Hinrich Schütze. Automatic word sense discrimination. Computational linguistics, 24

(1):97–123, 1998.

Weijia Shi, Andy Shih, Adnan Darwiche, and Arthur Choi. On tractable representa-

tions of binary neural networks. ArXiv preprint, abs/2004.02082, 2020a.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh. Ro-

bustness verification for transformers. In 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-

view.net, 2020b.

Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Text data augmentation

for deep learning. Journal of big Data, 8:1–34, 2021.

Chandan Singh, W. James Murdoch, and Bin Yu. Hierarchical interpretations for

neural network predictions. In 7th International Conference on Learning Repre-

sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,

2019.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and

Douwe Kiela. Masked language modeling and the distributional hypothesis: Order

word matters pre-training for little. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing, pages 2888–2913, Online and

Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju.

Fooling lime and shap: Adversarial attacks on post hoc explanation methods. In

Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages 180–

186, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng, and Christopher Potts. Recursive deep models for semantic com-

positionality over a sentiment treebank. In Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,

Washington, USA, 2013a. Association for Computational Linguistics.

171

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng, and Christopher Potts. Recursive deep models for semantic com-

positionality over a sentiment treebank. In Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,

Washington, USA, 2013b. Association for Computational Linguistics.

Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifi-

cations using game theory. The Journal of Machine Learning Research, 11:1–18,

2010.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu, and

Caiming Xiong. Adv-bert: Bert is not robust on misspellings! generating nature

adversarial samples on bert. ArXiv preprint, abs/2003.04985, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In

Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference

Track Proceedings, 2014a.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In

Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference

Track Proceedings, 2014b.

Andrea Tocchetti, Lorenzo Corti, Agathe Balayn, Mireia Yurrita, Philip Lippmann,

Marco Brambilla, and Jie Yang. Ai robustness: a human-centered perspective on

technological challenges and opportunities. ArXiv preprint, abs/2210.08906, 2022.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh,

and Patrick D. McDaniel. Ensemble adversarial training: Attacks and defenses. In

6th International Conference on Learning Representations, ICLR 2018, Vancou-

ver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-

view.net, 2018.

172

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-

sander Madry. Robustness may be at odds with accuracy. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle

Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Pro-

cessing Systems 30: Annual Conference on Neural Information Processing Systems

2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

Luke Vilnis and Andrew McCallum. Word representations via gaussian embedding. In

Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

Daniele Vitale, Paolo Ferragina, and Ugo Scaiella. Classification of short texts by

deploying topical annotations. In European Conference on Information Retrieval,

pages 376–387. Springer, 2012.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient

formal safety analysis of neural networks. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems, volume 31. Curran Associates, Inc., 2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient

formal safety analysis of neural networks. In Samy Bengio, Hanna M. Wallach, Hugo

Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors,

Advances in Neural Information Processing Systems 31: Annual Conference on

Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,

Montréal, Canada, pages 6369–6379, 2018b.

Xuezhi Wang, Haohan Wang, and Diyi Yang. Measure and improve robustness in

NLP models: A survey. In Proceedings of the 2022 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 4569–4586, Seattle, United States, 2022. Association for Com-

putational Linguistics.

173

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel,

Duane S. Boning, and Inderjit S. Dhillon. Towards fast computation of certified

robustness for relu networks. In Jennifer G. Dy and Andreas Krause, editors, Pro-

ceedings of the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings

of Machine Learning Research, pages 5273–5282. PMLR, 2018a.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao,

Cho-Jui Hsieh, and Luca Daniel. Evaluating the robustness of neural networks:

An extreme value theory approach. In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,

Conference Track Proceedings. OpenReview.net, 2018b.

Jennifer C. White, Tiago Pimentel, Naomi Saphra, and Ryan Cotterell. A non-linear

structural probe. In Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, pages 132–138, Online, 2021. Association for Computational Linguistics.

Michael Wiegand, Alexandra Balahur, Benjamin Roth, Dietrich Klakow, and Andrés

Montoyo. A survey on the role of negation in sentiment analysis. In Proceedings of

the Workshop on Negation and Speculation in Natural Language Processing, pages

60–68, Uppsala, Sweden, 2010. University of Antwerp.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge

corpus for sentence understanding through inference. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–

1122, New Orleans, Louisiana, 2018. Association for Computational Linguistics.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via

the convex outer adversarial polytope. In Jennifer G. Dy and Andreas Krause,

editors, Proceedings of the 35th International Conference on Machine Learning,

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80

of Proceedings of Machine Learning Research, pages 5283–5292. PMLR, 2018.

Min Wu and Marta Kwiatkowska. Robustness guarantees for deep neural networks

on videos. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 308–317. IEEE,

2020.

174

Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. A

game-based approximate verification of deep neural networks with provable guar-

antees. Theoretical Computer Science, 807:298–329, 2020a.

Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. A

game-based approximate verification of deep neural networks with provable guar-

antees. Theoretical Computer Science, 807:298 – 329, 2020b. ISSN 0304-3975.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld.

Polyjuice: Automated, general-purpose counterfactual generation. ArXiv preprint,

abs/2101.00288, 2021.

Ying Xu, Xu Zhong, Antonio Jose Jimeno Yepes, and Jey Han Lau. Elephant in the

room: An evaluation framework for assessing adversarial examples in NLP. ArXiv

preprint, abs/2001.07820, 2020.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Effi-

cient neural network robustness certification with general activation functions. In

Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-

Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing

Systems 31: Annual Conference on Neural Information Processing Systems 2018,

NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 4944–4953, 2018.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial

attacks on deep-learning models in natural language processing: A survey. ACM

Transactions on Intelligent Systems and Technology (TIST), 11(3):1–41, 2020.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional

networks for text classification. In Corinna Cortes, Neil D. Lawrence, Daniel D.

Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Informa-

tion Processing Systems 28: Annual Conference on Neural Information Processing

Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 649–657,

2015a.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional

networks for text classification. In Corinna Cortes, Neil D. Lawrence, Daniel D.

Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Informa-

tion Processing Systems 28: Annual Conference on Neural Information Processing

Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 649–657,

2015b.

175

George Kingsley Zipf. The psycho-biology of language: An introduction to dynamic

philology. Routledge, 2013.

Daniel Zoran, Mike Chrzanowski, Po-Sen Huang, Sven Gowal, Alex Mott, and Push-

meet Kohli. Towards robust image classification using sequential attention mod-

els. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 9480–9489. IEEE, 2020.

176

	Introduction
	Introduction
	Contributions
	Publications
	Thesis Outline

	Background
	Deep Learning
	Neural Networks
	Neural Architectures
	Training Procedures
	Natural Language Processing
	On NLP Representations
	Word Embeddings
	Attention-based Large Language Models
	NLP Core Tasks

	Robustness
	Adversarial Attacks
	Adversarial Robustness
	-Ball Robustness
	Beyond -Ball Robustness
	Robustness Guarantees and Robust Training

	Robustness and Language
	Adversarial Attacks in NLP
	Local Robustness
	Explainability and Robustness
	Feature-based Explanations

	Literature Review
	Adversarial Attacks
	Adversarial Attacks and Language

	Robustness and Verification
	Explainability

	Measuring Robustness in NLP
	Motivation and Setting
	The Maximal Safe Radius Approach
	Lower Bound
	Mind the (Discrete) Gap: the Upper Bound
	MCTS Algorithm

	Experiments
	Experimental Setup
	Robustness to Word Substitutions

	Continuous Robustness: a Critical Appraisal

	On the Notion of Robustness for NLP
	Chapter Overview and Contributions
	The Standard Notion of Robustness
	Continuous and Discrete Robustness

	A Semantic Notion of Robustness
	Task-preserving Generative Method

	Experimental Evaluation
	Experimental Setup
	Comparative Study
	Classic Robustness is Linguistically Brittle
	Accuracy is a Red Herring: the BERT Case
	Robustness Induced Biases

	Conclusions

	Robustness of Syntactic Structures
	Motivation and Setting
	Probing Tasks for Model Introspection
	Methodology
	Probing Tasks for Model Introspection

	Measuring Syntactic Robustness
	Syntax-preserving Perturbation Analysis

	Algorithm for Evaluating Syntactic Robustness
	Computing coPOS Perturbations
	coCO and Baseline Perturbations
	Average Worst-case Robustness Algorithm

	Validating the Perturbation Method
	Experimental Evaluation
	Experimental Setting
	Empirical Evaluation of Syntactic Robustness

	Conclusions

	Robust Explainability
	On the Necessity of Guaranteed Explanations
	Optimal Robust Explanations
	Relation to Anchors

	Extracting OREs
	Minimum Hitting Set
	MHS Pseudocode
	OREs Use Cases
	OREs can Detect Model/Decision Biases
	Enhancing Anchors Explanations

	Experimental Evaluation
	Experimental Setup

	Conclusions

	Conclusions

