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Abstract. Bayesian neural networks (BNNs), a family of neural net-
works with a probability distribution placed on their weights, have the
advantage of being able to reason about uncertainty in their predictions
as well as data. Their deployment in safety-critical applications demands
rigorous robustness guarantees. This paper summarises recent progress in
developing algorithmic methods to ensure certifiable safety and robust-
ness guarantees for BNNs, with the view to support design automation
for systems incorporating BNN components.
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1 Introduction

Neural networks (NNs) are being introduced across many domains, including
robotics, autonomous vehicles, security and healthcare, but their deployment in
safety-critical scenarios demands rigorous robustness guarantees in the presence
of uncertainty, which are lacking for NNs. Bayesian neural networks (BNNs) [6]
are a family of neural networks that place distributions over their weights, instead
of viewing them as fixed values, and can thus account for uncertainty in data
and predictions. Starting with a prior distribution and a given likelihood, the ap-
plication of Bayes’ theorem results in posterior probability distribution over the
BNN weights conditional on the observed data. This induces posterior predictive
distribution on the BNN outputs, with the final BNN prediction selected from
this distribution according to Bayesian decision theory. BNNs therefore combine
the high capacity of NNs while enabling (Bayesian) probabilistic reasoning, since
they can be viewed as stochastic processes.

This invited paper describes recent progress in developing methods to provide
robustness guarantees for Bayesian neural networks. These include certifiable
adversarial training, statistical evaluation of probabilistic safety, and certified
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lower bounding of safety probability. The discussed methods draw on proba-
bilistic reachability analysis, sampling, statistical model checking and convex
relaxation, and constitute part of an effort to develop probabilistic verification
and synthesis methodologies for systems incorporating BNN components.

2 Background on Bayesian Neural Networks

A feed-forward neural network (NN) is a function fw ∶ Rm → Rn, parametrised
by a vector w ∈ Rnw that includes all the weights of the network (for simplicity
assume no bias). We work in a supervised learning scenario, where we are given
a dataset D = {(xi, yi)}nDi=1 of pairs of inputs and ground truth labels, with
xi ∈ Rm, and where each target output y ∈ Rn is either a one-hot class vector for
classification or a real-valued vector for regression.

A Bayesian neural network (BNN) [6] is an NN with a distribution placed
over the network parameters w, and can thus be viewed as a stochastic process
fw (vector of random variables w associated to the weights) indexed by the in-
put space. Note that, for a weight vector w sampled from the distribution of w,
the BNN induces a (deterministic) NN fw with weights fixed to w. We employ
Bayesian learning to infer the weight parameters, starting with a prior distribu-
tion pw(w) over w and likelihood p(D∣w) = ∏nD

i=1 p(yi∣xi,w), to compute the pos-
terior distribution pw(w∣D) of parameters conditioned on data by applying the
Bayes formula, i.e., pw(w∣D) ∝ p(D∣w)pw(w). This induces the distribution over
outputs called the posterior predictive distribution defined for an unseen point
x∗ by p(y∗∣x∗,D) = ∫ p(y∗∣x∗,w)pw(w∣D)dw. The final prediction is obtained
based on Bayesian decision theory and is the value ŷ that minimizes the Bayesian
risk of an incorrect prediction according to the posterior predictive distribution
and a loss function L, computed as ŷ = argminy ∫Rn L(y, y∗)p(y∗∣x∗,D)dy∗. For
classification decisions, we typically work with 0-1 loss and the optimal decision
is then the class that maximises the predictive distribution, whereas for regres-
sion ℓ2 loss is used and the optimal decision the expected value of the BNN
output over the posterior distribution.

Unfortunately, the computation of the posterior distribution pw(w∣D) over
weights cannot be computed analytically and is generally intractable [6]. Instead,
approximate inference methods have been developed for BNNs, of which Hamil-
tonian Monte Carlo (HMC) [6] and Variational Inference (VI) [1] are commonly
used. HMC considers Hamiltionian dynamics to speed up the exploration, work-
ing with a Markov chain whose invariant distribution is pw(w∣D), and is asymp-
totically correct [6]. The result of HMC is a set of samples that approximates
pw(w∣D). VI proceeds by finding a Gaussian approximating distribution over the
weight space q(w) ∼ pw(w∣D), where q(w) depends on some hyperparameters
that are then iteratively optimized by minimizing a divergence measure between
q(w) and pw(w∣D), thus trading off approximation accuracy against scalability.
Samples can then be efficiently extracted from q(w).
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3 Certifiable Adversarial Robustness

Though the ability of Bayesian neural networks to capture uncertainty is appeal-
ing for safety-critical applications, they are susceptible to adversarial attacks.
In [7], a principled Bayesian approach was proposed for incorporating adversar-
ial robustness in the posterior inference procedure of BNNs. To this end, the
robustness requirement is formulated as the worst-case prediction over an ad-
versarial input ball of radius ϵ ≥ 0 induced by a user-defined probability density
function pϵ, and the standard cross-entropy likelihood model was extended by
marginalising the network output over pϵ called robust likelihood. Further, for
any ϵ > 0, certified lower bounds to the robust likelihood can be computed by
employing interval bound propagation techniques. This novel adversarial train-
ing procedure adapts naturally to the main approximate inference techniques
employed for training of BNNs, including HMC and VI. An experimental eval-
uation in [7] demonstrated that the robust likelihood can double the maximal
safe radius for the standard model and results in better calibrated uncertainty
when predicting out-of-distribution samples.

4 Probabilistic Safety Evaluation

Safe decision making is important in autonomous scenarios, where it can bene-
fit from uncertainty estimates being propagated through the decision pipeline.
In [5], a setting involving an end-to-end BNN autonomous driving controller
based on NVIDIA’s PilotNet was considered, which can be viewed as a discrete-
time stochastic process, and a framework was proposed for evaluating safety of
the controller’s decisions. Two properties were considered, probabilistic safety,
i.e., the probability that the controller will maintain the safety of the car for a
given time horizon, and real-time decision confidence, i.e., the probability that
the BNN is certain of a given decision. We remark that probabilistic safety repre-
sents a probabilistic variant of the notion of safety [3] commonly used to certify
deterministic NNs. A statistical model checking framework based on [2] is em-
ployed to evaluate robustness of these properties to changes in weather, location
and observation noise with a priori confidence interval guarantees (using Cher-
noff bounds) in a simulated scenario. Here, we exploit the fact that sampling
BNN weights results in a deterministic NN, which can be checked using conven-
tional methods for NNs, and the proportion of sampled NNs that are safe yields
a probability estimate of BNN safety. [5] also shows how to quantify the uncer-
tainty of the controller’s decisions and utilise uncertainty thresholds in order to
guarantee the safety of the self-driving car with high probability. Separately, [4]
study infinite-time horizon robustness properties for BNNs.

5 Certified Bounds on Safety Probability

Probabilistic safety evaluation based on [2] can only provide guarantees in the
form of confidence intervals, which may not be sufficient for highly safety-critical
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systems. [8] considered certification of (lower bounds on) the safety probability.
The method is based on observing that probabilistic safety translates into com-
puting the probability that adversarial perturbations of an input cause small
variations in the BNN output. For BNNs, this involves working with posterior
probability and showing that the computation of probabilistic safety for BNNs is
equivalent to computing the measure, w.r.t. BNN posterior, of the set of weights
for which the resulting deterministic NN is safe, i.e., robust to adversarial pertur-
bations. Once the set of such weights is computed, relaxation techniques from
non-linear optimisation (interval bound propagation and linear bound propa-
gation) are employed to check whether all the networks instantiated by these
weights are safe. This yields lower bounds on the probability for the case of
BNNs trained with VI, but the method extends to other approximate Bayesian
inference techniques. Experimental evaluation on the VCAS collision-avoidance
case study demonstrates the practicality of the method. In follow-on work, [9]
consider also synthesis of certified policies for BNNs.

6 Conclusion and Further Work

We have provided an overview of algorithmic techniques developed to ensure cer-
tified guarantees of safety and adversarial robustness for BNNs. Certification of
BNNs is more involved than for NNs, because of the need to consider weight in-
tervals instead of single values, and presents significant computational challenges
that have so far been tackled using a combination of numerical, statistical and
symbolic techniques. Despite encouraging progress, much remains to be done,
including upper bounding of safety, certified bounds on decision probability,
temporal logic specifications, strategy synthesis and explanations for BNNs.
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