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Abstract. Stochastic games are a convenient formalism for modelling
systems that comprise rational agents competing or collaborating within
uncertain environments. Probabilistic model checking techniques for this
class of models allow us to formally specify quantitative specifications of
either collective or individual behaviour and then automatically synthe-
sise strategies for the agents under which these specifications are guaran-
teed to be satisfied. Although good progress has been made on algorithms
and tool support, efficiency and scalability remain a challenge. In this pa-
per, we investigate a symbolic implementation based on multi-terminal
binary decision diagrams. We describe how to build and verify turn-based
stochastic games against either zero-sum or Nash equilibrium based tem-
poral logic specifications. We collate a set of benchmarks for this class
of games, and evaluate the performance of our approach, showing that
it is superior in a number of cases and that strategies synthesised in a
symbolic fashion can be considerably more compact.

1 Introduction

Games have long been used as an underlying modelling formalism for the design
and verification of computerised systems. For example, they naturally model
the interaction between a system, whose behaviour can be controlled, and its
environment whose actions cannot. Another example is the interplay between
the defender and attacker in a computer security scenario.

In the context of model checking, where the required behaviour of a system
is specified using temporal logic, we can use, for example, alternating-time tem-
poral logic (ATL) [4] to formalise the capabilities of a player (or a coalition of
players) acting in the context of another, adversarial player (or coalition) in a
game model. Yet further expressive logics such as strategy logic [19] can also
reason about the existence of, for instance, Nash equilibria.

Another important tool for modelling and verification is stochasticity. Prob-
ability is often essential to effectively quantify uncertain aspects of systems,
from the presence of hardware failures to the unreliability of physical sensors.
Stochastic games [49,24,28] are a well studied model for the dynamic execution
of multiple players in a probabilistic setting. Results and algorithms for many
verification problems on such models have also been presented, e.g., [17,18].
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Building on these foundations, progress has since been made on the prac-
tical applicability of probabilistic model checking using stochastic games. This
includes logics and algorithms for both turn-based stochastic games (TSGs) [21]
and concurrent stochastic games (CSGs) [39]. The logic rPATL, a quantita-
tive extension of ATL, allows specification of zero-sum properties for stochastic
games, and extensions [39] also permit reasoning about the existence of Nash
equilibria. A modelling formalism and tool support for TSGs and CSGs have
been developed, in the form of PRISM-games [38], and this framework has
been successfully applied to the analysis of, for example, human-robot collabo-
rations [27,29], self-adaptive software systems [14] and computer security [6].

However, as usual for model checking approaches, efficiency and scalability
are key challenges. So, in this paper, we consider symbolic implementations,
in particular using binary decision diagrams (BDDs) and multi-terminal BDDs
(MTBDDs), previously deployed for the compact representation and efficient
manipulation of various models. Well known tools for verifying multi-agent sys-
tems such as MOCHA [3] and MCMAS [41] incorporate symbolic implementa-
tions of model checking, and probabilistic model checkers such as PRISM [34]
and STORM [26] support symbolic techniques for simpler classes of stochastic
models, such as Markov chains and Markov decision processes (MDPs).

As a first step in this direction, we consider a symbolic implementation of
model checking and strategy synthesis for turn-based stochastic games. This also
provides symbolic verification of (turn-based) probabilistic timed games, via the
digital clocks translation [36]. We describe how to encode TSGs as MTBDDs
and how to perform verification symbolically, in particular using value iteration.
We also describe how to perform strategy synthesis, and how to extend this
approach to compute Nash equilibria for TSGs.

In order to evaluate this, we collate a set of TSG model checking benchmarks
of varying sizes, and add them to the PRISM benchmark suite [35]. We show
that the symbolic approach offers significant gains in terms of the time required
for model construction, for qualitative (graph-based) verification and, in some
cases, for numerical solution of TSGs. We also show that optimal strategies can
be represented more compactly symbolically rather than explicitly.

Related work. Various methods have been proposed for solving stochastic
games [49,24,28] and for verifying them against logical specifications, e.g., [17,18].
GIST [16] implements qualitative verification against ω-regular specifications
and PRISM-games [38] supports various quantitative properties. In [33], a wider
range of methods for solving TSGs are implemented and explored, offering sig-
nificant speed-ups. However, none of these provide symbolic implementations.

Multiple MTBDD-based implementations of probabilistic model checking for
simpler (non-game) stochastic models have been developed. Originally, this fo-
cused on PCTL model checking for Markov chains or MDPs [9,8,48]. A so-called
hybrid approach [48] improves performance through a combination of symbolic
model storage and explicit-state algorithms, and is the default model checking
engine in PRISM. Enhancements by others include automatic variable reordering
and model checking of quantile-based properties [32]. MTBDDs and BDDs have
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also been applied to the solution of energy games [5], which are non-probabilistic
games with integer weights. Extensions of MTBDDs (XADDs) have been used
for symbolic analysis of continuous-state MDPs [50].

Interpreting “symbolic” verification more widely, i.e., beyond BDD-based
approaches, [42] considers symbolic methods for stochastic parity games, and
[10] presents a probabilistic variant of the well known IC3 approach to model
checking. Also relevant are methods to use, and learn, decision trees to succinctly
represent strategies for probabilistic models [11].

2 Preliminaries

We begin with some background material, first on model checking of turn-based
stochastic games, and then on (multi-terminal) binary decision diagrams.

Notation. We use Dist(X) to denote the set of probability distributions over
a set X, and we use B = {0, 1} for the set of Boolean values, with 0 denoting
false and 1 denoting true.

2.1 Model Checking for Stochastic Games

Several variants of stochastic games exist. In this paper, we focus on (finite,
multi-player) turn-based stochastic games.

Definition 1 (Turn-based stochastic game). A turn-based stochastic game
(TSG) is a tuple G = (N,S, (Si)i∈N , s̄, A, δ,L) where:

– N is a finite set of players;
– S is a finite set of states;
– (Si)i∈N is a partition of S;
– s̄ ∈ S is an initial state;
– A is a finite set of actions;
– δ : S ×A→ Dist(S) is a (partial) transition probability function;
– L : S → 2AP is a labelling function.

We now fix an n-player TSG G for the remainder of the section. The TSG G starts
in its initial state s̄ ∈ S. In each state s, a player i ∈ N selects an action from the
set of available actions, which is denoted by A(s) = {a ∈ A | δ(s, a) is defined}.
We assume that A(s) 6= ∅ for all states s. The choice of action to take in each
state s is under the control of exactly one player, namely the player i ∈ N for
which s ∈ Si. Once action a ∈ A(s) is selected, the successor state is chosen
according to the probability distribution δ(s, a), i.e., the game moves to state
s′ with probability δ(s, a)(s′). We augment G with reward structures, which are
tuples of the form r = (rA, rS) where rA : S×A→ R and rS : S → R are action
and state reward functions, respectively.

A path through G is a sequence π = s0
a0−→ s1

a1−→ · · · such that si ∈ S,
ai ∈ A(si) and δ(si, ai)(si+1) > 0 for all i > 0. The sets of finite and infinite
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paths (starting in state s) of G are given by FPathsG and IPathsG (FPathsG,s
and IPathsG,s).

Strategies of G are used to resolve the choices of the players. Formally, a strat-
egy for player i is a function σi : FPathsG → Dist(A) such that, if σi(π)(ai)>0,
then ai ∈ A(last(π)) where last(π) is the final state of path π. A strategy profile
is a tuple σ = (σ1, . . . , σn) of strategies for all players. The set of strategies for
player i and set of profiles are denoted Σi

G and ΣG . Given a profile σ and state s,
let IPathsσG,s denote the infinite paths with initial state s corresponding to σ. We
can then define, using standard techniques [31], a probability measure ProbσG,s
over IPathsσG,s and, for a random variable X : IPathsG → R, the expected value
EσG,s(X) of X from s under σ.

In G, the utility or objective of player i is represented by a random variable
Xi : IPathsG → R. Such variables can encode, for example, the probability of
reaching a target or the expected cumulative reward before reaching a target.

We now introduce the notion of Nash equilibrium (NE) [46] for G given
objectives (Xi)

n
i=1 for the players. We restrict our attention to subgame-perfect

NE [47], which are NE in every state of G. For profile σ = (σ1, . . . , σn) and

player i strategy σ′i, we define the sequence σ−i
def
= (σ1, . . . , σi−1, σi+1, . . . , σn)

and profile σ−i[σ
′
i]

def
= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

Definition 2 (Best response). For objectives (Xi)
n
i=1, player i, strategy se-

quence σ−i and state s, a best response for player i to σ−i in state s is a strategy

σ?i for player i such that Eσ−i[σ
?
i ]

G,s (Xi) > Eσ−i[σi]
G,s (Xi) for all σi ∈ Σi

G.

Definition 3 (Nash equilibrium). For objectives (Xi)
n
i=1, a strategy profile

σ? = (σ?1 , . . . , σ
?
n) of G is a subgame-perfect Nash equilibrium (NE) if σ?i is a

best response to σ?−i for all i ∈ N and s ∈ S. Furthermore, a NE σ? of G is a

social welfare optimal NE (SWNE) for objectives X1, . . . , Xn if Eσ?

G,s(X1)+ · · ·
+Eσ?

G,s(Xn) > EσG,s(X1)+ · · ·+ EσG,s(Xn) for all NE σ of G.

We can also define the dual concept of social cost optimal NE (SCNE) [39], for
which the players of G try to minimise, rather than maximise, their expected
utilities by considering equilibria for the objectives −X1, . . . ,−Xn.

To formally specify properties of TSGs, we use the PRISM-games logic pre-
sented in [39], which extends the logic rPATL previously defined for zero-sum
properties of TSGs [21]. The logic uses the coalition operator 〈〈C〉〉 from alternat-
ing temporal logic (ATL) [4] to define zero-sum formulae and allows nonzero-sum
properties, using (social welfare or social cost) NE.

Definition 4 (PRISM-games logic syntax). The syntax of the PRISM-
games logic is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P./p[ψ ] | 〈〈C〉〉Rr./q[ ρ ] | 〈〈C1: · · · :Cm〉〉opt./q(θ)
ψ := Xφ | φ U6k φ | φ U φ

ρ := I=k | C6k | F φ

θ := P[ψ ]+· · ·+P[ψ ] | Rr[ ρ ]+· · ·+Rr[ ρ ]
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where C and C1, , . . . , Cm are coalitions of players such that Ci ∩Cj = ∅ for all
1 6 i 6= j 6 m and ∪mi=1Ci = N , ./∈{<,6,>, >}, p ∈ [0, 1] ∩ R, r is a reward
structure, q ∈ R>0, opt ∈ {min,max}, a is an atomic proposition and k ∈ N.

The syntax of the PRISM-games logic distinguishes between state (φ), path (ψ),
reward (ρ) and nonzero-sum (θ) formulae. State formulae are evaluated over
states of a TSG, while path, reward and nonzero-sum formulae are evaluated
over paths. Zero-sum state formula have the following meaning:

– 〈〈C〉〉P./q[ψ ] is satisfied in a state if the coalition of players C can ensure
that the probability of the path formula ψ being satisfied is ./ q, regardless
of the actions of the other players;

– 〈〈C〉〉Rr./x[ ρ ] is satisfied in a state if the players in C can ensure that the ex-
pected value of the reward formula ρ for reward structure r is ./ x, regardless
of the actions of the other players.

On the other hand, for a nonzero-sum state formula:

– 〈〈C1:· · ·:Cm〉〉max./x(θ) is satisfied if there exists a subgame-perfect SWNE
profile between coalitions C1, . . . , Cm under which the sum of the objectives
of C1, . . . , Cm in θ is ./ x;

– 〈〈C1:· · ·:Cm〉〉min./x(θ) is satisfied if there exists a subgame-perfect SCNE
profile between coalitions C1, . . . , Cm under which the sum of the objectives
of C1, . . . , Cm in θ is ./ x.

For all of the above formulae, we also allow numerical variants, which directly
yield an optimal value, rather than checking whether a threshold can be met. For
example, 〈〈C〉〉Pmax=?[ψ ] gives the maximum probability with which the players
in C can guarantee that that ψ is satisfied.

Both zero-sum and nonzero-sum formulae are composed of path (ψ) and
reward (ρ) formulae, used in the probabilistic and reward objectives included
within P and R operators, respectively. The path formulae include: next (Xφ),
bounded until (φ U6k φ) and unbounded until (φ U φ). There are also the stan-
dard equivalences including: probabilistic reachability (F φ ≡ true U φ) and
bounded probabilistic reachability (F6k φ ≡ true U6k φ).

The reward formulae include: instantaneous (state) reward at the kth step
(I=k), bounded cumulative reward over k steps (C6k), and reachability reward
until a formula φ is satisfied (F φ). In the case of reachability reward formulae,
several variants have previously been introduced [21], differing in how they treat
paths that do not reach a state satisfying φ. We restrict our attention to the most
common one, the default in PRISM, which assigns the reward value infinity to
paths that never reach a state satisfying φ.

We next define the semantics of the PRISM-games logic for TSGs. However,
we first need to define the concept of a coalition game.

Definition 5 (Coalition game). For TSG G and a partition of its players into
m coalitions C = {C1, . . . , Cm}, we define the coalition game GC = ({1, . . . ,m}, S, (SCi )i∈M , s̄, A, δ,L)
as an m-player TSG where SCi = ∪j∈CiSj.
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To simplify notation, for any coalition C of G, we use the notation GC to
represent the 2-player coalition game GC where C = {C,N\C}.

Definition 6 (PRISM-games logic semantics). For a TSG G and formula
φ, we define the satisfaction relation |= inductively over the structure of φ. The
propositional logic fragment (true, a, ¬, ∧) is defined in the usual way. For a
PRISM-games logic formula and state s ∈ S of TSG G, we have:

s |= 〈〈C〉〉P./q[ψ ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Eσ1,σ2

GC ,s
(Xψ) ./ q

s |= 〈〈C〉〉Rr./x[ ρ ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Eσ1,σ2

GC ,s
(Xr,ρ) ./ x

s |= 〈〈C1: · · · :Cm〉〉opt./q(θ) ⇔ ∃σ? ∈ ΣGC .
(∑m

i=1E
σ?

GC (X
θ
i )
)
./ q

and σ? is an SWNE if opt = max, and an SCNE if opt = min, for the objectives
(Xθ

i )mi=1 in the coalition game GC.
For an objective Xψ, Xr,ρ and path π ∈ IPathsGC ,s :

Xψ(π) = 1 if π |=ψ and 0 otherwise

Xr,ρ(π) = rew(r, ρ)(π) .

The semantics for satisfaction of path formulae (π |=ψ) and the random variable
rew(r, ρ)(π) for a reward formula can be found in, e.g., [39].

As the zero-sum objectives appearing in the logic are either finite-horizon or
infinite-horizon and correspond to either probabilistic until or expected reacha-
bility formulae, we have that TSGs are determined with respect to these objec-
tives [43], which yields the following equivalences:

〈〈C〉〉Pmax=?[ψ ] ≡ 〈〈N\C〉〉Pmin=?[ψ ]
〈〈C〉〉Rrmax=?[ ρ ] ≡ 〈〈N\C〉〉Rrmin=?[ ρ ] .

Also, as for other probabilistic temporal logics, we can represent negated path
formulae by inverting the probability threshold, e.g.:

〈〈C〉〉P>q[¬ψ ] ≡ 〈〈C〉〉P61−q[ψ ]

notably allowing the ‘globally’ operator G φ ≡ ¬(F ¬φ) to be defined.
Since the logic is branching-time, the model checking algorithm for the logic

works by recursively computing the set Sat(φ) of states satisfying formula φ
over the structure of φ. The main step in the algorithm requires computation of
values for zero-sum and nonzero-sum formulae. The standard approach is to use
value iteration [15], which we discuss below.

Note that the PRISM logic used here, which includes non-zero sum formulae,
was first considered for CSGs [39,37]. Our focus here is on TSGs, where the
computation of values is simpler: because only one coalition has a choice in each
state, value iteration need only take the minimum or maximum over actions,
whereas for CSGs matrix games need to be solved in each state.

For the case of zero-sum formulae, efficiency and accuracy can be improved
through the use of graph-based precomputation algorithms [4], which identify
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the states that have values 0 and 1 in the case of probabilistic properties and
value ∞ in the case of expected reward properties.

Value iteration. Below, we illustrate value iteration for the zero-sum formula
φ = 〈〈C〉〉Pmax=?[ F φ

′ ]; the remaining cases have a similar structure. The value
of φ in state s is given by the limit val(s, φ) = limk→∞ xks , where for any k ∈ N:

xks =



1 if s ∈ Sat(φ′)

0 else if k = 0

max
a∈A(s)

∑
s′∈S δ(s, a)(s′) · xk−1s′ else if s ∈ ∪i∈CSi

min
a∈A(s)

∑
s′∈S δ(s, a)(s′) · xk−1s′ otherwise

In practice, a suitable convergence criterion needs to be chosen to terminate the
computation. Here, we use the simple but common approach of checking the
maximum relative difference between values for states in successive iterations,
but more sophisticated approaches have been devised for TSGs [30].

2.2 Binary Decision Diagrams

A binary decision diagram (BDD) [12] is a rooted, directed acyclic graph used to
provide a compact representation of a Boolean function over a particular set of
Boolean variables. A BDD b over n Boolean variables x = (x1, . . . , xn) represents
a function fb : Bn → B. BDDs have two types of nodes: (i) non-terminal nodes,
which are labelled with a variable xi, and whose outgoing edges are labelled 1
(“then”) and 0 (“else”); and (ii) terminal (leaf) nodes, labelled with 0 or 1. For a
valuation v = (v1, . . . , vn) ∈ Bn of x, the value of fb(v) can be found by traversing
the BDD b from its root to a terminal node, taking at each non-terminal node
the edge matching the value vi for its variable xi. The value of fb(v) is taken as
the value of the terminal node that is reached.

By requiring that variables are ordered, from the root node downwards, and
by storing the graph in reduced form (merging isomorphic subgraphs, and re-
moving redundant nodes), BDDs can represent structured Boolean functions
very compactly and can be manipulated efficiently, i.e., with operations whose
complexity is proportional to the number of nodes in the graph rather than the
size of the function. This includes all standard Boolean operators, for example,
Or(b1, b2), which returns the BDD representing the function fb1 ∨ fb2 . We also
use And(b1, b2) and Not(b), defined analogously.

Multi-terminal BDDs (MTBDDs) [23], which are also sometimes known as
algebraic decision diagrams (ADDs) [7], generalise BDDs by allowing terminal
nodes to be labelled with values from an arbitrary set D. Hence, they represent
functions of the form f : Bn → D. Typically, we are interested in real-valued
functions and so an MTBDD m over n Boolean variables x = (x1, . . . , xn) repre-
sents a function fm : Bn → R. Like for BDDs, a variety of useful operators for
MTBDDs can be implemented. In particular, we use:
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– Apply(op,m1,m2), where op is a binary operation over the reals: returns the
MTBDD representing the function fm1

op fm2
.

– IfThenElse(b,m1,m2), where b is a BDD and m1,m2 are MTBDDs: returns
the MTBDD for the function with value fm1

if fb is true and fm2
otherwise.

– Const(c), where c ∈ R: returns the MTBDD representing the constant
function with value c.

– Abstract(op, y,m), where op is a commutative and associative binary op-
eration over the reals (here, we often use min or max) and y ⊂ x is a subset
of the variables of m: returns an MTBDD over variables x\y representing
the result of abstracting all the variables in y from m by applying op over all
possible values taken by the variables in y.

BDDs were popularised thanks to the success of symbolic model checking [13,45],
which uses them to provide an efficient and scalable implementation of model
checking, for example of the temporal logic CTL on labelled transition systems.
Assume that we have an encoding encS : S → Bk of the state space S of a
transition system into k Boolean variables. We can represent a subset S′ ⊆ S
as a BDD, by using it to encode the characteristic function χS′ : S → B. A
transition relation →⊆ S×S can be represented similarly as a BDD over 2 sets
of k Boolean variables, i.e., by a BDD b where fb(encS(s), encS(s′)) = 1 if and
only if (s, s′) ∈→. The key operations for model checking such as (pre or post)
image computation can be performed efficiently on these BDD representations.

Symbolic implementations of probabilistic model checking [9,48] build on the
fact that real-value vectors and matrices can be represented as MTBDDs in sim-
ilar fashion. A key operation used in the numerical computation required for
probabilistic model checking (i.e., for value iteration) is matrix-vector multipli-
cation, which can be performed symbolically [23,22]:

– MVMult(m, v), where m is an MTBDD over variables x, y representing a
matrix M and v is an MTBDD over variables x representing a vector v:
returns the MTBDD over variables x representing the vector Mv.

3 Symbolic Model Checking for Stochastic Games

We now describe a symbolic implementation for the representation, construction
and verification of TSGs.

3.1 Symbolic Representation and Construction of TSGs

We begin by discussing how to represent TSGs symbolically, as MTBDDs. The
key components of a TSG, as required to perform model checking, are the transi-
tion probability function δ : S×Act → Dist(S) and the partition (Si)i∈N of the
state space amongst players. We consider two different symbolic encodings, one
which represents δ and (Si)i separately, and one which uses a single MTBDD.

For the first, we can use the standard approach for MDPs [8,1], which con-
siders δ : S×Act → Dist(S) as a function δ′ : S×Act×S → [0, 1] in the obvious
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way, i.e., for states s, s′ and action a, we have δ′(s, a, s′) = δ(s, a)(s′). Then,
given an encoding encS : S → Bk of the state space into k Boolean variables,
and an encoding encAct : Act → Bl of the action set into l Boolean variables,
δ can be represented by an MTBDD over 2k + l variables. Reusing the same
encoding encS , each set Si is represented by a BDD over k variables.

For the second encoding, we assume that the TSG is represented by a single
function δ′′ : N × S × Act × S → [0, 1] such that, for player i, states s, s′

and action a, δ′′(i, s, a, s′) equals δ(s, a)(s′) if s ∈ Si and 0 otherwise. Given
encodings encS : S → Bk and encAct : Act → Bl as above, plus an encoding
encN : N → Bm of the player set, we can represent the TSG as an MTBDD over
2k + l + m Boolean variables. In our experiments, we found minimal difference
between the two encodings, in terms of the size of storage for δ, but the first
option incurs some additional overhead relating to the representation of the
sets Si. Hence, in this paper, we focus on the second, single-MTBDD encoding.

From now on, we will assume the use of variables x = (x1, . . . , xk) and y =
(y1, . . . , yk) to encode the state space S (both x and y are used when representing
the transition function; only one, usually x, is needed when representing a subset
of S or a real-valued vector indexed over S). We will use variables z = (z1, . . . , zl)
to encode actions and variables w = (w1, . . . ,wm) to encode players.

Example 1. Figure 1 shows a simple TSG with 2 players and its symbolic
representation, using the second (single MTBDD) encoding described above.
Top left is the TSG, in which player 1 states are drawn as diamonds and player
2 states as squares. Below that is a table explaining the representation: the details
of each transition in the TSG and how it is encoded into Boolean variables.

For players, we use a one-hot encoding to two Boolean variables (w1,w2),
i.e., encN (1) = (1, 0) and encN (2) = (0, 1). For the (two) actions, we use just a
single variable z1, where encAct(a) = (0) and encAct(b) = (1). The state space S
is encoded with 2 variables using the usual binary encoding of the integer index
i of each state si. In a transition, variables (x1, x2) and (y1, y2) represent the
source and destination states, respectively.

To the right of the figure is the MTBDD representation. The 1 (“then”) and 0
(“else”) edges from each non-terminal node are drawn as solid and dashed lines,
respectively. The zero terminal and edges to it are omitted for clarity. Each row
of the table corresponds to a unique path through the MTBDD. The variable
order used places w and z first, followed by x and y, where, as usual in symbolic
model checking, the variables in the latter two are interleaved. �

In order to be effective in practice, symbolic representations of TSGs need
to be constructed in an efficient manner. In the context of this paper, we work
with games that are described in the modelling language of the PRISM-games
tool [38], which is inspired by the Reactive Modules formalism [2], proposed for
specifying concurrent, multi-component systems.

We omit full details here, but note that this can be done by extending the
existing approach used for the symbolic implementation of model checking for
simpler probabilistic models in PRISM [34]. The basics for model construction
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s0

s1

s2

ab
0.9

0.1 0.9

0.1
1 a

1 a

Play. w1, w2 Act. z1 s→ s′ x1, x2 y1, y2 Prob.

1 1,0 a 0 s0 → s0 0,0 0,0 1
1 1,0 b 1 s0 → s1 0,0 0,1 0.9
1 1,0 b 1 s0 → s2 0,0 1,0 0.1
2 0,1 a 0 s1 → s1 0,1 0,1 0.1
2 0,1 a 0 s1 → s2 0,1 1,0 0.9
1 1,0 a 0 s2 → s2 1,0 1,0 1

w1

w2

z1

x1

y1

x2

y2

0.1

x2

y2

0.9

w2

z1

x1

y1

x2

y2

x2

y2

x1

y1

x2

y2

1

y1

Fig. 1. A TSG with its MTBDD representation and an explanation of the encoding.

from the PRISM modelling language can be found in [48]. The key idea is to
construct the MTBDD in a compositional fashion, based on the structure of the
model description. We also note that the second MTBDD encoding, building a
single MTBDD, is better suited for this task, since it facilitates the detection of
modelling errors (such as multiple players controlling actions in the same state).

3.2 Symbolic Model Checking of TSGs

Next, we describe a symbolic approach to performing probabilistic model check-
ing of TSGs. We focus here on the PRISM-games logic described in Section 2.1.
Essentially, since this is a branching-time logic, the model checking problem for a
TSG G and a formula φ amounts to determining the set Sat(φ) = {s ∈ S | s |= φ}.
Furthermore, this set is computed in a recursive fashion, following the structure
of the parse tree of the formula φ.

In a symbolic setting, the set Sat(φ) will be represented as a BDD. The
propositional fragment of the logic is treated in the usual way for symbolic
model checking [13,45], using standard BDD implementations of Boolean oper-
ators. The key parts of the model checking algorithm are those for the P and
R operators. In particular, we need to compute an MTBDD representing the
real-valued vector of probability or expected reward values for each state s.

Computing these values can be done in a variety of ways. Here, we use value
iteration, since iterative methods are known to be typically better suited to
symbolic implementation [7,9,48]. This is because it requires minimal changes to
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Algorithm 1 Value iteration and strategy synthesis for reachability probabilities

Input: BDD target (over variables x) for set of target states
Output: MTBDD sol (over variables x) giving the probability from each state, and a
BDD strat (over variables x, z′) representing an optimal strategy

1: procedure ProbReach(target)
2: S0 ← Prob0(target)
3: S1 ← Prob1(target)
4: S? ← Not(Apply(∨, S1,S0))
5: trans? ← Apply(×, trans, S?)
6: sol← S1 ; done← false
7: while ¬done do
8: tmp← sol
9: sol←MVMult(trans?, sol)

10: p1 ← Or({Cube(encN (i),w) : i ∈ N})
11: p2 ← Or({Cube(encN (i),w) : i ∈ N\C})
12: sol1 ← Abstract(max,Abstract(+,apply(×, sol, p1),w), z)
13: sol2 ← Abstract(min,Abstract(+,apply(×, sol, p2),w), z)
14: sol← Apply(+, sol1, sol2)
15: sol← IfThenElse(S1,Const(1), sol)
16: done ← SupNorm(sol, tmp) < ε
17: end while
18: strat← Apply(≈,MVMult(trans?, sol), sol)
19: strat← Abstract(∨, strat,w)
20: strat← ReplaceVars(strat, z, z′)
21: return sol, strat
22: end procedure

be made to the representation of the model during solution, which could cause
a blow-up in storage size due to the introduction of irregularities. This means
that some alternative methods for solving stochastic games such as quadratic
programming are unlikely to be well suited to a symbolic implementation.

To simplify presentation, we restrict our attention to computing reacha-
bility probabilities, assuming that they are maximised by a coalition of play-
ers C (and minimised by N\C). The process for other computations, such
as expected reward values, is similar. In other words, we consider the con-
struction of an MTBDD sol representing a vector sol indexed over S with
sol(s) = val(s, 〈〈C〉〉Pmax=?[ F target ]) for some atomic proposition target la-
belling the states to be reached (see Section 2.1).

Algorithm 1 shows an MTBDD implementation that performs both the nu-
merical solution, using value iteration, and synthesis of an optimal strategy. The
input is a BDD target representing the target set Sat(target), and we assume that
MTBDD trans encodes the TSG. Prob0 and Prob1 are BDD-based implemen-
tations of the precomputation algorithms [4] for finding states with probability
0 and 1; we omit the details and focus on the numerical part.

The key part of value iteration can be done using matrix multiplication,
treating the TSG as a non-square matrix with rows over N × Act × S and
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columns over S, followed by maximising and minimising over action choices for
players in C and N\C, respectively. Function Cube(v,w) builds a cube, i.e., a
BDD b over variables w such that fb = 1 for precisely one valuation v of w. We
check termination of value iteration using a function SupNorm which performs
a pointwise calculation of the relative difference for pairs of elements in two
vectors represented as MTBDDs and returns the maximum difference. This is
compared against a pre-specified convergence criterion threshold ε ∈ R>0.

Strategy synthesis. Lines 18-20 compute an optimal strategy, where ≈ repre-
sents an approximate equality check to the same level of accuracy as the con-
vergence check (i.e., relative difference less than ε), and z′ is a fresh copy of the
variables z that encode actions, but appearing after x and y in the variable or-
dering. The result is a BDD strat over variables x and z, representing an optimal
strategy: for any state s, we traverse the top part of the BDD by following val-
uation encS(s). Any path (we allow multiple) from that node to the 1 terminal
represents an optimal action a in that state (read from its encoding encAct(a)).
We leave as future work the possibility of selecting single optimal actions for
states in a way that further reduces the size of the strategy representation.

Nash equilibria. Lastly, we briefly sketch how our symbolic model checking im-
plementation also extends to nonzero-sum formulas, i.e., the synthesis of (social
welfare) Nash equilibria. The process is again based on value iteration but, as
mentioned in Section 2.1, this is simpler for TSGs than the CSG-based algorithm
of [39]. Essentially we adapt Algorithm 1, first maximising for individual coali-
tions, as in the existing value iteration loop, then selecting all actions that are
optimal, as in the strategy synthesis part, and then further maximising those
choices over the sum of values for all players. The latter part means that we
maintain a solution vector for each player as MTBDDs during the process. For
the 2-coalition case, part of the computation reduces to symbolic model checking
for MDPs, where we can reuse existing implementations.

4 Case Studies and Experimental Results

We have developed a symbolic implementation of model checking for TSGs
within PRISM-games [38], leveraging parts of PRISM’s existing symbolic en-
gines for other models (Markov chains and Markov decision processes). This
builds upon the CUDD decision diagram library by Fabio Somenzi, which sup-
ports both BDDs and MTBDDs, and a Java wrapper contained within PRISM
which extends this library. Our experiments were carried out using a 2.10GHz
Intel Xeon Gold with 16 GB maximum heap space for Java.

4.1 TSG Benchmarks

In order to evaluate the approach, we first present a set of benchmark TSG mod-
els. We have collated these and added them to the PRISM Benchmark Suite [35],
which provides a selection of probabilistic models and associated properties for
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performing model checking. To facilitate benchmarking, most models and prop-
erties are parameterised, allowing a wide range of model checking instances to be
considered. Python scripts are also included to automate the process of selecting
and executing instances, and for extracting information from tool logs.

The benchmarks are listed below:

– avoid : a TSG example from [20] modelling a game between an intruder and
an observer in a grid-world (also used in [33]);

– dice: a simple 2-player dice game TSG distributed with PRISM-games;
– hallway human: a TSG variant (from [20]) of a standard benchmark from the

AI literature [40] modelling a robot moving through a hallway environment
which is both probabilistic and adversarial (also used in [33]);

– investors: the futures market investor TSG example from [44], adapted and
extended to more investors;

– safe nav : a TSG modelling safe navigation in a human-robot system, from [29].
– task graph: an extended version of the task-graph scheduling problem with

faulty processors from [36], converted from a (turn-based) probabilistic timed
game to a TSG using the digital clocks translation of [36].

4.2 Experimental Results

Table 1 shows statistics for a selection of TSG model instances that we use for
our evaluation (see [51,35] for more details). We also give the time required to
build a representation of the TSG, from its PRISM-games modelling language
description, either symbolically, as an MTBDD, or explicitly, as a sparse matrix,
as done in the existing implementation of PRISM-games. The faster time is in
bold. For the symbolic case, we also show the MTBDD size. We see that the
symbolic approach is considerably faster. The explicit implementation of model
construction (in Java) is not highly optimised but the difference in performance
is clear nonetheless. For some instances, where the explicit engine took several
hours, the symbolic one requires no more than a few seconds.

Secondly, Table 2 shows the performance of model checking for the symbolic
and explicit implementations on a range of example properties for the bench-
marks (again, see [51,35] for full details). We break down the time required
into qualitative analysis (graph-based precomputation) and quantitative analy-
sis (numerical solution with value iteration). Again, the faster time is highlighted
in bold. We also show the total memory required to store the resulting optimal
strategy in each case (these are omitted for qualitative probabilistic reachability
and expected reward, since they are not yet included in the implementation).

Pre-computation has shown to be more efficient for all model/property com-
binations in the table, and in some cases this is a decisive factor in terms of
the overall model checking time. Results for value iteration generally favour the
explicit engine, although there are instances where the symbolic one performs
better. In terms of representing optimal strategies, we see that the symbolic one
is more compact in all cases.
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Case study Param. Players States MTBDD Constr. time(s)
[parameters] values nodes Symbolic Explicit

avoid
[X MAX, Y MAX]

10,10
2

106,524 19,298 0.2 1.6
15,15 480,464 36,178 0.4 6.4
20,20 1,436,404 69,407 1.0 18.8

dice
[N]

10
2

5,755 1,717 0.02 0.2
25 34,645 4,046 0.04 0.5
50 136,795 7,958 0.09 1.5

hallway human

[X MAX, Y MAX]

5,5
2

25,000 1,334 0.03 0.6
8,8 163,840 1,234 0.04 2.8

10,10 400,000 1,752 0.07 6.7

investors
[N, vmax]

2,10
3

172,240 5,846 0.04 2.0
2,20 568,790 11,325 0.06 6.5
2,40 2,041,690 22,191 0.1 23.4
3,10

4
1,229,001 7,434 0.06 13.7

3,20 4,058,751 12,913 0.1 48.5
3,40 14,569,251 23,779 0.2 memout

safe nav

[N, feat]

8,D

2

2,592,845 28,008 1.0 1,602
8,C 5,078,029 44,973 1.7 4,588
8,B 8,732,493 67,735 2.7 10,010
8,A 17,052,941 118,262 4.8 memout

task graph

[N, k1, k2]

6,10,10
2

467,638 19,881 0.6 6.7
6,15,15 1,010,318 22,350 1.0 13.8
6,20,20 1,759,348 22,350 1.8 25.1
9,10,10

2
2,567,638 36,014 1.4 46.5

9,15,15 5,533,288 36,745 2.8 100.0
9,20,20 9,6231,38 39,349 4.6 169.2

Table 1. Model building statistics for the TSG case studies.

5 Conclusions

We have presented a symbolic version of probabilistic model checking for turn-
based stochastic games, using BDDs and MTBDDs to implement model con-
struction, model checking (via value iteration) and optimal strategy synthesis.
There are some significant gains to be had, particularly in terms of model con-
struction, but also further improvements to be made.

Future work includes studying different encodings more thoroughly, as well as
variable orderings. There is also scope to investigate more efficient symbolic strat-
egy representations. Another possibly interesting extension is providing support
for Büchi, co-Büchi and Rabin-chain objectives [25], where a symbolic imple-
mentation could also allow for better scalability.
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Case study Param. Verification time and strategy memory
[parameters] values Symbolic Explicit

Property (type) Qual. Quant. Total Strat. Qual. Quant. Total Strat.
(s) (s) (s) (MB) (s) (s) (s) (MB)

avoid
[X MAX, Y MAX]

exit (P[ F ])

10,10 4.4 4.0 8.4 0.1 33.2 0.9 34.2 0.4
15,15 20.4 23.0 43.6 0.2 407.2 9.1 416.3 1.8
20,20 77.7 82.8 161.2 0.4 1,544 14.5 1,558 5.5

avoid
[X MAX, Y MAX]

find (P[ F ])

10,10 8.3 4.0 12.3 0.2 17.4 0.5 18.0 0.4
15,15 37.8 21.9 60.0 0.4 224.9 3.7 228.7 1.8
20,20 152.7 66.7 220.0 0.7 1,145 9.2 1,155 5.5

dice
[N]

p1wins (P[ F ])

10 0.02 0.02 0.02 0.02 0.07 0.04 0.1 0.02
25 0.2 0.2 0.4 0.05 0.5 0.2 0.8 0.1
50 0.6 0.5 1.1 0.1 5.3 2.6 7.9 0.5

hallway human

[X MAX, Y MAX]

save (P[ F ])

5,5 0.06 - 0.06 - 0.2 - 0.2 -
8,8 0.2 - 0.2 - 2.0 - 2.0 -

10,10 0.6 - 0.6 - 6.9 - 7.0 -

investors
[N, vmax]

greater (P[ F ])

2,10 0.04 1.0 1.1 0.06 3.1 3.1 6.4 0.7
2,20 0.04 5.4 5.6 0.1 19.7 22.3 42.2 2.2
2,40 0.05 22.6 22.8 0.2 27.8 97.1 125.3 7.8
3,10 0.1 3.4 3.6 0.2 27.6 30.9 58.9 4.7
3,20 0.1 16.0 16.2 0.3 83.8 169.8 255.5 15.5
3,40 0.2 62.5 62.9 0.4 - - memout -

safe nav

[N, feat]

reach (P[ F ])

8,D 12.7 4.1 17.1 1.8 134.9 2.5 138.0 9.9
8,C 26.1 7.6 34.4 2.9 145.8 3.6 150.4 19.4
8,B 48.8 12.0 62.1 4.6 313.8 7.6 323.1 33.3
8,A 138.7 27.1 169.3 8.7 - - memout -

task graph

[N, k1, k2]

time (R[ F ])

6,10,10 0.8 116.8 117.7 - 14.3 34.2 48.9 -
6,15,15 1.1 346.6 348.1 - 27.9 63.4 91.8 -
6,20,20 1.4 826.5 828.6 - 52.9 116.8 170.8 -
9,10,10 4.1 1,117 1,122 - 90.9 179.3 271.5 -
9,15,15 5.7 3,304 3,312 - 250.9 515.9 769.9 -
9,20,20 7.8 6,624 6,636 - 660.2 1,268 1,934 -

Table 2. Statistics for TSG verification instances.
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