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ABSTRACT

Computing systems are becoming ever more complex, with deci-

sions increasingly often based on deep learning components. A

wide variety of applications are being developed, many of them

safety-critical, such as self-driving cars and medical diagnosis. Since

deep learning is unstable with respect to adversarial perturbations,

there is a need for rigorous software development methodologies

that encompass machine learning components. This lecture will de-

scribe progress with developing automated verification and testing

techniques for deep neural networks to ensure safety and robust-

ness of their decisions with respect to bounded input perturbations.

The techniques exploit Lipschitz continuity of the networks and

aim to approximate, for a given set of inputs, the reachable set of

network outputs in terms of lower and upper bounds, in anytime

manner, with provable guarantees. We develop novel algorithms

based on feature-guided search, games, global optimisation and

Bayesian methods, and evaluate them on state-of-the-art networks.

The lecture will conclude with an overview of the challenges in

this field.
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1 INTRODUCTION

Much of the recent success of Artificial Intelligence (AI) derives

from deep learning [10]. Deep neural networks (DNNs) have been

developed for a variety of tasks, including computer vision, face

recognition, autonomous driving, malware detection, speech recog-

nition, text analysis and medical diagnosis. Unfortunately, neural

networks are susceptible to adversarial examples [2, 23]. An adver-

sarial example is an input which, though initially classified correctly,

is misclassified after a minor, perhaps imperceptible, perturbation.

As an illustrative example, Figure 1 from [29] shows an image of a

traffic light correctly classified by a convolutional neural network,

which is then misclassified after changing only a few pixels. This is

an example of a sensitivity-based adversarial example [24], typically

achieved by small norm-bounded perturbations of the original in-

put (here Euclidean distance 0.88), which a human observer would

still classify correctly. Another important class of adversarial exam-

ples are invariance-based, which preserve the network’s prediction

while making semantic changes, but are not necessarily close to

the original input with respect to the distance function. Adversarial

examples have now been demonstrated for virtually all applications

of deep learning, and the ease with which they can be exhibited

highlights the need for appropriate safety mechanisms to use dur-

ing deployment, as well as software development frameworks to

ensure the safety and robustness of neural networks, as argued in

[12].

Figure 1: An adversarial example for a neural network

trained on the GTSRB dataset. After a slight perturbation,

the image classification changes from “go right or straight”

to “go left or straight”.

This paper describes recent progress with developing automated

verification and testing techniques for deep neural networks, with

the overall goal of improving the safety and robustness of their

decisions. The overview focuses on the work related to the ASE

2020 keynote and is not intended to be exhaustive.

2 ROBUSTNESS ASSURANCE FOR NEURAL
NETWORKS

This overview is concerned with robustness (or resilience) of neural

networks to norm-bounded adversarial perturbations. Since DNN
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components are used in automated decision making, robustness

translates to safety of DNN decisions in adversarial settings, where

adversary’s power is constrained to perturbations of up to some

magnitude.We consider classification problems and work with local

(also called pointwise) robustness, defined with respect to an input

point and its neighbourhood as the invariance of the classification

over the neighbourhood. Robustness can be measured in terms of

the distance computed in the input vector space from a given input

to the nearest adversarial example (called themaximum safe radius).

Global robustness can then be estimated for the model in terms of

the expectation of local robustness over the test dataset weighted

by the input distribution.

2.1 Diagnostic search for adversarial examples

Searching for adversarial examples in the local neighbourhood

of an input point can be utilised for diagnostic testing purposes.

Adversarial examples can also used in an abstraction refinement

framework to improve scalability of the DNN verification task

[8]. Adversarial examples are typically detected by transforming

the search into an optimisation problem, originally introduced for

the 𝐿2 distance in [23] and extended to other norms, including 𝐿0
and 𝐿∞, in [6]. In contrast to these white-box approaches, which

assume access to the network parameters, [25] presents a black-

box method which uses the SIFT [15] algorithm to extract features

of the input image, and then, working on a mixture of Gaussian

representation of the image, employs Monte Carlo Tree Search

to find adversarial examples. An effective 𝐿0 adversarial search

method is given in [26] for 3D learning by occluding points in a

Lidar image, for both pointset and volumetric representations, and

evaluated on the KITTI dataset. The method can be extended to

perturbations other than occlusion.

2.2 Automated verification with provable
guarantees

While searching for adversarial examples can pinpoint DNN’s in-

stabilities, it is unable to provide guarantees that no adversarial

example exists if not found. The goal of automated verification ap-

proaches is to provide formal, provable guarantees on the robustness

of DNNs. These include exact methods such as [14], which encode

a ReLU network as a set of constraints and reduce the verification

to the satisfiability problem, as well techniques based on abstract

interpretation [19] and robust optimisation [18]. An alternative

approach based on satisfiability solving [12] develops a verification

framework that employs discretisation of the neighbourhood of

a given input and a layer-by-layer refinement to enable exhaus-

tive exploration. [20] presents a verification approach based on

computing the reachable set of outputs using global optimisation,

relying on the knowledge of an estimate of the Lipschitz constant

of the network. In [29], an approximate game-based approach is

developed, which enables anytime computation of upper and lower

bounds of the maximum safe radius for a given input and perturba-

tion magnitude, providing a theoretical guarantee that it can reach

the exact value of the maximum safe radius. A lower bound guar-

antees that all perturbations up to that magnitude will not result in

a class change, whereas an upper bound, found by searching for an

adversarial example, provides evidence that there exist adversarial

examples of that magnitude. The method works by ‘gridding’ the

input space based on the Lipschitz constant and relies on the fact

that it suffices to check only the ‘corners’ of the grid. Lower bound

computation employs a variant of A★ search. The game-based ap-

proach has also been adapted [28] to video inputs and recurrent

networks to provide robustness guarantees against perturbations

of optical flow, for example for naturally plausible distortions such

as camera occlusion. It is a versatile method, which can be adapted

to other settings.

2.3 Quantifying robustness of neural networks

The classical approach to measuring robustness is by means of

generalisation bounds, that is, computing theoretical upper bounds

on the test error [13], usually with respect to the input data distri-

bution. DNNs are known to generalise well. Though the accuracy

of the generalisation bounds can be questioned, tight PAC-Bayes

generalisation bounds has been obtained in [7]. In [16], PAC-Bayes

generalization bounds are provided for models trained with data

augmentation and it is shown that, compared to data augmentation,

feature averaging reduces generalization error when used with

convex losses and tightens PAC-Bayes bounds. In [31] it is shown

that by employing causal inference one can improve generalisation

bounds of reinforcement learning for both linear and non-linear

problems. The feasibility of robust learning from the perspective of

computational learning theory is studied in [11], where it is shown

that no non-trivial concept class can be robustly learned in the

distribution-free setting against an adversary who can perturb just

a single input bit.

Robustness with respect to norm-bounded adversarial pertur-

bations can be measured in terms of the maximum safe radius.

The game-based approach of [29] enables such an approximation,

also for the 𝐿0 norm. By computing the expectation of the maxi-

mum safe radius over a test dataset, through iteratively generat-

ing lower and upper bounds on the network’s robustness for the

(non-differentiable) 𝐿0 norm using a tensor implementation, global

robustness of a network can be measured [21].

Since verification for neural networks is NP-hard, test generation

and evaluation methods that ensure high levels of coverage have

also been developed [22].

2.4 Probabilistic guarantees for deep learning

The approaches listed above pertain to deterministic neural net-

works. Since machine learning models encode probabilistic depen-

dence on training data, they lend themselves to frameworks for

computing probabilistic guarantees on their robustness. For Gauss-

ian process (GP) models, adversarial probabilistic robustness guar-

antees have been studied in [5] for regression and classification [3].

Similar approaches have also been developed for Bayesian neural

networks (BNNs), defined as neural networks with distributions

over their weights, which can capture the uncertainty within the

learning model [17]. A BNN model thus returns an uncertainty

estimate [9] along with the output, which is important for safety-

critical applications. In [4], probabilistic robustness is considered for

BNNs, using a probabilistic generalisation of the usual statement of

(deterministic) robustness to adversarial examples [12], namely the

computation of the probability (induced by the distribution over the
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BNN weights) of the classification being invariant over the neigh-

bourhood around a given input point. Since the computation of the

posterior probability for a BNN is intractable, the method employs

statistical model checking [30], based on the observation that each

sample taken from the (possibly approximate) posterior weight dis-

tribution of the BNN induces a deterministic neural network. The

latter can thus be analysed using existing verification techniques

for deterministic networks (e.g. [12, 14, 20]). This methodology has

been applied to quantify the uncertainty of a BNN autonomous

driving controller for tasks such as collision avoidance, and evalu-

ated on a range of scenarios in the Carla simulator. [1] considers

reinforcement learning and leverages probabilistic model checking

of Markov decision processes to produce probabilistic guarantees

on safe behaviour over a finite time horizon. In [27], probabilistic

safety for BNNs is studied, in the sense of computing the probability

of the BNN posterior distribution that all elements of a compact set

of input points are mapped to the same region in the output space.

3 CONCLUDING REMARKS

We have provided a brief overview of recent advances towards

methodologies for safety and robustness assurance for deep learn-

ing, which draw on formal verification, optimisation, probabilistic

verification and testing. Clearly, although the presented methods

have been useful to quantify local and global adversarial robust-

ness of deep neural networks and Bayesian neural networks, many

challenges remain. Future work will aim for tighter integration

of symbolic verification, program synthesis and probabilistic ver-

ification, in order to improve scalability, support more complex

properties, and provide explanations in addition to guarantees.
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