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Abstract
A fundamental problem in adversarial machine
learning is to quantify how much training data is
needed in the presence of evasion attacks. In this
paper we address this issue within the framework
of PAC learning, focusing on the class of deci-
sion lists. Given that distributional assumptions are
essential in the adversarial setting, we work with
probability distributions on the input data that sat-
isfy a Lipschitz condition: nearby points have sim-
ilar probability. Our key results illustrate that the
adversary’s budget (that is, the number of bits it
can perturb on each input) is a fundamental quan-
tity in determining the sample complexity of ro-
bust learning. Our first main result is a sample-
complexity lower bound: the class of monotone
conjunctions (essentially the simplest non-trivial
hypothesis class on the Boolean hypercube) and
any superclass has sample complexity at least ex-
ponential in the adversary’s budget. Our second
main result is a corresponding upper bound: for ev-
ery fixed k the class of k-decision lists has polyno-
mial sample complexity against a log(n)-bounded
adversary. This sheds further light on the question,
posed in [Gourdeau et al., 2021], of whether an ef-
ficient PAC learning algorithm can always be used
as an efficient log(n)-robust learning algorithm un-
der the uniform distribution.

1 Introduction
Adversarial machine learning has been extensively studied in
recent years, first with spam filtering in [Dalvi et al., 2004;
Lowd and Meek, 2005a; Lowd and Meek, 2005b], and then
when the notion of adversarial examples was introduced by
[Szegedy et al., 2013], and independently noticed by [Biggio
et al., 2013]. Various settings to study adversarial machine
learning guarantees (and impossibility results) have emerged
in the literature since. The most common distinction, pre-
sented in [Biggio and Roli, 2017], differentiates between at-
tacks at training time, known as poisoning attacks, and at-
tacks at test time, called evasion attacks.

In the context of evasion attacks, a misclassification by a
model has been defined in various ways, and sometimes re-

grettably referred to by the same terminology. [Dreossi et
al., 2019; Diochnos et al., 2018; Gourdeau et al., 2021] of-
fer thorough discussions on the subject. We will focus on
the exact-in-the-ball notion of robustness (also known as er-
ror region risk in [Diochnos et al., 2018]), which necessitates
a ground truth function. Briefly, the exact-in-the-ball notion
of robustness requires a hypothesis to be correct with respect
to the ground truth in a perturbation region around each test
point. Note that, in this case, the ground truth must be speci-
fied on all input points in the perturbation region. By contrast,
the constant-in-the-ball notion of robustness (which is also
known as corrupted input robustness) is concerned with the
stability of the hypothesis to perturbations in the input, and re-
quires that the label produced by the hypothesis remain con-
stant in the perturbation region, meaning that we only need
access to the test point labels.

The hardness of robust classification has been explored
from both a computational complexity and a statistical view-
point, see for e.g., [Bubeck et al., 2019; Montasser et al.,
2019]. In this paper, we focus on the Boolean hypercube
{0, 1}n as our input space and study the information-theoretic
complexity of robust learning by exhibiting sample complex-
ity upper and lower bounds that depend on an adversarial
budget, i.e., the number of bits an adversary is allowed to flip
at test time, thus illustrating that the adversarial budget is a
fundamental quantity in determining the sample complexity
of robustly learning important concept classes.

1.1 Our Contributions
Our work builds on [Gourdeau et al., 2019] and its extended
version [Gourdeau et al., 2021]. Our results hold for the
exact-in-the-ball robustness to evasion attacks, and are out-
lined below.

Robust Learning of Decision Lists: As shown in [Gour-
deau et al., 2021], efficient, exact-in-the-ball robust learn-
ing is not possible without distributional assumptions on the
training data.1 We follow their line of work and establish the
sample-efficient robust learnability of decision lists against a
log(n)-bounded adversary under log-Lipschitz distributions,
which include the uniform and product distributions. The
algorithms we use to show such upper bounds are called ρ-
robust learning algorithms, where ρ is the allowed perturba-

1This is in contrast to PAC learning, which is distribution-free.



tion budget for an adversary. In proving our first result we
obtain an isoperimetric bound that may be of independent in-
terest: for a CNF formula φ we give an upper bound on the
number of points in the Boolean hypercube within a given
Hamming distance to a satisfying assignment of φ. An ana-
logue result was shown only for monotone decision lists in
[Gourdeau et al., 2021]. More importantly, [Gourdeau et al.,
2021] suggested the following open problem:

Let A be a sample-efficient (potentially proper)
PAC-learning algorithm for concept class C. Is A also a
sample-efficient log(n)-robust learning algorithm for C

under the uniform distribution?

So far, all the concept classes that have been studied point
towards a positive answer to this question. As log-Lipschitz
distributions subsume the uniform distribution, our result thus
adds to the body of positive evidence for this problem.

An Adversarial Sample Complexity Lower Bound: To
complement the above result, we show that any ρ-robust
learning algorithm for monotone conjunctions must have a
sample complexity that is exponential in the number ρ of bits
an adversary is allowed to flip during an evasion attack. Pre-
viously, [Gourdeau et al., 2021] showed that there does not
exist such an algorithm with polynomial sample complexity
against an adversary that can perturb ω(log(n)) bits of the
input.

1.2 Related Work
The inevitability of adversarial examples under the constant-
in-the-ball definition of robustness has been extensively stud-
ied, see for e.g., [Fawzi et al., 2016; Fawzi et al., 2018a;
Fawzi et al., 2018b; Gilmer et al., 2018; Shafahi et al., 2018;
Tsipras et al., 2019; Ilyas et al., 2019]. We first outline re-
lated work on sample complexity lower bounds for robust
learning. [Bhagoji et al., 2019] work with the constant-in-
the-ball definition of robustness and use an optimal transport
cost function to derive lower bounds for learning classes with
labels that come from a mixture of Gaussian distributions.
[Montasser et al., 2019] also use this notion of robustness
to show a lower bound that depends on a complexity mea-
sure adapted to robustness from the shattering dimension of
a concept class. Closer to our work, [Diochnos et al., 2019;
Diochnos et al., 2020] exhibit lower bounds for the exact-in-
the-ball robust risk. They focus on a family of concentrated
distributions, Normal Lévy families, which include, for e.g.,
the Gaussian distribution on Rn and product distribution of
dimension n under the Hamming distance.2 Instead of look-
ing at a specific class of functions, they allow any concept
class that contain concepts that have small enough (2−Θ(n))
standard error with respect to each other, and so would be
indistinguishable for sufficiently small samples. Note that
monotone conjunctions satisfy this property. When consid-
ering the Boolean hypercube and an adversary that can per-
turb ρ bits of the input, they get that any robust PAC learning
algorithm for their robust learning setting requires a sample
of size 2Ω(ρ2/n). Note that this lower bound is non trivial

2We work with the uniform distribution, which is a special case
of product distributions.

only when considering adversaries that can perturb
√
n bits

or more, while we show a lower bound that is strictly expo-
nential in the adversary’s budget (though for slightly more
restricted concept classes), and thus meaningful for a wider
class of adversaries.

In terms of sample complexity upper bounds, [Montasser
et al., 2019] show sample complexity upper bounds that are
linear (ignoring log factors) in the VC dimension and the
dual VC dimension of a concept class under the constant-
in-the-ball notion of robustness, yielding an exponential up-
per bound in the VC dimension. As noted in [Gourdeau et
al., 2021], their techniques do not apply to the exact-in-the-
ball setting, which is studied for evasion attacks notably in
[Diochnos et al., 2018; Mahloujifar and Mahmoody, 2019;
Mahloujifar et al., 2019; Gourdeau et al., 2019; Gourdeau et
al., 2021]. The work of [Diochnos et al., 2018] addresses the
ability of an adversary to cause a blow up the adversarial er-
ror with respect to the standard error. For instance, they show
that, under the uniform distribution, a O(

√
n)-bounded ad-

versary can cause the probability of a misclassification to be
1/2 given that the standard error is 0.01 for any learning prob-
lem. These results are extended in [Mahloujifar et al., 2019]
for a wider family of distributions. Finally, [Gourdeau et al.,
2021] exhibit sample complexity upper bounds for the robust
learnability of a variety of concept classes (parities, monotone
decision lists, and decision trees) under log-Lipschitz distri-
butions for various adversarial budgets.

2 Problem Set Up
In this section, we will first recall two definitions of robust-
ness that have been widely used in the literature, and formal-
ize the notion of robustness thresholds in the robust PAC-
learning framework. We will then review relevant concept
classes for this paper, as well as log-Lipschitz distributions,
which were introduced in [Awasthi et al., 2013] and will be
the focus of our results.

2.1 Robust Learning
We work in the PAC learning framework of [Valiant, 1984]
(see Appendix A.1), but where the (standard) risk function
is replaced by a robust risk function. Since we focus on the
Boolean hypercube {0, 1}n as the input space, the only rele-
vant notion of distance between points is the Hamming dis-
tance (denoted dH ), i.e., the number of bits that differ be-
tween two points. Thus, the adversary’s perturbation bud-
get will be the number of bits of the input the adversary
is allowed to flip to cause a misclassification. We will use
the exact-in-the-ball definition of robust risk (which is called
error-region risk in [Diochnos et al., 2018]). Given respec-
tive hypothesis and target functions h, c : X → {0, 1},
distribution D on X , and robustness parameter ρ ≥ 0, the
exact-in-the-ball robust risk of h with respect to c is de-
fined as RE

ρ (h, c) = Pr
x∼D

(∃z ∈ Bρ(x) : h(z) ̸= c(z)), where

Bρ(x) = {z ∈ {0, 1}n | dH(x, z) ≤ ρ}. This is in contrast
to the more widely-used constant-in-the-ball risk function
(also called corrupted-instance risk from the work of [Feige
et al., 2015]) RC

ρ (h, c) = Pr
x∼D

(∃z ∈ Bρ(x) : h(z) ̸= c(x))



where the hypothesis is required to be constant in the pertur-
bation region in addition to being correct with respect to the
unperturbed point’s label c(x).

Both [Diochnos et al., 2018] and [Gourdeau et al., 2021]
offer a thorough discussion on the advantages and drawbacks
of the two notions of robust risk. We will study the exact-
in-the-ball robust risk, as our learning problems have con-
siderable probability mass near the decision boundary. Thus
it makes sense to consider the faithfulness of the hypothesis
with respect to the target function. The exact-in-the-ball ro-
bust risk also has various advantages: if the distribution is
supported on the whole input space (e.g., the uniform distri-
bution), exact learnability implies robust learnability and the
target concept is always the robust risk minimizer.3 We have
from [Gourdeau et al., 2021] the following definition of ro-
bust learnability with respect to the exact-in-the-ball robust
risk. Note that we will henceforth drop the superscript and
simply use Rρ to denote the exact-in-the-ball robust risk.
Definition 1 ([Gourdeau et al., 2021]). Fix a function ρ :
N → N. We say that an algorithm A efficiently ρ-robustly
learns a concept class C with respect to distribution class
D if there exists a polynomial poly(·, ·, ·, ·) such that for all
n ∈ N, all target concepts c ∈ Cn, all distributions D ∈ Dn,
and all accuracy and confidence parameters ϵ, δ > 0, if
m ≥ poly(n, 1/ϵ, 1/δ, size(c)), whenever A is given access
to a sample S ∼ Dm labelled according to c, it outputs a
polynomially evaluable function h : {0, 1}n → {0, 1} such
that Pr

S∼Dm
(Rρ(h, c) < ϵ) > 1− δ.

2.2 Concept Classes and Distribution Families
Our work uses formulas in the conjunctive normal form
(CNF) to show the robust learnability of decision lists. This
concept class was proposed and shown to be PAC learn-
able in [Rivest, 1987]. Formally, given the maximum size
k of a conjunctive clause, a decision list f ∈ k-DL is a list
(K1, v1), . . . , (Kr, vr) of pairs where Kj is a term in the set
of all conjunctions of size at most k with literals drawn from
{x1, x̄1, . . . , xn, x̄n}, vj is a value in {0, 1}, and Kr is true.
The output f(x) of f on x ∈ {0, 1}n is vj , where j is the
least index such that the conjunction Kj evaluates to true.

Given k, n ∈ N, we denote by φ a k-CNF on n variables,
where k refers to the size of the largest clause in φ. Note that
the class MON-CONJ of monotone conjunctions, where each
variable appears as a positive literal, is a subclass of 1-CNF
formulas. Moreover, since decision lists generalize formu-
las in disjunctive normal form (DNF) and conjunctive normal
form, in the sense that k-CNF ∪ k-DNF ⊆ k-DL, a robust
learnability result for k-DL holds for k-CNF and k-DNF as
well. We refer the reader to Appendix A.2 for more back-
ground on conjunctions and k-CNF formulas.

For a formula φ, we will denote by S0(φ) the probability
Pr
x∼D

(x |= φ) that x drawn from distribution D results in a

satisfying assignment of φ. We will also denote the probabil-
ity mass Pr

x∼D
(∃z ∈ Bρ(x) . z |= φ) of the ρ-expansion of a

satisfying assignment by Sρ(φ).

3This is not necessarily the case with the constant-in-the-ball def-
inition [Gourdeau et al., 2021].

Our robust learnability results will hold for a class of suf-
ficiently smooth distributions, called log-Lipschitz distribu-
tions, originally introduced in [Awasthi et al., 2013]:

Definition 2. A distribution D on {0, 1}n is said to be α-log-
Lipschitz if for all input points x, x′ ∈ {0, 1}n, if dH(x, x′) =
1, then | log(D(x))− log(D(x′))| ≤ log(α).

Neighbouring points in {0, 1}n have probability masses
that differ by at most a multiplicative factor of α under α-
log-Lipschitz distributions. The decay of probability mass
along a chain of neighbouring points is thus at most exponen-
tial; not having sharp changes to the underlying distribution
is a very natural assumption, and one weaker than many of-
ten make in the literature. Note that features are allowed a
small dependence between each other and, by construction,
log-Lipschitz distributions are supported on the whole input
space. Notable examples of log-Lipschitz distributions are
the uniform distribution (with parameter α = 1) and the class
of product distributions with bounded means.

3 The log(n)-Expansion of Satisfying
Assignments for k-CNF Formulas

In this section, we show that, under log-Lipschitz distribu-
tions, the probability mass of the log(n)-expansion of the
set of satisfying assignments of a k-CNF formula can be
bounded above by an arbitrary constant ε > 0, given an up-
per bound on the probability of a satisfying assignment. The
latter bound is polynomial in ε and 1/n. While this result
is of general interest, our goal is to prove the efficient ro-
bust learnability of decision lists against a log(n)-bounded
adversary. Here the relevant fact is that, given two decision
lists c, h ∈ k-DL, the set of inputs in which c and h differ
can be written as a disjunction of quadratically many (in the
combined length of c and h) k-CNF formulas. The log(n)-
expansion of this set is then the set of inputs where a log(n)-
bounded adversary can force an error at test time. This is
the main technical contribution of this paper, and the theorem
is stated below. The combinatorial approach, below, vastly
differs from the approach of [Gourdeau et al., 2021] in the
special case of monotone k-DL, which relied on facts about
propositional logic.

Theorem 3. Suppose that φ ∈ k-CNF and let D be an α-
log-Lipschitz distribution on the valuations of φ. Then there
exist constants C1, C2, C3, C4 ≥ 0 that depend on α and k
such that if the probability of a satisfying assignment sat-
isfies S0(φ) < C1ε

C2 min
{
εC3 , n−C4

}
, then the log(n)-

expansion of the set of satisfying assignments has probability
mass bounded above by ε.

Corollary 4. The class of k-decision lists is efficiently
log(n)-robustly learnable under log-Lipschitz distributions.

The proof of Corollary 4 is similar to Theorem 24 in [Gour-
deau et al., 2021], and is included in Appendix B. We note
that it is imperative that the constants Ci do not depend on
the learning parameters or the input dimension, as the quan-
tity C1ε

C2 min
{
εC3 , n−C4

}
is directly used as the accuracy

parameter in the (proper) PAC learning algorithm for decision
lists, which is used as a black box.



To prove Theorem 3, we will need several lemmas outlined
below, which are either taken directly or slightly adapted
from [Gourdeau et al., 2021]. The first is an adaptation of
Lemma 17 in [Gourdeau et al., 2021] for conjunctions, which
was originally stated for decision lists:
Lemma 5. Let φ be a conjunction and let D be an α-log-
Lipschitz distribution. If Pr

x∼D
(x |= φ) < (1 + α)

−d, then φ

is a conjunction on at least d variables.
The second result, which states an upper bound on the ex-

pansion of satisfying assignments for conjunctions, will be
used for the base case of the induction proof.
Lemma 6. Let D be an α-log-Lipschitz distribution on
the n-dimensional Boolean hypercube and let φ be a con-
junction of d literals. Set η = 1

1+α . Then for all

0 < ε < 1/2, if d ≥ max
{

4
η2 log

(
1
ε

)
, 2ρ

η

}
, then

Pr
x∼D

((∃y ∈ Bρ(x) · y |= φ)) ≤ ε.

Finally, we will use the following lemma, which will be
used in the inductive step of the induction proof.
Lemma 7. Let φ be a k-CNF formula that has a set of
variable-disjoint clauses of size M . Let D be an α-log-
Lipschitz distribution on valuations for φ. Let 0 < ε <

1/2 be arbitrary and set η := (1 + α)
−k. If M ≥

max
{

4
η2 log

(
1
ε

)
, 2ρ

η

}
then Pr

x∼D
(∃y ∈ Bρ(x) · y |= φ) ≤ ε.

We are now ready to prove Theorem 3. The main idea
behind the proof is to consider a given k-CNF formula φ and
distinguish two cases: (i) either φ contains a sufficiently-large
set of variable-disjoint clauses, in which case the adversary is
not powerful enough to make φ satisfied by Lemma 7; or (ii)
we can rewrite φ as the disjunction of a sufficiently small
number of (k − 1)-CNF formulas, which allows us to use
the induction hypothesis to get the desired result. The final
step of the proof is to derive the constants mentioned in the
statement of Theorem 3.

Proof of Theorem 3. We will use the lemmas above and
restrictions on φ to show the following.

Induction hypothesis: Suppose that φ ∈ (k − 1)-CNF and
let D be an α-log-Lipschitz distribution on the valuations
of φ. Then there exists constants C1, C2, C3, C4 ≥ 0 that
depend on α and k and satisfy C3 ≥ η

2C4 such that if
S0(φ) < C1ε

C2 min
{
εC3 , n−C4

}
, then Slog(n)(φ) ≤ ε.

Base case: This follows from Lemmas 5 and 6. Set η to
(1+α)−1, and C1 = 1, C2 = 0, C3 = 4

η2 and C4 = 2
η . Note

that C3 ≥ η
2C4.

Inductive step: Suppose φ ∈ k-CNF and let D be an α-log-
Lipschitz distribution on the valuations of φ. Set η = (1 +
α)−k. Let C ′

1, C
′
2, C

′
3, C

′
4 be the constants in the induction

hypothesis for φ′ ∈ (k−1)-CNF. Set the following constants:

C1 = C ′
12

−k(C′
2+C′

3) C2 = C ′
2 + C ′

3

C3 =
8

η2
max {C ′

2, C
′
3} C4 =

2

η
max {C ′

2, C
′
3} ,

and note that these are all constants that depend on k and α
by the induction hypothesis, and that C3 ≥ η

2C4.
Let S0(φ) < C1ε

C2 min
{
εC3 , n−C4

}
. Let M be a

maximal set of clauses of φ such that no two clauses contain
the same variable. Denote by IM the indices of the variables
in M and let M = max

{
4
η2 log

1
ε ,

2
η log n

}
.

We distinguish two cases:

(i) |M| ≥ M :
We can then invoke Lemma 7 and guarantee that

Slog(n) ≤ ε, and we get the required result.

(ii) |M| < M :
Then let AM be the set of assignments of variables in M,

i.e. a ∈ AM is a function a : IM → {0, 1}, which represents
a partial assignment of variables in φ. We can thus rewrite φ
as follows:

φ ≡
∨

a∈AM

(
φa ∧

∧
i∈IM

li

)
,

where φa is the restriction of φ under assignment a and li is
xi in case a(i) = 1 and x̄i otherwise. For short, denote by φ′

a
the formula φa ∧

∧
i∈IM

li. By the maximality of M every
clause in φ mentions some variable in M, and hence φ′

a is
(k − 1)-CNF. Moreover, the formulas φ′

a are disjoint, in the
sense that if some assignment x satisfies φ′

a, it will not satisfy
another φ′

b for a distinct index b. Note also that

An,ε := |AM| ≤ 2k max

{(
1

ε

)4/η2

, n2/η

}
.

Thus,

S0(φ) =
∑

a∈AM

Pr
x∼D

(x |= φ′
a) =

∑
a∈AM

S0(φ
′
a) . (1)

By the induction hypothesis, we can guarantee that if

S0(φ
′
a) < C ′

1

(
ε

An,ε

)C′
2

min

{(
ε

An,ε

)C′
3

, n−C′
4

}
(2)

for all φ′
a then the log(n)-expansion Slog(n)(φ) can be

bounded as follows:

Slog(n)(φ) = Pr
x∼D

(∃z ∈ Blogn(x) . z |= φ)

=
∑

a∈AM

Pr
x∼D

(∃z ∈ Blogn(x) . z |= φ′
a)

≤
∑

a∈AM

ε

An,ε
(I.H.)

= ε .

By Equation 1, the upper bound S0(φ) <
C1ε

C2 min
{
εC3 , n−C4

}
on the probability of a sat-

isfying assignment for φ implies an upper bound
S0(φ

′
a) < C1ε

C2 min
{
εC3 , n−C4

}
on the probability



of the restrictions φ′
a. Thus it only remains to show that the

condition on S0(φ) implies that Equation 2 holds.
Let us rewrite the RHS of Equation 2 as follows, where

each of the equations is a stricter condition on S0(φ
′
a) than

its predecessor:

C ′
1

(
ε

An,ε

)C′
2

min

{(
ε

An,ε

)C′
3

, n−C′
4

}

≥ C ′
1

( ε

2k

)C′
2

min
{
ε4C

′
2/η

2

, n−2C′
2/η
}

×min


(
ε1+4/η2

2k

)C′
3

,

(
εn−2/η

2k

)C′
3

, n−C′
4


= C ′

1

( ε

2k

)C′
2

min
{
ε4C

′
2/η

2

, n−2C′
2/η
}

×min


(
ε1+4/η2

2k

)C′
3

,

(
εn−2/η

2k

)C′
3


= C ′

12
−k(C′

2+C′
3)εC

′
2+C′

3 min
{
ε4C

′
2/η

2

, n−2C′
2/η
}

×min
{
ε4C

′
3/η

2

, n−2C′
3/η
}

≥ C ′
12

−k(C′
2+C′

3)εC
′
2+C′

3

×min
{
ε8C

′
2/η

2

, n−4C′
2/η, ε8C

′
3/η

2

, n−4C′
3/η
}

= C ′
12

−k(C′
2+C′

3)εC
′
2+C′

3

×min
{
ε8max{C′

2,C
′
3}/η2

, n−4max{C′
2,C

′
3}/η

}
= C1ε

C2 min
{
εC3 , n−C4

}
,

where the first step is by definition of An,ε, the second
from the induction hypothesis, which guarantees C ′

3 ≥ η
2C

′
4,

and the fourth from the property min {a, b} · min {c, d} ≥
min

{
a2, b2, c2, d2

}
. Finally, the last equality follows by the

definition of the Ci’s.
Note that we set η = (1 + α)−k to be able to apply

Lemma 7 in the first part of the inductive step. Then, An,ϵ

is a function of η = (1+ α)−k. When we consider the distri-
bution on the valuations of the restriction φ′

a, we still operate
with an α-log-Lipschitz distribution on its valuations, by log-
Lipschitz facts (see Appendix A.3).

Constants. We want to get explicit constants C1, C2, C3

and C4 as a function of k and η. Note that η = (1 + α)−k is
dependent on k. Let us recall the recurrence system from the
inductive step:

C
(k)
1 = C

(k−1)
1 2−k(C

(k−1)
2 +C

(k−1)
3 )

C
(k)
2 = C

(k−1)
2 + C

(k−1)
3

C
(k)
3 =

8

η2
max

{
C

(k−1)
2 , C

(k−1)
3

}
C

(k)
4 =

2

η
max

{
C

(k−1)
2 , C

(k−1)
3

}
.

It is easy to see that C(k)
3 ≥ C

(k)
2 for all k ∈ N. If we fix

η = (1 + α)−k at each level of the recurrence, we can now

consider the following recurrence system, which dominates
the previous one:

C
(k)
1 = C

(k−1)
1 2−2kC

(k−1)
3 C

(k)
2 = 2C

(k−1)
3

C
(k)
3 =

8

η2
C

(k−1)
3 C

(k)
4 =

2

η
C

(k−1)
3 .

We can now see that

C
(k)
2 = 2

(
8

η2

)k−1

= 2(8(1 + α)2k)k−1

C
(k)
3 =

(
8

η2

)k

= (8(1 + α)2k)k

C
(k)
4 =

2

η

(
8

η2

)k−1

= 2(1 + α)k(8(1 + α)2k)k−1 .

Finally, we can get a lower bound on the value of C
(k)
1 as

follows:

C
(k)
1 =

k∏
i=2

2−2iC
(i−1)
3

= 2
−2

∑k
i=2 i·

(
8
η2

)(i−1)

≥ 2
−2k2

(
8
η2

)(k−1)

= 2−2k2(8(1+α)2k)k−1

.

4 An Adversarial Sample Complexity Lower
Bound

In this section, we will show that any robust learning al-
gorithm for monotone conjunctions under the uniform dis-
tribution must have an exponential sample-complexity de-
pendence on an adversary’s budget ρ. This result extends
to any superclass of monotone conjunctions, such as CNF
formulas, decision lists and halfspaces. It is a generaliza-
tion of Theorem 13 in [Gourdeau et al., 2021], which shows
that no sample-efficient robust learning algorithm exists for
monotone conjunctions against adversaries that can perturb
ω(log(n)) bits of the input under the uniform distribution.

The idea behind the proof is to show that, for a fixed con-
stant κ < 2, and sufficiently large input dimension, a sample
of size 2κρ from the uniform distribution won’t be able to
distinguish between two disjoint conjunctions of length 2ρ.
However, the robust risk between these two conjunctions can
be lower bounded by a constant. Hence, there does not exist
a robust learning algorithm with sample complexity 2κρ that
works for the uniform distribution, and arbitrary input dimen-
sion and confidence and accuracy parameters.

Recall that the sample complexity of PAC learning con-
junctions is Θ(n) in the non-adversarial setting. On the other
hand, our adversarial lower bound in terms of the robust pa-
rameter is super linear in n as soon as the adversary can per-
turb more than log(

√
n)) bits of the input.



Theorem 8. Fix a positive increasing robustness function ρ :
N → N. For κ < 2 and sufficiently large input dimensions
n, any ρ(n)-robust learning algorithm for MON-CONJ has
a sample complexity lower bound of 2κρ(n) under the uniform
distribution.

The proof of the theorem follows similar reasoning as The-
orem 13 in [Gourdeau et al., 2021], and is included in Ap-
pendix C. The main difference in the proof is its reliance on
the following lemma, which shows that, for sufficiently large
input dimensions, a sample of size 2κρ from the uniform dis-
tribution will look constant with probability 1/2 if labelled by
two disjoint monotone conjunctions of length 2ρ. As shown
in Lemma 14, which can be found in Appendix C, these two
conjunctions have a robust risk bounded below by a constant
against each other.
Lemma 9. For any constant κ < 2, for any robustness pa-
rameter ρ ≤ n/4, for any disjoint monotone conjunctions
c1, c2 of length 2ρ, there exists n0 such that for all n ≥ n0,
a sample S of size 2κρ sampled i.i.d. from D will have that
c1(x) = c2(x) = 0 for all x ∈ S with probability at least
1/2.

Proof. We begin by bounding the probability that c1 and c2
agree on an i.i.d. sample of size m. We have

Pr
S∼Dm

(∀x ∈ S · c1(x) = c2(x) = 0) =

(
1− 1

22ρ

)2m

.

(3)
In particular, if

m ≤ log(2)

2 log(22ρ/(22ρ − 1))
, (4)

then the RHS of Equation 3 is at least 1/2.
Now, let us consider the following limit, where ρ is a func-

tion of the input parameter n:

lim
n→∞

2κρ log

(
22ρ

22ρ − 1

)
=

− log(4)

κ log(2)
lim
n→∞

2κρ

1− 22ρ

=
− log(4)

κ log(2)

κ log(2)

−2 log(2)
lim
n→∞

2κρ

22ρ

= lim
n→∞

2(κ−2)ρ

=


0 if κ < 2

1 if κ = 2

∞ if κ > 2

,

where the first two equalities follow from l’Hôpital’s rule.

Thus if κ < 2 then 2κρ is o
((

log
(

22ρ

22ρ−1

))−1
)

.

Remark 10. Note that for a given κ < 2, the lower bound
2κρ holds only for sufficiently large ρ(n). By looking at Equa-
tion 3, and letting m = 2ρ, we get that ρ(n) ≥ 2 is a suffi-
cient condition for it to hold. If we want a lower bound for
robust learning that is larger than that of standard learning
(where the dependence is Θ(n)) for a log(n) adversary, set-
ting m = 21.7ρ and requiring ρ(n) ≥ 6, for e.g., would be
sufficient.

5 Conclusion
We have shown that the class k-DL is efficiently robustly
learnable against a logarithmically-bounded adversary, thus
making progress on the open problem of [Gourdeau et al.,
2021] of whether PAC-learnable classes are always robust
in general against a logarithmically-bounded adversary. The
main technical tool was an isoperimetric result concerning
CNF formulas. Moreover, we have shown that, for mono-
tone conjunctions and any superclass thereof, any ρ-robust
learning algorithm must have a sample complexity that is ex-
ponential in the adversarial budget ρ.

Deriving sample complexity bounds for the robust learn-
ability of halfspaces under the uniform distribution is per-
haps the most natural next step towards resolving the above-
mentioned open problem. Another direction of further re-
search concerns improving the sample complexity bounds
for k-DL in the present paper. Here we have used a proper
PAC-learning algorithm as a black box in our robust learning
procedure (see Corollary 4). By controlling the accuracy pa-
rameter of the standard PAC-learning algorithm, we are able
to get a robust learning algorithm. From this, we get poly-
nomial sample complexity upper bounds for k-DL in terms
of the robustness accuracy parameter ε, the distribution pa-
rameter α, and the input dimension n. The resulting polyno-
mial has degree O(8k(1 + α)2k

2

) in the term 1/ε and degree
O(k8k(1 + α)2k

2

) in the dimension n. It is natural to ask
whether these bounds can be improved in a significant way,
e.g., by adapting the learning procedure to directly take ro-
bustness into account, rather than using a PAC-learning al-
gorithm as a black box. Connected to this, we note that our
lower bound focuses on establishing the exponential depen-
dence of the number of samples on the robustness parameter.
The bound is derived from the case of monotone conjunctions
(a special case of 1-DL) under the uniform distribution and so
does not mention k, nor the distribution parameter α. Like-
wise, it does not mention the desired accuracy ε. Deriving
sample complexity lower bounds with a dependence on these
parameters, potentially through other techniques, would help
give a complete picture of the robust learnability of k-DL.
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A Preliminaries
A.1 The PAC framework
We study the problem of robust classification in the realizable
setting and where the input space is the Boolean cube Xn =
{0, 1}n. For clarity, we first recall the definition of the PAC
learning framework [Valiant, 1984].

Definition 11 (PAC Learning). Let Cn be a concept class
over Xn and let C =

⋃
n∈N Cn. We say that C is PAC learn-

able using hypothesis class H and sample complexity function
p(·, ·, ·, ·) if there exists an algorithm A that satisfies the fol-
lowing: for all n ∈ N, for every c ∈ Cn, for every D over Xn,
for every 0 < ϵ < 1/2 and 0 < δ < 1/2, if whenever A is
given access to m ≥ p(n, 1/ϵ, 1/δ, size(c)) examples drawn
i.i.d. from D and labeled with c, A outputs a polynomially
evaluatable h ∈ H such that with probability at least 1− δ,

Pr
x∼D

(c(x) ̸= h(x)) ≤ ϵ .

We say that C is statistically efficiently PAC learnable if p
is polynomial in n, 1/ϵ, 1/δ and size(c), and computation-
ally efficiently PAC learnable if A runs in polynomial time in
n, 1/ϵ, 1/δ and size(c).

PAC learning is distribution-free, in the sense that no as-
sumptions are made about the distribution from which the
data comes from. The setting where C = H is called proper
learning, and improper learning otherwise.

A.2 Monotone Conjunctions and k-CNF Formulas
A conjunction c over {0, 1}n can be represented a set of lit-
erals l1, . . . , lk, where, for x ∈ Xn, c(x) =

∧k
i=1 li. For ex-

ample, c(x) = x1 ∧ x̄2 ∧ x5 is a conjunction. Monotone con-
junctions are the subclass of conjunctions where negations
are not allowed, i.e., all literals are of the form li = xj for
some j ∈ [n].

A formula φ in the conjunctive normal form (CNF) is
a conjunction of clauses, where each clause is itself a dis-
junction of literals. A k-CNF formula is a CNF formula
where each clause contains at most k literals. For example,
φ = (x1 ∨ x2) ∧ (x̄3 ∨ x4) ∧ x̄5 is a 2-CNF.

A.3 Log-Lipschitz Distributions
Log-Lipschitz distributions have the following useful prop-
erties, which are stated in [Awasthi et al., 2013] and whose
proofs can be found in [Gourdeau et al., 2019]:

Lemma 12. Let D be an α-log-Lipschitz distribution over
{0, 1}n. Then the following hold:

i. For b ∈ {0, 1}, 1
1+α ≤ Pr

x∼D
(xi = b) ≤ α

1+α .

ii. For any S ⊆ [n], the marginal distribution DS̄ is α-log-
Lipschitz, where DS̄(y) =

∑
y′∈{0,1}S D(yy′).

iii. For any S ⊆ [n] and for any property πS that only de-
pends on variables xS , the marginal with respect to S̄ of
the conditional distribution (D|πS)S̄ is α-log-Lipschitz.

iv. For any S ⊆ [n] and bS ∈ {0, 1}S , we have that(
1

1+α

)|S|
≤ Pr

x∼D
(xi = b) ≤

(
α

1+α

)|S|
.

B Proof of Corollary 4
Proof of Corollary 4. Let A be the (proper) PAC-learning al-
gorithm for k-DL as in [Rivest, 1987], with sample complex-
ity poly(·). Fix the input dimension n, target concept c and
distribution D ∈ Dn, and let ρ = log n. Fix the accuracy pa-
rameter 0 < ε < 1/2 and confidence parameter 0 < δ < 1/2
and let η = 1/(1 + α)k. Set

ε0 = C1

(
16ε

e4n2k+2

)C2

min

{(
16ε

e4n2k+2

)C3

, n−C4

}
,

where the constants are the ones derived in Theorem 3.
Let m = ⌈poly(n, 1/δ, 1/ε0)⌉, and note that m is polyno-

mial in n, 1/δ and 1/ε.
Let S ∼ Dm and h = A(S). Let the target and hy-

pothesis be defined as the following decision lists: c =
((K1, v1), . . . , (Kr, vr)) and h = ((K ′

1, v
′
1), . . . , (K

′
s, v

′
s)),

where the clauses Ki are conjunctions of k literals. Given
i ∈ {1, . . . , r} and j ∈ {1, . . . , s}, define a k-CNF formula
φ
(c,h)
i,j by writing

φ
(c,h)
i,j = ¬K1∧· · ·∧¬Ki−1∧Ki∧¬K ′

1∧· · ·∧¬K ′
j−1∧K ′

j .

Notice that the formula φ(c,h)
i,j represents the set of inputs x ∈

X that respectively activate vertex i in c and vertex j in h.
Since Pr

x∼D
(h(x) ̸= c(x)) < ε0 with probability at least

1 − δ, any φ
(c,h)
i,j that leads to a misclassification must have

S0(φ
(c,h)
i,j ) < ε0. But by Theorem 3, Slog(n)(φ

(c,h)
i,j ) <

16ε
e4n2k+2 for all φ(c,h)

i,j with probability at least 1− δ.
Hence the probability that a ρ-bounded adversary can make

φ
(c,d)
i,j true is at most 16ε

e4n2k+2 . Taking a union bound over all

possible choices of i and j (there are
∑k

i=1

(
n
k

)
≤ k

(
en
k

)k
possible clauses in k-decision lists, which gives us a crude
estimate of k2

(
en
k

)2k ≤ e4n2k+2

16 choices of i and j) we con-
clude that Rlog(n)(h, c) < ε.

C Proof of Theorem 8
The proof of Theorem 8 relies on the following lemmas:

Lemma 13 (Lemma 6 in [Gourdeau et al., 2021]). Let
c1, c2 ∈ {0, 1}X and fix a distribution on X . Then for all
h : {0, 1}n → {0, 1}

Rρ(c1, c2) ≤ Rρ(h, c1) + Rρ(h, c2) .

We then recall the following lemma from [Gourdeau et al.,
2021], whose proof here makes the dependence on the adver-
sarial budget ρ explicit.

Lemma 14. Under the uniform distribution, for any n ∈ N,
disjoint c1, c2 ∈ MON-CONJ of even length 3 ≤ l ≤ n/2
on {0, 1}n and robustness parameter ρ = l/2, we have that
Rρ(c1, c2) is bounded below by a constant that can be made
arbitrarily close to 1

2 as l (and thus ρ) increases.



Proof. For a hypothesis c ∈ MON-CONJ, let Ic be the set of
variables in c. Let c1, c2 ∈ C be as in the theorem statement.
Then the robust risk Rρ(c1, c2) is bounded below by

Pr
x∼D

(c1(x) = 0 ∧ x has at least ρ 1’s in Ic2) ≥ (1−2−2ρ)/2 .

Proof of Theorem 8. Fix any algorithm A for learning MON-
CONJ. We will show that the expected robust risk between a
randomly chosen target function and any hypothesis returned
by A is bounded below by a constant. Let δ = 1/2, and
fix a positive increasing adversarial-budget function ρ(n) ≤
n/4 (n is not yet fixed). Let m(n) = 2κρ(n) for an arbitrary
κ < 0. Let n0 be as in Lemma 9, where m(n) is the fixed
sample complexity function. Then Equation (4) in the proof
of Lemma 9 holds for all n ≥ n0.

Now, let D be the uniform distribution on {0, 1}n for
n ≥ max(n0, 3), and choose c1, c2 as in Lemma 14. Note
that Rρ(c1, c2) > 5

12 by the choice of n. Pick the target
function c uniformly at random between c1 and c2, and la-
bel S ∼ Dm(n) with c. By Lemma 9, c1 and c2 agree with
the labeling of S (which implies that all the points have label
0) with probability at least 1

2 over the choice of S.
Define the following three events for S ∼ Dm:

E : c1|S = c2|S , Ec1 : c = c1 , Ec2 : c = c2 .

Then, by Lemmas 9 and 13,

E
c,S

[Rρ(A(S), c)] ≥ Pr
c,S

(E) E
c,S

[Rρ(A(S), c) | E ]

>
1

2
(Pr
c,S

(Ec1)E
S
[Rρ(A(S), c) | E ∩ Ec1 ]

+ Pr
c,S

(Ec2)E
S
[Rρ(A(S), c) | E ∩ Ec2 ])

=
1

4
E
S
[Rρ(A(S), c1) + Rρ(A(S), c2) | E ]

≥ 1

4
E
S
[Rρ(c2, c1)]

=
5

48
.
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