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Abstract— The widespread popularity of Machine Learn-
ing (ML) models in healthcare solutions has increased the
demand for their interpretability and accountability. In this
paper, we propose the Physiologically-Informed Gaussian
Process (PhGP) classification model, an interpretable ma-
chine learning model founded on the Bayesian nature of
Gaussian Processes (GPs). Specifically, we inject problem-
specific domain knowledge of inherent physiological mech-
anisms underlying the psycho-physiological states as a
prior distribution over the GP latent space. Thus, to esti-
mate the hyper-parameters in PhGP, we rely on the informa-
tion from raw physiological signals as well as the designed
prior function encoding the physiologically-inspired mod-
elling assumptions. Alongside this new model, we present
novel interpretability metrics that highlight the most infor-
mative input regions that contribute to the GP prediction.
We evaluate the ability of PhGP to provide an accurate
and interpretable classification on three different datasets,
including electrodermal activity (EDA) signals collected
during emotional, painful, and stressful tasks. Our results
demonstrate that, for all three tasks, recognition perfor-
mance is improved by using the PhGP model compared
to competitive methods. Moreover, PhGP is able to provide
physiological sound interpretations over its predictions.

Index Terms— Gaussian Process, Interpretable Ma-
chine Learning, Electrodermal activity, Bayesian learning,
Psycho-physiology

I. INTRODUCTION

Owing to their success in several application domains [1],
Machine Learning (ML) models are becoming the method
of choice for tackling recognition and detection problems
in healthcare applications such as affective computing [2].
However, to validate ML models in healthcare domains, tradi-
tional ML metrics for performance assessment, e.g., accuracy,
precision or recall, are no longer sufficient. Alongside these
metrics, the interpretability of model predictions is the highest
priority for clinicians and healthcare practitioners, as it allows
them to understand, debug and assess the predictive ability of
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ML model [3]. For instance, in real-life affective computing
applications, a psychologist may want to know why a ML
model is diagnosing a mental condition, or a physiologist
may be interested in understanding whether the physiological
dynamics is taken into account in the learning algorithm [4].
Therefore, the choice of the best model for recognition of
psycho-physiological states is subject to a trade-off between
the performance and the interpretability of the ML system.

By working with the raw, unprocessed signal, end-to-end
models, in particular, have often been found to outperform hu-
man/expert recognition performance. Unfortunately, the result-
ing models behave as black-boxes and are less interpretable at
the model design level. Furthermore, because of the reliance on
human and expert participation in data collection experiments,
affective datasets are often small in size, sparsely labelled, and
thus violate the big-data assumption that deep learning relies
on [5].

On the other hand, rather than employing end-to-end mod-
els, practitioners often rely on standard and well understood
feature extraction techniques [6] that utilise human-generated
expert knowledge and established problem-specific findings.
While previous literature has considered learning end-to-end
models in conjunction with feature-extraction pipelines [7],
[8], to the best of our knowledge an effective method for
their principled and interpretable integration in the context
of affective computing is missing. Intuitively, incorporating
expert domain-specific knowledge into an end-to-end frame-
work has the potential of further informing a ML model about
the context of the input data. This may not only enhance the
recognition performance, thus enabling end-to-end learning,
but can also provide the practitioner with a more transparent,
understandable ML model.

In this work, we introduce the Physiologically-Informed
Gaussian Process (PhGP) model as a tool for integrating,
through a Bayesian principled approach, information contained
in automatically-discovered patterns in the raw signal data with
expert domain knowledge available about the problem at hand.
Specifically, we proceed by encoding the latter, assumed to
be in the form of probabilistic assumptions about the data-
generating physiological process, as a set of stochastic objects
that are probabilistically correlated with the input raw physio-
logical signal and the subject’s psycho-physiological state. By
relying on a MAP (Maximum A-Posteriori) estimation for the
quantities involved, we show how this can be used to infer a
prior distribution over a Gaussian Process (GP) classification
model.

Intuitively, in the PhGP framework, the prior



physiologically-based model is thus used as a soft starting
point for model training, and is adapted in a probabilistic
fashion according to the dataset. This potentially reduces the
risk of over-fitting when learning the model directly from
the raw signal and in practice allows for learning even with
affective datasets of small size.

An additional aspect that enhances the interpretability of
recognition models from affective biomarkers is ranking and
selecting those salient features that make a major contribution
to the classifier’s decision. This may be potentially of interest
to a clinician or physiologist since it allows better understand-
ing of the physiological patterns underlying the classification
problem [9]. One example is a recently proposed interpretation
of deep regression models for depression detection by identi-
fying salient regions in face images in terms of their severity
level, which reveal the visual depression patterns on faces [4].

We take a similar approach and, to enhance the interpretabil-
ity of our PhGP framework, in addition to the transparency,
formulate a novel methodology to produce quantitative and
visual explanation of PhGP predictions by generating physi-
ological activation maps (PAMs), which represent the salient
patterns leading to the classifier’s decisions.

We implement and empirically validate our methods on
three datasets of psycho-physiological state recognition from
the Electrodermal Activity (EDA) signal, relying on the Con-
vex optimisation tool for EDA processing (cvxEDA) [10] for
the design of the physiological prior model. In particular,
we focus on the DEAP (A Dataset for Emotion Analysis
using EEG, Physiological and Video Signals) dataset for
recognition of video-induced emotion [11], the BHVP (BioVid
Heat Pain) dataset for pain recognition [12] and Stroop (a
dataset containing EDA signals collected during a paced stroop
task test for stress recognition).

Empirical results demonstrate that, by combining the raw
signal with the physiologically-based prior function, PhGP
outperforms GP-based models that have access to only one
of these sources of information. Further comparison of PhGP
with a state-of-the-art classification method, the support vector
machines embedded with recursive feature elimination (SVM-
RFE) demonstrates that the former obtains competitive per-
formance results, while still providing physiologically sound
interpretations over its predictions.

This paper is a significant extension of our previous work
[13], which we have extended in a number of directions.

• We develop techniques that, by building on
physiologically-inspired priors explored in [13], enable
us to train GP classification models directly from raw,
unprocessed physiological signals while providing a
more transparent and explainable GP architecture.

• We develop methods to provide quantitative and visual
interpretation of PhGP predictions by relying on the
explicit formulation of the GP inference equations, in
addition to the explainability of our framework at the
model design level.

• We provide empirical comparison of PhGP with standard
GP models and a state-of-the-art feature-based classifica-
tion algorithm on three datasets of psycho-physiological
state recognition.

II. RELATED WORK

Affective recognition from physiological sensors, i.e., the
problem of inferring user’s emotional/affective state from sig-
nals recorded from one’s body, is routinely achieved through
extraction and processing of features [6]. Mathematical models
have been specifically developed as a means to uncover
and make explicit the relationship that exists between the
psycho-physiological state of a user and his/her body signals.
Examples include the integral pulse frequency modulation [14]
and the point-process model [15] for the modelling of heart
rate variability dynamics; causal modelling [16] and cvxEDA
[10] for explaining EDA dynamics; as well as the recursive
penalised least squares approach for the solution of the
electroencephalogram (EEG) signal [17]. Compared to generic
feature extraction methods, model-based techniques mathe-
matically encode domain-specific expert knowledge about the
physiology of the affective modelling problem itself, and as
such are able to provide detailed explanations of the inherent
physiological mechanisms [16].

End-to-end learning, especially in the form of deep neural
network models, has consistently outperformed standard ML
pipelines for affective computing, at least in cases where
a sufficient amount of labelled data is available [8], [18]–
[21]. Unfortunately, overfitting problems and the lack of
interpretability inherent in neural networks has thus far limited
the use of these methods in practical clinical applications [5].
In an effort to overcome these issues, several works have
considered techniques for extensive data augmentation [21],
[22] and transfer learning or pre-trained networks [19], [23], as
well as learning based on hand-crafted features [24] or creating
ensembles of deep and shallow models [8]. While mitigating
these issues, data augmentation and transfer learning do not
fundamentally overcome them, and the use of hand-crafted
features restricts a-priori the learning capabilities of deep
models. On the other hand, our method, by relying on patterns
automatically learned from raw data by the GP, reduces the
risk of overfitting by probabilistically centering the model
around the explicit solution given by a physiologically-inspired
approach.

GP models have been applied in various forms in phys-
iological signal analysis [25]–[28]. Beside GP models, the
Relevance Vector Machines are another type of probabilistic
extended linear models which offer a higher flexibility for the
choice of basis functions with prior on weights that enforces
sparse solutions [29], [30]. However, physiologically-based
design of the prior distribution in the Bayesian architecture
of GP models has not been fully investigated, and priors
used in the literature tend to be uninformative. The authors
in [25] proposed an approach for designing priors for GPs
specifically tailored to capturing hemodynamics in functional
magnetic resonance imaging analysis, showing that an in-
formed GP model significantly outperforms a GP trained on
uninformative priors. Similarly, the authors in [27] proposed
a pseudo-Bayesian method for the estimation of intracranial
pressure, where the model likelihood is informed and adapted
by physiological modelling. We build on this literature to
design an approach, in which the posterior distribution is



informed both by the peculiarities of the dataset at hand and
the information embedded within mathematical physiological
models.

In this work we focus on applying our techniques to EDA
signals, but note that the approach can also be used for
other physiological signals. Several studies have suggested
that the EDA signal, even in single-modality settings, can
provide objective means of assessing psycho-physiological
states, including emotional changes and distress associated
with pain [6], [19], [31], [32].

III. METHODS
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Fig. 1: PhGP recognition pipeline implemented for the clas-
sification of psycho-physiological states. A) The ANS is
monitored by acquiring the EDA signal. B) The prior function
is estimated based on the EDA physiological-based model.
C) Within GP the posterior is estimated. D) EDA signals are
classified along with interpretability metrics.

A depiction of the complete prediction pipeline for the
PhGP model is given in Figure 1, in the case of recognition
of psycho-physiological states from EDA recordings (block A
of the plot). First, information from a physiologically-based
model of the EDA signals is encoded into a probabilistic
generative model that captures their relationship with the raw
input signal and the subject’s psycho-physiological state (block
B in the plot, and discussed in Section III-B). This is then used,
together with a MAP estimation of the feature representation
and an approximate Maximum Likelihood Estimation (MLE)
for the hyper-parameters, to define a Gaussian prior over
the PhGP model (block C in the plot). Finally, posterior
Bayesian inference is performed for the PhGP model to obtain
a prediction for the subject’s psycho-physiological state y(i) ∈
{0, 1}, and interpretability analysis is employed to provide a
quantitative explanation of the prediction made (block D in
the plot, and discussed in Section III-C).

A. Preliminaries
We consider a generic training dataset associated to a

binary classification problem, D = {(x(i), y(i)) | x(i) =

[x
(i)
1 , . . . , x

(i)
n ] ∈ Rn, y(i) ∈ {0, 1}, i = 1, . . . , N}, where

N = |D| represents the number of observation data points.
Each x(i) denotes the i−th, raw, physiological signal recorded
at n discrete time-steps, while y(i) represents its associated
class label, i.e., the subject’s psycho-physiological state that
we aim to model. Let x = [x(1), . . . , x(N)] ∈ RN×n be
the combined vector of input physiological signals and y =
[y(1), . . . , y(N)] ∈ RN be its associated class vector, encoding
the psycho-physiological state of interest (see Section IV-A).

In two-class classification we proceed by defining a latent
variable, f ∈ R, that represents the classification logit, and
relate it to the class probability by means of a sigmoid function
σ(·).1 We employ Gaussian Process classification with Laplace
approximation for modelling the relationship between x and y.
Briefly, this is achieved by placing a Gaussian prior function,
p(f |x), over the latent variable, performing Bayesian inference
on it, and finally computing the predictive probability function,
denoted with π(y = 1|D, x), that encodes the probability that
x belongs to class 1.

The key observation that we exploit in this paper is that the
prior function p(f |x) depends on a mean function µ : Rn −→
R and a kernel (covariance) function k : Rn × Rn −→ R. In
Section III-B we show how these can be adapted to automati-
cally fit data arising from psycho-physiological processes. An
in-depth overview of Gaussian Process classification can be
found in [33], and a summary of the relevant background is
given in the Supplementary Material.

B. The Physiologically-Informed Gaussian Process
Model

The PhGP model builds on Bayesian learning in order
to embed information from a physiological model into the
training process. To achieve this, we encode the model as a
functional distribution over the latent variable f ∈ R and feed
it into the definition of the GP prior, p(f |x).

Specifically, in PhGP we interpret a physiological model as
a set of unobservable sub-processes s = [s1, . . . , sl]. Given
a subject’s psycho-physiological state, y, the process s gives
rise to the observable physiological signal x according to a
stochastic generative model of the form:

[x, y, s] ∼ p(x, y, s1, . . . , sl) (1)

for an unknown density function p. Intuitively, s captures
the physiological phenomenon related to certain physiological
processes. Most of these, are not actually directly observable
through the use of physiological signal monitoring, hence
we assume that s is unobservable. For example, in the case
of the EDA signal (discussed in more detail in Section III-
D), a physiological model, p(x, y, s1, . . . , sl), captures the
relationship between the subject’s condition and the sudomotor
nerve activity (SMNA) that gives rise to a variation of the skin
conductance properties. The idea is that the space in which the
sub-processes contained in s are defined allows for a better
understanding of the signal properties, and for the extraction of
a set of m relevant quantifiers (features), which we denote as

1This can be extended to multi-class classification by using either a one-
vs-all classification approach or multi-output likelihood functions.



ω(s) = [ω1(s), . . . , ωm(s)] ∈ Rm. In this way, the relationship
with the subject’s condition, y, is understood in terms of direct,
physiological correlation.

In PhGP, we consider the feature vector ω(s) as a building
block of the prior knowledge used to approximate the effect
of s on the generation of the subject’s condition y in Equation
(1). We do this by embedding this information in the prior
mean function, µ(x), of the GP and employ a parametric
approach to estimate its effect on the GP output. In particular,
we investigate the suitability of polynomial and trigonometric
functions of the form:

m1(s|α) =
d∑

p=0

m∑
j=1

αpjωj(s)
p (2)

m2(s|α) =
d∑

p=1

α(1)
p cos

 m∑
j=1

α
(2)
pj ωj(s) + α(3)

p

, (3)

where α is a vector of unknown parameters that adapt the
shape of mj(s|α).

Parameter d in Equation (2) is the degree of the polynomial
function and we retrieve a constant, linear, quadratic and cubic
function for the values d = 0, 1, 2, 3. In Equation (3) d is the
number of projected cosine components.

We observe that, by relying on the probabilistic relationship
that exists between x and s (Equation (1)), mj(s|α) can be
used to naturally induce a prior mean function over the GP. By
marginalising over the random variable s we in fact obtain:

µ(x|α) =
∫

mj(s|α)p(s|x)ds. (4)

Notice that the resulting mean prior function µ(x|α) we
obtain, combines standard parametric mean functions (e.g.,
those of Equations (2) and (3)) with the information coming
from the problem specific physiological model of Equation
(1) in a modular fashion. In general, this integral cannot be
computed analytically, so in practice we employ a Monte Carlo
approximation for its computation, namely:

µ(x|α) ≈
M∑
i=1

mj(si|α)p(si|x) (5)

for M random samples of s. The PhGP prior is then defined
by the choice of the kernel function k(x, x), for which we
employ the squared-exponential kernel computed directly on
the raw physiological signal x, as this provides flexible and
smooth GP models that can adapt to different classification
boundaries for specific choices of hyper-parameters [34].

The mean and covariance thus defined centre the PhGP prior
around the model estimation provided by the physiologically-
based generative model. The learning procedure for the PhGP
model then follows the lines outlined in the Supplementary
Material for the standard GP case.

In particular, by plugging Equation (5) for the physiologi-
cally informed prior mean for the a-posteriori GP mean, for a
test point x∗, in PhGP we obtain:

µ̂(x∗) =

M∑
i=1

mj(si|α)p(si|x∗) + k∗TK−1f̂ (6)

where k∗ ∈ RN is the covariance computed between x∗ and
each point in the training set, K ∈ RN×N is the training
set covariance matrix, and f̂ ∈ RN is the mode of the
posterior distribution over the training set. Further notice that
p(si|x∗) represents the conditional density function of s given
x∗, evaluated at the Monte Carlo sample si, and mj(si|α)
is the evaluation of the function mj with parameters α in
si. We note that, in Equation (6), the solution provided by
the physiological model is adapted by the raw data naturally
following the Bayes rule.

C. Interpretability Analysis of the PhGP Model
A key advantage of relying on physiologically-informed

features in PhGP is the ease of interpretability of the re-
sulting model architecture. This is because the features are
directly fed into the learning process of the GP classification
model. However, an additional degree of interpretability can
be achieved after obtaining the predictions made by the model.
Therefore, we build an interpretability framework for our
proposed PhGP model. We achieve this by extending the
interpretability methods discussed in [35], [36] based on the
explicit form of the GP inference equations to the context of
PhGP modelling. Namely, we proceed by propagating small
input perturbations in succession through the physiologically-
based prior model and then through the GP posterior in order
to obtain an estimate of the contribution of each data point to
the overall model prediction. The outcome is an interpretability
metric, denoted Φ, that corresponds to the importance of each
data point in the recognition task.

Consider a generic input point, x ∈ Rn, then, for any subset
of indices I ⊆ {1, 2, . . . n}, we call xI the subvector of x that
includes only the indices of I , that is, xI = [xi]i∈I . For an
input point x∗, a subset of indices I , a norm | · | and a radius
γ > 0, we define T I

γ,x∗ = {x ∈ Rn s.t. |xI − x∗
I | ≤ γ} as the

set of allowed perturbations of magnitude up to γ around x∗.
In the following definition we quantify the maximum effect
that local perturbations of the subvector of indices I have on
the classification probabilities.

Definition 1: Consider T I
γ,x∗ , then we define

ϕ(T I
γ,x∗) = max

x∈T I
γ,x∗

π(y = 1|D, x)− min
x∈T I

γ,x∗

π(y = 1|D, x).

Then, for a finite set of test points T we define the inter-
pretability metric by Φ(T , I, γ) = 1

|T |
∑

x∗∈T ϕ(T I
γ,x∗).

Intuitively, for a test point x∗, ϕ(T I
γ,x∗) is a measure of how

much local perturbations of the indices I of x∗ can change the
classification probabilities. Φ(T , I, γ) is the average of ϕ over
a set of input points, that is, Φ(T , I, γ) measures how much
on average the perturbations of a test point will affect the
classification probabilities. Details of the computation of the
interpretability metric Φ for PhGP models are given in the
Supplementary Material.

D. EDA-based Modelling
EDA broadly refers to the variations in the skin conductance

induced by the sudomotor nerve activity which modulates the
sweat secretion of the eccrine glands. It can be measured



through an EDA meter, a device that displays the electrical
conductance change between two points over time. We can
now give an explicit formulation for EDA-based PhGP mod-
elling, by considering the cvxEDA model [10] as the generative
model of the physiological signal. Namely, this represents the
observed n-sample long signal x as a sum of three n-long
components, a tonic component (s1 = t), a phasic component
(s2 = r) and an additive noise term (ϵ), according to the
following equation:

x = r + t+ ϵ. (7)

The tonic activity contains information about the overall
psycho-physiological state of the subject, while the phasic
component shows rapid changes in EDA signals directly
related to an external physiological stimulation. The phasic
component is the output of the convolution between the SMNA
and an impulse response function that describes the sweat
diffusion process. We refer to the sparse SMNA driver of
the phasic component as p. We encode the parameters of
this model in the stochastic generative model in the form of
Equation (1). We then use the following standard quantifiers
of x, t, r and p to form a set of features that constitute the
vector ωEDA(s) [10], [37]:

• ωr,p(s): includes the number of significant phasic driver
peaks (nSCR), the sum of Skin Conductance Response
(SCR) amplitudes (SumAmpSCR), the maximum value
of SCR amplitudes (MaxAmpSCR), and the mean
and standard deviation of phasic activity (PhasicMean,
PhasicStd);

• ωt(s): includes mean and standard deviation of tonic
activity (TonicMean,TonicStd);

• ωx(s): includes EDASymp, which is highly correlated
to the activity of the sympathetic nervous system and
is obtained by integrating the spectrum of x within the
(0.045− 0.25Hz) frequency band.

IV. EXPERIMENTAL APPLICATIONS

A. Experimental Data
We perform our analyses on two publicly available datasets,

which report EDA signals during changes in autonomic ner-
vous system (ANS) activity, namely, the DEAP dataset [11],
the BHVP (BioVid Heat Pain) dataset [12] and the Stroop
test, a dataset collected in our laboratory (block A in Figure
1). Details of all three datasets are given in the following
paragraphs.

1) Affective valence recognition (emotional stimulus): The
DEAP dataset consists of multi-modal physiological record-
ings (including EDA), recorded from 32 healthy subjects
watching different affective video clips. During each trial, the
index of the current trial was first shown for 2 seconds and
a consecutive 5 seconds of baseline recording was followed.
Then, the subjects were exposed to the emotional stimulus for
1 minute. Finally, they were asked to mark the stimulus on
a scale of 1-9. Since the 32 initial subjects were recorded by
means of two different EDA acquisition systems, as reported
in the dataset description page, we select only the first 21
subjects, i.e., the largest group recorded with the same system

to avoid a bias that was evident from the preliminary analysis
of the signals. In this paper we focus on the highest arousal and
highest valence videos and choose the data recorded during
the 5 highest positive valence/highest arousal and 5 highest
negative valence/highest arousal videos of the subjects. The
resulting dataset contains 105 observations equally balanced
between the two class. Additional details of this dataset can
be found in [11].

2) Autonomic arousal recognition (pain stimulus): In the
BVHP dataset, a group of 87 subjects underwent a heat-
induced pain experiment of four different intensities, while
their physiological response was being recorded (including
EDA signal). Each pain stimulus was applied at the subject’s
right arm for around 5 seconds. Each of the specific pain
level stimulus was elicited 20 times in a randomised order
for each study participant. There was a randomised rest of
8 to 12 seconds between the stimuli. We choose two states
corresponding to the states with the highest and the lowest
level of heat pain stimulus representing two diverse psycho-
physiological states in subjects. This choice was according
to pre-existing research on the same dataset, which enables
baseline comparison of our results with the literature [38],
[39]. We then build the training set related to this dataset
from 174 observations in each class. Additional details of this
dataset can be found in [12].

3) Stroop test: 33 healthy subjects volunteered to take part
in this study in University of Pisa. The experimental protocol
consisted of a 5 minute resting state followed by a stressor,
namely, the paced stroop test lasting for 3 minutes [40]. During
this task, the subjects were shown words whose meaning was
different from their displayed colors. The subjects had two
seconds to press the button corresponding to the color of the
displayed word and not the corresponding meaning. In case
of any mistakes or missed answer, a buzzer was activated
and the counter showing the number of consecutive correct
answers would turn back to zero. During the experiment, the
EDA signal was monitored. The subjects gave their written
informed consent and the experiment was approved by the
"Comitato Etico Regionale per la Sperimentazione Clinica
della Regione Toscana", section "Area Vasta Nord Ovest" -
Protocol n. 7803, Registry number 1072, approved on 18 Jan
2018. The recordings were carried out in agreement with the
Declaration of Helsinki.

B. Recognition Pipeline with the PhGP Model

A key advantage of PhGP is that, in view of its probabilis-
tic formulation, the model predictions take into account the
information provided by the physiologically-based model as
well as the raw signals available in the given dataset. In the
experiments discussed in Section V, we compare PhGP with
variants in which only one of the two sources of information
is available, and specifically the following:

1) The input data of the classification model are raw
physiological signals x. We refer to this as Raw-GP.

2) The classification model is the last step of a feature
extraction pipeline associated to the feature vector ω ∈
Rm. We refer to this as Feat-GP.



The PhGP model can be viewed as a combination of the
two approaches, as it incorporates both learning with GPs and
the knowledge of the features of the physiological model. The
training of the PhGP model proceeds from raw data by adapt-
ing the model distribution around the explicit solution of the
physiologically-inspired computational model. We investigate
the parametric prior functions described in Section III-B for all
three GP-based models. Moreover, for comparison with well
performing classification methods outside the GP context, we
also evaluate the SVM-RFE algorithm [41] on the experimental
data (see the Supplementary Material for additional details on
this method). MATLAB software (R2017b version) and the
Gaussian Processes for Machine Learning (GPML) toolbox
[34] were used to implement GP model training and prior
function estimation.

C. Interpretability pipeline of PhGP model
After training the PhGP model as well as the other two

variants (Raw-GP and Feat-GP), the interpretability metric
(Φ) is estimated for each input data point of each recognition
model (refer to Section III-C). This metric indicates:

1) For Raw-GP: the contribution of each data sample in the
input signal in the final prediction.

2) For Feat-GP: the contribution of each feature in the
feature vector ω in the final prediction.

3) For PhGP: the contribution of each data sample in the
input signal in the final prediction. However, inher-
ently, when performing posterior inference for PhGP,
the contribution of the physiologically-based features is
confounded with those of the raw data from the input
dataset.

Fig. 2: Group-wise EDA dynamics along the timeline for each
psycho-physiological condition in each dataset. Note that the
continuous black line represents the Median value and the
gray area represents the MAD (refer to Section V for the
definition of MAD) along all subjects.

V. RESULTS

Figure 2 shows the EDA trends averaged across all subjects
in the two psycho-physiological conditions for each of the
three applications. The plots in this figure are expressed
as Median ± 1.4826MAD(X)/n, (where MAD(X) =
Median(|X −Median(X)|), with X as the EDA signal and
n as the number of subjects in each dataset) over time.
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Fig. 3: Comparative performance (sensitivity, specificity and
accuracy) of PhGP with different subsets of features in the
prior function for each dataset. Refer to Section III-D for the
definition of each subset.

A. Recognition Results

In Table I we provide recognition results of the PhGP
model and compare its performance with that of Raw-GP and
Feat-GP as well as the SVM-RFE algorithm. In particular,
we investigate the performance of the GP-based models with
respect to different choices of the parametric form of the mean
prior functions (i.e., zero, constant, linear, quadratic, cubic
and trigonometric). We do not give results for PhGP with
zero and constant mean, as the PhGP formulation relies on a
non-trivial mean function. The results reported are computed
through a Leave-One-Subject-Out (LOSO) cross-validation
procedure, so that the results and the models obtained are
subject-independent. Namely, at each iteration of the LOSO
validation scheme, the recognition model is trained using
data from M − 1 subjects (where M is the total number of
subjects) and tested on the data from the left-out subject. This
procedure is iterated M times. In the table we report final
performance results averaged over all subjects in terms of
sensitivity (i.e., number of true positive assessments/ number
of all positive assessments) , specificity (i.e., number of true
negative assessments/ number of all negative assessments) and
accuracy (i.e., number of correct assessments/ number of all
assessments) of predictions.

The results reported in Table I suggest that the PhGP model
obtains an overall higher accuracy for all GP prior functions
compared to the Feat-GP and the SVM-RFE model in all three
datasets, while it outperforms the Raw-GP model for some
specific GP prior functions. For example, with the linear prior
function, PhGP obtains 3%, 2% and 12% higher accuracy
compared to Feat-GP and 13%, 2% and 1% higher accuracy
compared to the Raw-GP model in DEAP, BVHP and Stroop
datasets, respectively.

Results obtained from training the PhGP model with the
linear, quadratic, cubic and trigonometric prior functions show
virtually similar performance in the BVHP dataset (1% dif-
ference in accuracy). However, the difference in performance
is more evident in the DEAP dataset (6 − 9%) and the
Stroop dataset (3 − 7%). Interestingly, the highest accuracy
for the PhGP model is achieved with the linear function in all
datasets.

Observe that Feat-GP significantly outperforms Raw-GP



Fig. 4: (a),(d),(g): Physiological activation maps (PAM) displaying the contribution of each data patch in DEAP, BVHP, Stroop
datasets for the Raw-GP model. (b),(e),(h): PAMs displaying contribution of each feature index for DEAP, BVHP, Stroop
datasets for the Feat-GP model. (c),(f),(i): PAMs displaying the contribution of each data patch for DEAP, BVHP, Stroop
datasets for the PhGP model.

in the DEAP dataset (up to 12% improvement), while the
opposite occurs in the BVHP and Stroop datasets. Overall,
PhGP improves on the LOSO accuracy obtained by the SVM-
RFE model by 17%, 5% and 12%, respectively, for the DEAP,
BVHP and Stroop datasets.

Note that the results in Table I are obtained by using the
full EDA prior model, that is, consisting of all the indices,
ωEDA(s), discussed in Section III-D. In Figure 3 we instead
investigate the effect that each subset of features comprising
ωEDA(s), namely, ωr,p(s), ωt(s), ωx(s), has on the perfor-
mance of the PhGP model.

We observe that choosing the full set of features (i.e.,
ωEDA and blue bars in the plots) obtains the highest balanced
performance between LOSO sensitivity and specificity of
the prediction and therefore highest accuracy compared to
when selecting subsets of features for all datasets. Although
the feature subsets with ωx and ωt vectors result in higher
sensitivity than ωEDA in the DEAP and BVHP datasets, the
specificity is very low (53% for ωx and 58% for ωt in the
DEAP dataset and 56% for ωx and 66% for ωt in the BVHP
dataset). This trend is different in the Stroop dataset, where
the sensitivity and specificity is the highest considering the
ωEDA feature set.

B. Interpretability Results

We apply the method described in Section III-C to perform
interpretability analysis of the trained PhGP model on the
three datasets for each subject. For simplicity, we focus on
the linear prior model (which has better overall accuracy for
PhGP), though similar results can be obtained using the poly-
nomial and the trigonometric prior by employing techniques
discussed in the Supplementary Materials. We also apply the
methods from [35], [36] to analyse the interpretability of the
trained Raw-GP and Feat-GP models on each dataset.

We present the physiological activation maps (PAM) derived
for each GP-based recognition model and briefly discuss how
these maps can help in gaining better understanding of the
trained model. Figure 4 shows the generated PAM maps for
Raw-GP, Feat-GP and PhGP models trained on the three
datasets.

The PAM heatmaps show the normalized value (between
zero and one) of the interpretability metric (ϕ, refer to section
III-C) for each subject. The vertical axis represents the subject
index, which, given the analysis is done in LOSO settings,
means a different GP, i.e., one that was learned from the
remaining training data. The horizontal axes in the first and
third columns (corresponding to Raw-GP and PhGP models)



TABLE I: Recognition results of the Raw-GP, Feat-GP and
PhGP models (considering different forms of functions for

parametric modeling of the prior distribution) and the
SVM-RFE algorithm for DEAP, BVHP and Stroop datasets.
The values from left to right are expressed as percentages of
accuracy, sensitivity and specificity of the performance of the

model.

GP
prior Raw-GP Feat-GP PhGP SVM-RFE

Dataset DEAP
Acc.(sens., spec.) %

Zero 65 (84, 47) 64 (74, 56) - -
Const. 65 (67, 63) 64 (72, 52) - -
Lin. 68 (69, 67) 78 (69, 87) 81 (81, 82) -

Quad. 72 (74, 70) 78 (77, 80) 73 (68, 78) -
Cubic 69 (76, 62) 68 (77, 57) 73 (89, 62) -
Trig. 70 (73, 68) 65 (73, 58) 72 (92, 51) -
SVM
RFE - - - 64 (60, 68)

Dataset BVHP
Acc.(sens., spec.) %

Zero 88 (87, 88) 86 (85, 86) - -
Const. 88 (87, 88) 87 (85, 90) - -
Lin. 86 (93, 78) 86 (85, 86) 88 (87, 89) -

Quad. 85 (85, 85) 83 (83, 83) 89 (87, 90) -
Cubic 89 (90, 87) 83 (84,83) 89 (90, 87) -
Trig. 88 (87, 89) 86 (84, 89) 88 (87, 89) -
SVM
RFE - - - 84 (81, 87)

Dataset Stroop
Acc.(sens., spec.) %

Zero 85 (85, 85) 80 (88, 73) - -
Const. 86 (85, 88) 82 (88, 76) - -
Lin. 88 (88, 88) 77 (85, 70) 89 (88, 91) -

Quad. 89 (88, 91) 80 (82, 79) 83 (85, 82) -
Cubic 88 (88, 88) 83 (85, 82) 86 (91, 82) -
Trig. 83 (82, 85) 82 (88, 76) 82 (78, 85) -
SVM
RFE - - - 77 (72, 82)

represent the ϕ value for each selected data patch from the
raw EDA signal, whereas in the second column (i.e., the
Feat-GP model), ϕ is obtained for each feature index in the
ωEDA(s) vector. In all the PAMs the color-bar varies from
blue (denoting the value 0 for ϕ) to red (showing the highest
obtained value for ϕ). Therefore, the blue blocks represent
the lowest contribution of the data patch/feature index for a
particular subject in the recognition model, whereas the highest
contributions are indicated by the red-colored blocks in the
heatmaps.

For all the models we consider 10 values for γ, equally
distanced between 0 and 1. Note that the x-axis for Raw-GP
and PhGP models represents time, whereas for the Feat-GP
it indicates feature indices and the order in which they are
shown is arbitrary.

The key observations from the panels (a, c, d, f, g, i) in
PAMs (Figure 4) are the patches corresponding to the highest
contribution (red color) in the prediction outcome, which are
possibly the salient regions in the signal corresponding to the
physiological alternations. On the other hand, the panels (b,
e, h) indicate the most important features extracted from the
EDA signal that capture the changes in psycho-physiological
condition of subjects.

From the PAMs of the Raw-GP model in the DEAP dataset,

we observe that the patches corresponding to the 48th-52nd
seconds of the whole 60s duration of the EDA acquisition
account for the highest contribution in recognition. On the
other hand, the first 18 seconds and the 36th-42nd seconds
of the data show the least contribution in almost all subjects.
This trend is different in the BVHP dataset, where the highest
contribution corresponds to the 2nd and the 8th seconds.
On the other hand, the patches occurring around the 2th-3th
second and the 5th second are the patches corresponding to
the highest contribution in the final prediction in the Stroop
dataset.

The PAMs corresponding to the Feat-GP model show
the high contribution of the SumAmpSCR index (refer to
Section 7) in the DEAP dataset. Although the same feature
has a relatively high contribution in the BVHP dataset, the
highest contribution is obtained through the Tonicstd (refer
to Section 7). Similarly, both phasic and tonic related indices
show a high contribution in the final prediction in the Stroop
dataset.

Concerning the PhGP model, the patches of data corre-
sponding to the highest value of ϕ are located at the 18th-26th
and 44th-51st seconds in the DEAP dataset and at the 5th and
2nd seconds for the BVHP and Stroop datasets, respectively.

VI. DISCUSSIONS

In this study we presented a novel approach for designing an
interpretable recognition model using Bayesian GP classifica-
tion. We proposed two levels of interpretability: i) at a model
design level, we have proposed PhGP modelling which is
more transparent compared to traditional GP models, through
embedding physiologically-based mathematical models within
the GP inference. This level of interpretability is more accept-
able for the clinicians since their domain knowledge is taken
into account. ii) at a post-hoc level, thanks to the analytical
formulation of PhGP, it is amenable to interpretability analysis
with the methods discussed in Section III-C.

The main difference between our approach and existing
feature-based methods lies in the way we explicitly inject
expert knowledge into the learning algorithm of the ML model
in the form of previously validated physiologically-inspired
models and assumptions. While feature-based approaches may
utilise such expert knowledge by considering the hand-crafted
features in the input space, they do not inform the learning
procedure of the ML model about it. Furthermore notice that
in PhGP, the interpretability metric we provide is computed
formally, with provable bounds and not approximated with
gradient techniques. It is important to note that the innovation
in the PhGP design provides interesting insights into identi-
fying the salient regions in the input, in view of access to
both the raw physiological signal and physiologically-based
features.

Comparison of our PhGP model with the Raw-GP, Feat-
GP and SVM-RFE models in Table I demonstrate the merit of
relying in recognition tasks on physiological signal analysis
and information from end-to-end modelling, i.e., PhGP, by
drawing on both aspects, is able to achieve competitive per-
formance in all datasets. Moreover, although potentially having



access to the same information (that is, the full raw signal),
the Raw-GP model tends to overfit, while the PhGP methods
benefit from the physiologically-informed prior in shaping its
output distribution.

It is interesting to note how all the GP-based models
outperform the SVM-RFE method; in fact, the latter tends
to overfit in these settings. Furthermore, by using MLE for
the hyper-parameters of the prior in the GP settings, we
also obtain a form of feature selection in the prior space,
though in an approximate Bayesian fashion, which provides
better generalisation properties. The PhGP model offers higher
accuracy compared to a recent study performed in similar
settings on the DEAP dataset, which obtained 71% accuracy
[19] (similar to that obtained by SVM-RFE). As in here,
previous studies have conducted experiments on the BVHP
dataset with the aim of classifying the lowest level of pain
from the highest pain threshold level and validated their results
with LOSO cross-validation, achieving 77% [39] and 79% [38]
of accuracy. Interestingly, PhGP improves on the accuracy of
all these methods, although it targets a more difficult task of
recognition, that is, classifying between the minimum and the
maximum level of the pain stimulus.

PhGP obtains comparative results both to discriminate
low vs. high sympathetic discharge as in BVHP and Stroop
datasets, and when the sympathetic activity is similarly trig-
gered by two different emotional processes as in the DEAP
dataset. This latter aspect suggests how sympathetic activity is
not a monotonous and stereotypical reaction but is modulated
by the activating stimulus.

We highlight that, in addition to obtaining good accuracy
performance of GP-based models, they provide different in-
sights into the salient regions in the input data which possibly
correspond to the patches in the input data where the highest
alterations in physiology are present. While the PAMs in
Figure 4 obtained from Raw-GP and Feat-GP indicate the
most informative regions in the raw signal and the most
important features, respectively, both sources of information
are inherently reflected in the salient regions obtained from
PhGP.

It is relevant to highlight how the raw signal and the features
which are more informative are different and specific for
each dataset. The three datasets reflect three different triggers
for sympathetic response: physical stressor (i.e., pain); cogni-
tive stressor (i.e., stroop); emotional stressor (i.e., emotional
pictures). Once again this might suggest that sympathetic
response, as measured with EDA, is not monotonous and
stereotyped but also depends on the nature of the stressor. Fur-
ther studies are needed to specifically test this hypothesis and
to understand the role of this sympathetic specific response.

Moreover, it is interesting to observe the consistency in
the ϕ values reported in each of PAMs in Figure 4. Those
refer to different models learnt in the same settings (only the
training/test set split varies), so this highlights how the results
obtained by interpretability analysis are in a sense qualitatively
independent from the specific subjects. This indicates that the
model is learning features and patterns that are specific to the
problem itself, rather than the particular subject involved.

Considering the EDA trend depicted in Figure 2, it is

evident that the EDA dynamics is different for each psycho-
physiological condition. In the DEAP dataset, the EDA dy-
namics in a positive valence condition shows an elevated
response from the 45th second to the end of the stimulation,
while the negative valence condition is relatively smoother
along the timeline with a peak response at the 18th second.
For pain stimulation, while during the lowest level of pain
a decreasing trend in EDA response is observed, during the
highest level of pain a maximum peak of response is observed
at the 8th second of the stimulation. During the Stroop task,
a higher elevation in EDA response is observed compared to
the resting state where the fluctuations are relatively lower in
amplitude.

Although visualization of these plots can aid understanding
of the different trends in each psycho-physiological condition,
quantifying this difference is a difficult task. The PAMs
obtained as a result of interpretability analysis introduced in
this paper are a first step to quantify the position of those
patches where the highest difference in the EDA response
between the two psycho-physiological conditions is obtained.

VII. CONCLUSIONS

In this paper we provided an interpretable GP-based frame-
work that facilitates the injection of physiologically-inspired
priors in a Bayesian GP model in order to infer a user’s
psycho-physiological state. The experimental application of
the proposed PhGP model on EDA signals in this study
indicates that PhGP not only obtains comparative perfor-
mance among competitive predictive models, but also pro-
vides physiologically sound interpretation of predictions which
are consistent at the single-subject level. This generality of
the results is a remarkable feature of the PhGP model for
recognition tasks. We believe that our methodology offers
considerable advantages for recognition systems that input
signals from non-invasive wearable monitoring systems (e.g,
smart-watches, sensorised gloves or shirts), where recording
EDA is easy and inexpensive. From a clinical perspective,
the proposed method will be able to support the clinician,
operating for example in the psychological field, by providing
not only an automatic diagnosis based on objective measures
such as those of physiological data but also a tool capable
of helping to understand the psycho-physiological motivation
behind this diagnosis.

Although the experimental applications in this study are
limited to the EDA signal, the modelling can be adapted to
other available models for the analysis of physiological sig-
nals (e.g., point-process modelling of heartbeat dynamics and
recursive penalized least squares solution for EEG generation)
in the PhGP model. An extension of the current methodology
to a multi-modal PhGP model that benefits from meaningful
information content of different physiological signals is a focus
for future work. The methodology for interpretability analysis
of the PhGP model in this paper provides useful insights
about the predictions made by the model, but this is just an
initial step. In future we aim to provide systematic means
of interpretability to investigate more complex properties of
psycho-physiological mechanisms such as correlational and



causal relationships. Moreover, we will explore methods to
combine deep neural networks with GPs to encode the prior
physiological model while keeping the interepretability of the
framework.
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I. SUPPLEMENTARY MATERIALS (METHODOLOGY)

A. Classification with GP Models

The first step in GP classification is that of putting a GP
prior over the latent function variable f , that is, for x ∈ Rn

we assume that

f(x) ∼ p(f |x) = N (f ;µ(x), k(x, x)),

for a specific choice of the mean function µ and kernel
(or covariance) function k. Generally, the mean function
and the kernel function are controlled by a set of hyper-
parameters, which we denote respectively with α and β.
The GP prior induces a multi-variate Gaussian prior distri-
bution on the vector of latent functions over the training
set, f = [f(x(1)), . . . , f(x(N))], i.e. p(f |x). Learning in
Bayesian settings amounts to the computation of the posterior
distribution p(f |D) via the Bayes formula.

Given a test point x∗ ∈ Rn, estimation of the output on
x∗ is obtained by computing its posterior latent distribution
p(f∗|D, x∗), for f∗ ∈ R, which is then integrated for the
probability that x∗ belongs to class 1 as follows:

p(f∗|D, x∗) =

∫
p(f∗|x, x∗, f)p(f |D)df

p(y = 1|D, x∗) =

∫
σ(f∗)p(f∗|D, x∗)df∗.

Unfortunately, because of the non-Gaussian nature of the
likelihood function, the integrals above cannot be com-
puted analytically [1]. We rely on the Laplace method
for GP classification inference, which proceeds by com-
puting a Gaussian approximation q(f∗|µ̂(x∗), Σ̂(x∗)) =
N (f∗|µ̂(x∗), Σ̂(x∗)) of the latent posterior distribution.
Specifically, let k∗ = [k(x∗, x(1)), . . . , k(x∗, x(N))] ∈ RN

be the vector of co-variances between the test point x∗ and
the points in the dataset D and let K ∈ RN×N be the matrix
of covariances between the training points. Then the Laplace
approximate posterior mean and variance are:

µ̂(x∗) = µ(x∗) + k∗TK−1f̂ (1)

Σ̂(x∗) = k(x∗, x∗)− k∗T (K +W )−1k∗ (2)

where f̂ is the mode of p(f |D) and W is the Hessian of
the negative log-likelihood. Note how the prior mean and
variance are adjusted in the learning process according to
the information contained in the training data and the kernel
scale captured by the hyper-parameters.

Finally, given a vector of latent variables over the training
set, f = [f (1), . . . , f (N)] ∈ RN , its likelihood with respect
to D can be computed as:

p(y|f) =
N∏
i=1

[
σ(f (i))y

(i)

(1− σ(f (i)))1−y(i)
]
, (3)

which represents the likelihood of observing the class vector
y given specific values for the latent variable vector f .

B. Hyper-parameter Estimation for PhGP

In order to estimate the hyper-parameters α and β on the
mean and kernel function in the case of PhGP we adapt the
maximum likelihood framework (MLE), and show how it can

be employed straightforwardly on a MAP approximation of
the physiological model.

In fact, by marginalising the latent variable from the GP
likelihood (Equation (3)) and applying the inference formulas
of the Laplace approximation, we obtain the marginal log-
likelihood as:

log p(y|D, α, β) = log

∫
p(y|f)p(f |D, α, β)df =

−1

2
f̂TK−1f̂ + log p(y|f)− 1

2
log |I +W

1
2KW

1
2 |, (4)

where K explicitly depends on β, while both f̂ and W
implicitly depend on α and β. Equation (4) can be optimised
for the values of the hyper-parameters that best justify
the training data D, which can be shown to provide an
approximation of the MLE for α and β [1]. To achieve
this in the case of PhGP, we can apply standard gradient-
based optimisation method typically used for GP models,
by additionally propagating the derivatives wrt α through
Equation (4) in the main text. To do so, we proceed by
approximating the derivative computation by considering
the MAP solution for the sub-process s, so that we have
that dµ(x|α)

dα ≈ dmj(sMAP|α)
dα . The latter is straightforward to

compute as sMAP does not depend on any hyper-parameters.

C. Interpretability Framework of PhGP Models
To compute the quantities ϕ(T I

γ,x∗) and Φ(T , I, γ) defined
in Definition 1 of the main text, it suffices to compute
the minimum and maximum classification probabilities for
x ∈ T I

γ,x∗ . This problem has been studied for GPs in [2],
where it has been shown that it reduces to the computation of
the minimum and maximum of µ̂(x) and Σ̂(x) for x ∈ T I

γ,x∗ ,
that is, of the posterior mean and variance. In order to
generalise the bounds in the case of the PhGP model, it
suffices to additionally compute lower and upper bounds over
the a-priori mean function, that is, µL,pr

T and µU,pr
T such that:

µL,pr
T ≤ min

x∈T
µ(x|α) µU,pr

T ≥ max
x∈T

µ(x|α).

How to compute suitable values for µL,pr
T and µU,pr

T is a prob-
lem that depends, of course, on the exact form of the prior
function used. For prior mean functions that can be written
down analytically, lower and upper bounds can be computed
by relying on interval bound propagation techniques, though
in the general case one might have to resort to numerical
optimisation methods if smoothness assumptions are not
satisfied. The bounding problem is actually quite simple for
the polynomial and trigonometric functions introduced in
Equations (5) and (6).

m1(s|α) =
d∑

p=1

m∑
j=1

αpjωj(s)
p (5)

m2(s|α) =
d∑

p=1

α(1)
p cos

 m∑
j=1

α
(2)
pj ωj(s) + α(3)

p

, (6)

In particular, in the polynomial case the overall solution
can be written down in closed from, as stated in the following
proposition.



Proposition 1: For j ∈ {1, ...,m} and p ∈ {1, ..., d}, let
T = [ωL, ωU ] ⊂ Rm be a hyper-rectangle in the feature
space such that:

ωL
j ≤ ωj(s(x)) ≤ ωU

j ∀x ∈ T I
γ,x∗ . (7)

Let ωL,p
j = minω∈{ωL

j ,ωU
j } ω

p
j , ωU,p

j = maxω∈{ωL
j ,ωU

j } ω
p
j

and

{ω̄L,p
j , ω̄U,p

j } =

{
{ωL,p

j , ωU,p
j } if αp,j ≥ 0

{ωU,p
j , ωL,p

j } otherwise
.

Then, it holds that

d∑
p=1

m∑
j=1

αp,jω̄
l,p
j ≤ µ(x|α) ≤

d∑
p=1

m∑
j=1

αp,jω̄
u,p
j . (8)

For the case of the trigonometric prior function, similar
bounds can be obtained by further accounting for the pe-
riodicity of the cosine function in the computation. Notice
that the above proposition relies on the computation of upper
and lower bounds on the feature vector given a range on
the raw signal (see Equation (7)). In general, this cannot
be computed exactly because the integral in Equation (4)
of the main text is intractable. As for the hyper-parameters,
we can rely on a MAP estimation of the processes s, which
gives us a pointwise estimate for the feature vector ω. It
is then easy to see how rectangular bounds on the input
space x can be propagated in a straightforward fashion for
time-domain and statistical features such as mean, standard
deviation and min/max of the signals. For the general case,
e.g., frequency-domain features, we instead need to rely on
numerical optimisation methods for the approximation of the
bounds.

Using the above proposition, in conjunction with the
methods presented in [2], [3], it is possible to estimate the
interpretability metric of Definition 1 for the PhGP model,
and further refine the approximations by means of a branch-
and-bound technique.

In fact, as the prior mean has only an additive effect on the
posterior computation, an evaluation of the posterior effect
induced from the dataset proceeds similarly to how this is
done for standard classification GPs.

D. SVM-RFE algorithm

We applied standard nonlinear Support Vector Machine
(SVM) embedded with Recursive Feature Elimination (RFE)
on the aforementioned experimental data. We chose this
method for comparison with GP-based models since it has
been widely accepted as one of the best classification meth-
ods in terms of performance and interpretability [4]. RFE is
an embedded feature selection method based on a backward
sequential selection that eliminates a feature in a feature set
of size m that has the least effect on the SVM weight-
vector norm at each iteration. This way, the features are
ranked and the SVM classification is repeated m times while
the last ranked features are removed. Finally, a subset of
features with size r that optimises the performance of the
SVM classifier are selected. We used the open source toolkit
LIBSVM for the implementation of SVM [5].

TABLE I: Recognition results of 1D-CNN model for DEAP,
BVHP and Stroop datasets.

Dataset Sensitivity Specificity Accuracy AUCROC F-score
Deap 65 74 70 0.68 71
BVHP 83 87 85 85 84
Stroop 85 78 82 79 80

TABLE II: Recognition results using K-means cross valida-
tion.

Recognition Model DEAP BVHP Stroop
Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc.

Raw-GP 65± 2 68± 5 67± 3 94± 7 73± 5 84± 6 86± 4 87± 4 87± 4
Feat-GP 72± 6 88± 4 80± 5 83± 2 88± 4 86± 3 83± 3 75± 2 79± 2
PhGP 83± 2 85± 4 84± 3 88± 3 89± 3 89± 3 88± 3 91± 3 89± 3
SVM-RFE 63± 6 65± 3 64± 4 78± 4 85± 2 82± 3 70± 4 84± 5 77± 4

II. SUPPLEMENTARY MATERIALS (EXPERIMENTS)
A. Comparison with deep neural network (DNN) models

We have applied 1D-CNN model as in order to compare
our results with baseline DNN based models. The results are
reported in Table I. We constructed this DNN model using
convolutional layer, max pooling layer and a fully connected
Softmax layer for the classification of electrodermal activity
signals. We have used ADAM algorithm for the optimization
process. The results are reported within the LOSO cross
validation scheme.

B. Recognition results using K-means cross validation.
We report the performance metrics within the K-means

cross validation (K=5) considering the linear mean function
for the GP-based models (Table II).

C. Computational time
We have compared the computation speed of the three GP

based in Table III for each single epoch and the total number
of epochs used to obtain the reported results.

TABLE III: Comparison of the computational time of the
GP based models. Values are presented as the computational
time per single epoch in seconds

Recognition Model DEAP BVHP Stroop
Raw-GP 0.63 0.99 0.32
Feat-GP 0.56 0.57 0.79
PhGP 6.54 10.20 3.53
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