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Abstract

Deep learning, and in particular neural networks (NNs), have seen a surge

in popularity over the past decade. Their use has increased in, often

safety-critical, decision-making systems such as self-driving, medical diag-

nosis and natural language processing. Thus, there is an urgent need for

methodologies to aid the development of AI-based systems. In this thesis,

we investigate the role that explainability and uncertainty can play in pro-

viding safety assurance for AI applications based on neural networks. Our

first contribution, studied primarily for decisions based on neural network

models, is a method to derive local explanations with provable robustness

and optimality guarantees called Optimal Robust Explanations (OREs).

OREs imply the model prediction and thus provide sufficient reason for

the model decision. We develop an algorithm to extract OREs that uses a

neural network verification tool Marabou or Neurify as a black-box solver.

We demonstrate the usefulness of OREs in model development and safety

assurance tasks such as model debugging, bias evaluation and repair of

explanations provided by non-formal explainers such as Anchors. Our

second contribution focuses on an autonomous driving scenario enabled

by an end-to-end Bayesian neural network (BNN) controller trained on

data from the Carla simulator. BNNs have the ability to capture the un-

certainty within the learning model, while retaining the main advantages

intrinsic to neural networks. We propose two methods to evaluate the

safety of decisions of BNN controllers in the presence of uncertainty in

offline and online settings. We develop techniques to approximate bounds

on the safety of the entire system with respect to given criteria, with



high probability and a priori statistical guarantees. Our final contribu-

tion a collection of methods that combine the uncertainty information

available from Bayesian neural networks with local explanation methods.

We show how to formulate Bayesian versions of existing feature scoring

explanation methods, as well as a Bayesian version of our OREs, called

Bayes-optimal robust explanations (B-OREs). We define a covering ex-

planation, which condenses the information produced from a number of

BNN posterior samples into a single explanation, with a probability of

the likelihood that this explanation is an explanation of a random sam-

ple. In the case of Bayes-optimal robust covering explanations, we obtain

a probability for how likely the explanation is to imply the prediction.

We combine Bayesian covering explanations with a notion of feature un-

certainty, to give an ordering of importance to each feature that appears

in the covering explanation, and we show that feature uncertainty can be

used to provide a global overview of the input features that the model

most associates with each class.
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Chapter 1

Introduction

Deep learning, and in particular neural networks (NNs), have seen a surge in popu-

larity over the past decade. NNs are becoming more prevalent in real-world, often

safety-critical, decision-making systems such as self-driving, natural language pro-

cessing and medical diagnosis. As a result of this, AI safety has become a central

problem, as we seek to complement such highly-accurate but opaque models with

comprehensible explanations and rigorous safety guarantees.

Currently, since few safety guarantees are available, we have seen erroneous edge-

case behaviours already. A notable example of such behaviour occurred in the ap-

plication of AI systems to autonomous driving. In 2016, a Tesla Model S (a brand

and model of car well known for its autonomous driving modes) failed to distinguish

a white trailer against the bright sky, leading to a fatal crash [132]. Thus, there is

an urgent need for methods that are capable of accurately detecting, analysing and

diagnosing such erroneous behaviours.

Explaining the reason behind a decision is equally important for ensuring AI

safety, and it is even required by law in some regions of the world [24]. Consider, for

example, the traffic sign shown in Figure 1.1. By examining which parts of the image

influence a decision by a model that classifies such signs, human interpreters can

verify that the appropriate and relevant information is used (for example, we might

require that the model classifies based on the sign itself and not the background which

could indicate a spurious decision). Model developers also benefit from explanations,
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as they facilitate model debugging and bias evaluation. For example, consider the

following Tweet from a sentiment analysis dataset extracted from Twitter [43]: “i

really want to listen to some taylor swift i cant find the CD & i dont feel like playing

it on the computer it sounds better on the cd”. This Tweet has a negative sentiment,

but a simple neural network developed as part of this research classifies it as positive.

By examining the explanation behind the classification, we can determine whether

the positive classification can be solely attributed to the presence of the name of

popular singer-songwriter Taylor Swift or not, i.e whether it is a biased or unjustified

decision.

A variant of neural networks called Bayesian neural networks (BNNs) have the

ability to capture the uncertainty within the learning model, while retaining the

main advantages intrinsic to neural networks [83]. As a consequence, they are partic-

ularly appealing for safety-critical applications, such as autonomous driving, where

uncertainty estimates can be propagated through the decision pipeline to enable safe

decision making [85]. Intuitively, if the uncertainty of the model is high, we may

want to check its prediction more rigorously, or intervene. Consider, for example, a

self-driving car that, while driving, finds an obstacle in the middle of the road. At

each timestep, the controller may be uncertain on the steering angle to apply and,

in order to avoid the obstacle, may choose angles which turn the car either right or

left, with equal probability. A BNN controller is able to indicate such uncertainty,

unlike an NN controller which may end up wiggling along a straight line towards the

obstacle (the result of picking left, right, left and so on). Having precise quantita-

tive measures of the BNN uncertainty facilitates the detection and resolution of such

ambiguous situations.

Additionally, it is important that explanations remain robust and useful when

faced with the uncertainty within the decision making process, as highly variable,

complex explanations for very similar decisions do not provide good or useful feed-

back for the human interpreter. Guaranteeing robustness to adversarial perturbations
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Figure 1.1: A picture of a traffic sign from the GTSRB dataset.

ensures stability of the explanation1, and useful explanations can be gathered using

user-defined cost functions (to ensure the resulting explanation is relevant and useful).

Currently, there is a lack of techniques exploring the interplay between uncertainty

information and explanations in ensuring AI safety.

1.1 Contributions

In this thesis, we investigate the role that explainability and uncertainty can play in

ensuring the safety of AI applications. We show this in the setting of decision functions

of the form f : X → Y . Here, X is a set of inputs represented as feature vectors, Y

is an output set (a class label for classification problems, or a continuous output for

regression) and decision function f is a neural network that makes a prediction that

is required to be safe. Feature vectors can encompass anything from pixel values to

words (via the use of embedding functions), and so this decision function captures a

wide range of applications not limited to those discussed in this thesis.

In our first setting, setting A, we consider deterministic decision functions and

feature vectors in the form of word embeddings representing text. We develop a

collection of methods to extract robust and optimal explanations for such decision

1While stability is often defined as achieving the same result over each subsequent test, we
note that explanations are not necessarily unique and we therefore define stability as being locally-
robust to adversarial perturbations i.e. one (of potentially several) explanation of input x is still an
explanation of an adversely perturbed input x′.
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functions. These methods can be used for model debugging and bias detection, among

others, which are important in improving AI safety. Here, we work with sentiment

analysis as a proxy application for scalability reasons: it is a task with a lower di-

mensionality than, for example, image classification, and the solvers we use struggle

with anything more. Despite this, we stress that these methods are applicable to

many other domains and feature vector types. This setting and corresponding work

is described in Chapter 4.

We then extend setting A into setting B by adding uncertainty into the decision

functions, and we now consider feature vectors in the form of images. We explore ways

of extracting and quantifying uncertainty information from such decision functions,

and how this information can be used in improving safety. As our proxy application,

we use an end-to-end autonomous driving controller represented as a Bayesian neural

network, and we study how uncertainty can be used to ensure safety in both offline

and online settings. This setting and corresponding work is described in Chapter 5.

In setting C, we investigate a combination of settings A and B: we consider decision

functions that incorporate uncertainty and input feature vectors in the form of both

word embeddings and images. We develop a collection of methods to provide feedback

to modellers and human interpreters that integrate explanations with uncertainty

information in a principled manner. We show how existing explanation methods can

be formulated in a Bayesian manner, including those covered in setting A, and we

explore how to extract and use individual feature uncertainty to ensure safety. Our

methods are demonstrated on both image classification and sentiment analysis as

proxy applications, and this setting and corresponding work is described in Chapter 6.

The main contributions of this thesis can be summarised as follows:

1. We present a method to derive local explanations, primarily for Natual Lan-

guage Processing (NLP) models, with provable robustness and optimality guar-

antees. We call such explanations Optimal Robust Explanations (OREs). This

method shares similarities with abduction based explanations (ABEs) [58] in

that the computed ORE implies the decision, but is better suited to any model

(́ın particular NLP models) where the unbounded nature of ABEs may result
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in trivial explanations, of no use to the human interpreter.

2. We demonstrate that our local explainability approach can provide useful ex-

planations for non-trivial fully-connected and convolutional neural networks on

three widely used sentiment analysis benchmarks, and we provide a framework

for computing our OREs with a choice of solution algorithms based on either

hitting sets or minimum satisfying assignments, in conjunction with neural net-

work verification tools Marabou and Neurify.

3. We compare OREs with a state-of-the-art explanation method, called Anchors,

and we show that Anchors often lacks prediction robustness in our benchmarks.

We demonstrate the usefulness of our framework on tasks such as model debug-

ging, bias evaluation and repair of non-formal explainers like Anchors.

4. We present a statistical method for evaluating the safety of end-to-end BNN

controllers for applications in self-driving. This method allows one to obtain

and quantify the quality of uncertainty estimates for the controller’s decisions,

and provides bounds on the safety of the entire system with respect to a given

criteria, with high probability and a priori statistical guarantees.

5. We show that this statistical framework can be used to evaluate controller’s

model robustness to changes in weather, location and observation noise, and we

empirically demonstrate how our real-time statistical estimates can be used to

avoid a high percentage of collisions.

6. We present a collection of methods that combine the uncertainty information

drawn from Bayesian neural networks with local explanation methods. We show

how to formulate Bayesian versions of feature score-based explanation methods

such as Layerwise Relevance Propagation (LRP), as well as a Bayesian version

of our OREs, called Bayes-optimal robust explanations (B-OREs).

7. We define a covering explanation, which condenses the information produced

from a number of BNN posterior samples into a single explanation, yielding the

5



probability that the explanation is an explanation of a random sample. In the

case of Bayes-optimal robust covering explanations, we obtain a probability for

how likely the explanation is to imply the prediction.

8. We combine Bayesian covering explanations with a notion of feature uncertainty,

to give an ordering of importance for each feature that appears in the covering

explanation.

9. We show that feature uncertainty can be used to give a global overview of the

input features that the model most associates with each class.

1.2 Publications

Some of the work in this thesis has been published in papers with joint authorship.

Here I clarify my personal contribution to each work.

Uncertainty Quantification with Statistical Guarantees in End-to-End Au-

tonomous Driving Control [86] I am the primary author on this paper. I jointly

devised the concept of the framework presented in this work, and the definitions of

probabilistic safety and real-time decision confidence. I programmed the framework

myself and performed all the experiments. I also wrote the majority of the paper itself.

On Guaranteed Optimal Robust Explanations for NLP Models [74] In this

paper, I jointly contributed to the development of the ORE concept. In addition, I

defined and implemented the approach to introduce non-trivial (i.e. not simply the

length of the explanation) cost functions to be optimised. I programmed and ran

all of the experiments with these non-trivial cost functions, and I implemented the

Neurify solver integration that allowed us to produce OREs for networks that were

an order of magnitude larger than the ones possible with the Marabou solver, and

allowed us to use L1 and L2 distance metrics (as opposed to only L∞ with Marabou).

I contributed to the paper writing.
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1.3 Thesis Outline

This thesis is organised as follows. In Chapter 2 we introduce the technical back-

ground needed for the remainder of this thesis and in Chapter 3 we review the related

work in the literature. Chapters 4, 5 and 6 cover the three settings A, B and C, re-

spectively. We conclude with Chapter 7 by summarising our work, highlighting useful

and interesting observations made along the way, and discussing future directions.
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Chapter 2

Background

This chapter introduces the technical background needed for the remainder of this

thesis. First, we discuss the basics of topics including probability, Bayesian statistics,

vector embeddings and distance metrics. Next, we cover neural networks and Bayesian

neural networks, then explainability, and finally neural network verification.

2.1 Basics

This section introduces the basic concepts from computer science and mathematics

that are used in this thesis. Topics covered include probability (both frequentist and

Bayesian), vector embeddings and distance metrics.

2.1.1 Probability Basics

Probability describes how likely something is to occur in a random experiment: an

experiment whose outcome cannot be predicted until it is observed. Probability of

an event A is denoted as P (A) and takes a value between 0 and 1, where 0 essentially

means impossibility and 1 essentially means certainty.

A sample space Ω is the set of all outcomes of a random experiment, and a random

variable is a variable whose possible values are numerical outcomes of a random

experiment, that is, it maps the sample space to a measurable space (e.g the real
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numbers R). Discrete random variables can only have a countable number of discrete

values, whilst continuous random variables can have an uncountable number. In the

example below, X : Ω→ R is a discrete random variable for a coin toss experiment:

X =

1, if heads

0, if tails

(2.1)

The expectation of random variable X, written as E[X] is approximately equal to

the mean of N random observations of X. For a discrete random variable:

E[X] =
∑
x

xFX(x) (2.2)

Here, FX(x) is the the probability mass function. The probability mass function is

a function (for discrete random variables) P (x) that satisfies three properties: (1)

P [X = x] = P (x), (2) P (x) is non-negative for all real x, (3) the sum of P (x) over

all values of x is 1.

The expectation of a continuous random variable, as N →∞, is defined as:

E[X] =

∫ ∞
−∞

xFX(x)dx (2.3)

Here, FX(x) is the probability density function. The probability density function is

a function (for continuous random variables) f(x) that satisfies three properties: (1)

that P [a ≤ x ≤ b] =
∫ b
a
f(x)dx, (2) that f(x) is non-negative for all real x, and (3)

that the integral over the reals
∫ +∞
−∞ f(x)dx = 1.

The variance of a random variable X is a measure of how concentrated the distri-

bution of X is around its mean, defined as follows.

Var[X] = E[[X − E[X]]2] = E[X2]− [E[X]]2 (2.4)

A joint probability distribution of discrete random variables X and Y defines their

simultaneous behaviour in random experiments and is defined as FXY (x, y) = P (X =
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x, Y = y). Finally, if another random variable Z is dependent on X and Y , then the

distribution P (Z|X, Y ) is the conditional probability distribution of Z with respect

to X and Y .

Common Probability Distributions Some important probability distributions

that are commonly found in machine learning are described here.

The Bernoulli distribution is a discrete distribution characterised by proba-

bility parameter p. Probability P [X = 1] = p and P [X = 0] = (1 − p), expectation

E[X] = p and variance Var[X] = P (1− p). A graph of the distribution can be found

in Figure 2.1.

The normal distribution, also known as the Gaussian distribution, is a contin-

uous distribution characterised by two parameters µ, the mean, and σ, the standard

deviation. It is usually denoted as N (µ, σ2), where σ2 is the variance, and its proba-

bility density function is given as:

f(x) =
1

σ
√

2π
e−

1
2
(x−µ
σ

)2 (2.5)

A graph of the distribution can be found in Figure 2.2.

Bernoulli Random Variables A Bernoulli random variable is the simplest type

of discrete random variable and can take only two values: 0 and 1. If an experiment

with probability p resulted in a success it is a 1, else 0. A random variable X with

the distribution of a Bernoulli distribution is denoted as:

X ∼ Ber(p) (2.6)

where Ber(p) is the Bernoulli distribution with probability parameter p.
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Figure 2.1: The Bernoulli distribution mass function, with parameter p = 0.3.

Figure 2.2: The normal distribution density function, with mean 0 and standard
deviation 1.
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2.1.2 Bayesian Statistics

Bayesian statistics is based on the Bayesian interpretation of probability, in which

probability expresses a degree of belief in an event, rather than frequency. Initial

beliefs about an event are specified in a prior probability, which, when presented

with new data, is updated to a posterior probability that better represents all the

evidence.

Bayesian methods are a set of machine learning tools that use Bayesian statistics,

explained above, to provide a way of integrating prior beliefs about a model into the

training process. Once a prior distribution (belief) of the model has been selected,

the set of training data is used to compute the likelihood function and then, from

these, the posterior distribution can be calculated using Bayes’ rule, see Equation 2.7.

In the case where a single output is needed, the posterior distribution can be used to

select point estimates.

P (H|D) =
P (D|H)P (H)

P (D)
=

P (D|H)P (H)∫
H
P (D|H)P (H)dH

(2.7)

Here, H is a hypothesis, for example neural network parameters, and D is some

data. P (D|H) is the likelihood, P (H) is the prior, P (D) is the evidence and P (D) =∫
H
P (D|H)P (H)dH.

2.1.3 Vector Embeddings and Distance Metrics

In machine learning, inputs for neural networks must be real-valued vectors in one or

more dimensions, depending on the model. Additionally, features are the elements of

an input vector. This section describes how text and image data can be represented

as real vectors, and how the distance between two input vectors can be calculated for

different applications.

Vector Embeddings In the case of images as inputs to neural networks, these can

be treated as 2D (for grayscale) or 3D (for colour) real-valued vectors, where entries
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correspond to the pixel colour value at that location. Pixel values range between

0− 255 in raw image data; however, in most applications, the values are normalised

between 0 − 1. Additionally, 2D and 3D inputs are sometimes flattened to become

one large 1D vector, depending on network architecture.

Text as input is a more difficult case, as there are no inherent numbers associated

with text as there are with pixel values (colours). In this case, we use word embeddings,

which are a learned representation for text where words that have a similar semantic

meaning have a similar representation, for example based on co-occurrence of words.

Each word is mapped to a single real-valued vector in a predefined space, and the

representation is learned based on the usage of the words.

The learning process of the word embedding can be done in several ways, but the

simplest is by learning as a side-effect of another learning method (for example, a

neural network) on a specific natural language processing task (e.g document clas-

sification, or sentiment analysis). This requires that each word is one-hot encoded

(a vector of binary variables for every possible word, where each entry indicates the

presence or absence of a word), and the size of the vector space is fixed (for example,

5 dimensions). Then, the vectors are initialised with small random numbers and are

learned during the same learning process that the given learning method utilises (for

example, using backpropagation for neural networks).

Other word embedding learning processes include Word2Vec [87], which uses a

statistical method for efficiently learning a standalone word embedding from a text

corpus, and GloVe [97], which extends Word2Vec by adding in classic matrix factori-

sation techniques.

Examples of image and text inputs, along with their equivalent representations,

can be seen in Figures 2.3 and 2.4.

Distance Metrics In machine learning, there is often a need to calculate the distance

between two neural network inputs. A distance function, or metric, δ should take the

form δ : X ×X → [0,∞) and should satisfy the following axioms for all x, y, z ∈ X:

• Identity: δ(x, y) = 0⇐⇒ x = y
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Figure 2.3: An image from the MNIST dataset, scaled down to 14× 14 pixels, along
with the 2D real-valued vector representation.

Figure 2.4: A movie review from the SST dataset, along with its corresponding word
embeddings, with one 5-dimensional embedding for each word.
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Figure 2.5: An image from the MNIST dataset, and a copy of that image with two
pixels changed from a value of 0 to 1. The L2 distance between the two images is
given below.

• Non-negativity: δ(x, y) ≥ 0

• Symmetry: δ(x, y) = δ(y, x)

• Triangle Inequality: δ(x, y) ≤ δ(x, z) + δ(z, y)

In practice, and in this thesis, Lp norms are often used to construct distance

metrics. The Lp distance between two inputs x, y is denoted as ||x− y||p.

The L1 distance, also called the Manhattan distance, is the sum of the absolute

difference between two vectors, formally defined in Equation 2.8. Here, n is the

dimension of the input.

||x− y||1 =
n∑
i=1

|xi − yi| (2.8)

The L2 distance, also known as the Euclidean distance, is the straight-line distance

between two points, formally defined in Equation 2.9.

||x− y||2 =

√√√√ n∑
i=1

(xi − yi)2 (2.9)

An example of the L2 distance between two images, viewed as 1D vectors, can be

found in Figure 2.5.

Finally, the L∞ distance is the maximum deviation along any one coordinate,
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Word Word Embedding
‘good’ [0.477, 0.541, 0.469, 0.522, 0.584]
‘excellent’ [0.413, 0.580, 0.421, 0.558, 0.543]
‘car’ [0.51, 0.469,0.549, 0.479, 0.499]

Distance
(Cosine, L2, L∞)

‘good’ ‘excellent’ ‘car’

‘good’ 0.0, 0.0, 0.0 0.0038, 0.103, 0.063 0.0078, 0.148, 0.085
‘excellent’ 0.0038, 0.103, 0.063 0.0, 0.0, 0.0 0.0181, 0.2153, 0.1281
‘car’ 0.0078, 0.148, 0.085 0.0181, 0.2153, 0.1281 0.0, 0.0, 0.0

Table 2.1: The top table displays several words and their associated 5D self-trained
embeddings, and the bottom table displays the cosine, L2 and L∞ distances between
pairs of words.

formally defined in Equation 2.10.

||x− y||∞ = max(|x1 − y1|, ..., |xn − yn|) (2.10)

Another type of distance, not based on an Lp norm, is the cosine distance. This

metric is often used to measure similarity of texts in natural language processing

applications. Cosine distance (Equation 2.11) is the angular distance between two

input vectors, where magnitude information is not used. The second term in the

equation is called the cosine similarity.

cosine δ(x, y) = 1− x · y
||x||2||y||2

(2.11)

Table 2.1 shows some examples of the cosine distance between words, compared to

the L2 and L∞ distances. We see that the cosine distance between the semantically

similar words ‘good’ and ‘excellent’ is a lot smaller than between the semantically

different word ‘car’.

2.2 Neural Networks

This section introduces machine learning and neural networks, including what they

are, how they work and why they are useful.
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Machine learning is the practice of using algorithms to parse data, detect patterns

in, and learn from data, in order to make a prediction or determination about the

world [23]. Learning from data in this way can be categorised into three topics:

unsupervised learning, supervised learning and reinforcement learning, although this

thesis focuses on supervised learning only. Supervised learning is the task of learning

a decision function f : X → Y that maps from an input in the space of inputs X to

an output in the space of outputs Y , based on a set of labeled training data.

Neural networks are a machine learning tool to solve the above problem and find

the decision function f . Based loosely on the human brain, they consist of layers

of connected units called neurons and were first proposed in the 1950s [102]. Over

the past two decades, neural networks have seen an explosion in popularity and have

become one of the most researched topics in machine learning.

2.2.1 Formulation

Given a set of N training examples in the form {(x1, y1), ..., (xN, yN)}, a neural net-

work attempts to approximate the function f : X → Y . X is the input space, Y is

the output space, xi ∈ X is a real-valued feature vector of the ith training example

and yi ∈ Y is the matching ground truth label of the ith training example. If Y is

finite, the task is known as a classification task, or a regression task otherwise.

2.2.2 Architecture Types

In this thesis, we focus on fully-connected and convolutional neural networks only.

The diagram in Figure 2.6 shows a typical feed-forward fully-connected (FC) neural

network layout. To illustrate how effective these networks are, the network shown is

fairly accurate at classifying handwritten digits, using an image as input. Each white

circle represents a neuron and the connections between sets of neurons are represented

by arrows. Blue circles are biases, which act as constants to the activation function

and are analogous to the intercept c in the straight line equation y = mx + c. The
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Figure 2.6: A feed-forward neural network with a single hidden layer.

neurons are arranged into layers that have no inter-connected neurons. The first layer,

with three neurons in this figure, is the input layer. The second layer is a hidden layer

and the third is the output layer.

Each neuron multiplies its inputs with its weight, sums the outcome and adds the

bias, and finally applies a non-linear activation function before feeding forward to the

next layer of neurons. If the input to the lth layer of the network is:

xl = (xl1, ..., x
l
n) (2.12)

then the output of that layer is:

xl+1
j = a(blj +

n∑
k=1

W l
jkx

l
k) (2.13)

where bl is the bias vector, W l is the weight matrix and a is the activation function.

The activation function is usually non-linear (although can be the identity function

a(x) = x), which is desirable as it has been proven that networks as small as two

layers, which include this non-linearity, are universal function approximators [26].

Common activation functions include the sigmoid function [26], f(x) = 1
1−e−x , and

ReLU (rectified linear unit) [92], f(x) = if x < 0 : 0 else x.

For classification tasks, the output layer typically has as many output neurons as
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Figure 2.7: A visual example of the convolution operation.

there are classes, and the final layer’s activation function is a softmax function (see

Equation 2.14), where the index of the maximum value in this vector selects the most

likely class.

softmax(z) := [
ez1∑N
k=1 e

zk
, ...,

ezN∑N
k=1 e

zk
] (2.14)

Convolutional neural networks (CNNs) are another commonly used network type,

particularly for image-based tasks such as object detection and lane following. Their

adoption in these tasks can be attributed to their reduction of training parameters

and training time, and their robustness against overfitting [44]. CNNs differ from

FCs in that they include convolution layers that apply the convolution operation to

the input and pass the result to the next layer. The convolution operation over a

layer, visualised in Figure 2.7, applies a convolution kernel of size m x n repeatedly

over the input image with a step size s (called stride). The application of the kernel

is as follows:

y(i, j) =

m
2∑

u=−m
2

n
2∑

v=−n
2

H(u, v)x(i+ u, j + v) (2.15)

where H is the convolution kernel.

The structure of CNNs closely resembles the human visual system, and they are

translation invariant, which suggests that CNNs are well suited for vision tasks [44].
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2.2.3 Training

Training a neural network amounts to using an iterative optimisation algorithm to

find a set of weights that best maps training data inputs to outputs. This problem is

difficult as the error surface is highly multidimensional and non-convex, with plenty of

local minima and flat spots. To quantify the difference between the expected outcome

and the outcome produced by the neural network, a loss function is used, given below.

LS = (y − ŷ)2 (2.16)

Networks intended for regression tasks typically have a single, continuously valued

output and a common loss function for optimisation is the squared loss, where y is the

ground truth label, and ŷ is the predicted value (see Equation 2.16). In classification

problems, the cross-entropy loss is a common choice.

LCE = −
c∑
i=1

Tilog(Si) (2.17)

Equation 2.17 defines the cross-entropy loss, where c is the number of classes, T is the

one-hot encoded vector for ground truth label y (for example, if there are 3 classes

and y = 2, then T = [0, 1, 0]) and S is the output of the application of the softmax

function on the final layer of the neural network (as in Equation 2.14).

During the learning process, the loss gradient (the derivative of a loss function

with respect to the weights) of the network is used to adjust the current weights.

Obtaining the loss gradient is done through backpropagation [106], while updating

the weight values using that gradient is done through an optimisation algorithm.

A simple choice of optimisation algorithm is gradient descent, which corrects

weights by applying the equation W ′ = W − a × gradient. Here, a is constant

called the learning rate that controls the speed of training and gradient is the deriva-

tive of the given loss function with respect to the weights. When choosing a, there

is a trade-off between non-convergence and time consumption. The update process

is then repeated, usually for a given number of iterations or until a target error has
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been reached.

2.2.4 Inference

Inference applies knowledge from a trained neural network model to infer a result.

Inference for a deterministic neural network involves running new data points through

the network, with the previously learned and subsequently fixed weights, to make a

prediction.

For more information on neural networks, we refer the interested reader to [44].

2.3 Bayesian Neural Networks

This section begins with a discussion of the building blocks of Bayesian neural net-

works: uncertainty information and the Gaussian process. Then, we formulate a

Bayesian neural network, and cover multiple ways of performing posterior inference

(training) on these networks, along with a discussion of different measures of uncer-

tainty and how they can be extracted.

2.3.1 Uncertainty

In many fields, uncertainty is used to determine the dependability of a model. In

Bayesian modelling, there are two main types of uncertainty that can be modelled:

aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty captures noise

inherent in the observations, for example sensor noise (variations of sensor output

unrelated to the input), and this uncertainty cannot be reduced even if more data was

collected. Epistemic uncertainty accounts for the uncertainty in model parameters: it

captures our ignorance about which model generated our data and it can be explained

away given enough data (it is also known as model uncertainty).

In classification problems, the softmax probabilities are not enough to indicate

whether the model is confident in its prediction, as a standard model would pass
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Figure 2.8: Softmax output as a function of data, taken from [37].

the predictive mean (a point estimate) through the softmax rather than the whole

predictive distribution [37]. This leads to high softmax probabilities (confidence) on

points far from the training data. As an example, consider the binary classification

problem. Figure 2.8 shows the softmax output of the classifier as a function of the

data (solid line), where the training data is between the two grey dashed lines. The

point x∗ is far from the training data, but without taking uncertainty into account,

it is classified as a 1 with probability 1. The grey shading indicates the distribution

achieved by passing the entire distribution, rather than a point estimate, through the

softmax function. This gives us a more applicable result, as taking the mean of this

distribution gives us a prediction of class 1, but with probability 0.5.

The above was an example of out-of-distribution test data. Other examples of

sources of uncertainty include noisy data, and situations where many models explain

the same dataset equally (model parameter uncertainty). Noisy data is an exam-

ple of aleatoric uncertainty, whereas model parameter uncertainty is an example of

model uncertainty (or epistemic uncertainty) [38], the confidence the model has in its

prediction.

2.3.2 Gaussian Processes

One of the building blocks of Bayesian methods is the Gaussian process. The Gaussian

process is a tool for modelling distributions over functions that can be applied to both

regression and classification tasks. Similarly to neural networks, given a training set

x1, ..., xn and corresponding outputs y1, ..., yn, the function y = f(x) that is likely
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to have generated the data should be estimated. The Gaussian process also offers

properties such as robustness to overfitting, principled hyper-parameter tuning, and

uncertainty estimates over the function values, which is what this research is focused

on.

In practice, for regression tasks, Gaussian processes place a joint Gaussian distri-

bution over all the function values F, seen in Equation 2.18, where X and Y denote

the inputs and outputs respectively. By modelling the distribution over the space

of functions like this, the corresponding posterior can be evaluated analytically (or

estimated in the case of classification).

Y|F ∼ N (F, τ−1IN)

F|X ∼ N (0,K(X,X))
(2.18)

The covariance function K(X,X) must be selected to model the data. This function

defines similarity between every pair of input points and represents our prior belief

of what the form of the function we are modelling should be. Certain covariance

functions correspond to certain non-linearities, for example the hyperbolic tangent

or ReLU functions. The parameter τ is a precision hyper-parameter of the Gaussian

process, and IN is the identity matrix. For further details, please refer to [40].

Sometimes, the Gaussian process posterior evaluation requires inversion of a ma-

trix as large as the dataset, which is intractable to compute (for reasonably large

datasets). A more efficient method to calculate this posterior is so called variational

inference, which provides an approximation of the posterior. This is done by defin-

ing a “simpler” approximating variational distribution qθ(ω), parameterised by some

variational parameters θ, and ω is a finite set of random variables that the model is

first conditioned on. Then minimising the KL (Kullback-Leibler) divergence between

that and the original posterior distribution P (ω|X,Y) (the one that could not be

evaluated due to the large matrix inverse operation).

Due to the difficulty in training and scaling outlined above, we require an easier

way of obtaining uncertainty information from a Bayesian model. A Bayesian neural
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network (BNN) is, in essence, an approximate Gaussian process, as with infinitely

many weights in the BNN, we can recover a Gaussian process [40].

2.3.3 Formulation

A Bayesian neural network (BNN), as opposed to a deterministic network, allows

for the extraction and quantification of model and data uncertainty. BNNs follow

the Bayesian interpretation of probability, by replacing the singular valued weights

and biases of a deterministic network with weight and bias probability distributions

(one for each model parameter). For a test input x ∈ Rm a BNN with C output

units and an unspecified number (and type) of hidden layers is denoted as fw(x) =

[fw
1 (x), . . . , fw

C (x)], where w denotes the weight vector random variable. Given w, a

weight sampled from the distribution of w, we denote with fw(x) the corresponding

deterministic neural network with weights fixed to w and with P (fw(x)) the resulting

distribution of fw(x).

2.3.4 Training

In the Bayesian setting, standard network training (i.e., how deterministic networks

are trained) via optimisation is equivalent to maximum likelihood estimates (MLE)

for the model parameters. However, this ignores the additional data that using a

probability distribution introduces (i.e MLE uses point estimates) and overfitting

(modelling the training data too closely) is common [39].

As with the Gaussian process, the correct way to train is to perform posterior

inference. To exemplify this in the case of classification, consider classification with

a softmax likelihood model. Let D = {(x, y) |x ∈ Rm, y ∈ {1, ..., C}} be the training

set. We then define the likelihood function σc for observing class yc for a given input

x and given weight matrix w as:

σc(f
w(x)) =

ef
w
c (x)∑C

j=1 e
fwj (x)

(2.19)
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The combined vector of class likelihoods σ is defined as:

σ(fw(x)) = [σ1(f
w(x)), ..., σC(fw(x))] (2.20)

Then, a prior distribution is assumed over the weights, i.e. w ∼ P (w), and the associ-

ated random variable induced by this distribution is denoted σ(fw(x)). Learning for

the BNN amounts to computing the posterior distribution over the weights, P (w|D),

via the application of Bayes’ rule, seen in Equation 2.21.

P (w|D) =
P (D|w)P (w)

P (D)
=

P (D|w)P (w)∫
w
P (D|w)P (w)dw

(2.21)

Here, P (D|w) is the likelihood, which indicates how compatible the data is with the

given weights. P (w) is the prior probability, which is chosen based on intuition about

the data.

The same problems as with Gaussian processes arise here, in that the exact pos-

terior inference calculation is computationally infeasible, so approximation methods

have been developed. Three of these methods, Monte Carlo dropout (MCD), Hamil-

tonian Monte Carlo (HMC) inference and mean field variational inference (VI) (men-

tioned briefly in the Gaussian process example above), are now described.

Monte Carlo Dropout A recent technique, called Monte Carlo Dropout (MCD),

from Gal and Ghahramani [40], allows the gathering of approximate uncertainty

information from neural networks without changing the architecture (given that

some stochastic regularisation technique such as dropout has been used). To sum-

marise, MCD finds an approximating Gaussian distribution q(w) ≈ P (w|D) that takes

the form of the product between Bernoulli random variables and the corresponding

weights. Hence, sampling from q(w) reduces to sampling Bernoulli variables.

Dropout is a regularisation technique that sets 1-p proportion of the dropout

layers’ input to be 0, where p is the dropout probability [51]. The dropped weights

are often scaled by 1/p to maintain constant output magnitude.
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It has been shown that a network that uses dropout is an approximation to a

Gaussian process [40]. Equation 2.22 shows how a prediction can be performed with

a Gaussian process, where f is the space of functions, X is the training data and Y

is the training outputs. The expectation of y* for input x* is called the predictive

mean of the model and the variance is the predictive uncertainty.

P (y∗|x∗,X,Y) =

∫
P (y∗|f∗)P (f∗|x∗,X,Y)df∗ (2.22)

For a regression network, Equations 2.23 and 2.24 are respectively used to obtain an

approximation of the predictive mean and variance of the Gaussian process that the

network is an approximation of.

E(y∗) ≈ 1

K

K∑
k=1

ŷ∗k(x
∗) (2.23)

Var(y∗) ≈ τ−1ID +
1

K

K∑
k=1

ŷ∗k(x
∗)T ŷ∗k(x

∗)− E(y∗)TE(y∗) (2.24)

The set {ŷ∗k(x∗)} of size K comprises the results from K stochastic forward passes

through the network. It is important that the non-determinism from dropout is re-

tained at prediction time to ensure different units will be dropped per pass through.

Relating back to the Gaussian process, these are empirical samples from the approx-

imate predictive distribution seen in Equation 2.22. τ relates to the precision of the

Gaussian process model, and is used in the calculation of the predictive variance. τ

can be calculated as seen in Equation 2.25, where l is a user-defined length scale, p is

the probability of units not being dropped, N is the number of training samples and

λ is the multiplier used in the L2 regularisation of the network.

τ =
l2p

2Nλ
(2.25)

A small length-scale (corresponding to high frequency data) with high τ (correspond-

ing to small observation noise) will lead to a small weight decay, which might mean

the model fits the data well but generalises badly. Conversely, a large length-scale and
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low τ will lead to strong regularisation. There is a trade-off between length-scale and

model precision. In practice, the model precision τ is often found by grid searching

over the weight decay λ to minimise validation error, choosing a length-scale that

correctly describes the data, and then putting the values into Equation 2.25. It can

also be found by grid searching over τ values directly.

Hamiltonian Monte Carlo Hamiltonian Monte Carlo (HMC) is a Markov chain

Monte Carlo (MCMC) method that proceeds by defining a Hamiltonian function

H(q, p) = U(q) + K(p) [13]. In the context of Bayesian neural networks, q denotes

the weights of the network, p is an artificially introduced momentum variable, U(q)

is the potential energy which, in this setting, is equal to minus the log probability

density of the posterior distribution (i.e −log(P (w|D))), and K(p) is the kinetic

energy which is defined as pTM−1p/2 with T being the number of samples, and M

being a symmetric, positive-definite covariance matrix. Typically, M is diagonal and

a scalar multiple of the identity matrix.

The algorithm results in a set of samples of the posterior distribution P (w|D),

and the algorithm proceeds as follows:

1. Pick a starting point q0.

2. Draw p0 from a zero mean Gaussian distribution with covariance matrix M .

3. Solve the Hamiltonian system of equations for a given amount of time and

record the end point as p1:

• dq
dt

= dH
dp

• dp
dt

= −dH
dq

4. Repeat steps 1-3, T0 + T times, yielding q1, ..., qT0 , ..., qT .

5. The samples from the posterior are qT0 , ..., qT . The initial samples up to qT0 are

disregarded to mitigate the effect of a poor starting point.
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Differently from the two other methods discussed here, HMC does not make any

assumptions on the form of the posterior distribution, and is asymptotically correct.

For additional details, please see [13].

Mean Field Variational Inference Mean field variational inference (VI) pro-

ceeds by finding a Gaussian approximating distribution q(w) ≈ P (w|D) in a trade-off

between approximation accuracy and scalability. The core idea is that q(w) depends

on some hyper-parameters that are then iteratively optimized by minimizing a di-

vergence measure (the Kullback-Leibler divergence [72]) between q(w) and P (w|D).

Samples can then be efficiently extracted from q(w). The optimisation problem is

given in Equation 2.26.

log P (D) = KL(q(w) || P (w|D)) + E[log P (w,D)− log q(w)] (2.26)

Since log P (D) does not depend on w, it can be considered constant, and therefore

minimising KL divergence is equivalent to maximising the second term: the evidence

lower bound (ELBO).

Comparison of Inference Methods HMC is an exact inference method that is

asymptotically correct, compared to both VI and MCD which are approximate in-

ference methods. The trade-off between exact and approximate inference methods

is between tighter guarantees (exact) and scalability (approximate). Additionally,

HMC does not make any assumptions about the shape of the posterior distribution,

whereas for VI and MCD picking a bad initial shape can, in the worst case, lead

to a bad approximation of the posterior. Picture trying to put a squashable square

into a circular space of a similar size: it will fit but the corners of the square will be

squashed into the shape of the circle.
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2.3.5 Extracting Uncertainty Information

For classification tasks, there are several methods of obtaining uncertainty informa-

tion. As previously mentioned, softmax probabilities are a poor indicator as they

are the result of a single deterministic pass of a point estimate through the network,

which can lead to high confidence on points far from the training data [38]. The three

approaches used to summarise classification uncertainty are variation ratios [35], pre-

dictive entropy [108] and mutual information [108].

Variation Ratio Variation ratio is a measure of dispersion; its value is high when

classes are more equally likely and low when there is a clear winner. Variation ratio,

as with predictive uncertainty in regression tasks, requires T stochastic forward passes

through the network for a test input x. A set of T labels yt is collected, where yt is

the class with the highest softmax output of that pass through, where t ∈ T . The

mode of the distribution c∗ and the number of times it was sampled, fx, can then be

used to obtain the variation ratio. These calculations can be seen in Equations 2.27,

2.28 and 2.29.

c∗ = arg max
c=1,...,C

∑
t

1[yt = c] (2.27)

fx =
∑
t

1[yt = c∗] (2.28)

variation-ratio[x] := 1− fx
T

(2.29)

Predictive Entropy Predictive entropy captures the average amount of informa-

tion present in the predictive distribution, H[y|x,Dtrain]. In our setting, the predictive

entropy can be approximated by collecting the softmax probability vectors over T

stochastic forward passes, and for each class averaging the softmax probability and

multiplying it by the log of that average. This can be seen in Equations 2.30 and
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2.31, where fw is the network with model parameters w.

softmax(fw(x)) := [P (y = 1|x, ŵt), ..., P (y = C|x, ŵt)] (2.30)

H̃[y|x,Dtrain] := −
∑
c

(
1

T

∑
t

P (y = c|x, ŵt)) · log(
1

T

∑
t

P (y = c|x, ŵt)) (2.31)

Mutual Information The final measure is mutual information, I[y, w|x,Dtrain].

Test points that maximise mutual information are points on which the model is un-

certain on average, but there are model parameters that erroneously produce high

confidence predictions. Mutual information is calculated similarly to predictive en-

tropy, but with an extra term as seen in Equation 2.32.

Ĩ[y, w|x,Dtrain] := (−
∑
c

(
1

T

∑
t

P (y = c|x, ŵt)) · log(
1

T

∑
t

P (y = c|x, ŵt)))

+
1

T

∑
c,t

P (y = c|x, ŵt)logP (y = c|x, ŵt)
(2.32)

Variation ratios and predictive entropy are both measures of predictive uncer-

tainty, whereas mutual information is a measure of the model’s confidence in its

output. Further information on this can be found in [38]. Having multiple measures

of uncertainty is arguably more powerful than the sole measure available for regres-

sion tasks, as it allows for different types of uncertainty to be captured and gives us

more information about the performance of the model.

2.4 Explainability

This section covers explainability and interpretability of neural networks. Explain-

ability and interpretability are subtly different terms, where interpretability means

the extent to which one can predict what will happen given an input, and explainabil-

ity comprises uncovering human-interpretable reasons for why the network produces

given predictions. As the definitions are similar, the terms are often used inter-

changeably in the literature and will be covered as part of the same section in this
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background chapter.

Explainability methods can be local (per input), global (per model) or a mixture

of both. In this thesis, we focus on local explainability. Local explainability can

be roughly categorised into one of two methods: feature score methods and subset

methods. The following sections define and explain these two groups of methods, and

include algorithms for the local explainability methods used in this thesis.

2.4.1 Local Explainability

Local explainability aims to understand the impact of input features on an individual

prediction. Local explanations generally comprise a subset of the input features that

contribute to the prediction (subset methods), or a score assigned to each input

feature where a higher score implies a stronger contribution to the prediction (feature

score methods).

Local explanations can be computed via a number of different ways. For feature

score methods, this includes gradient-based methods (Layerwise Relevance Propaga-

tion [5], integrated gradients [117]), local approximating model-based methods (LIME

[100]), and game theoretic methods (SHAP [81]). For subset methods, this includes

local approximating model-based method Anchors [101]. Additional techniques for

computing local explanations are explored in Chapter 3.

Layer-wise Relevance Propagation Layer-wise relevance propagation (LRP) [5]

is a gradient-based technique for determining which features (pixels, words, etc) in a

particular input vector contribute to the prediction by defining a relevance measure

over the input vector such that the network output can be expressed as the sum of

the values of the input vector. LRP uses the networks weights and activations in the

forward pass to propagate the output back through the network.

To determine the relevant input features for a given output class c, the relevance

score of class c’s output neuron is set equal to its activation, and the relevance scores

of all other neurons in the output are set to zero. Following this, Equation 2.33 is
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(a) The GTSRB input image. (b) The resulting relevance map using LRP.

Figure 2.9: An image from the GTSRB dataset and resulting relevance map. The
input is correctly classified and the relevance map is for the true class.

applied to each layer going backwards through the network.

Rj =
∑
k

ajwjk∑
0,j ajwjk

Rk (2.33)

In the above, consecutive layers are denoted by j and k, aj denotes the activation of

neuron j, and wjk is the weight between neurons j and k. Variations of this propaga-

tion rule exist, including LRP-γ which disproportionately favours positive evidence

over negative evidence, and LRP-ε which helps remove noise from the relevance map

by absorbing a small amount of contradicting evidence.

The output of the LRP algorithm is a mapping of input features to relevance

scores for the predicted class, where a feature i with score Ri > 0 contributes posi-

tively to the prediction. Figure 2.9 shows the relevance map for an input from the

GTSRB dataset, scaled down to 30× 30 pixels. The input is correctly classified and

so the relevance map is for the true class.

Integrated Gradients Integrated gradients [117] is another gradient-based local

explanation method that is designed to adhere to two key axioms: sensitivity and

implementation invariance. Sensitivity is satisfied if, for every input and baseline

that differ in one feature and have different predictions (where a baseline is a neutral

input, e.g the black image for object recognition), the differing feature should be given
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Figure 2.10: The IG explanation for each of the classes of the MNIST dataset, where
red indicates a positive contribution and blue a negative.

a non-zero relevance score. Implementation invariance is satisfied if the relevance

scores are identical for two functionally equivalent networks (networks are functionally

equivalent if their outputs are equal for all inputs).

Given a network f : Rm → [0, 1], an input x ∈ Rm and a baseline input x′ ∈ Rm,

the gradients of the straight line path between x and x′ are calculated, and integrated

gradients for each input dimension i ∈ [1..m] are defined as the path integral of these

gradients, as seen in Equation 2.34.

IntegratedGradientsi(x) = (xi − x′i)×
∫ 1

α=0

δf(x′ + α× (x− x′))
δxi

dα (2.34)

The output of the integrated gradients algorithm is similar to the output of LRP:

a mapping of input features to relevance scores but for each class rather than only

the predicted class. Positive scores contribute positively to the given class, and neg-

ative scores contribute negatively. An example of an IG explanation can be seen

in Figure 2.10, which demonstrates the explanations over each class for a (correctly

classified) handwritten eight from the MNIST dataset. In this example, red indicates

positive contribution and blue indicates negative. Interestingly, LRP also satisfies

the first axiom of sensitivity but fails on implementation invariance, as LRP replaces

gradients with discrete gradients where the chain rule does not hold in general. For

an explanation of why these two axioms are important, see Chapter 3.

LIME and Anchors LIME generates local explanations by assuming local linearity

in a small area around an input instance, defined by some similarity measure [100].

An interpretable model is then trained on this area to produce a local approximation,

called a surrogate model. The input is then explained through the weights of this
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surrogate model.

After assuming linearity in an area defined by a similarity metric around a given

input, artificial training data is generated by perturbing the original input a number

of times. The class of each perturbation is determined by using the original model,

and then each data point is weighted by its distance from the original input. An

interpretable model (for example, linear or logistic regression, decision trees, naive

Bayes etc) is then trained on this synthetic dataset, to become the surrogate model.

Equation 2.35 expresses how a surrogate model for input x is generated. Surrogate

model g is chosen to minimise the loss L, which measures the distance between g’s

prediction and the original model f ’s prediction. The model complexity Ω of g should

also be minimised (e.g fewer features are preferred). dx is the proximity measure that

defines how large an area around x should be considered.

surrogateModel(x) = arg min
g∈G

L(f, g, dx) + Ω(g) (2.35)

The surrogate model g must be a good approximation for the original model in the

local area of the given input (called good local fidelity), but it does not have to be

a good global approximation. The prediction of the given input is then explained

by interpreting the surrogate model (such interpretable models as decision trees have

well-known methods of extracting explanations, see [90] for further details on inter-

pretable models).

The output of the LIME method is the same as the output for LRP: a mapping of

each input feature to a score denoting how important that feature is to the prediction.

Anchors, the successor to LIME by the same authors [101], generates local expla-

nations by finding decision rules that do not change the prediction if other feature

values (those that are not considered by the rule) are varied. In this case, the deci-

sion rule “anchors” the prediction, and the resulting explanations are expressed using

these rules, named anchors. Formally, the criteria for a decision rule A to be an
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anchor is defined in Equation 2.36.

EDx(z|A)[1f(x)=f(z)] ≥ τ, A(x) = 1 (2.36)

In the above, decision rule A is a set of predicates such that A(x) = 1 when all feature

predicates are true, Dx(.|A) is the distribution of neighbours of x (by some distance

metric) that match A, and τ is a precision threshold (only rules with a local fidelity

above τ are considered valid). This ensures that at least a fraction τ of x’s neighbours

are predicted the same class as x where the same rule A applies.

The output of anchors is a set of decision rules, anchors, for a given input.

SHAP Shapley Additive Explanations (SHAP) is a local explanation method based

on Shapley Values: a game-theoretic approach to explaining model predictions [81].

Shapley values assumes that each feature value (or combinations of feature values) of

an input instance x is a player in a game where the prediction is the payout. Players

can form coalitions and the goal is to calculate the average contribution of a feature

to the predictions of different coalitions compared to the average prediction across all

instances.

As the number of features in the input increases, the number of coalitions scales

exponentially, which becomes computationally intractable; this is where the SHAP

method is relevant. SHAP’s goal is to explain the prediction of input instance x by

computing the contribution of each feature to the prediction, using Shapley value ex-

planations represented additively as a linear model (similarly to the surrogate models

seen in LIME). Formally, SHAP defines an explanation as in Equation 2.37.

g(z′) = φ0 +
M∑
j=1

φjz
′
j (2.37)

Here, g is the explanation model and z′ ∈ {0, 1}M is the simplified feature vector,

where an entry of 1 implies the corresponding feature value is present, and an entry

of 0 implies that it is absent. φj ∈ R is the Shapley value for feature j.
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The SHAP paper proposes further improvements: KernelSHAP (for a broad class

of models) and TreeSHAP (for tree-based models only, more details on TreeSHAP

can be found in [81], though it will not be discussed in this thesis). KernelSHAP is

an algorithm to estimate, for an input instance x, the Shapley value for each feature,

that is, their contribution to the prediction.

Instead of iterating all possible simplified feature vectors, first some vectors are

sampled: z′k ∈ {0, 1}M , k ∈ {1, ..., K}. Then, a prediction for each z′k is determined

by converting z′k back to the original feature space and then applying the original

model f . In the conversion function, an entry of 1 in z′k returns the value of the

corresponding feature in x, and an entry of 0 returns either (1) a random value taken

from another instance sampled from the data in the case of tabular data, or (2) returns

a “baseline” value, e.g the average pixel value over the whole image, for image data.

Similarly to LIME, the sampled instance vectors are assigned a weight, but instead of

weighting by distance to the original input instance, samples are weighted according

to the SHAP kernel function π, seen in Equation 2.38. M is the maximum coalition

size, and |z′| is the number of 1s (present features) in z′.

πx(z
′) =

(M − 1)

( M|z′|)|z′|(M − |z′|)
(2.38)

Finally, the linear model can be built as in Equation 2.37, and the coefficients φj

(the Shapley values) can be learnt by optimising the loss function in Equation 2.39.

L(f, g, πx) =
∑
z′∈Z

[f(conversionFunctionx(z
′))− g(z′)]

2
πx(z

′) (2.39)

Figure 2.11 shows the SHAP explanation for each of the MNIST dataset classes

for a given input; in this case a five that is correctly classified by the network.

2.4.2 Comparing Local Explanation Methods

Figure 2.12 shows the explanation from each of the above methods, for the true class of

a handwritten digit from the MNIST dataset. The network used for this example was
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Figure 2.11: The SHAP explanation for each of the classes of the MNIST dataset, for
a correctly classified “five” handwritten digit (the leftmost image).

a fully-connected network with three layers of sizes 128, 64 and 10. The activations

were ReLU functions except for the final layer which used the softmax function, and

the loss was sparse categorical crossentropy. The model reached 97% accuracy on the

test set. Note that the LIME explanation highlights whether a (super-)pixel positively

contributes to the explanation or not; it is not a score. The segmentation function for

LIME (usually used to determine super-pixels in large images) was forced to consider

single pixels rather than groups, to align more closely with the other explanation

methods.

At a glance, the explanations in the figure show us that the two gradient-based

methods, LRP, which uses discrete gradients, and IG, which uses the gradient opera-

tor, only give scores to the pixels with values greater than the minimum (or different

from the baseline; in the case of IG, however, the baseline in these examples is the

minimum pixel value, black). That is, they do not consider negative space and there-

fore do not consider that the absence of values in given locations might contribute to

the prediction. In contrast, both LIME and SHAP consider the whole input image,

and a pixel with a baseline value that has been given a non-zero attribution indi-

cates that the absence of a non-baseline value at that location does contribute to the

prediction.

While all four methods work well for explaining models, each has its benefits and

drawbacks. SHAP provides statistical guarantees for the accuracy and consistency of

explanations; however, the implementation of SHAP for neural networks is very slow.

In contrast, LIME may sometimes fail to approximate the behaviour of the original

model correctly, so the generated explanations cannot always be trusted, but it has a

fast and easily adaptable implementation. Both SHAP and LIME consider negative
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(a) LRP explanation.
(b) IG explanation where the background was
black.

(c) LIME explanation. (d) SHAP explanation.

Figure 2.12: The explanations generated by four different methods on the same input and
network.

space, as demonstrated above. The two gradient-based methods, IG and SHAP,

are efficient, as computing gradients of differentiable models is well supported in

most machine learning frameworks, but they require that that model is differentiable,

whereas SHAP makes no such assumptions. Additionally, IG requires a well calibrated

baseline value to make sensible feature attributions. For example, if a black image is

chosen as a baseline, IG will not give importance to any black pixel in the input, so

a very dark grey background may be more appropriate.
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2.5 Neural Network Verification

This section covers verification techniques for neural networks. The aim of verification

is to provide formal guarantees that a neural network conforms to a set of desirable

properties, often called correctness properties.

The most common correctness properties include robustness, safety and consis-

tency. Robustness means that neural networks should not change their predictions

when faced with adversarial examples, that is, imperceptible changes to the input

that would not change the mind of a human decision maker. Safety is a wider class

of correctness properties that say that the neural network should never enter a bad

state. For example, in a neural network for autonomous driving, if there is a wall in

front of the car, the network must always apply the brakes. Not applying the brakes

in this situation would be a bad state. Finally, the correctness property of consis-

tency states that the world view of the neural network must remain consistent. For

example, in the autonomous driving scenario, if an object recognition network says

there is a red Ford Fusion on the left of the autonomous car in one frame, it must

not then say that the same red Ford Fusion is on the right of the vehicle in the next

frame.

This thesis focuses on the robustness property, and the following sections cover

adversarial examples, local and global robustness definitions, and different verification

methods (some that verify additional correctness properties to just robustness).

2.5.1 Adversarial Examples

An adversarial example (also called an adversarial perturbation), x′, is a small change

to input x such that network f classifies x and x′ differently, i.e., f(x) 6= f(x′), but a

human would still give them the same classification f(x) = f(x′) (i.e., ||x− x′||L for

a given L-norm is imperceptible to the human decision maker). This “small change”

refers to the semantic closeness of the inputs, and can be measured by any distance

metric as in Section 2.1.3.

Generating adversarial examples is disconcertingly simple. An early, common and
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Figure 2.13: An input to the MobileNetV2 network, with the true ImageNet class
‘ski’, an attack generated by the FGSM with ε = 0.1 and the resulting image and
prediction.

simple method for adversarial example generation is the Fast Gradient Sign Method

(FGSM) [45], as used in Chapter 4 of this thesis. FGSM is a white-box attack,

meaning the attacker has full access to the underlying network (the weights, biases,

etc, are visible). An adversarial example x′ can be expressed as:

x′ = x+ ε× sign(∆xL(θ, x, y)) (2.40)

Here, y is the label assigned to original input x, ε is a multiplier to ensure the

perturbations remain small, θ represents the model parameters and L is the loss

function of the network.

Intuitively, the gradients of the loss function are taken with respect to the input

image and then a new image is created by moving in the direction of these gradients

(the magnitudes of the gradients are discarded). The objective here is to create an

adversarial example that maximises the loss (and therefore increases model error).

Since the model is fixed, the only way to maximise the loss is to change the data.

An example of the FGSM in use can be seen in Figure 2.13, which shows how the

MobileNetV2 with ImageNet classes [107] changes its prediction based on an attack

generated by the FGSM with ε = 0.1.
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2.5.2 Local Robustness

Local robustness (also called pointwise robustness) can be defined for both determin-

istic and Bayesian neural networks, as seen below.

Deterministic Local Robustness Deterministic local robustness [56] is defined

with respect to an input x ∈ RN , and the neighbourhood around it in N -dimensional

space. Input x is ε-robust if:

∀x′ : ||x− x′||p ≤ ε =⇒ f(x) = f(x′) (2.41)

That is, x is locally robust if all the points within an ε-ball of x are given the same

classification. δ takes the form of a distance function (see Section 2.1.3), for example

the L∞ distance.

Probabilistic Local Robustness Probabilistic local robustness [105] applies to

Bayesian neural networks and is also defined with respect to an input x and a bounded

neighbourhood of x in N -dimensional space, T ⊆ RN . To compute the probability

for BNN fw, we assume that T is a bounded neighbourhood around x, typically an

Lp ε-ball. The probability is then computed as:

p = P (φ(fW)|D) where

φ(fW) = ∃x′ ∈ T s.t.||σ(fW(x))− σ(fW(x′))||p > ε
(2.42)

Intuitively, we seek to compute the probability that there exists an input x′ ∈ T such

that the output σ of the softmax layer for x′ differs by more than a given threshold

ε from the softmax output for the original input x. We say that fW is robust with

probability at least 1− η (for 0 ≤ η ≤ 1), with respect to set T and perturbation ε if

and only if p ≤ η.
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2.5.3 Global Robustness

The expectation of local robustness over the dataset, weighted by the input distri-

bution, gives a measure of global robustness, which is a model property. Since this

notion is computable from local robustness, it will not be discussed further.

2.5.4 Verification Methods

This section covers techniques for verifying correctness properties of neural networks.

MIP Formulation In its simplest form, neural network verification can be expressed

as a mixed integer programming formulation, for ReLU networks only [78]. An integer

program is an optimisation problem in which some (or all) of the variables are integers,

and a mixed-integer program is an integer program in which not all of the variables

are discrete. The standard form of a mixed-integer program is:

maximise C1x + C2y

subject to A1x + A2y = B,

x ≥ 0,

y ≥ 0,

and x ∈ Rn1 ; y ∈ Zn2

(2.43)

Here, A1 and A2 are m × n1 and m × n2 integer matrices respectively. C1 and

C2 are 1 × n1 and 1 × n2 rational matrices respectively, and B is an m × 1 integer

matrix. x is the real number solution vector and y is the integer solution vector. If

integer restrictions are ignored, this problem becomes a linear programming problem.

In such a formulation, let f be the ReLU neural network with weights W, biases

b and layers L, and 2 ≤ i ≤ k with k the number of layers in f . xi−1 are the inputs

to layer Li and xi are the outputs of layer Li. βi is a vector of binary variables and M

is a “sufficiently large” constant. Using this, the set of linear constraints Ci encoding

a layer i is defined in Equation 2.44.
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Ci ={xij ≥Wi
jx

i−1 + bij,

xij ≤Wi
jx

i−1 + bij +Mβij,

xij ≥ 0,

xij ≤M(1− βij)|j = 1..|Li|}

(2.44)

Then, the set of linear constraints encoding the whole network is C = ∪ki=2Ci. Set

C encapsulates all of the constraints found in the standard form of a mixed-integer

program (Equation 2.43). The linear program encoding the reachability of a linearly

definable input set I ⊆ Rm to a linearly definable output set O ⊆ Rn through the

network f is given by constraints Creach = Cin ∪C ∪Cout. Cin (Cout) is a constraint

set for I (O), defined using the same variables in the encoding of the second (last)

layer of the network. In classification problems, the final softmax activation function

can be disregarded as it is a smooth approximation to the argmax function [44], and

therefore does not change the output of the previous layer in a way that could change

the prediction. Unfortunately, although simple, this method does not scale beyond

very small networks.

ReluPlex and Marabou ReluPlex [63], and its successor Marabou [61], are SMT

(satisfiability modulo theories) based solvers for the theory of linear real arithmetic

TR with additional ReLU constraints. They encode the neural network as an SMT

instance and solve it with a modified version of the Simplex algorithm to handle

ReLU non-linearities, a decision procedure for determining the TR−satisfiability of

conjunctions of linear formulas, with the additional ReLU constraint.

The propositional satisfiability problem (SAT) is the problem of determining

whether a set of sentences, written in propositional logic, is satisfiable. For example,

let a set of sentences ∆ = {p ∨ q, r ∧ q,¬p}, then ∆ is satisfiable, with only one

assignment: p = 0, q = 1, r = 1.

SMT, satisfiable modulo theories, is the problem of determining whether a given

formula φ, written in first-order (FO) logic, is satisfiable under a given theory T (or

combination of theories). A theory is a pair T = (Σ, I), where Σ is a signature and I
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is a set of Σ-interpretations, or models. A signature Σ consists of a set of predicate,

constant and function symbols that are allowed in a given theory. Given a theory T ,

a formula φ (where φ is expressed only using elements of Σ) is satisfiable modulo T ,

or T -satisfiable, if and only if there is a model in I that satisfies φ. In short, SMT is

the problem of determining T -satisfiability.

To exemplify SMT, consider the theory of linear real arithmetic. TR consists of

the signature Σ = {R,+,−, .,≤,≥} and the standard model of real numbers. Then,

consider a formula φ = x < y ∧¬(x < y− 2). φ is TR-satisfiable with any assignment

where x, y ∈ R and y − 2 ≤ x < y, for example x = 4, y = 5.

A naive way of encoding a neural network with ReLU activations would be to use

the piecewise linear nature of the ReLU function to encode these non-linearities using

disjunctions: (x ≤ 0 ∧ ReLU(x) = 0) ∨ (x > 0 ∧ ReLU(x) = x). This is not scalable, as

the number of splits is 2n, where n is the number of ReLU nodes. Instead, a binary

predicate ReLU(x, y) iff y = max(0, x) is added to extend the theory TR to a theory

of reals and ReLUs TRR. Again, the final softmax layer of the network is disregarded

in verification, as it does not change the outcome of the network for classification (it

only acts as a smoothed version of the argmax function).

Neural networks can then be directly encoded as conjunctions of TRR-atoms. A

ReLU node v gets encoded as a pair of variables vb and vf , and then ReLU(vb, vf ) is

asserted. Here, vb is the backward-facing variable used to express the connection of

v to the preceding layer’s nodes, and vf is the forward-facing variable that expresses

the connection of v to the next layer’s nodes. To solve this series of conjunctions in

TRR, the simplex algorithm (an algorithm to determine TR-satisfiability) is extended

to determine TRR-satisfiability.

Reluplex and Marabou can determine the satisfiability of network output proper-

ties that can also be encoded in SMT. For example, consider a network that controls

the speed of a car by outputting a value a for braking/accelerating (a is negative for

braking and positive for accelerating). For simplicity, it takes as input the current

speed of the car v, and the current speed limit of the road l only. If the speed of the

car is above the speed limit, we require that the network tells the car to brake. We
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can encode this as follows: ((v > l) ∧ (a < 0)).

To specify local robustness with the l∞-distance in a classification network, con-

sider the following example. Let x = {x1, ..., xn} be the input variable to the network

and f = {f1, ..., fn} be the concrete feature values, let y = {y1, ..., yl} be the output

variable, let 1 be the concrete, correct classification of input f and let ε be the dis-

tance up to which we wish to verify local robustness within. Then, we can specify

local robustness in SMT as follows: (((x1 >= f1 − ε ∧ x1 <= f1 + ε) ∧ ... ∧ (xn >=

fn− ε∧ xn <= fn + ε))∧ (y1 > y2 ∧ ...∧ y1 > yl)). Both Reluplex and Marabou allow

the user to specify and verify any number of these properties.

Although both Reluplex and Marabou work efficiently for smaller ReLU networks

(with Marabou providing an incremental improvement over Reluplex), are both easy

to use since they accepts networks in a common format (Tensorflow SavedFile format

v2 [118]), and can verify any property that can be encoded in SMT (not just local

robustness), neither scale beyond networks with several hundred nodes, and both can

only work with ReLU networks. Finally, note that both solvers are sound (i.e. if a

derivation results in SAT (UNSAT), then the original problem is satisfiable (unsat-

isfiable)), except in the case of floating-point numbers which are notoriously hard to

represent in a digital form, and complete (i.e. given enough time, there always exists

a derivation ending in SAT or UNSAT).

ReluVal and Neurify ReluVal [126], and its successor Neurify [125], rely on interval

arithmetic for formal verification, rather than SMT solvers. The target of ReluVal

is to calculate output intervals for some given input intervals, and then verification

amounts to checking whether the output interval violates a given threshold. In the

naive case, input features are set as intervals and the same arithmetic operations as

those in the target neural network are performed on these input intervals to compute

an over-approximation of the output intervals. However, calculating the output in-

tervals in this way leads to very conservative bounds that are too wide to be useful

for checking any safety property.

To tackle this problem, ReluVal uses a combination of symbolic and concrete
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intervals, as well as iterative refinement to tighten the bounds to the point they

are useful for verification. Symbolic intervals preserve dependency information that

concrete intervals alone cannot. To demonstrate this, let f(x) = 2x − x, x ∈ [0, 1].

The true output range of f(x) is [0, 1]; however, by simply propagating the concrete

interval through each operation, the output becomes [0, 2] − [0, 1] = [−1, 2], which

is an over-approximation. When propagating symbolic intervals instead, the output

becomes [2x, 2x]− [x, x] = [x, x], which is then concretised to [0, 1]. In ReluVal, only

linear symbolic intervals are kept track of, and concretised when non-linear functions

(for example, ReLU activation functions) are present.

Using symbolic interval propagation may still not lead to narrow enough bounds

for verification. To improve the bounds further, ReluVal makes use of iterative refine-

ment, which involves evenly dividing the input interval into the union of two consec-

utive sub-intervals. Neurify, the successor of ReluVal, further improves performance

by using linear relaxation in addition to everything else. Linear relaxation of ReLU

nodes strictly over-approximates the non-linear constraint of the ReLU using a linear

constraint. This leads to fewer concretisation steps when propagating through the

non-linearities (for ReLU networks only), and further tightens the resulting bounds.

ReluVal and Neurify can encode and verify any property that can be expressed

using intervals. For example, consider a regression network and let x = {x0, ..., xn}

be the input variable, let f = {f1, ..., fn} be the concrete feature values of an input

instance, let y be the output variable, let v = [vmin, vmax] be the interval in which we

want the output to lie within, and let ε be the distance that we are checking local

robustness within. The local robustness property can be encoded by expressing each

input variable as the interval xi = [fi− ε, fi + ε], and expressing the output as y = v.

Both software tools require the network to be in a customised version of the already

quite rare nnet file format [62]. This format is a comma delimited, text based format

that has the following structure:

• Line 1: number of layers (includes output layer but excludes input layer), input

dimension, output dimension, maximal number of nodes for each layer.
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• Line 2: Whether each layer is convolutional (e.g., 1,1,0,0 means totally 4 layers

and the first two are convolutional layers while the last two are fully connected).

• Line 3 and further: each line describes the information for the layer, such as

the number of out channels, in channels, the kernel size, the stride, and the

padding, for convolutional layers.

A conversion function from Keras models to the nnet format can be found in the

code associated with this thesis (see Appendix B).

Both ReluVal and Neurify operate on ReLU networks only, and if an output

interval is not verified as safe, it does not imply that it is unsafe (making it an

incomplete but sound method, as it can prove some but not all true properties).

2.5.5 Comparing Verification Methods

When comparing performance, ReluVal outperforms Reluplex by a significant margin:

a speedup of around 200x. Marabou outperforms its predecessor Reluplex; however,

it only outperforms ReluVal on a minority of benchmarks, and even then only by a

small amount. Neurify provides additional improvement on all other tools, with an

average speedup of around 10x versus ReluVal (the fastest competitor).

The main difference between the four tools is how the underlying techniques are

used for verification. Reluplex and Marabou use SMT, whereas ReluVal and Neurify

use symbolic interval propagation. The SMT tools have the advantage that they are

sound and complete methods and can verify more properties than output intervals

alone, leading to stronger guarantees. In contrast, the symbolic interval propaga-

tion based tools are sound but incomplete methods making them faster overall, but

properties must be encoded as intervals. All tools can only work with ReLU networks.

In terms of usability, we found Marabou to be the best. Marabou accepts networks

in a very common file format, specification of properties is simple, and installation

and setup is straightforward. Neurify and ReluVal require a custom file format that

is not widely used, but specification of properties is simple once installed.
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Chapter 3

Literature Review

This literature review summarises the current literature that is relevant to the meth-

ods developed in this thesis. We first cover explainability in both Bayesian and non-

Bayesian settings, then we overview verification and finally Bayesian uncertainty. In

every case we discuss both general methods and application-specific literature.

3.1 Explainability

According to the European Commission’s technical report on ‘Robustness and Ex-

plainability of Artificial Intelligence’ [49], explainability corresponds to the under-

standing of the underlying mechanisms of the model. In addition, their definition

requires the demonstration that the model follows specifications and is aligned with

human values such as fairness.

There are two main approaches to explainability, depending on the nature of the

model. The first is the use of interpretable models, which are designed to provide

reliable and easy to understand explanations. Interpretable models include methods

such as decision trees and linear regression; however, due to their complexity, neural

networks are not considered in the class of interpretable models. The second approach

is post-hoc explainability, which is used to extract explanations from black-box models

such as neural networks with large numbers of parameters.

As discussed in Chapter 2, explainability methods can be further divided into two
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groups: local explainability and global explainability, where local explainability aims

to understand the impact of input features on an individual prediction, and global

explainability aims to gain an understanding of the model’s overall behaviour. This

thesis focuses on post-hoc local explainability. However, for completeness, a range of

approaches are discussed here.

3.1.1 Heuristic Local Methods

Gradient-based Methods Layer-wise relevance propagation (LRP) [5], discussed in

Section 2.4.1, is the first example of a gradient-based method for local explainability.

To recap, LRP defines a relevance measure over the input feature vector such that

the network output can be expressed as the sum of the values of the input vector.

The most commonly used variant of LRP, called LRP-ε, can be seen as computing a

backward pass through the network where the gradient of the activation functions is

replaced by their average gradient.

DeepLIFT [110] is another of such methods, which generalises the use of average

gradients to compute attributions. Similarly to LRP, DeepLIFT also proceeds in

a backward fashion from output to input. Each neuron is assigned a score that

represents the contribution of that neuron when activated for the original network

input, compared to the activation for some reference input. Reference values for each

neuron are calculated by running a forward pass through the network for the reference

input. DeepLIFT improves on LRP-ε as it does not assume a zero baseline, and does

not assume a particular shape for the non-linearity.

The fundamental problem with both LRP and DeepLIFT is that the chain rule

(used in the gradient calculations) does not hold generally for discrete gradients.

This means that the quantity computed when replacing gradients with their average

gradients does not always result in the average gradient of the function overall, and

that two implementations of the same function could lead to different results. This

is a case of failing to satisfy implementation invariance.

A generalisation of DeepLIFT, called Integrated Gradients (IG, also described

in Section 2.4.1) [117], has been designed to satisfy implementation invariance. To
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recap, IG can be interpreted as computing scores by multiplying the input element-

wise with the average partial derivative of the straight line path between an input and

a baseline. Since the original gradient is used for the activation functions, the validity

of the chain rule is preserved and therefore satisfies implementation invariance.

IG has a high computational cost, compared to both LRP and DeepLIFT, and

although the chain rule does not hold in the case of DeepLIFT, it has been shown

empirically to be a good approximation of IG.

Surrogate Model Methods LIME [100] and its successor Anchors [101], both of

which are described in Section 2.4.1, are explainability methods that utilise surrogate

models to explain predictions. In the case of LIME, the surrogate models take the

form of neural networks that are trained to approximate the predictions of the un-

derlying black-box model. Instead of creating feature importance maps that LIME,

LRP or SHAP do, Anchors creates a region in the feature space and then comes up

with an interpretable rule (an IF-THEN rule called an anchor) which guarantees the

prediction. Anchors has a better generalisability than LIME, and is more computa-

tionally efficient than game-theoretic methods such as SHAP. Additionally, Anchors

is able to explain non-linear decision boundaries since it works on feature predicates

and is not trying to fit a local (linear) explainable model.

Game-Theoretic Methods SHAP [81] is a game-theoretic method that tries to at-

tribute contribution of each feature to the deviation of the prediction from the mean

model prediction. SHAP has the benefit that it can provide both local and global ex-

planations, though it requires a large amount of computational power. Additionally,

SHAP explanations explain the deviation from the mean model prediction, rather

than the prediction itself.
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3.1.2 Logic-based Local Methods

In addition to explainability, the work in [109] provides robustness guarantees on the

explanations it produces, in the sense of requiring that the computed explanation is

invariant under ε-bounded perturbations. Ensuring robustness to adversarial pertur-

bations is desirable for stability of an explanation method, especially in applications

where one must be certain of the reason for a prediction. This work identifies a mini-

mal set of features whose current state is sufficient for the classification. The method,

which works on naive Bayes classifiers only, compiles classifiers into ordered decision

diagrams and then computes such explanations from this representation.

The solution proposed in [58] extends the same guarantees to neural networks, but

requires that the neural network can be expressed as a set of constraints in a reasoning

system that can be answered by some oracle. This essentially limits the approach

to networks with ReLU activation functions only. The algorithm uses abductive

reasoning to provide abduction-based explanations (ABEs) that are sufficient to imply

the prediction, and are cardinality- or subset- minimal. The experiments, however,

only pertain to boosted tree models.

DeepCover [116] is a subset method that utilises statistical fault localisation tech-

niques to produce explanations that are non-obvious, sufficient and approximately

minimal. Sufficient in this case means that the subset of pixels that make up the

explanation produce the same output as the original input when the left-out pix-

els are set to the background colour. The method works by generating a number

of mutations of the original input (by setting some pixels to the background colour

each time) that are then annotated with y if the mutation still produces the correct

output class, and ¬y if it does not. Then, statistical fault localisation measures are

used to rank each pixel by how important they are to the networks output, and the

explanation is constructed by iteratively adding pixels in descending order of rank

until the explanation is sufficient (as defined above). This work benefits from a lin-

ear time implementation and good accuracy (76%) on a benchmark with annotated

ground truth explanations. However, the resulting explanation is only approximately
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minimal.

3.1.3 Global Methods

While SHAP can be used as both a local and global explanation method, there

are other global-specific methods available. The work in [124] is an interpretable

model approach that provides a framework for learning falling rule lists from data.

The approach does not rely on traditional, computationally intensive, decision tree

learning methods and the subsequent falling rule lists, which are an ordered list of

IF-THEN rules with probabilities, are perfectly interpretable and provide a good level

of precision and recall on the test dataset presented. However, this approach is not

model-agnostic, and is not guaranteed to work well on all datasets.

A global explainability method that is model agnostic can be seen in [47]. This

work uses partial dependence plots, which are low-dimensional graphical renderings

of the prediction function (neural network), to allow the human interpreter to under-

stand more easily the relationship between input features and the prediction. The

method only requires that the model can provide predictions on new data. How-

ever, it is sensitive to outliers in the feature space and works on a low-dimensional

approximation so the explanations generated may not always be accurate.

Reference [4] is a meta-level paper that provides a declarative language, using

a logic called FOIL, to specify different explainability queries. Given the current

volume of explainability methods, and the need for flexibility, reliability and ease

of application, a language that standardises such explainability queries is a welcome

addition. At present, the language can only be used to define explainability queries

for explainable models, though they suggest how the language could be extended to

include post-hoc interpretability.

3.1.4 Bayesian Explainability

A handful of Bayesian explainability methods have been developed. BayLIME [133]

is a Bayesian extension to the LIME framework which exploits prior knowledge and
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Bayesian reasoning to improve the consistency in repeated explanations of a single

prediction of a neural network. It also benefits from improved explanation fidelity

compared to non-Bayesian methods (e.g LIME, SHAP) because of the integration

of this prior knowledge. Instead of the LIME approach of training a deterministic

surrogate model, BayLIME trains a Bayesian local surrogate model, which is shown

analytically to be a weighted sum of the prior knowledge and the estimates based

on new samples (similarly to LIME). The weights of this model can either be au-

tomatically fitted from data samples or decided based on application-specific prior

knowledge. The focus of this work is on whether incorporating priors improves the

stability of the resulting explanations. Similarly, [48] introduces a Bayesian non-

parametric approach to fitting a global surrogate model. While both of these works

provide well-calibrated explanations, neither focuses on modelling the uncertainty of

the explanations, and they do not tackle problems such as estimating hyperparame-

ters or improving the efficiency of computing explanations.

Two methods that do focus on modelling uncertainty in Bayesian explanations

can be found in [111] and [16]. Both works present an explanation-method-agnostic

Bayesian framework for generating local explanations with uncertainty. The key dif-

ference is that [111] induces a distribution over the input, samples from this distribu-

tion, and produces a Bayesian explanation with uncertainty based on the explanations

generated from a single deterministic network on each sample. In contrast, [16] ap-

plies directly to Bayesian neural networks, and takes weight samples from the BNN.

Then, an explanation is generated for each network sample on the same input, using

any existing explanation method, and a novel method for combining these explana-

tions is described. Along with providing a justification that the mean explanation is

sufficient to explain the decision making process of the BNN, this work introduces

the concept of a union and intersection (UAI) explanation. A UAI explanation com-

bines the relevance maps at different percentile levels (denoted as α), where a high

percentile corresponds to a union explanation (union of all Bayesian relevance map

samples) and a low percentile corresponds to an intersection explanation (intersec-

tion of all Bayesian relevance map samples). Figure 3.1, taken from [16], shows an
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Figure 3.1: A figure showing the UAI method on the MNIST dataset with a random
background. Two explanation methods were considered; LRP-ε and IG, and the
value of α determines the percentage of explanations that agree on the importance of
a given feature (in this case, pixel). Taken from [16].

example of the UAI method.

3.1.5 Specific Applications

Explainability in End-to-End Controllers Explainability of neural networks, es-

pecially end-to-end controllers, is a vital step towards finding out how they work,

being able to trust in their decisions, and ultimately to verify their outputs. Nvidia’s

paper, titled Explaining How a Deep Neural Network Trained with End-to-End Learn-

ing Steers a Car [11], tries to do exactly this: it explains what PilotNet controller

actually learns, and how it makes its decisions. The main aim of the paper was to de-

velop a simple method for highlighting the parts of an image that were the most salient

in determining steering angles, with these image sections called the salient objects.

There are several existing methods for saliency detection, for example layer-wise rele-

vance propagation; however Nvidia argue that the simplicity of their method, its fast

execution time (real-time), and its almost pixel level resolution makes it especially

advantageous for the task of end-to-end control in self-driving.

The procedure for this type of saliency detection is as follows. First, in each layer,

the activations of the feature maps are averaged. Next, the top most averaged map is

scaled up to the size of the layer below using deconvolution with the same parameters
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Figure 3.2: The PilotNet architecture, along with a diagram of the salient object
visualisation method. Taken from [10].

used in the generation of the feature map. The up-scaled map is then combined

with the averaged map from the layer below by multiplication, and this process is

repeated from the lowest level until the input is reached, and a final visualisation

mask is created. A diagram of this process can be seen in Figure 3.2.

It was found that the salient objects detected by this method clearly appeared to

be those that should influence the steering control of the car, and they conducted some

experiments to validate this. Most of the salient objects in the image corresponded

to the edge of roads, or to lane markings, and overall this method substantially

contributed to the understanding of what PilotNet controller learns.

A different approach to explainability in end-to-end controllers for self-driving cars

can be found in the paper by Kim and Canny [69]. The paper opens by stressing the

importance of easily explainable models, and the importance of easy-to-interpret ra-

tionales for their behaviour. Their approach comes in two stages. The first stage uses

a visual attention model to train a CNN as an end-to-end controller, from image to

steering angle. In this stage, the model highlights regions of the image that may po-

tentially influence the network’s output, as well as acting as an end-to-end controller

for a self-driving car. The second stage then applies causal filtering to determine

which of these potentially influencing regions actually do influence the output. Their
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results showed that incorporation of attention does not degrade control accuracy com-

pared to an identical CNN without attention, as their network, the base of which was

the same as PilotNet, achieved comparable accuracy to PilotNet. They also found

that raw attention highlights interpretable features in the image, and causal filtering

achieves a useful reduction in explanation complexity by removing features that do

not significantly affect the output of the network. An interesting extension of this

work that is mentioned is to compare the salient image areas with human drivers’

gaze movement to determine whether the network uses the same visual cues as a

driver would. Whilst this work provides a useful explainability method in the rele-

vant domain, the method provides no formal guarantees of robustness or minimality.

Explainability in Natural Language Processing Natural language processing

problems, such as machine translation, document summarising and sentiment anal-

ysis, are another application where explainability of the models used is of great im-

portance: both to understand the rationale behind a prediction, as well as to instil

confidence in the public and the human decision maker. The work presented in a

paper by Wallace et al [123] introduces AllenNLP Interpret: a flexible framework for

interpreting NLP models. It is a toolkit that provides interpretation primitives, for

example input gradients, for any model trained within the framework, and a suite of

existing interpretation methods and visualisation components. While this toolkit is

immensely useful for training, using and interpreting NLP models, it does not provide

explanation methods for NLP specifically and therefore is vulnerable to the out-of-

distribution (OOD) data problem found in many NLP explanation methods. The

OOD problem occurs in methods that answer the question “What does the model

predict if each input token was not there?”, which can be measured by the difference

in softmax probabilities after erasing each token. If the sentence with the erased

token deviates from the model’s training data distribution, lower scores are assigned

to OOD samples, which results in an overestimated contribution of less important

tokens.

Work in [70] aims to tackle this out-of-distribution problem for NLP models
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through the use of input marginalisation. Instead of asking the above question, this

paper instead asks “How would the model react differently if there were other to-

kens instead of each token?”. They marginalise each token out to mitigate the OOD

problem of removing a token entirely. This method successfully shows clearer inter-

pretations where uninformative tokens such as punctuation and “to” are given much

lower attribution scores compared to other methods.

Finally, [120] presents a novel interpretation approach that relies on the human

brain. Brain image recordings of people reading complex texts are compared to

intermediate representations of a given layer of the neural network to interpret word

and sequence embeddings from NLP models, including state-of-the-art NLP model

BERT [29].

3.2 Verification

Formal verification aims to provide proof of correctness of software or hardware sys-

tems with respect to specific properties, using mathematical proofs [49]. As explained

in Chapter 2, the most common correctness properties include robustness, safety and

consistency. In this thesis, we use tools for the verification of neural networks, and,

as such, this section of the literature review also focuses on the literature regarding

verification of neural networks specifically.

While verification of linear classifiers is straightforward, neural networks prove

challenging as they are highly non-linear with potentially millions of parameters.

Current methods show promising results, but none scale to what are considered to

be large networks.

3.2.1 Adversarial Examples

The robustness property of verification is the property that the network must not

change its prediction when faced with adversarial examples : small, often impercepti-

ble, changes to the input that should not affect the prediction. The seminal work on

explaining and generating adversarial examples is the paper by Goodfellow, Schlens
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and Szegedy [45]: Explaining and Harnessing Adversarial Examples. This paper

attributes the linear nature of neural networks to their vulnerability to adversarial

examples, and provides a method for generating such examples called the Fast Gra-

dient Sign Method (FGSM), which is explained in Chapter 2. While FGSM is a very

efficient attack, is it both a white-box attack (meaning it needs access to the whole

network, weights, etc) and it perturbs every feature.

Jacobian-based Saliency Map Attack (JSMA) [95] is an approach that minimises

the number of perturbed features whilst still causing misclassification. The gradient

of the loss function for each class label with respect to every component of the input

(i.e. the Jacobian matrix) is used to extract the sensitivity direction. Then, a saliency

map is used to select the dimension(s) that produce the maximum error and the input

is perturbed only in those dimensions. This attack is more effective than FGSM, but

it is less computationally efficient, and it is also still a white-box method.

Zeroth Order Optimisation (ZOO) [19] is an example of a black-box attack that

estimates the gradients of the models without access to the classifier itself. The gradi-

ents are estimated by querying the target model with modified individual features and

uses an optimiser such as ADAM [71] to optimise perturbations. The only downside

to this method is that a lot of queries to the target classifier are required, meaning

that it can be ineffective if there are mitigation methods such as rate limiting on the

target.

3.2.2 Local Robustness Verification

To recap, deterministic local robustness ensures that a model classifies all inputs

within an ε-ball consistently, and probabilistic local robustness ensures that a model

classifies all inputs within an ε-ball consistently with some probability above a given

threshold.

Constraint-based Methods Most constraint-based methods for local robustness

verification apply to neural networks with ReLU activation functions only. ReluPlex
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[63] and its successor Marabou [61] are SMT-based solvers for such networks, and

ReluVal [126] with successor Neurify [125] are interval arithmetic-based solvers. All

of these approaches are described in detail in Chapter 2 of this thesis. ReluVal out-

performs ReluPlex in speed by over 200× and is able to verify instances that ReluPlex

times out on. However the successor of ReluPlex, called Marabou, manages to outper-

form ReluVal on average, given enough cores with which to perform calculations. The

creators of ReluVal then produced an updated version, Neurify, which provides an

incremental improvement and manages to outperform all three of ReluVal, Marabou

and ReluPlex.

Planet [33] is another constraint-based method for verifying properties, including

local robustness, of ReLU neural networks. Planet combines SAT solving with linear

programming and creates a linear approximation of the overall network behaviour.

Using this approximation, large areas of the search space can be ruled out and do not

need to be considered in the formal verification process, which leads to significantly

shorter verification times.

Optimisation-based Methods DeepGO [104] uses another technique to verify local

robustness, based on adaptive nested optimisation. More specifically, given a set of

inputs (the local area around an input point) and a feed-forward deep neural network,

the lower and upper bounds of the networks output are calculated. This work makes

the assumption, and further proves that, feed-forward neural networks are Lipschitz

continuous functions. DeepGO can handle all known layer types used in classification

tasks (maxpool, sigmoid etc). However, due to the fact that only a finite number of

iterations are performed in practice, the resulting bounds may not converge on the

global minimum and maximum, meaning that inputs that could not be verified as

safe are not necessarily unsafe (it is an incomplete method).

Three other optimisation-based neural network verification methods are described

in sequential works by Kumar et al: [79], [14] and [15]. [79] and [15] formulate formal

verification as a Branch and Bound problem and propose novel algorithms to speed

up and scale verification of neural networks. [14] presents a formulation based on

59



Lagrangian Decomposition, along with an algorithm that produces bounds as tight

as existing methods, but with better performance. As above, all of these methods are

incomplete.

Probabilistic Methods Probabilistic methods aim to calculate the probability p

that a Bayesian neural network output is robust for an input perturbed within an

ε-ball around it. [17] gives a solution to estimate that probability with statistical

guarantees on the accuracy of the estimate. The drawback of this method is that it

requires the solution of many non-linear optimisation problems (one for each sample

of the posterior), making it computationally expensive.

[129] improves on the previous work by providing guarantees on the lower bound

of probabilistic safety for BNNs. The framework is based on relaxation techniques

from non-convex optimisation, and derives procedures based on interval bound propa-

gation (IBP) and linear bound propagation (LBP), for BNNs trained with variational

inference, to compute the set of weights for which the corresponding neural network

(sampled from the BNN posterior) is safe. This work scales to verify BNNs with mil-

lions of parameters in minutes, making it a powerful tool for probabilistic verification.

Adv-BNN [77] takes the approach of training a BNN to be robust in the first place.

They note that fusing randomness can improve the robustness of neural networks,

but adding noise blindly is not optimal. Instead, randomness is modelled under the

framework of a BNN to learn the posterior in a scalable way. The resulting BNNs are

more accurate than adversarially trained networks. Another method of training for

certifiably robust BNNs is detailed in [128], where constraint relaxation techniques

and a modification of the cross-entropy error function are used to enforce posterior

robustness to worst-case ε-balls around the inputs.

Finally, the first and only approach to compute probabilistic guarantees for itera-

tive predictions is described in [130]. Iterative predictions are sequences of predictions

correlated across a time interval, for example in sequential planning, time-series fore-

casting, reinforcement learning or autonomous navigation. Over this series of predic-

tions, a reach-avoid specification is defined that requires the goal region be reached
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over a given time period, whilst avoiding unsafe states. They derive a guaranteed

lower bound on safety by back-propagating lower bounds of reach-avoid probabilities

for discretised portions of the state space. The method is demonstrated on non-

trivial, high-dimensional control tasks such as navigation and obstacle avoidance,

and produces useful lower bounds that are not far away from empirically estimated

bounds.

3.2.3 Global Robustness Verification

Here, global robustness verification refers to the absence or not of adversarial ex-

amples in the input space. Most of the approaches in the constraint-based methods

section above also work for global robustness verification. For example, ReluPlex

can verify anything that can be expressed in SMT. Although possible, this option

for global robustness verification is slow and not scalable to the types of networks

used commercially today. The work in [64] notes the difficulty of globally verifying

a model, including the need to encode two identical copies of the network in the

chosen logic. They instead suggest a hybrid approach that redefines local robustness

as (δ, ε)-local robustness which checks whether, for all points up to δ away from an

input, the confidence level of the classification is within ε of the confidence of the

original input’s classification, as opposed to the same classification. They postulate

that sampling a set of points to be tested for (δ, ε)-local robustness can prove global

robustness with some probability. However, it is an open question to determine the

number of such samples and what values of δ and ε should be tested.

A fully global robustness verification approach is found in [84]. The method is

based on abstract interpretation and importance sampling, and checks whether a net-

work is probabilistically robust. Abstract interpretation is used to approximate the

behaviour of the network and compute an overapproximation of the input regions

that violate robustness. Importance sampling is then used to counteract the effect of

the overapproximation and compute accurate probabilistic robustness probabilities.

While this approach sounds promising, the authors have not yet implemented the al-

gorithm in full, so no information about the efficiency and quality of the probabilities
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is available.

Since this thesis does not focus on verification methods specifically, a “Uses of

Verification” section has been omitted.

3.3 Bayesian Uncertainty

It has long been known that neural networks are related to Gaussian processes, as

putting a probability distribution over each weight will recover a Gaussian process

when there are infinitely many weights. With a finite number of weights, you can

still recover uncertainty estimates by placing distributions over the weights, and one

of the original proposals for this was by MacKay in 1992 [83]. The method this paper

proposed offers robustness to overfitting, but comes with heavy network architecture

alterations, challenging inference and additional computational cost, and, as a result,

was not very widely adopted.

As discussed in Section 2.3, variational inference is a technique that calculates an

approximation of the posterior distribution. Variational inference has been applied

to Bayesian neural networks in an attempt to make calculating this posterior feasible

with respect to current scale of deep networks. One such approach is detailed in

the paper by Hinton and Van Camp [50]. The authors present the ideal Bayesian

approach, and then how their method can be used to get as close as possible to that.

The ideal, but intractable, approach would put a prior distribution over all points in

the weight space, then construct a posterior at each point by multiplying the prior by

the probability of getting the outputs in the training set given those weights. Finally,

normalisation is applied to get the full posterior distribution that can be used to make

predictions for new inputs. The closest that can be achieved is to use Monte Carlo

sampling to sample from the posterior distribution by considering random moves in

weight space and accepting a move with a probability that depends on how well the

resulting network fits the desired outputs. The authors then note that, if simplifying

assumptions are made, the time-consuming Monte Carlo simulations can be avoided,
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and the method detailed involves using a simpler Gaussian approximation (with no

diagonal terms in the covariance matrix) but also takes this distribution into account

during the learning.

Some additional variational inference methods can be found in [46], [94] and [53].

These papers introduce new techniques such as sampling-based variational inference,

and stochastic variational inference, which have been used to obtain new approxima-

tions for Bayesian neural networks. The downside to these techniques is that they are,

still, prohibitively expensive computationally, as the number of parameters needed to

represent uncertainty doubles for the same network size, and they require more time

to converge on answers that do not improve on existing methods.

A breakthrough in the feasibility of Bayesian deep learning methods for real-world

systems occurred when it was shown that a neural network with arbitrary depth and

non-linearities, with dropout (or any other stochastic regularisation technique) ap-

plied before every weight layer, is equivalent to an approximation of the probabilistic

Gaussian process. This work, which appears as [40], allows for easily accessible model

uncertainty information. For details of this method, please see Section 2.3.4.

Concrete dropout [41] is a newly proposed variant of dropout that gives improved

performance and better calibrated uncertainties. The authors point out that, to ob-

tain well-calibrated uncertainty estimates, the technique requires a grid-search over

the dropout probabilities, which is prohibitively difficult with large models. The

general idea of their approach is to relax continuously dropout’s discrete mask, and

pair this with a principled objective function that allows for automatic tuning of the

dropout probability in large models. Continuously relaxing dropout’s discrete mask

means replacing dropout’s discrete Bernoulli distribution with its continuous relax-

ation, called the concrete distribution relaxation, and its purpose is to approximate

discrete random variables. This allows for optimisation of the dropout probability

itself. The technique was analysed on a wide variety of tasks, and it showed a sig-

nificant reduction in experiment time, as well as improved model performance and

uncertainty calibration.

Another variation on dropout is generalized dropout [114]. Generalized dropout is
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a family of regularisers which generalise dropout, and included in this family is a set of

methods called Dropout++, which is a version of dropout with trainable parameters,

much like Concrete dropout. Another member of the family selects the width of

network layers, and classic dropout emerges as a special case. Their experiments

showed that these methods improve generalisation performance over regular dropout.

An important questions to ask is, what uncertainties are even useful for Bayesian

deep learning? A paper by Kendall and Gal answers exactly that, in the context of

computer vision [67]. The paper makes the claim that it is most effective to model

aleatoric uncertainty for large datasets as it cannot be explained away, whereas epis-

temic uncertainty can often be significantly reduced by the vast number of training

images usually available in computer vision tasks. They also show that aleatoric un-

certainty is best modelled in real-time applications, as these models can be formed

without expensive Monte Carlo samples. With regards to epistemic uncertainty, the

authors claim that it is better to model this uncertainty in safety-critical tasks and

small datasets. In the rest of the paper, they present a Bayesian deep learning frame-

work, which allows the learning of a mapping between input data and aleatoric uncer-

tainty. This can optionally be composed with epistemic uncertainty approximations,

and they compare the performance with each uncertainty modelled, and with both

together. It was found that the highest accuracy in classification tasks, and the lowest

RMS error in regression tasks, was achieved when both uncertainties were modelled,

although each uncertainty on their own achieved better results than the baseline

model. The idea that epistemic uncertainty should be modelled in safety-critical sit-

uations, for example self-driving, has been taken forward in the research detailed in

parts of this thesis.

Work on discovering the source, aleatoric or epistemic, of uncertainty can be seen

in [32]. Whilst most works focus on extracting and using uncertainty estimates, this

paper seeks to identify examples the model is uncertain on and the underlying source

of said uncertainty. They explore avenues such as how targeted data augmentation

can improve uncertainty and whether the rate of learning in the presence of more

information differs between different types of examples. To determine the source
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of uncertainty they leverage the fact that epistemic uncertainty is reducible in the

presence of additional data, whereas reducing aleatoric uncertainty requires the use

of techniques such as down-weighting [115] or elimination through data cleaning.

Their results suggest that targeted data augmentation can amplify the differences in

distributions between noisy (aleatoric) and atypical (epistemic) examples.

3.3.1 Uses of Uncertainty

The following section presents some practical applications of Bayesian neural net-

works and uncertainty information in different application domains related to this

thesis.

Uncertainty in Image Recognition Uncertainty information combined with point

estimates for prediction can lead to a more informed decision in the case of image

segmentation for medical diagnoses. Kwon et al [73] explore the use of Bayesian

neural networks in ischemic stroke legion segmentation. They decompose predictive

uncertainty into aleatoric and epistemic uncertainty, which they show adds important

insight to the point estimates from the ischemic stroke legion segmentation challenge.

Similar work can be found in [119], where the use of Bayesian neural networks is

explored in the classification of breast histopathology images. The authors employ a

dimensionality reduction technique to explain the uncertainty of the prediction, and

they show that the Bayesian convolutional neural network that they craft performs

much better than state-of-the-art transfer learning CNNs. Most importantly for med-

ical applications such as this, their method significantly reduces the false negative rate

of classifications.

Uncertainty in Natural Language Processing One example of work that stud-

ies the benefit of characterising model and data uncertainties for natural language

processing tasks is by Xiao and Wang [131]. They show that explicitly modelling un-

certainties enhances model performances in NLP tasks, including sentiment analysis,
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named entity recognition and language modelling. They show these results for both

convolutional and recurrent neural networks, and they investigate the characteristics

of inputs with exceptional uncertainty measures in two NLP datasets (Yelp 2013 and

CoNLL 2003). They observe that their models exhibit higher data uncertainties for

more difficult predictions.

A second application of BNNs in NLP can be seen in [21]. This work applies

Bayesian recurrent neural networks to the task of language modelling: a language

model determines the probability of the next word in a sequence by analysing text

data. Recurrent neural network language models (RNN-LMs) are difficult to train

given their high number of parameters, large dictionary size and high dimensional

nature. By instead using a Bayesian RNN-LM, the authors are able to improve the

robustness and performance of the system.

Uncertainty in Autonomous Driving There exist several examples of the use

of uncertainty in neural networks for autonomous driving, for a range of different

tasks. The paper by McAllister et al [85] explores three topics in autonomous vehicle

systems; safety, interpretability and compliance, and discusses how Bayesian deep

learning can be used to solve problems in these domains. The section on safety

focuses on how components of a self-driving system should, at the very least, record

their uncertainty and pass it to the next component so that more informed decisions

can be made, and that the way to model uncertainty is to use Bayesian deep learning

either to place distributions over the model weights, or to learn direct mapping to

probabilistic outputs. The section on interpretability focuses on several important

goals: to help passengers trust autonomous vehicle technology by informing them

what the vehicle is doing and why, to help society understand the technology, to aid

engineers understanding of the model to be able to validate against safety standards,

and to provide accountability for insurance and legal reasons. They suggest that

saliency mapping is a good start to this work, and that Bayesian deep learning can be

used to give different interpretations of saliency. The section on compliance suggests

two important aspects to compliance: law abidance and passenger reassurance. The
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Figure 3.3: The architecture of Bayesian SegNet, including how the segmentation and
uncertainty maps are obtained. Taken from [65].

authors consider transfer learning or reinforcement learning to solve these issues.

The paper ends by discussing the importance of clear evaluation metrics for each

component of the self-driving system.

A clear use of the uncertainty information available from neural networks comes in

the paper by Kendall et al, with a framework called Bayesian SegNet [65]. Bayesian

SegNet is a framework for probabilistic pixel-wise semantic segmentation, which al-

lows for pixel-wise prediction of class labels with a measure of model uncertainty.

In order to obtain model uncertainty, they use the technique by Gal and Ghahra-

mani [40], which uses Monte Carlo sampling with dropout at test time to generate

a posterior distribution of classes. The architecture of SegNet consists of a sequence

of non-linear processing layers, called encoders, and then a corresponding set of de-

coders, followed by a pixel-wise classifier. A diagram of this architecture can be seen in

Figure 3.3. The authors found that the model is most uncertain at object boundaries,

and with visually complex and ambiguous objects. Bayesian SegNet outperformed a

number of state-of-the-art architectures by 2-3% and achieved a significant increase

in performance for small datasets, where modelling the model uncertainty is more

effective.

Another paper that uses uncertainty in semantic segmentation is from Kampffmeyer

et al [60]. This paper focuses on land cover mapping in remote sensing images, with

an emphasis on urban areas. The authors first present a problem that often occurs

in remote sensing: class imbalance. This means that small objects often get less pri-

oritised in an effort to achieve the best overall accuracy. The authors then propose

a novel approach to maintain this high overall accuracy while still achieving high
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accuracy on the smaller objects, by quantifying the uncertainty on both the pixel

level, and on a patch-based level. The first pixel-by-pixel approach was found to

be too slow for real-time use in remote sensing. The patch-based pixel classification

approach split the image into patches, and then a CNN was trained on these. The

results for both methods showed promise, with the pixel-wise classification creating

better segmentation maps, but in a longer time period. The authors noted that,

in semi-automatic approaches for remote sensing, areas with high uncertainty could

then be presented to an operator for manual clarification.

A different use of uncertainty in self-driving can be seen in [66]. This paper

makes use of a Bayesian CNN to obtain the relocalization uncertainty of the model

to improve the accuracy and, ultimately, to outperform state-of-the-art relocalization

models. They achieve this by leveraging uncertainty to estimate metric relocalization

error, which they show strongly correlate, and to detect the presence or absence of

the scene in the input image. Interestingly, although a fully Bayesian model should

perform dropout after every convolutional layer, the authors found that in practice

this was not empirically optimal, as adding dropout after every layer acted as too

strong a regulariser and degraded performance by around 10%. The paper concludes

by evaluating the efficiency of the system, which processes each batch of 128 images

in 6ms on an Nvidia Titan X graphics card. The authors also note that they have

provided sufficient evidence to show that the model is more uncertain about images

which are far from the training examples, which is the expected behaviour in this

scenario.

Finally, [3] proposes a Bayesian neural network for end-to-end control that es-

timates uncertainty using the same technique by Gal and Ghahramani [40]. They

show how more principled uncertainty estimates can be obtained by exploiting fea-

ture map correlation during training and using spatial dropout. They also show how

these uncertainty estimates can improve the prediction of the network. They found

that spatial dropout, as opposed to regular dropout, produced lower errors, and they

used the uncertainty estimates from this to develop a shared controller, which fuses

a human’s actions with a network’s output according to the uncertainty with some
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tunable threshold parameter.

3.4 Literature Summary

All of the literature reviewed in this chapter contributes to the safety of AI systems,

and represents a positive step towards accurate and safe systems becoming more

widely adopted.

Explaining the decision of a given decision function is a popular research area,

and many works employ heuristic methods to produce both local and global expla-

nations that allow the human interpreter to understand better the behaviour of the

decision function [5, 117, 100, 110, 101, 81, 124, 47, 116]. Explanations that imply

the prediction and have robustness guarantees are especially desirable in situations

where one must be certain of the reason for a prediction, yet there are few works

that consider this [109, 58]. Additionally, only [58] considers neural networks as the

decision function, and the perturbations it considers are unbounded, which can lead

to the entire input being included in the explanation in certain applications. For

these reasons, there is a need for an explanation method with robustness guarantees

that is also informative (i.e. is not the whole input), with minimality guarantees that

enforce this.

Another important avenue in ensuring the safety of AI systems is the use of

Bayesian neural networks and the uncertainty information they provide. Bayesian

neural networks were thought to be too computationally complex to be viable for

real-world applications but recent advances of posterior inference techniques [50, 46,

53, 94, 40, 41, 114] mean that they are becoming more popular. Work has also

been undertaken on uncovering what types of uncertainty (aleotoric, epistemic) are

useful to model in Bayesian learning, as well as discovering the underlying source of

the different types of uncertainty [67, 32]. BNN uncertainty information has seen

use in many applications, including image recognition [73, 119], natural language

processing [131, 21] and autonomous driving [85, 65, 60, 66, 3]. Despite the range of

applications described here, there is little work on understanding how we can quantify
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and use BNN uncertainty information in ensuring AI safety with a focus on obtaining

statistical guarantees of the safety of the BNN, and methods within this area must

be developed.

Finally, work on explanations of decision functions that incorporate uncertainty is

extremely limited [16, 111], and further work in this area is a necessity to ensure AI

safety benefits from the uncertainty information that Bayesian neural networks can

provide.
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Chapter 4

Explainability and Safety

In this chapter, we consider the role of explainability in ensuring AI safety. Amongst

existing techniques, subset methods produce local explanations that explain the indi-

vidual prediction in terms of a subset of the input features that justify the prediction.

This chapter introduces a novel type of subset method that provides both safety guar-

antees and optimality with respect to a cost function, and shows how this method can

be used to improve safety. Although demonstrated using NLP as a proxy application,

we stress that our methods extend to any decision function with inputs represented

as feature vectors. Some of the work in this chapter appeared in [74].

4.1 Motivation

In this chapter, we consider deterministic decision functions of the form f : X → Y

and feature vectors X in the form of word embeddings, described as setting A in

Section 1.1. Existing state-of-the-art explanation methods, such as LIME [100] and

Anchors [101], lack robustness to adversarial perturbations, and methods that do

consider adversarial robustness, for example abduction-based explanations [58], only

consider unbounded perturbations that often result in the explanation being equal to

the entire input. We seek to develop a method that yields high quality explanations:

explanations that are stable (locally robust) and explanations that are useful (optimal

with respect to a user-defined cost function).
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Local robustness is an important property of explanations, as it ensures stability

of the explanation and provides the guarantee that the explanation is logically suffi-

cient to imply the prediction. For example, consider a neural network that predicts

the instruction of a traffic sign, and an explanation method that highlights a number

of pixels in the image that contributed towards the prediction. If the input image

is perturbed such that it is imperceptible to a human, both the classification and

the explanation should remain the same. It would be problematic if the explanation

changed but the classification remained the same in this case (i.e an unstable expla-

nation), since that explanation may be used to e.g. control an autonomous vehicle.

It would also be problematic if parts of the input that were used for prediction did

not appear in the explanation (i.e an insufficient explanation). Thus, it is important

that both the prediction and the explanation are robust.

Optimality (with respect to a user-defined cost function) is another important

property of explanations, as it allows the user to have more control over both which

features are important in an explanation, and what properties of the explanation

are important. For example, the cost function could be defined as the length of the

resulting explanation, and in that case the smallest (but still sufficient) explanation

is returned. We could also define the cost function to be the length of the explanation

with an extra penalty given for unimportant features (in NLP, this could be padding,

punctuation or similar), which would result in a minimal explanation without any

unimportant information. Overall, optimality improves usefulness of explanations for

the human decision maker.

As explained in Section 1.1, we work with the NLP task of sentiment analysis as a

proxy application to demonstrate our methods. Due to the nature of the task, many

robustness queries need to be made per input, and the black-box solvers available to us

at the time of writing are not powerful enough to handle the high dimensionality and

large networks seen in tasks such as image classification. Despite this, we stress that

our methods are applicable to a wide range of applications, and any advancements in

solver technology will directly impact the methods we develop here.
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4.2 Robust Explanations

We consider a standard NLP classification task, where we classify some given input

text t into a plausible class y from a finite set Y . For example, t is a movie review

that we want to classify as either good or bad (Y = {good,bad}).

We assume that t is a sequence of input features in the form of words. t is of

length l, and t = (w1, . . . , wl), where wi ∈ W , and W is a finite vocabulary that

can include the padding character ‘<PAD>’. Text inputs are then encoded using

a continuous word embedding function E : W → Rd, where d is the size of the

embedding, as described in Section 2.1.3. Thus, given a text t = (w1, . . . , wl), we

define the embedding E(t) of t as the sequence x = (xw1 , . . . , xwl) ∈ Rl·d, where

xwi = E(wi).

We denote with WE ⊆ W the vocabulary used to train the embedding function E .

We consider embedding vectors trained from scratch on the sentiment analysis task,

which involves classifying the sentiment of the input as positive or negative. This

technique forces words that are positively correlated to each of the output classes to

be gathered closer in the embedding space [6], which is considered a good proxy for

semantic similarity with respect to the sentiment analysis task compared to count-

based embeddings [2]. For classification, we consider a neural network f : X → Y

that operates on the text embedding (X = Rl·d).

We seek to provide local explanations for the predictions of a neural network NLP

model. For a text embedding x = E(t) and a prediction f(x), a local explanation E

is a subset of the features of t, i.e., E ⊆ F where F = {w1, . . . , wl}, that is sufficient

to imply the prediction. We denote with IE and IF the indices of variables in sets

E and F respectively, where IF = {1, ..., l} and IE ⊆ IF . We focus on deriving

robust explanations : extracting a subset E of the text features F which ensure that

the neural network prediction remains invariant for any bounded perturbation of the

other features t \ E. Thus, the features in a robust explanation are sufficient to

imply the prediction that we aim to explain, a clearly desirable feature for a local

explanation. The reason we focus on explanations that are robust with respect to
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bounded perturbations in the embedding space of the input text is that unbounded

perturbations often result in the whole input being an explanation.

We extract word-level explanations by means of word embeddings, but we note

that our methods work, without further extensions, with diverse representations (for

example, sentence-level or character-level explanations). For a word w ∈ W , with

embedding xw = E(w) we denote with B(w) ⊆ Rd a generic set of word-level pertur-

bations. We consider the following kinds of perturbation sets, depicted in Fig. 4.1.

ε-ball: B(w) = {x ∈ Rd | ‖x − xw‖p ≤ ε}, for some ε > 0 and p ≥ 1. In words, the

ε-ball is the d-dimensional ball of radius ε around a point in the d-dimensional feature

space. This is a standard measure of local robustness in computer vision, where ε-

variations are interpreted as manipulations of the pixel intensity of an image. For an

example, see the red circle in Figure 4.1, centered around the input “movie”. This

concept has also been adopted in early NLP robustness works [89], but then replaced

with better representations based on actual word replacements and their embeddings,

see below, as it includes as perturbations vectors that do not have a corresponding

word in the vocabulary [75].

k-NN box closure: B(w) = BB(E(NNk(w))). Here, the function BB(X) produces

the minimum bounding box for set X. For an example, see the blue box around the

set of blue inputs in Figure 4.1. For a set of words W ′ ⊆ W , E(W ′) =
⋃
w′∈W ′{E(w′)},

that is to say, E(W ′) is shorthand for the embedding function applied to a set of words.

NNk(w) is the set of the k nearest neighbours to w in the embedding space: words w′

with the smallest distance d(xw, E(w′)), where d is a valid notion of distance between

embedded vectors. In our case, we use the cosine distance metric (see Section 2.1.3).

Note that, in general, the box closure can be calculated for any set of embedded

words. This provides an over-approximation of the k-NN convex closure, for which

constraint propagation (and thus robustness checking) is more efficient [59, 55].

For some word-level perturbation B, set of features E ⊆ F , and input text t

with embedding (x1, . . . , xl), we denote with BE(t) the set of text-level perturbations

obtained from t by keeping constant the features in E and perturbing the others
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Figure 4.1: A graphical representation of the perturbation sets we define in the em-
bedding space.

according to B:

BE(t) = {(x′1, . . . , x′l) ∈ Rl·d | x′w = xw if w ∈ E; x′w ∈ B(w) otherwise}. (4.1)

A robust explanation E ⊆ F ensures prediction invariance for any point in BE(t),

i.e., any perturbation (within B) of the features in F \ E.

Definition 4.1 (Robust Explanation) For a text t = (w1, . . . , wl) with embedding

x = E(t), word-level perturbation B, and classifier f , a subset E ⊆ F of the features

of t is a robust explanation iff

∀x′ ∈ BE(t). f(x′) = f(x). (4.2)

We denote Equation 4.2 with predicate Robf,x(E).

As previously discussed, robust explanations are both stable and sufficient to imply

the prediction, which is important in many applications, especially safety-critical

domains such as healthcare.
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4.3 Optimal Robust Explanations (OREs)

While robustness is a desirable property, it is not enough alone to produce useful

explanations. Indeed, we can see that an explanation E including all the features,

i.e., E = F , trivially satisfies Definition 4.1. Typically, one seeks short explanations,

because these can generalise to several instances beyond the input t and are easier for

human decision makers to interpret. We thus introduce optimal robust explanations

(OREs), that is, explanations that are both locally robust and optimal with respect

to an arbitrary cost function that assigns a penalty to each word.

Definition 4.2 (Optimal Robust Explanation) Given a cost function C : W →

R+, and for t = (w1, . . . , wl), x, B, and f as in Def. 4.1, a subset E∗ ⊆ F of the

features of t is an ORE iff

E∗ ∈ arg min
E⊆F

∑
w∈E

C(w) s.t. Robf,x(E). (4.3)

Note that Equation 4.3 is always feasible, because its feasible set always includes

at least the trivial explanation E = F .

A special case of our OREs is when C is uniform (it assigns the same cost to all

words in t), in which case E∗ is (one of) the robust explanations of smallest size, i.e.,

with the least number of words. We note that there is not necessarily one unique

ORE for each input, but rather there can be multiple OREs with the same minimal

cost, although this is less likely when a more complex cost function is employed.

4.4 Proof of Sufficient Reason

We find that every ORE can be formulated as a prime implicant [58], a property that

connects our OREs with the notion of sufficient reason introduced in [27].

For an input text t = (w1, . . . , wl), let C =
∧l
i=1 χi = xwi be the cube representing

the embedding of t, where χi is a variable denoting the i-th feature of x. Let N

represent the logical encoding of the classifier f , and ŷ be the formula representing
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the output of N given χ1, . . . , χl. Let B =
∧l
i=1 χi ∈ B(wi) be the constraints

encoding our perturbation space.

Proposition 4.1 then shows that OREs are minimal cost subsets, and are prime

implicants.

Proposition 4.1 Let E∗ be an ORE and C∗ its constraint encoding. Define φ ≡

(B ∧ N ) → ŷ, where N , B, ŷ and C are as above. Then, the following definitions

apply to C∗:

1. C∗ is a minimal cost subset of C such that C∗ |= φ.

2. C∗ is a prime implicant of φ.

Proof 4.1 With abuse of notation, in the following we use C∗ to denote both an ORE

and its logical encoding.

1. If C∗ is an ORE, then φ ≡ (B ∧ f) → ŷ is true for any assignment x′ of the

features not in C∗. In particular, φ is trivially satisfied for any x′ outside the

perturbation space B, and, by Definition 4.1, is satisfied for any x′ within the

perturbation space.

2. C∗ is said a prime implicant of φ if C∗ |= φ and there are no proper subsets

C ′ ⊂ C∗ such that C ′ |= φ. This holds regardless of the choice of the cost

C, as long as it is additive and assigns a positive cost to each feature as per

Definition 4.2. Indeed, for such a cost function, any proper subset C ′ ⊂ C∗

would have cost strictly below that of C∗, meaning that C ′ 6|= φ (i.e., is not

robust) because, otherwise, C ′ (and not C∗) would have been (one of) the robust

explanations with minimal cost.

4.5 Logical Formulation

In order to facilitate the necessary entailment checks when searching for an ORE, i.e.

checking that our candidate explanation E ⊆ C, perturbations of the input (excluding
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Figure 4.2: A very simple neural network architecture for classification with two
inputs, one hidden layer with two neurons, and two output classes.

the candidate explanation) BF\E(t) and network N entail the prediction BF\E(t) ∧

E ∧ N |= ŷ, we must first formulate our network, explanation and perturbation set

using SMT.

To encode the network f itself, we use the Marabou framework, which translates

a model (with ReLU activations only) written in Keras or Tensorflow into constraint

form N . The exact formulation and resulting format of constraints is discussed in

background Section 2.5.4. However, any logical formulation of neural networks is

sufficient, for example, consider the network in Figure 4.2.

To encode this network in naive SMT, we assume that the hidden layer uses

ReLU activation functions. We omit biases for simplicity and we omit the softmax

function on the output layer because the non-linearity cannot be handled (we use

logits instead). Then, the following set of constraints can be used (where Wl,j,k is a

weight for layer l, neuron j and connection k): { (r1 = 0 ∧ (W1,1,1i1 + W1,1,2i2) ≤

0)∨(r1 = (W1,1,1i1+W1,1,2i2)∧(W1,1,1i1+W1,1,2i2) > 0), (r2 = 0∧(W1,2,1i1+W1,2,2i2) ≤

0) ∨ (r1 = (W1,2,1i1 + W1,2,2i2) ∧ (W1,2,1i1 + W1,2,2i2) > 0), ŷ1 = W2,1,1r1 + W2,1,2r2,

ŷ2 = W2,2,1r1 +W2,2,2r2 }. The conjunction of this constraint set is then the encoding

of the network.

From the notation defined in Section 4.4, recall that for an input text t =

(w1, . . . , wl), C =
∧l
i=1 χi = xwi is the cube representing the embedding of t, where

χi is a variable denoting the i-th feature of x. We can then add the perturbation

constraints and the candidate explanation, BF\E(t) ∧ E, together. For any feature i
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in the explanation being queried, it must be fixed to the concrete value in the input

and therefore we just copy over that feature constraint from the cube. That is, we set∧
i∈IE χi = xwi . For indices not in the explanation i ∈ IF \ IE, we allow these to vary

within the calculated perturbation bounds by adding the following two constraints

per index:

• χi ≥ lower bound

• χi ≤ upper bound

For example, using the ε-ball perturbation set with the L∞ distance, the lower

bound of a feature will be equal to xwi− ε and the upper bound will be xwi + ε. Every

perturbation set can be distilled down into upper and lower bounds for each variable

in the input in this way.

Finally, we must add the output variable ŷ constraint. If there is only one output,

then we can add the constraint ŷ = ytrue. However, in classification problems, the

number of outputs is (most of the time) equal to the number of classes. If the output

layer has c neurons, then let ŷi represent output neuron i, where i ∈ {1, ..., c}. We

can then add the constraints ŷytrue > ŷk, for all k ∈ {1, ..., c} \ ytrue.

4.6 Include and Exclude Constraints

Constraining our OREs allows us to improve usefulness for the human decision maker

by enabling two crucial use cases: detecting biased decisions, and enhancing non-

formal explainability frameworks.

We consider OREs E∗ derived under constraints that enforce specific features F ′

to be included/excluded from the explanation:

E∗ ∈ arg min
E⊆F

∑
w∈E

C(w) s.t. Robf,x(E) ∧ φ(E), (4.4)

where φ(E) is one of F ′ ∩ E = ∅ (exclude) and F ′ ⊆ E (include).
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Note that adding include constraints does not affect the feasibility of our problem,

because the feasible region of Equation 4.4 always contains at least the explanation

E∗∪F ′, where E∗ is a solution of Equation 4.3 and F ′ are the features to include. See

Definition 4.1. Conversely, exclude constraints might make the problem infeasible

when the features in F ′ don’t admit perturbations, i.e., they are necessary for the

prediction, and thus cannot be excluded.

Such constraints can be easily accommodated by any solution algorithm for non-

constrained OREs: for include ones, it is sufficient to restrict the feasible set of

explanations to the supersets of F ′. For exclude constraints, we can manipulate the

cost function so as to make any explanation with features in F ′ strictly sub-optimal

with respect to explanations without. That is, we use cost C ′ such that ∀w∈F\F ′C ′(w) =

C(w) and ∀w′∈F ′C ′(w′) >
∑

w∈F\F ′ C(w). The ORE obtained under cost C ′ might still

include features from F ′, which implies that Equation 4.4 is infeasible (i.e., no robust

explanation without elements of F ′ exists).

4.6.1 Detecting Bias

Following [27], we deem a classifier decision biased if it depends on protected features,

i.e., a set of input words that should not affect the decision. One example is a

movie review that is classified based on the the director’s name that happens to be

mentioned in the review, rather than the sentiment behind the review. Detecting

bias is clearly important in ensuring the safety of AI applications because it allows

the human decision maker to determine whether the model is carefully considering

all the information available to it, or whether the model is simply predicting based

on one feature being present in the input, no matter the context.

In particular, a decision f(x) is biased if we can find, within a given set of feature-

level perturbations, an input x′ that agrees with x on all but protected features and

such that f(x) 6= f(x′).

Definition 4.1 For classifier f , input t with features F , protected features F ′ and

embedding x = E(t), decision f(x) is biased w.r.t. some feature-level perturbation B,

80



if

∃x′ ∈ BF\F ′(t).f(x) 6= f(x′).

The proposition below allows us to use exclude constraints to detect bias.

Proposition 4.2 For f , t, F , F ′, x and B as per Definition 4.1, decision f(x) is

biased iff Equation 4.4 is infeasible under F ′ ∩ E = ∅.

Proof 4.2 Call A = “f(x) is biased” and B = “ Equation 4.4 is infeasible under

F ′ ∩ E = ∅”. Let us prove first that B → A. Note that B can be equivalently

expressed as

∀E ⊆ F.(E ∩ F ′ 6= ∅ ∨ ∃x′ ∈ BE(t).f(x) 6= f(x′)).

If the above holds for all E then it holds also for E = F \ F ′, and so it must be that

∃x′ ∈ BF\F ′(t).f(x) 6= f(x′) because the first disjunct is clearly false for E = F \ F ′.

We now prove A→ B by showing that ¬B → ¬A. Note that ¬B can be expressed

as

∃E ⊆ F.(E ∩ F ′ = ∅ ∧ ∀x′ ∈ BE(t).f(x) = f(x′)), (4.5)

and ¬A can be expressed as

∀x′ ∈ BF\F ′(t).f(x) = f(x′). (4.6)

To see that Equation 4.5 implies Equation 4.6, note that any E that satisfies Equa-

tion 4.5 must be such that E ∩ F ′ = ∅, which implies that E ⊆ F \ F ′, which in turn

implies that BF\F ′(t) ⊆ BE(t). By Equation 4.5, the prediction is invariant for any

x′ in BE(t), and so is for any x′ in BF\F ′(t).

4.6.2 Enhancing Non-Formal Explainers

The local explanations produced by heuristic approaches like LIME or Anchors are

not automatically locally robust like OREs. We can use our approach to minimally

extend (with respect to the chosen cost function C) any non-robust local explanation
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F ′ in order to make it robust, and therefore stable, by solving Equation 4.4 under the

include constraint F ′ ⊆ E.

In particular, with a uniform C, our approach would identify the smallest set of

extra words that can be added to make F ′ robust. Such an extension retains to a

large extent the original explainability properties as it is guaranteed to be a minimal

extension. Enhancing these non-formal explainers is of interest when trying to ensure

safety of AI, as plurality of explanations is desirable. Therefore, being able to repair

non-formal explainers in this way ensures provision of explanations with robustness

and stability guarantees.

4.7 Model Debugging

In addition to using OREs with include/exclude constraints to detect biased decisions

and repair non-formal explainers, another important use-case of OREs is when the

model commits a misclassification. By examining the ORE, we are able to uncover

sensitivities of the model to polarized features, that is, features that are most com-

monly associated with one particular class, which can then be dealt with by providing

more training data to balance the over-sensitivity, or by adjusting the architecture of

the model (e.g. more regularisation). Detecting such over-sensitivities is an important

diagnostic step in ensuring the safety of these AI systems.

4.8 Relation with Abductive Explanations and An-

chors

Our OREs have similarities with the abduction-based explanations (ABEs) of [58],

see Chapter 3, in that they also derive minimal-cost explanations with robustness

guarantees. For an input text t = (w1, . . . , wl), let C =
∧l
i=1 χi = xwi be the cube

representing the embedding of t, where χi is a variable denoting the i-th feature of

x. Let N represent the logical encoding of the classifier M , and ŷ be the formula

representing the output of N given χ1, . . . , χl.
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Definition 4.2 (Abduction-based Explanation [58]) An abduction-based expla-

nation (ABE) is a minimal cost subset C∗ of C such that C∗ ∧N |= ŷ.

As shown in Proposition 4.1, OREs are also minimal cost subsets of this form.

The key difference with ABEs is that our OREs are robust to bounded pertur-

bations of the excluded features, while ABEs must be robust to any possible per-

turbation. This is an important difference because it is hard (often impossible) to

guarantee prediction invariance with respect to the entire input space when this space

is continuous and high-dimensional, like in NLP embeddings. In other words, if for

our NLP tasks we allowed any word-level perturbation as in ABEs, in most cases

the resulting OREs will be of the trivial kind, E∗ = F (or C∗ = C), and thus of

little use. For example, if we consider ε-ball perturbations and the review ‘‘the

gorgeously elaborate continuation of the lord of the rings’’, the result-

ing smallest-size explanation is of the trivial kind (it contains the whole review)

already at ε = 0.1. For more detail, see [74].

Anchors [101] are a state-of-the-art method for ML explanations. Given a pertur-

bation distribution D, classifier f and input x, an anchor A is a predicate over the

input features such that A(x) holds and A has high precision and coverage, defined

next.

prec(A) = PD(x′|A(x′))(f(x) = f(x′)); cov(A) = PD(x′)(A(x′)) (4.7)

In other words, prec(A) is the probability that the prediction is invariant for any per-

turbation x′ to which explanation A applies. In this sense, precision can be intended

as a robustness probability. cov(A) is the probability that explanation A applies to a

perturbation. To discuss the relation between Anchors and OREs, for an input text

t, consider an arbitrary distribution D with support in B∅(t) (the set of all possible

text-level perturbations), see Equation 4.1, and consider anchors A defined as subsets

E of the input features F , i.e., AE(x) =
∧
w∈E xw = E(w). Then, our OREs benefit

from the following properties.

Proposition 4.3 If E is a robust explanation, then prec(AE) = 1.
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Proof 4.3 A robust explanation E ⊆ F guarantees prediction invariance for any

x′ ∈ BE(t), i.e., for any x′ (in the support of D) to which anchor AE applies.

Note that, when D is continuous, cov(AE) is always zero unless E = ∅, in which

case cov(A∅) = 1 (as A∅ = true). Indeed, for E 6= ∅, the set {x′ | AE(x′)} has |E| fewer

degrees of freedom than the support of D, and thus has both measure and coverage

equal to zero. We therefore illustrate the next property assuming that D is discrete

(when D is continuous, the following still applies to any empirical approximation of

D).

Proposition 4.4 If E ⊆ E ′, then cov(AE) ≥ cov(AE′).

Proof 4.4 For discrete D with probability mass function pmfD, we can express cov(AE)

as

cov(AE) =
∑

x′∈supp(D)

pmfD(x′) · 1AE(x′) =
∑

x′∈supp(D)

pmfD(x′) ·
∏
w∈E

1x′w=E(w)

To see that, for E ′ ⊇ E, cov(AE′) ≤ cov(AE), observe that cov(AE′) can be expressed

as

cov(AE′) =
∑

x′∈supp(D)

pmfD(x′) ·
∏
w∈E′

1x′w=E(w) =

∑
x′∈supp(D)

pmfD(x′) ·
∏
w∈E

1x′w=E(w) ·
∏

w∈E\E′
1x′w=E(w)

and that for any x′,
∏

w∈E\E′ 1x′w=E(w) ≤ 1.

The above proposition suggests that using a uniform C, i.e., minimizing the explana-

tion’s length, is a sensible strategy to obtain high-coverage OREs.

4.9 Solution Algorithms

In our published work [74], we present two solution algorithms to derive OREs, re-

spectively based on the hitting-set (HS) paradigm of [58] and the minimum satisfying
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assignment (MSA) algorithm of [30]. The results in this thesis use the HS based

algorithm, so only the details of this algorithm will be discussed. Please see [74] for

details of the second algorithm. Both algorithms rely on repeated entailment/robust-

ness checks BF\E(t)∧E ∧N |= ŷ for a candidate explanation E ⊂ C. For this check,

we employ two state-of-the-art neural network verification tools, Marabou [61] and

Neurify [125]: they both give provably correct answers and, when the entailment is

not satisfied, produce a counterexample x′ ∈ BE(t), i.e., a perturbation that agrees

with E and such that B ∧ C ′ ∧ N 6|= ŷ, where C ′ is the cube representing x′. The

implementation of this entailment check involves encoding the network and input into

SMT, as described in Section 4.5.

4.9.1 Minimum Hitting Set Algorithm

For a counterexample C ′, let I ′ be the set of feature variables where C ′ does not agree

with C (the cube representing the input). Then, every explanation E that satisfies

the entailment must hit all such sets I ′ built for any counterexamples C ′ [57]. Thus,

the HS paradigm iteratively checks candidates E built by selecting the subset of C

whose variables form a minimum HS (with respect to cost C) of said I ′s.

The hitting set paradigm [58] exploits the relationship between diagnoses and

conflicts [98]: the idea is to collect perturbations and to calculate on their indices

a minimum hitting set (MHS), i.e., a minimum-cost explanation. We extend this

framework to find a word-level explanation for non-trivial NLP models. At each

iteration of Algorithm 1, a minimum hitting set E is extracted (line 3) from the

(initially empty, line 1) set Γ. If function Entails evaluates to False (i.e., the neural

network f is provably safe against perturbations on the set of features identified by

F \E) the procedure terminates and E is returned as an ORE. Otherwise, (at least)

one feasible attack is computed on F \E and added to Γ (lines 7-8): the routine then

re-starts. Differently from [58], as we have experienced that many OREs with a large

perturbation space – i.e. when ε or k are large – do not terminate in a reasonable

amount of time, we have extended the vanilla hitting set approach by introducing the

SparseAttacks function (line 7). At each iteration SparseAttacks introduces into the
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hitting set Γ a large number of sparse adversarial attacks on the set of features F \E.

It is known [57] that attacks that use as few features as possible help convergence on

instances that are hard (intuitively, a small set is harder to “hit” and hence contributes

substantially to the optimal solution compared to a longer one).

The SparseAttacks procedure is based on random search and is inspired by recent

works in image recognition and malware detection [25]: pseudo-code is reported in

Algorithm 2, while a detailed description follows in the next paragraph.

Sparse Adversarial Attacks Without sparse adversarial attacks, we found that

this method often struggles to converge for our NLP models, especially with large

perturbations spaces (i.e., large ε or k). We solved this problem by extending the

HS approach with a sub-routine that generates batches of sparse adversarial attacks

for the input C. This has a two-fold benefit: 1) we reduce the number of entailment

queries required to produce counterexamples, and 2) sparsity results in small I ′ sets,

which further improves convergence.

GeneratePerturbations(k, n,B, f) (line 2) returns a random population of n per-

turbations that succeed at changing f ’s classification: for each successful attack p, a

subset of k out of d features has been perturbed through a Fast Gradient Sign attack

(FGSM) [45], whilst ensuring that the point lies inside the convex region (perturba-

tion set) B. If no perturbation is found in this way (i.e., population size of the attacks

is zero, as in line 3), the iterations budget is decreased (line 4) and another trial of

GeneratePerturbations(k, n,B, f) is performed (e.g., with fewer features as targets

and a different random seed to guide the attacks). Function AccuracyDrop(f, P )

returns the best perturbation a, where k is increasingly minimised (line 7). The algo-

rithm terminates when either no attacks are possible (all the combinations of features

have been explored) or after a fixed number of iterations has been performed (line 1).

86



Algorithm 1: ORE computation via minimum hitting sets and sparse at-
tacks

Data: a neural network f and its encoding N , the input text t, the initial
set of features F , a network prediction ŷ , a cost function C against
which the explanation is minimised

Result: an optimal ORE E
1 Γ = ∅
2 while true do
3 E = MinimumHS(Γ, C)
4 if Entails((E ∧ BF\E(t) ∧N ), ŷ) then
5 return E
6 else
7 A = SparseAttacks(f, F,E,B)
8 Γ = Γ ∪ {A}

Algorithm 2: Computing a successful perturbation that minimises the num-
ber of perturbed features.

Data: a neural network f , the initial set of features F , explanation E,
number of initial perturbations k ∈ Z+ (default 1000), perturbation
set B, number of elements generated at each iteration n ∈ Z+ (default
100), number of iteration before stopping budget (default 1000)

1 while k > 0 ∧ budget > 0 do
2 P ←− GeneratePerturbations(k, n,B, E, f)
3 if length(P) == 0 then
4 budget←− budget− 1
5 continue

6 end
7 a←− arg maxp∈P AccuracyDrop(M,P )
8 k ←− k − 1, budget←− budget− 1

9 end
10 return a
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'# this movie is really stupid and very boring most of the time there are 

almost no ghoulies in it at all there is nothing good about this movie on 

any level just more bad actors pathetically attempting to make a movie 

so they can get enough money to eat avoid at all costs.' (IMDB)

'The main story ... is compelling enough but it is difficult to shrug off the 

 annoyance of that chatty fish.' (SST)

'i couldn't bear to watch it  and I thought the UA loss was embarrassing 

  ...' (Twitter)

'# well I am the target market I loved it furthermore my husband also a 

 boomer with strong memories of the 60s liked it a lot too i haven't read 

 the book so i went into it neutral i was very pleasantly surprised its now

 on our highly recommended video list br br.' (IMDB)

'Still this flick is fun and host to some truly excellent sequences.' (SST)

'Is delighted by the beautiful weather.' (Twitter)

Figure 4.3: OREs for IMDB, SST and Twitter datasets (all the texts are correctly
classified), that show high quality OREs. Models employed are FC with 50 input
words each with accuracies respectively 0.89, 0.77 and 0.75. OREs are highlighted in
blue, positive classifications are green and negative are red. Technique used is kNN
boxes with k=15. The cost function used here is uniform.

4.10 Experimental Results

The following section describes the various results we have achieved using OREs, and

reiterates how they can be used to ensure safety. Experiments were performed on the

SST, IMDB and Twitter sentiment analysis datasets, using both fully connected and

CNN models. Full details of the experimental setup used in this section can be found

in Appendix A.2; however, we once again stress that OREs are not restricted to NLP

applications.

4.10.1 Effect of Classifier Accuracy and Robustness

We find that our approach generally results in meaningful and compact explanations

for NLP. In Figure 4.3, we show a few OREs extracted for negative and positive

texts, where the returned OREs are both concise and semantically consistent with

the predicted sentiment, using the uniform cost function. However, the quality of

our OREs depends on that of the underlying classifier. Indeed, enhanced models

with better accuracy and/or trained on longer inputs tend to produce higher quality

OREs. We show this in Figure 4.4 (longer inputs), Figure 4.5 (fully connected vs

convolutional networks), and Figure 4.6 (low vs high accuracy), where we observe

that enhanced models tend to result in more semantically consistent explanations.

For lower-quality models, some OREs include seemingly irrelevant terms (e.g., “film”,

“and”, in Figure 4.5), thus exhibiting shortcomings of the classifier. When we uncover

such irrelevant terms in the explanation of a given classifier, we are then able to use
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'# I've seen Foxy Brown, Coffy Friday Foster Bucktown, and Black Mama White 

 Mama of these this is Pam Griers worst movie poor acting bad script boring

 action scenes theres just nothing there avoid this and rent Friday Foster 

 Coffy or Foxy Brown instead' (IMDB, predicted as negative)

'# a few words for the people here in cine club the worst crap ever seen on this 

honorable cinema a very poor script a very bad actors and a very bad movie 

dont waste your time looking this movie see the very good or any movie have 

been good commented by me say no more' (IMDB, predicted as negative)

'# I gave this a 2 and it only avoided a 1 because of the occasional unintentional 

laugh the film is excruciatingly. Boring and incredibly cheap its even worse if you 

know anything at all about the Fantastic Four.', (IMDB, predicted as negative) 

Figure 4.4: Examples of high quality OREs generated using long inputs (highlighted
in blue). OREs were extracted using kNN boxes with 25 neighbours per word: fixing
words in an ORE guarantees that the model is locally robust. The cost function was
uniform. The examples come from the IMDB dataset, and the model employed is an
FC network with 100 input words (accuracy 0.81).

techniques such as data augmentation to retrain our classifier and therefore improve

safety.

4.10.2 Detecting Bias

As per Proposition 4.2, we can apply exclude constraints to detect biased decisions.

We do this by using a cost function that assigns the cost of each word to be 1, except

for any protected features, where by ‘protected’ we mean, for example, proper names,

which are set to a cost greater than the cumulative cost of all other words in the

input. In Figure 4.7, we provide a few example instances exhibiting such a bias, i.e.,

where any robust explanation contains at least one protected feature. These OREs

include proper names that should not constitute a sufficient reason for the model’s

classification. When we try to exclude proper names, no robust explanation exists,

indicating that a decision bias exists. We note that the type of bias we are detecting

here is direct bias, and not proxy bias [36].
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'Star/producer Salma Hayek and director Julie Taymor have infused Frida 

 with a visual style unique and inherent to the titular character paintings 

 and in the process created a masterful work of art of their own.' (SST)

'The film just might turn on many people to opera in general, an art form 

 at once visceral and spiritual wonderfully vulgar and sublimely lofty 

 and as emotionally grand as life.' (SST)

'Nah I haven't received my stimulus yet.' (Twitter)

Figure 4.5: Comparison of OREs (with the uniform cost function) for SST and Twitter
texts on FC (red) vs CNN (blue) models (common words in magenta). The first two
are positive reviews, the third is negative (all correctly classified). Accuracies of FC
and CNN models are, respectively, 0.88 and 0.89 on SST, 0.77 (both) on Twitter.
Models have an input length of 25 words and OREs are extracted with kNN boxes
(k = 25).

'# what a waste of talent a very poor semi coherent script cripples this 
 film rather unimaginative direction too some very faint echoes of Fargo 
 here but it just doesnt come off.' (IMDB)

'I couldn't bear to watch it and I thought the UA loss was embarrassing 

 ...' (Twitter)

ORE, FC 25 Inp. Words

ORE, FC 50 Inp. Words ORE, FC 25 ∩ FC 50

ORE, FC 100 Inp. Words

'# a few words for the people here in cine club the worst crap ever 

seen on this honorable cinema a very poor script a very bad actors 

and a very bad movie [...]' (IMDB)

ORE, FC 25 ∩ FC 50 ∩ FC 100

Figure 4.6: Comparison of OREs on negative IMDB and Twitter inputs for varying
accuracies of FC models. The first and third examples are trained with 25 (red)
vs 50 (blue) input words (words in common to both OREs are in magenta). The
second example additionally uses an FC model trained with 100 input words (words
in common to all three OREs are in orange). Accuracy is respectively 0.7, 0.77 and
0.81 for IMDB, and 0.77 for both Twitter models. All the examples are classified
correctly. OREs are extracted with kNN boxes (k = 25), and the uniform cost
function.
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'Star/producer Salma Hayek and director Julie Taymor have infused Frida [...]'

(SST, FC 10 Input Words, k-NN (k=375))

Austin Powers in Goldmember has the right stuff for silly [...]'

(SST, FC 10 Input Words, k-NN (k=27))

Words to excludeORE

Figure 4.7: Two examples of decision bias from an FC model with an accuracy of
0.80.

'Morning!! Beautiful isn't it! What you got planned for today?' (Twitter, 

 predicted as negative)

'This one is not nearly as dreadful as expected.' (SST, predicted as 

 negative)

ORE's polarized wordsORE

Figure 4.8: Two examples of over-sensitivity to polarized terms (in red). Other
words in the OREs are highlighted in green. Models used are FC with 25 input words
(accuracy 0.82 and 0.74). Method used is kNN with k respectively equal to 8 and 10.

4.10.3 Debugging Prediction Errors

An important use-case for OREs is when a model commits a misclassification. Mis-

classifications in sentiment analysis tasks usually depend on over-sensitivity of the

model to polarized terms. In this sense, knowing a minimal, sufficient reason behind

the model’s prediction can be useful to debug it. As shown in the first example in

Figure 4.8, the model cannot recognize the double negation constituted by the terms

not and dreadful as a syntax construct, hence it exploits the negation term not to

classify the review as negative.

4.10.4 Varying Cost Functions

As previously mentioned, the uniform cost function (where all words are assigned a

cost of 1) produces OREs of minimal length. Whilst OREs of minimal length are still
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considered useful for human decision makers, it may be more desirable to customise

the cost function so that explanations become more meaningful in the specific context

they are applied in.

We consider three more cost functions as follows:

• CSIMPLE: A simple cost function where PAD tokens, solitary punctuation and

words not in the embedding are set to +∞ (in implementation, this is set to

the maximum value of a integer) and all others are set to 1.

• CPROB: A probabilistic cost function, equal to 1/prec(w) where prec(w) is the

probability (with respect to the data distribution) that input feature w being

included in an input corresponds to the same prediction as the current input

for the network of interest f .

• CHYBRID: A hybrid of the two previous cost functions, where the cost for PAD

tokens and words not in the embedding are set to +∞, and the cost for every-

thing else is probabilistic as above.

The intuition behind CSIMPLE is that we are able to remove uninformative infor-

mation from the explanation, and more meaningful explanations (still sufficient to

imply the prediction) are retrieved for the human decision maker. The intuition be-

hind CPROB is that this cost function will prioritise words that are polarised to specific

classifications. This is useful if the model designer wishes to check whether the model

is over-sensitive to such polarised terms, and correct the model accordingly. The

hybrid cost function combines the benefits of both the previous cost functions.

In order to demonstrate these cost functions in action, it is useful to generate all

of the minimum cost explanations for a given input, so that we can view all possible

sufficient reasons and compare between cost functions. To do this, we generate all

possible candidate explanations of the same minimal cost as the first ORE uncovered,

and then run the entailment check to verify that the candidate is also an ORE. Ex-

ample 1 demonstrates how CSIMPLE removes unimportant tokens from the resulting

ORE(s). The input texts are movie reviews from the SST dataset and we use the

92



ε-ball perturbation set with ε = 0.05.

Example 1 CSIMPLE removes PAD tokens from OREs:

Input: [’strange’, ’funny’, ’twisted’, ’brilliant’, ’and’, ’macabre’, ’<PAD

>’, ’<PAD>’, ’<PAD>’, ’<PAD>’]

Uniform cost (5 OREs, minimal cost = 6):

[’strange’, ’funny’, ’twisted’, ’brilliant’, ’<PAD>’, ’<PAD>’]

[’strange’, ’funny’, ’twisted’, ’<PAD>’, ’<PAD>’, ’<PAD>’]

[’strange’, ’twisted’, ’brilliant’, ’<PAD>’, ’<PAD>’, ’<PAD>’]

[’strange’, ’twisted’, ’and’, ’<PAD>’, ’<PAD>’, ’<PAD>’]

[’strange’, ’twisted’, ’macabre’, ’<PAD>’, ’<PAD>’, ’<PAD>’]

Simple cost (1 ORE, minimal cost = 106.0):

[’strange’, ’funny’, ’twisted’, ’brilliant’, ’and’, ’macabre’]

In Example 2, we demonstrate how each of the non-uniform cost functions im-

proves the quality of the OREs generated. The experimental setup is the same as in

Example 1. Note that both CPROB and CHYBRID produce the same result in this case,

as there are no words in the input that CSIMPLE applies to that have not already been

given a cost by CPROB, resulting in the same outcome.

Example 2 Non-uniform costs gives better quality OREs:

Input: [’...’, ’spellbinding’, ’fun’, ’and’, ’deliciously’, ’exploitative’,

’<PAD>’, ’<PAD>’, ’<PAD>’, ’<PAD>’]

Uniform cost (13 OREs, minimal cost = 2):

[’...’, ’spellbinding’]

[’...’, ’and’]

[’...’, ’<PAD>’]

[’...’, ’<PAD>’]

[’...’, ’<PAD>’]
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[’spellbinding’, ’<PAD>’]

[’spellbinding’, ’<PAD>’]

[’fun’, ’<PAD>’]

[’and’, ’<PAD>’]

[’and’, ’<PAD>’]

[’exploitative’, ’<PAD>’]

[’<PAD>’, ’<PAD>’]

[’<PAD>’, ’<PAD>’]

Simple cost (10 OREs, minimal cost = 3.0): [’spellbinding’, ’fun’, ’and’]

[’spellbinding’, ’fun’, ’deliciously’]

[’spellbinding’, ’fun’, ’exploitative’]

[’spellbinding’, ’and’, ’deliciously’]

[’spellbinding’, ’and’, ’exploitative’]

[’spellbinding’, ’deliciously’, ’exploitative’]

[’fun’, ’and’, ’deliciously’]

[’fun’, ’and’, ’exploitative’]

[’fun’, ’deliciously’, ’exploitative’]

[’and’, ’deliciously’, ’exploitative’]

Probabilistic cost (6 OREs, minimal cost = 2.92):

[’spellbinding’, ’fun’, ’and’]

[’spellbinding’, ’and’, ’deliciously’]

[’spellbinding’, ’and’, ’exploitative’]

[’fun’, ’and’, ’deliciously’]

[’fun’, ’and’, ’exploitative’]

[’and’, ’deliciously’, ’exploitative’]

Hybrid cost (6 OREs, minimal cost = 2.92):

[’spellbinding’, ’fun’, ’and’]

[’spellbinding’, ’and’, ’deliciously’]

[’spellbinding’, ’and’, ’exploitative’]
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[’fun’, ’and’, ’deliciously’]

[’fun’, ’and’, ’exploitative’]

[’and’, ’deliciously’, ’exploitative’]

In our final example, Example 3, we show how CPROB generates shorter and more

relevant explanations, by removing conjunctions and similar uninformative types of

word. The same experimental setup as in Examples 1 and 2 is used.

Example 3 CPROB gives shorter and more relevant explanations:

Input: [’it’, ’is’, ’a’, ’satisfying’, ’summer’, ’blockbuster’, ’and’, ’

worth’, ’a’, ’look’]

Uniform cost (9 OREs, minimal cost = 1):

[’it’]

[’is’]

[’a’]

[’satisfying’]

[’summer’]

[’blockbuster’]

[’and’]

[’a’]

[’look’]

Simple cost (9 OREs, minimal cost = 1.0):

[’it’]

[’is’]

[’a’]

[’satisfying’]

[’summer’]

[’blockbuster’]

[’and’]

95



Average # OREs

Cost ε = 0.01 ε = 0.05 ε = 0.1

Uniform 32.67 29.34 12.82

Simple 22.44 17.26 10.19

Prob 16.56 6.95 5.30

Hybrid 9.78 4.17 3.64

Table 4.1: A comparison of uniform, simple, probabilistic and hybrid cost functions,
w.r.t. the average number of OREs that each input generates. The ε-ball perturbation
set is used, with values of ε specified in the table.

[’a’]

[’look’]

Probabilistic cost (4 OREs, minimal cost = 1.0):

[’satisfying’]

[’summer’]

[’blockbuster’]

[’look’]

We note that the total number of OREs for a given input decreases as the com-

plexity of the cost function increases. Having fewer OREs per input is desirable, as

there is then a smaller (but more distilled, and more informative) volume of infor-

mation for the human decision maker to consider. Table 4.1 shows how the choice of

cost function affects the number of possible OREs, averaged over the test set.

4.10.5 Comparison to Anchors

We evaluate the robustness of Anchors for FC and CNN models on the SST and

Twitter datasets. Accuracies are 0.89 for FC with SST, 0.82 for FC with Twitter,

0.89 for CNN with SST, and 0.77 for CNN with Twitter. To compute robustness,

we assume a kNN-box perturbation space B with k = 15 for FC and k = 25 for

CNN models. To extract Anchors, we set D to the standard perturbation distribu-

tion of [101], defined by a set of context-wise perturbations generated by a powerful

language model. Thus, defined Bs are small compared to the support of D, and so
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one would expect high-precision Anchors to be relatively robust with respect to said

Bs.

On the contrary, the Anchors extracted for the FC models attain an average

precision of 0.996 on SST and 0.975 on Twitter, but only 12.5% of them are robust

for the SST case and 7.5% for Twitter. With CNN models, high-quality Anchors are

even more brittle: 0% of Anchors are robust on SST reviews and 5.4% on Twitter,

despite an average precision of 0.995 and 0.971, respectively.

We remark, however, that Anchors are not designed to provide such robustness

guarantees. Our approach becomes useful in this context, because it can minimally

extend any local explanation to make it robust, by using include constraints as ex-

plained in Section 4.6. To do this, we add include constraints for all of the features of

the non-formal local explanation, and then run our ORE solution algorithm as nor-

mal. In Figure 4.9 we show a few examples of how, starting from non-robust Anchors

explanations, our algorithm can find the minimum number of words to make them

provably robust. Obviously, such a minimal robust extension increases the length

of the original explanation: OREs are designed to prioritize robustness over length

(other design principles could be valid as well but are beyond the scope of this work).

4.10.6 Computational Performance and ε Choice

We have found a few instances where distilling an ORE from an ε-bounded input was

computationally infeasible (i.e. our method hit the initial timeout of 7200s within

the solver, and when extended to 86, 400s, 24 hours, still reached a timeout), thus

motivating us to develop and use the kNN-boxes technique for the majority of the

results in this chapter. In Figure 4.10 we compare how OREs grow for increasing

values of ε and k (i.e., the control parameters of respectively ε-balls and kNN-boxes).

With a perturbation set defined as an ε-ball around each input vector, Table 4.2

shows ORE length and average execution time for the MHS method of generating

OREs, using the cost function CSIMPLE. There is a tradeoff when selecting the value

of ε, too small and the explanation may become too short to be useful (or even empty,

indicating that the input is completely robust within that ε-ball) or too large and the
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`The film just might turn on many people to opera in  general, 
an art form at once visceral and spiritual  wonderfully vulgar 
and sublimely lofty.` (SST)

`There are far worse messages to teach a young  audience 

which will probably be perfectly happy  with the sloppy 

slapstick comedy.` (SST)

`This one is not nearly as dreadful as expected.`  (SST)

Anchors Minimal Robust Extension

Figure 4.9: Examples of Anchors explanations (in blue) along with the minimal exten-
sion required to make them robust (in red). Examples are classified (without errors)
with a 25-input-word CNN (accuracy 0.89). OREs are extracted for kNN boxes and
k=25.

ε
Explanation

Length
MHS

Execution Time

0.01 5± 5 63.70± 63.69

0.05 5.5± 4.5 339.96± 334.66

0.1 7.5± 2.5 3563.4± 3535.84

Table 4.2: Execution time for the MHS algorithm for different values of ε, and the
corresponding explanation length.

explanation may become equal to the entire input (as seen with the abduction-based

explanation method [58]). In practice, we use a refinement search over the parameter

space to decided on a value of ε that is applicable for each situation.

Figure 4.11 shows how using adversarial attacks speeds up convergence of the

hitting set based algorithm, where the timeout was set to 7200s (two hours).

Finally, we note that we were not able to consider inputs longer than 25 words,

or embeddings of dimensions larger than 100 due to the lack of scalability of the

black-box solvers used (such inputs timeout in every case, even when the timeout is

set to over 24 hours). As already discussed, improvements in solver technology will

directly benefit our methods and allow us to scale further than currently possible.
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Figure 4.10: How an explanation grows when either ε (top) or k (bottom) is increased.
Model considered is an FC model with 50 input words on SST dataset (0.89 accuracy),
the cost function is CSIMPLE. On the left is a negative review that is correctly classified,
on the right is a positive review that is misclassified (i.e., the model’s prediction is
negative). For specific ranges of ε, timeout was reached (timeout of 7200s, highlighted
in red).
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Figure 4.11: Examples of explanations that were enabled by the adversarial attacks
routine for the MHS based method, along with the time taken. Timeout was set to 2
hours, 7200s.

4.11 Summary and Discussion

We have introduced optimal robust explanations (OREs) and applied them to en-

hance usefulness of NLP models, for use in ensuring safety of AI systems. OREs

provide concise and sufficient reasons for a particular prediction, as they are guaran-

teed to be both minimal with respect to a given cost function and robust, in that the

prediction is invariant for any bounded replacement of the left-out features. These

properties combined are key in enabling safer AI models, as detecting biased deci-

sions, debugging misclassifications, and repairing non-robust explanations are some

of key use cases that our OREs enable. We have presented a solution algorithm

(along with another in [74]) that builds on the relationship between our OREs and

abduction-based explanations. We have demonstrated the usefulness of our approach

on widely-adopted sentiment analysis tasks, providing explanations for neural net-

work models beyond reach for existing formal explainers. However, we stress that

OREs are applicable to many domains other than NLP, and any advancements in

solver technology will directly benefit our methods.

This chapter has shown how we can improve the safety of deterministic decision
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functions using optimal robust explanations. However, these explanations alone are

not sufficient to provide the level of safety that is required in many common AI ap-

plications, for example, autonomous driving. Using OREs and the inherent property

that the explanation implies the decision, we could, for example, check that the car

always uses the pixels of a traffic light to decide whether to stop (something that

is required by the laws of the road), or that the car never considers the colour of a

car when overtaking (something you would not want to have an effect on decision

making). On the other hand, OREs do not give us any information about how sure

the model is of its prediction, and if the model only weakly predicts one class over

another, the resulting explanation may be nonsensical to a human (and the human

would not understand why this was). Bayesian neural networks, networks with a prior

distribution over their weights, have the ability to capture the uncertainty within the

network and enable safer decision making. The next chapter explores how we can

improve the safety of AI applications using Bayesian networks and the uncertainty

information that they capture.
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Chapter 5

Bayesian Uncertainty and Safety

In this chapter, we consider the role of uncertainty in ensuring AI safety. Following on

from Chapter 4, we note that explaining the decision of a deterministic neural network

alone certainly helps with safety assurance, but is not sufficient to achieve the high

level of safety required in many cases. In this chapter, we focus on a setting where

uncertainty measures are returned along with the model decision and study safety

in the presence of uncertainty. More specifically, we consider deep Bayesian neural

networks as end-to-end controllers in safety-critical systems such as self driving, and

explore the use of uncertainty in ensuring safety. This chapter introduces methods

for evaluating the safety of these controllers by defining two safety measures with

statistical guarantees, and then explores their use in practical applications.

5.1 Motivation

In this chapter, we consider decision functions of the form f : X → Y with added

decision confidence measures (via uncertainty information), described as setting B in

Section 1.1. Feature vectors X, for demonstration purposes, are in the form of images

(both grayscale and colour).

Bayesian neural networks (BNNs) conform to the above definition of a decision

function. A BNN, as defined in Section 2.3, is a neural network with a prior distri-

bution on its weights. BNNs have the ability to capture the uncertainty within the
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learning model, while retaining the main advantages intrinsic to deep neural networks

[83]. As a consequence, they are particularly appealing for safety-critical applications,

such as autonomous driving, where uncertainty estimates can be propagated through

the decision pipeline to enable safe decision making [85].

Recall that an end-to-end controller is a controller in which the entire process

involves a single neural network without modularisation. The input to the network

is sensor data, and the output is motor actuation. In the context of self-driving,

the sensors may include camera input from one or more cameras (often facing front

straight, front left, front right and rearwards), infrared sensors, LiDAR sensors and

many more. The outputs are typically a steering angle, either relative or absolute,

and braking and throttle values. In this thesis we work with Nvidia’s PilotNet [11]

as an example of an end-to-end controller, which we extend to a Bayesian neural

network.

To illustrate the role of uncertainty in the context of end-to-end-controllers, we

return to the example discussed in the Introduction, of a self-driving car that, while

driving, observes an obstacle in the middle of the road. Then, the controller may

be uncertain on the steering angle to apply and, in order to avoid the obstacle,

may choose angles which turn the car either right or left, with equal probability at

each timestep. If we consider the optimal decision according to this steering angle

distribution and a squared loss, then the controller will simply select the mean value

of the distribution [8] and aim straight at the obstacle. However, if the network can

provide an uncertainty measure in addition to a control action then we can utilise

this information in the context steering the car. We refer to this as uncertainty-aware

decision making.

In this chapter we focus on the setting of Bayesian end-to-end controllers for

autonomous driving and propose safety measures that can be used for safety assur-

ance. In particular, we consider probabilistic safety, which is the probability that the

controller will keep the system safe for a given time horizon, and real-time decision

confidence, which is the probability that the BNN is certain of a given decision. We

demonstrate how to obtain a priori statistical guarantees on the safety of the ap-
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plication of the BNN in both online and offline scenarios, and evaluate the quality

of uncertainty measures provided by different BNN inference techniques. While we

focus on autonomous driving, our methods can be configured with any simulator for

any control task and assumes that paths can be sampled efficiently and are endowed

with a probability measure.

5.2 Modelling Approach

We model the autonomous driving scenario considered in this chapter as a discrete-

time stochastic control process (xk, k ∈ N) [42]. A discrete-time stochastic process

is a collection of random variables (see Section 2.1.1), indexed by a countable set,

in this case the natural numbers N, and a discrete-time stochastic control process is

a mathematical framework for modelling decision making in situations in which the

outcomes are partly random and partly controlled by a decision maker. For exam-

ple, the commonly used Markov decision process (MDP) and its partially observable

generalisation (POMDP) are discrete-time stochastic control processes.

xk is a probabilistic model that describes the status of the entire system and it

takes values in a state space X , which includes information on the position, velocity

and acceleration of the car, as well as that of all the other vehicles, pedestrians and

obstacles in the environment. Intuitively, in this chapter, xk just represents a white-

box system that we assume we can simulate arbitrarily many times.

The control space of the process, which represents the set of variables a controller

can modify to drive the behaviour of xk, is denoted by U ⊆ Rm and is typically

given by steering angle, braking and acceleration values of the autonomous vehicle;

however, more complicated systems may have many more controllable parameters.

We assume the controller can only observe a noisy image of the state space coming

from the available sensors. These sensors might include camera input, infrared (IR)

sensors, light detection and range sensors (LiDAR), GPS, or a combination of these

in addition to many others depending on the simulator used. Due to this noise, and

the fact that a typical sensor on a car does not have an infinitely large range and
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cannot observe the whole environment, xk is only partially observable. This means

that a controller will never have a full view of the current state of the system.

We denote by O the observation space, which is the set of all possible observations.

Intuitively, given the current state of xk, the controller receives an observation of

xk, o ∈ O, and synthesizes an action u ∈ U based on this observation. Then, xk

transitions to a new state at time k + 1. Given action u, the evolution of xk is

probabilistic, as traffic, weather conditions, noise and other variables are uncertain.

A (memoryless and deterministic) control strategy for xk, π : O → U , associates

an action with a given observation. In this chapter, as explained in detail in the next

section, we train a BNN controller to synthesize this control strategy π.

We denote a path of xk by ω : N→ X ×U . ω is a sequence of states and actions in

an execution of the system. In the self-driving example, an execution of the system

means driving (or letting the car drive) for some amount of time within the simulator

and recording the state and action information. Given a strategy π we assume there

exists a well-defined probability measure over the paths of x such that, for X ⊆ X ,

P (ω(k) ∈ X|π) is the probability that xk is in X at time k given π.

For instance, this probability measure is well-defined for POMDPs [18]. However,

note that the uncertainty quantification techniques derived in this chapter will work

also for more general, possibly non-Markov, processes.

5.3 Safety Measures For Autonomous Driving

In this section we formulate two key properties that can be evaluated to provide safety

assurance of autonomous driving controllers in offline and online settings.

5.3.1 Probabilistic Safety

The first problem we consider in Definition 5.1 is that of computing the probability

that a given strategy π synthesized by the BNN keeps the system safe. In the au-

tonomous driving domain, one interpretation of “safe” could mean keeping the car

within the bounds of the lane it is in, but we stress that our framework allows for
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alternative definitions of “safe”, in any BNN control scenario.

This probability can be used to certify that a given controller is safe with high

probability given the available information. Computing this value can be done in

any simulator. Prior to the deployment of a safety-critical controller of some kind,

it is common for large companies to evaluate the safety of specific test cases, often

in proprietary simulators that the general public do not have access to [99]. As a

consequence, we believe that a quantifiable notion of the safety of a given controller is

pivotal in order to certify a controller, especially if this incorporates learning elements.

Definition 5.1 (Probabilistic Safety) Let X ⊆ X be a safe set, ω denote a path of

xk, [0, T ] ⊆ N be a time horizon, and π be a control strategy synthesised by the BNN.

Compute

η1 ≡ P (φ1(π, ω, [0, T ])),

where φ1(π, ω, [0, T ]) = ∀k ∈ [0, T ], ω(k) ∈ X |π

Then, for δ > 0, we say that π is δ-safe in [0, T ] iff η1 ≥ δ.

η1 is satisfied if the probability that a path of xk is safe during the interval [0, T ]

is greater than or equal to a threshold δ. Note that similar probabilistic measures of

safety are widely used to certify cyber-physical system models [1, 12].

An illustration of how Definition 5.1 could work for checking the safety of a BNN-

controlled car along a single lane road can be seen in Figure 5.1.

5.3.2 Real-time Decision Confidence

As explained in greater detail in the next section, in order to synthesize a control

strategy π we train a BNN and obtain that, for an observation (in our implementation,

an image) o ∈ O, π(o) is determined by the BNN predictions. However, notice that

π(o) is still deterministic. Hence, it does not take into account the uncertainty in

the model predictions, which is intrinsic in the BNN and could be used to quantify

the confidence of the model in its decisions. To tackle this issue, for o ∈ O, in the
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Figure 5.1: An illustration of how Definition 5.1 works on a single lane road scenario.
A trajectory is δ-safe if the probability of the car remaining within the safe set (the
correct lane) for a given time horizon T is greater than or equal to δ.
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following definition, we consider a notion of trust of π(o) based on the probability

mass of the BNN around π(o). The following problem is stated for regression tasks,

but can be trivially extended to classification problems by changing the definition

of Sok to be a user-defined set of safe classifications for observation ok (most likely

the singleton set containing only ok, but may be a larger set if the class labels are

ordinal).

Definition 5.2 (Real-time decision confidence) Given ε > 0, let ok be the observation

received at time k, w a weight sampled from w, and Sok = {u ∈ U s.t. |u−π(ok)| ≤ ε}.

Compute

η2 = P
(
φ2(S

ok , fw(ok))
)
,

where φ2(S
ok , fw(ok)) ≡ fw(ok) ∈ Sok .

Then, we say that the decision at time k is δ-confident iff η2 ≥ δ.

Note that the probability measure in the above definition comes from the dis-

tribution of the weights in the BNN. In fact, by definition of probability, we can

equivalently write η2 = Ew∼w[1fw(ok)∈Sok ], where 1E is the indicator function for

event E. Hence, real-time decision confidence, as defined in Definition 5.2, seeks to

compute the probability mass in a ε-ball around π(o) and classify a decision as certain

if the resulting probability is greater than or equal to a threshold. Definition 5.2 can

be violated either when there is high uncertainty (i.e., variance is large) or when the

control distribution is multivariate and the most likely mean of P (fw)(o) is far from

π(o), see Figure 5.2 for an illustration of this.

In Section 5.6 we show that this measure of uncertainty can be employed together

with commonly used measures of uncertainty, such as mutual information [108], to

quantify in real time the degree that the model is confident in its predictions and

can thus offer a notion of trust in its predictions. In the next section we consider a

statistical framework that allows us to compute the measures of Definition 5.2 and

5.1 with guarantees in terms of confidence intervals.
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Figure 5.2: An example of a multivariate control distribution, where the mean is far
from either preferred steering angle.

5.3.3 Probabilistic Guarantees

In [17], a solution is given to estimate the probability p defined in Equation 2.42

(local probabilistic robustness). The solution, described below, provides statistical

guarantees on the accuracy of the probability estimation: it ensures arbitrarily small

estimation error with arbitrarily large confidence.

This method, based on the observation that a sample of the weights of the BNN

induces a deterministic neural network, uses existing formal verification techniques

to decide the satisfaction of φ for each deterministic sample. Given a BNN fW, φ is

verified over deterministic networks fw where w is a weight vector sampled from the

posterior distribution P (w|D) (or its approximation q(w), depending on the inference

method used).

Following on from this, we can see the satisfaction of φ(fW) as a Bernoulli random

variable Z, which can be sampled by sampling the BNN weights and verifying the

resulting deterministic network. Then, we compute the probability p that φ is true

with respect to the BNN, by computing the expected value of the Bernoulli random

variable E[Z]. An estimator p̂ for p is defined as in Equation 5.1.

p̂ =
1

n

n∑
i=1

φ(fwi) ≈ E[Z] = p (5.1)
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Since we want to provide statistical guarantees, p̂ must satisfy the following a

priori statistical guarantee, for an arbitrary absolute error bound 0 < θ < 1 and

arbitrary confidence 0 < γ ≤ 1:

P (|p̂− p| > θ) ≤ γ (5.2)

One method to ensure that Equation 5.2 is satisfied is to use Chernoff bounds to

determine the sample size n required for a given θ and γ. p̂ satisfies Equation 5.2

after n samples if Equation 5.3 holds. In practice, a different method using Massart

bounds [17] is commonly used, as Chernoff bounds are often more conservative.

n >
1

2θ2
log(

2

γ
) (5.3)

Using all of the ingredients above, the estimation method can be performed as

outlined in Algorithm 3, which is a simplified version of the same algorithm found in

[17].

Algorithm 3: BNN local robustness estimation

Input: x, T, f, P (w|D), φ, θ, γ
Output: p̂

1 nC ← number of samples by Chernoff bounds using θ and γ
2 n, k ← 0, 0
3 while n < nC do
4 w ← sample from P (w|D)
5 SAT ← verify φ over fw

6 k ← k+ SAT; n← n+ 1
7 p̂← k/n

8 end
9 return p̂

The inputs to the algorithm are the test point x, the search space for adversarial

inputs T (in this case the neighbourhood around x), the BNN f , the posterior distri-

bution (or estimation of the posterior) P (w|D), robustness property φ as defined in

Equation 2.42, and Chernoff bound parameters θ and γ. The maximum number of

iterations of the algorithm is set to the value of the Chernoff bound for error bound
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θ and confidence γ. On iteration n, weights w are sampled from the posterior distri-

bution and then property φ is verified over the deterministic network fw to obtain

the n-th Bernoulli sample (the SAT variable). This algorithm is independent of the

deterministic verification method used, but the reachability method detailed in [17]

is used. The number of successes k and number of trials n are then updated, and

used to update the estimator p̂. If n < nC , then the algorithm continues looping.

However, if enough samples have been taken (according to the Chernoff bound), then

the while loop terminates and the estimator p̂ is returned.

5.4 Statistical Methods for Safety Evaluation

For the computation of properties η1 and η2 of Definition 5.2 and 5.1, we consider

statistical methods, inspired by the techniques developed for statistical analysis of

probabilistic models [17, 76]. In particular, we observe that the satisfaction of both

φ1 and φ2 can be seen as Bernoulli random variables (see Section 2.1.1), which we can

observe by sampling from w, the weights of the BNN in the case of real-time decision

confidence, and by sampling xk in the case of probabilistic safety. After we collect N

samples of each random variable, we can build the following empirical estimators

η̂1 =
1

N

n∑
i=1

φ1(π, ωi, [0, T ])

η̂2 =
1

N

n∑
i=1

φ2(π(o), So, fwi(o)),

where {w1, ..., wn} are weights sampled from w and {ω1, ..., ωn} are paths sampled

from x. Then, for an arbitrary absolute error bound 0 < θ < 1 and confidence

0 < γ ≤ 1, we obtain that if Equation 5.3 is true, then for i ∈ {1, 2}, it holds that

P (|η̂i − ηi| > θ) ≤ γ. (5.4)

The above bound is based on Chernoff bounds [20], but other sequential schemes,

potentially requiring fewer samples, could be employed [17]. However, the bound in
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Figure 5.3: An example of an image from the CARLA simulator.

Equation 5.3 has the advantage to allow one to determine the required sample size

n for a given precision before performing the experiments. Hence, it can be trivially

parallelised by assigning one sample per process, and no inter-process communication

is needed.

5.5 Bayesian End-to-end Controllers For Autonomous

Driving

We evaluate our methods on experiments performed on the CARLA driving simula-

tor [31], where we consider a deep end-to-end controller given by a modified Nvidia’s

PilotNet (formerly known as DAVE-2) neural network architecture [10], which we

train with three different BNN inference methods, Monte Carlo dropout [40], mean-

field variational inference [9], and Hamiltonian Monte Carlo [13]. We consider dif-

ferent training scenarios, including obstacle avoidance and driving on a roundabout,

demonstrating how to quantify the uncertainty of the controller’s decisions and utilise

uncertainty thresholds in order to guarantee the safety of the self-driving car with

high probability.
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5.5.1 Experimental Setup

CARLA The experiments in this paper use the CARLA simulator, a state-of-the-

art, open-source simulator for autonomous driving research [31]. CARLA has been

developed specifically to support the training of autonomous driving systems and

is completely open-source. The environment CARLA provides ranges from simple

country roads to full city simulations, including other vehicles, cyclists, pedestrians,

emergency services, fully dynamic weather, working traffic lights and more. Impor-

tantly, the 3D models created for the CARLA simulator mean that images taken

within the simulator are very similar to the real world. Finally, CARLA provides

some autonomous driving baselines within it, and allows the user to generate training

data using an “autopilot”, which knows the whole state of the environment. How-

ever, we stress that any simulator can be used within this framework, assuming it can

simulate car trajectories and generate images that can be used by the controller, for

example the much simpler Udacity simulator [122]. All training data, which consists

of (image, steering angle) pairs, was acquired within the CARLA simulator, either

through manual driving or use of the built-in autopilot.

BNN Controller Architecture The architecture of the neural network models

used in this chapter are based on PilotNet [11], Nvidia’s first end-to-end controller

for self-driving. The architecture, as seen in Figure 5.5, consists of nine layers. The

first layer is simply a normalisation layer that is hard coded and not adjusted during

learning. This layer takes as input an image split into its YUV planes. The next

five layers are convolutional layers that were designed to perform feature extraction.

The first three convolutional layers had a 2 x 2 stride with a 5 x 5 kernel, and the

last two convolutional layers had a 3 x 3 kernel and no stride. The final layers are

all fully connected until reaching the output layer, which consists of a single output

indicating the inverse turning radius of the vehicle.

The PilotNet paper [11] does not specify what type of non-linearities were used,

nor does it mention the loss function. For the purposes of this thesis, ReLU non-
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Figure 5.4: An example of an image from the CARLA simulator after preprocessing.

Figure 5.5: The architecture of Nvidia’s PilotNet.
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linearities were assumed for all but the final layer where arctan was used (as its

output is in the range (−π
2
, π
2
) which matches the steering angle range). The loss

function was assumed to be the mean-squared loss.

Full details of the network architectures and training regimes for each inference

method can be found in Appendix A.3.

Modelled Scenario and BNN Decisions In the experiments performed in this

thesis, we consider a setting where the observation space O is given by images from

a single camera input, placed on the front centre of the car facing forwards. An

example image can be seen in Figure 5.3. The control space U is the steering angle,

given between -1 and 1 (corresponding to 90 degrees left and right). Again, we stress

that the techniques developed in this chapter are general and not limited to this

scenario.

In our experiments, for an observation o we have that π(o), the BNN decision,

is given by the most likely class. However, we stress that other choices for π(o)

are possible according to the particular loss function (see e.g., [8]) and the methods

presented in this paper are independent of the criteria for assigning π(o). For example,

π(o) could be the mean of n samples of the BNN in the case of regression with the

mean squared loss function (called model averaging [39]).

5.6 Experimental Results

In this section, we describe a generic experimental set up for computing the measures

in Definition 5.1 and Definition 5.2. We first consider probabilistic safety as defined

in Definition 5.1 and we show that this measure can be effectively used in order to

identify problematic scenarios in which further data acquisition should occur. We

then show that use of the measure in Definition 5.2 in conjunction with classical

measures of uncertainty can greatly increase the safety of an autonomous vehicle

when it is in unfamiliar scenarios.
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5.6.1 Probabilistic Safety Estimates

In order to measure the safety of a BNN controller in a particular setting, one must

simulate scenarios (e.g. turns, collision avoidance, intersections) in various conditions

in order to satisfy the bound in Equation 5.3. Though we perform simulations in

order to test the safety of a turn scenario, running the correct number of simulations

with diverse environmental conditions works on any scenario one would like to test.

For example, the notion of probabilistic safety is also used to calculate the safety in

Figure 5.8. We also study the effect of the BNN inference method used (HMC, VI

and MCD) on the quality of the uncertainty measure produced.

Figure 5.6 shows the test setup for probabilistic safety estimates. We place a

vehicle approximately 10 meters from the entrance of a roundabout in fixed weather

conditions. We then collect training data using the built in autopilot, with the weather

set to sunny noon. The autopilot is set to drive the car through the roundabout,

taking the first exit. We then use our safety boundaries (marked in the figure) to

determine the probability that a specific controller will drive safely, that is, stay

within our safety boundaries. We segment the road into small hexagonal sections so

that we are left with safety probabilities of visiting that section, for each section of

road tested, for each controller.

While we expect the controller to be able to navigate safely from its trained

starting point to the end point in the weather it has seen, we seek to test the robustness

of posterior distributions to changes in scenery and weather conditions in order to also

include simulations of potential worst-case deployment performance. In row (a) of

Figure 5.6 we see that, while the variance can be useful in collision avoidance (see the

section below), the wide variance of HMC causes a larger proportion of trajectories

to fall outside of the safety boundary. The estimated probability of safety for HMC,

across all weathers, was 0.766 (±0.05). Row (b) of Figure 5.6 reports the consistency

of VI across different weather conditions with a cumulative safety probability estimate

of 0.91 (±0.05) in this particular test case. The main reason for lack of safety in VI

was veering into the center lane of the roundabout, which is arguably safer than the
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P(safe | clear) = 0.94 P(safe | afternoon) = 0.91 P(safe | rain) = 0.88

P(safe | clear) = 0.83 P(safe | afternoon) = 0.73 P(safe| rain) = 0.71

P(safe | clear) = 1.00 P(safe | afternoon) = 0.74 P(safe | rain) = 0.00

(a)

(b)

(c)

Figure 5.6: Offline safety probabilities of (a) HMC, (b) VI and (c) MCD respectively.
Each hexagon is shaded with the probability of the car visiting that area, and the
optimal trajectory is plotted with a green line. The red lines show safety boundaries,
where outside of this is considered unsafe, and inside is safe.
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Figure 5.7: Top row: Performance of the self-driving car (HMC controller) on turn C;
Bottom row: spatial uncertainty distribution. Columns represent different weather
conditions (a) clear noon, (b) cloudy noon, (c) wet noon, (d) heavy rain, (e) wet
sunset

HMC controller that veered into the curb and side wall. Finally, in row (c) we see

the performance of MCD. In the training environment, it was the only method to

achieve a perfect safety score; however, we see the network fails to generalize well

to other weather conditions. While MCD performs slightly better than HMC in the

more dim light of the afternoon, it fails catastrophically in the rain. MCD’s overall

probabilistic safety, prior to the consideration of rain, was 0.87. When we factor

rainy environments, the overall probabilistic safety of MCD falls to 0.58 (±0.05). It

is likely that if we were to retrain MCD in all weather conditions and re-run the safety

analysis we would see a perfect safety score, as we do currently with clear weather.

In this way, we can use our offline safety probability as a guide for active learning in

order to increase data coverage and scenario representation in training data.

5.6.2 Uncertainty-aware Real-time Collision Avoidance

Figure 5.7 demonstrates that, by monitoring the uncertainty (as defined in Defini-

tion 5.2), we can see that in instances prior to important decision making, in this

case how to navigate the roundabout, there is a spike in uncertainty. Each column

of the figure represents the turn in different weather conditions: clear noon, cloudy
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(a)

(b)

(c)

(d)

(e)

(f)

HMC Collision Avoidance Simulations

VI Collision Avoidance Simulations

MCDropout Collision Avoidance Simulations

P(safe | clear, known location) = 1.00

P(safe | clear, known location) = 1.00

P(safe | clear, known location) = 1.00

P(safe) = 0.465

P(safe) = 0.4125

P(safe) = 0.200

Figure 5.8: To the left of the black line, we visualize the experimental set up. (a)
Spatial distribution of cars; (b) original camera signal; (c) input to BNN. In the
centre of the figure we plot the course of the vehicle controlled by a BNN, where each
row represents a different posterior approximation (d) HMC, (e) VI, (f) MCD. Each
dot, representing the position of the car during its trajectory is colored based on the
uncertainty of the controller.

noon, wet noon, heavy rain and wet sunset. The top row of the figure shows (for

the controller trained with HMC as an example) the trajectory of the car over 273

simulations (for an error margin of 7.5%), where the colour of a hexagon gets further

towards red as the probability of visiting it increases. The bottom row shows the

uncertainty spatially, as defined in Definition 5.2. It is clear that the top right of

each of these spatial uncertainty plots has a higher number of yellow and red cells,

indicating that the uncertainty is higher when about to make a decision as opposed

to in the middle of one.

Since Definition 5.2 has shown spikes prior to decision making, we explore a new

scenario in which the car is presented with an obstacle. In Figure 5.8, we can see an

example of a collision avoidance test set up. We place a stationary vehicle 40 meters

away from the self-driving car in fixed weather conditions along a single roadway. We

then train a BNN controller, for each inference method, on data collected from safe
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human driving in this scenario. Below, we describe a general algorithm for performing

collision avoidance which generalizes to any scenario one would like to test. Further,

the system that we use can be implemented for any BNN that is trained to drive

autonomously, and can detect situations in which the car is uncertain in order to

improve safety.

The uncertainty-aware decision system is designed in two stages. In the first stage,

we simulate more runs of the vehicle driving without any collision avoidance system

present. We rely only on the learned behaviour of the vehicle (plots of these runs

can be seen in Figure 5.8). At this stage, we are able to qualitatively understand

the behaviour of each network posterior in terms of the uncertainty it produces as it

approaches the obstacle. We note that it is possible, though less desirable, to perform

this qualitative evaluation using a held-out, test data set. Because the input we ob-

serve at time t depends on all of the decisions made up to that time, generating safety

or uncertainty estimates based on another controller’s decisions may be inaccurate

due to the potentially low probability of ever observing those states with the current

controller under consideration. In the second stage, we use the captured information

about uncertainty in order to generate actionable warning thresholds. For example,

if we see that there is typically a large spike in uncertainty as the car approaches the

obstacle, we can use a threshold in order to stop the car when we experience a similar

peak in the future. We also use mutual information, a well recognised measure of

uncertainty, alongside our real-time decision confidence measure. The behaviour of

mutual information can roughly be seen in the bottom left-hand corner of Figure 5.9.

We use a three-tiered warning system based on real-time decision confidence, as

defined in Definition 5.2. That is, given an image at time k we bin network decisions

into four categories based on the value of η2. Algorithm 4 describes this uncertainty-

aware controller, where the algorithm is run for the observation at each timestep k.

The inputs to the algorithm are: a BNN controller fw with weights variable w, the

radius of the safe space around the prediction ε, the observation (input image) o, the

warning thresholds δ0, δ1, δ2 for warnings 0, 1 and 2, respectively and the number of

samples n that should be taken from the BNN. If any of the relevant measures rise
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above a threshold, the output of the algorithm is a warning, and if no measures are

high enough, the algorithm returns ‘safe’.

Algorithm 4: Uncertainty aware BNN control algorithm

Data: a BNN fw with weight variable w, epsilon ε, observation o, thresholds
δ0, δ1, δ2 for warnings 0, 1 and 2, respectively, number of samples n

Result: a warning (or lack thereof)
1 t = 0
2 c = 0
3 π(o) = fw(o)
4 preds = ∅
5 for i = 1..n do
6 fw = sample(fw)
7 if fw(o) ∈ {u s.t. |u− π(o)| ≤ ε} then
8 t += 1

9 c += 1
10 preds = preds ∪ {fw(o)}
11 η̂2 = t

c

12 m = mutual inf(preds)
13 if η̂2 ≤ δ2 then
14 throw severe
15 else if η̂2 ≤ δ1 then
16 throw standard
17 else if m ≥ δ0 then
18 throw mutual information
19 else
20 return safe

Frequently, no warning will be thrown, i.e., η2 ≥ δ1 for a given δ1 ∈ [0, 1]. However,

in the case that we are less than δ1-certain (η2 < δ1), a standard warning (warning

1) is thrown. A severe warning (warning 2) is thrown when the network is less that

δ2-certain (this assumes δ2 < δ1). Finally, we consider a warning (warning 0) which

is thrown when neither a severe nor standard warning are thrown (η2 ≥ δ1), but the

predictive distribution exhibits high mutual information (calculated as in Section 2.3.5

using the mutual inf function), above yet another threshold, in our case 0.45. For our

experiments, the constants δ1 and δ2 are set to a threshold of 0.7 and 0.6, respectively.

The actions that occur at each of these warnings are also configurable. However, we

have set up our system such that mutual information warnings slow down the vehicle,
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(a)

(b)

(c)

(d)

p(safe | unknown location ) = 0.00 p(safe | unknown location, stopping ) = 0.90

p(safe | known location, stopping ) = 1.00

MI on Approach VI Safety Simulations

VI Safety SimulationsVI Safety Simulations

Distance to Collision

Figure 5.9: Demonstration of how the uncertainty-aware stopping procedure per-
forms. (a) Original safety of VI without stopping algorithm. (b) Mutual information
signal spikes as we approach the obstacle. (c) VI safety with stopping. (d) VI per-
formance in a known environment with stopping.

standard warnings slow down the vehicle and alert the operator of potential hazard,

and severe warnings cause the car to safely brake and alert the operator that they

need to assume control of the vehicle.

Setting these thresholds requires a delicate trade-off between autonomy and safety.

If the thresholds are set too low, then the system will operate more autonomously

(that is, without asking for user intervention), but may be less safe. Setting the

thresholds too high may be safer, but causes the car to operate less autonomously as

the user is constantly prompted for input. In Figure 5.9, we show that these sorts

of collision avoidance systems can perform well in practice (here demonstrated with

the VI controller). We show that we can detect and reduce the rate of collisions

(the inverse of probabilistic safety), improving the safety in unknown conditions from

0.00 (±0.05) to 0.90 (±0.05), see Figure 5.8. Moreover, we test that implementation

of this strategy does not affect the autonomy of the car in known situations. For

this we simulate the situation in which the car was trained and we find that the

car still operates with safety probability 1.00, with error margin of 0.05 according to
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Equation 5.3, and full autonomy.

Finally, Figure 5.10 further demonstrates the warning system for the HMC con-

troller. All plots demonstrate how far away the car is from the obstacle when each

type of warning is thrown, and how many warnings are given. The most warnings

were thrown around 17m away in clear noon weather, and rainy sunset weather.

We note that the calculation of real-time uncertainty adds only a minimal amount

of overhead (microseconds) into the end-to-end controller, which is not enough to

affect its operation.

5.7 Summary and Discussion

We presented methods for evaluating the safety of end-to-end BNN controllers, exem-

plified using a BNN variant of Nvidia’s end-to-end autonomous driving controller. The

proposed methods allow one to obtain uncertainty estimates for the controller’s deci-

sions with a priori statistical guarantees. On experiments performed on the CARLA

driving simulator we showed that our statistical framework can be used to evaluate

model robustness to changes in weather, location, and observation noise. Further,

we propose an uncertainty-aware decision system for autononous driving and illus-

trate how our techniques can be employed to detect and avoid a high percentage of

collisions.

We also evaluate three inference methods for BNNs to analyse the quality of

uncertainty estimates that they produce. Our experiments suggest that MCD may

underestimate the uncertainty of the BNN posterior and therefore is not able to

capture a sufficiently accurate notion of uncertainty for use during real-time collision

avoidance. This is in line with what was also observed in [17, 91]. On the other hand,

HMC is too inefficient to scale beyond small datasets. Therefore, our results suggest

that Gaussian VI approximations, such as Bayes by Backprop [9], may be particularly

suitable for applications such as real-time collision avoidance.

While open-source simulators use maps of realistic, yet fictional cities, industrial

simulators may be able to replicate the conditions and environments that exist on real
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(a) Warnings broken down by weather.

(b) Warnings in all weather.

Figure 5.10: Using uncertainty (as in Definition 5.2) as a method for real-time de-
tection of unsafe conditions. Dots represent raw warnings and boxes represent con-
centration of warnings within intervals from the mean. Network trained with HMC
begins throwing warnings around 20 meters before a collision.
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world street corners. In this case, our method could be used to perform statistical

verification of safe coverage of places for which the original network may not have

enough data. We note that generating a safety test of the scale shown in Figure 5.6

takes approximately 1.5 hours on a single desktop GPU, thus parallelisation using

industrial grade equipment would allow one to test much larger geographical settings.

This chapter demonstrates the value of quantifying the uncertainty of Bayesian

neural networks, within safety-critical applications, to evaluate network safety. How-

ever, the methods introduced in this chapter do not use all of the available information

that a network can provide, only the inputs and outputs in a black-box manner. By

using the whole network, it is possible to understand why a network makes a given

prediction and therefore open up another avenue to improve safety. For example, we

can make sure that the network does not use spurious characteristics for predictions,

we can check for biased decisions, and we can determine where the model needs tuning

or more training. We already have a method for extracting such information from de-

terministic networks, OREs, as defined in Chapter 4. The following chapter extends

OREs to the Bayesian setting, and explores what different measures of uncertainty

we can extract and their possible uses.
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Chapter 6

Uncertainty, Explainability and

Safety

The previous two chapters demonstrated the usefulness, individually, of local ex-

plainability and Bayesian uncertainty information for safety assurance of AI-based

systems. This chapter explores the combination of the two, to give us a deeper in-

sight into model behaviour. Our exploration includes formulating the notion of a

Bayesian explanation for different types of explanation methods, and how we can use

the distributions over individual features to extract uncertainty information and aug-

ment existing explanation methods. We evaluate the proposed techniques on Bayesian

neural networks trained on image classification and sentiment analysis tasks.

6.1 Motivation

In this chapter, we, again, consider decision functions of the form f : X → Y that

provide confidence estimates via uncertainty information. It is straightforward to see

that a deterministic neural network encodes a single decision rule over its input space

and that the goal of local feature attribution is to provide a human-interpretable

explanation for this decision. On the other hand, Bayesian neural networks represent

a distribution over such decision rules and thus one must consider the corresponding

distribution over explanations for the decision. In this work we focus on two types
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of explanation methods separately, for ease of use: feature score methods and subset

methods.

Feature score methods are methods, such as LRP, IG or SHAP, that return a

relevance score for each feature given an input and a set of (fixed) weights. In this

case, we write rw(x) to denote the generic score method relevance function. Since this

relevance function is dependent on the fixed weights of the network, we can see that,

when a Bayesian network is considered, the posterior weight distribution P (w|D)

invokes a distribution over the relevance scores (Equation 6.1).

P (r|x,D) =

∫
rw(x)P (w|D) dw (6.1)

Then, relevance samples r ∼ P (r|x,D) can be obtained by first sampling from the

posterior weight distribution w ∼ P (w|D) and then applying the relevance function.

Note that feature score methods return only one score map per network sample.

On the other hand, subset methods are methods, such as Anchors or OREs, that

return a subset of the input features as the most important features for prediction.

This leads to a feature either being in or out of the explanation. In the case of a

deterministic network, these methods can (and often do) generate multiple explana-

tions for one input as they rely on minimising (or maximising) a score function where

multiple subsets of input features may produce the same minimal (or maximal) result.

Since both types of methods, and therefore the resulting explanations, are de-

pendent on the fixed weights of the network, in the Bayesian setting the posterior

distribution P (w|D) induces a probability over the explanations. We now formalise

the concept of explanations for BNNs and propose a range of methods for their ex-

traction.

6.2 Conceptual Description

Formally, we write fw(x) = [fw
1 (x), . . . , fw

nc(x)] to denote a BNN with nc output units,

c classes and an unspecified number of hidden layers, where w is the weight vector
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random variable. Given a distribution over w and w ∈ Rnw , a weight vector sampled

from the distribution of w, we denote with fw(x) the corresponding deterministic

neural network with weights fixed to w.

We consider a classification task where an input x ∈ Rd is classified into a plausible

class y ∈ Y by a neural network with parameters w, namely fw : Rd → Y . We denote

with F the set of features in x, namely F = {x1, .., xd}. E is a subset of F , i.e., E ⊆ F .

Indices of variables in sets F and E are denoted respectively as IF = {1, .., d} and

IE ⊆ IF .

We define a generic explanation for a deterministic neural network as in Defini-

tion 6.1.

Definition 6.1 (Explanation) Let g : P(F ) × Rnw → R+ be a function mapping

explanations and weights to non-negative rewards (including 0). Then we say that a

subset E∗ ⊆ F is an explanation for features x and network fw w.r.t. g iff

E∗ ∈ arg max
E⊆F

g(E,w). (6.2)

Any subset E∗ of input features is called an explanation if it maximises the func-

tion g. Function g takes the form of a user-defined cost function, which could be any

new or existing explanation method that considers both the subset and weights of a

network as input, for example layer-wise relevance propagation.

To exemplify this definition, and others throughout this section, we present a run-

ning example. Let input x = {0.0, 0.1, 0.3, 0.9, 0.0}, let deterministic network fw have

weights w = {0.1, 0.1, 0.1, 0.1, 0.1}, and function g(E,w) =
∑|E|

i=0EiwIE,i . Note that

this is not a realistic cost function or network architecture and is for demonstration

purposes only. We see that subset E∗ = {x2, x3, x4} maximises function g with score

(0.1× 0.1) + (0.3× 0.1) + (0.9× 0.1) = 0.13 and is therefore an explanation.

Note that, in many cases, there is not a unique subset E∗ that maximises the cost

function g, which leads us to Definition 6.2.

Definition 6.2 (Explanation Collection) For a deterministic neural network fw,

input x, a set E∗ = {E∗1 , ..., E∗n} of subsets E∗i ⊆ F of the features of x is an

128



explanation collection w.r.t. a function g : P(F )× Rnw → R+, iff

E∗ ∈ E∗ ⇐⇒ E∗ ∈ arg max
E⊆F

g(E,w). (6.3)

An explanation collection is the set of all of the subsets of input features E∗i ⊆ F

that maximise the cost function g. Considering all of the possible explanations for

one input and network pair is integral in the Bayesian setting as we retain more

information about the distributions of the deciding features. From our example, we

see that there are three additional subsets that maximise g using the zero valued

x1 and x5 variables, which, when multiplied by their corresponding weight, do not

add or remove from the maximum score. The full explanation collection is then:

E∗ = {{x2, x3, x4}, {x1, x2, x3, x4}, {x2, x3, x4, x5}, {x1, x2, x3, x4, x5}}.

Suppose now that we want to explain the decision of a BNN whose output for input

x is class s ∈ {1, ..., c} (hence preferring it to all other classes). Given a sample of

N > 0 deterministic neural networks from the BNN’s weight distribution w, namely

f̂w = (fw0 , ..., f
w
N−1), we split f̂w into c disjoint sets: ˆfw0, ..., ˆfwc, depending on the

output of each deterministic neural network. More formally, ˆfws = {fwj s.t. fwj ∈

f̂w ∧ fwj (x) = s}.

We now define the concept of an explanation for the ensemble of networks in ˆfws.

The explanations of all classes will account for the BNN epistemic uncertainty on x.

Definition 6.3 (Ensemble Explanation) Given a sample ˆfws = {fws0 , .., fwsN−1}

of N > 0 deterministic neural networks, an ensemble explanation is the multiset

of explanation collections {E∗0, ...,E∗N−1} (as in Definition 6.2), where E∗i is the

explanation collection for network fwsi .

Intuitively, an ensemble explanation is the combination of all explanation collec-

tions, one from each BNN sample. In our running example, the weight vector w

will change with each BNN sample. Let us generate the ensemble explanation for

2 BNN samples: let w1 = {0.1, 0.1, 0.1, 0.1, 0.1} be the first sampled weights, w2 =

{0.1, 0.2, 0.1,−0.1, 0.0} be the second, and our input x = {0.0, 0.1, 0.3, 0.9, 0.0} as be-

fore. From above, the first explanation collection is E∗1 = {{x2, x3, x4}, {x1, x2, x3, x4},
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{x2, x3, x4, x5}, {x1, x2, x3, x4, x5}}, and we calculate the second explanation collection

as E∗2 = {{x2, x3}, {x1, x2, x3}, {x2, x3, x5}, {x1, x2, x3, x5}}. The ensemble explana-

tion is then {E∗1,E∗2}.

6.3 Explaining the Decisions of Bayesian Neural

Networks

This section describes how ensemble explanations can be distilled into something of

use to a human decision maker, and how function g can be defined for different types

of explanation method.

6.3.1 General Case

While ensemble explanations (Definition 6.3) contain a lot of information about how

a BNN makes a decision, that information is not easily interpretable by a human.

As shown in the running example above, the resulting ensemble explanation is long,

even for only two BNN samples, and interpreting it is difficult. We take inspiration

from the concept of code coverage [88] to define a generic covering explanation, which

takes our ensemble explanation and distills the content down into useful information

for the human decision maker.

Definition 6.4 (Covering Explanation) Given an ensemble explanation E∗∗ws =

{E∗0, ...,E∗N−1} (as in Definition 6.3), a subset of features ECOVER ⊆ F is a covering

explanation if:

ECOVER ∈ arg max
E∈F

∑
E∗∈E∗∗

1E∈E∗ (6.4)

We further define the covering explanation probability to be:

Prob(ECOVER) =
1

N

∑
E∗∈E∗∗

1ECOVER∈E∗ (6.5)

In short, the covering explanation is the explanation that occurs in (“covers”) the
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most explanation collections of the BNN samples, i.e. the dominant explanation1.

For example, if we take three network samples, and the resulting ensemble explana-

tion E∗∗w0 = {{{x1, x3}, {x2, x3}}, {{x2, x3}, {x3, x4}, {x3, x4, x5}}, {{x5}, {x2, x3}}},

then the covering explanation for class 0 is {x2, x3} as it occurs in the highest number

of individual samples‘ explanation collections.

The covering explanation probability is the probability that the covering expla-

nation will occur in any sampled networks‘ explanation collection. Using the small

example above, the covering explanation {x2, x3} occurs in all three network samples‘

explanation collections, therefore P (ECOVER) = 1+1+1
3

= 1.

Similarly to Section 5.3.3, we can obtain an a priori statistical guarantee on

the covering explanation probability using the Chernoff bounds to determine the

necessary sample size for a given absolute error bound and confidence level.

By characterising function g, we can define the notion of a covering explanation

and covering explanation probability for different explanation methods. Function g

can be defined using any neural network explanation method. For example, we could

set function g to be equal to the cumulative layer-wise relevance score of M input

features, then maximising g would amount to choosing the M input features with the

highest cumulative score (as mentioned above, there may be multiple such sets that

result in this maximum score).

In the next section, we redefine the notion of a covering explanation and covering

explanation probability for both feature score methods and subset methods. For

feature score methods, we show how any method that returns a relevance map can

be used, and in the case of subset methods we define the concept of a Bayes-optimal

robust explanation (B-ORE), which extends our previous work on OREs in Chapter 4.

1Since we wish to retain the properties associated with the base explanation method (e.g. robust-
ness and optimality from OREs), we choose the dominant explanation instead of what one might
think of as a true “covering” explanation that is made up of parts of all the explanations in the
explanation collections.
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6.3.2 Bayesian Feature Score Methods

Feature score methods can be defined as a generic relevance function r over input x

and BNN weight sample w, to produce a relevance score map rw(x). In the simplest

case, we could design function g to return the sum of all relevance scores of the input

features given to it. More specifically, for input x, subset of input features E, indices

IE of variables in E, BNN network sample fw with weights w, relevance method r

and relevance score map rw(x), we have:

g(E,w) =
∑
j∈IE

rw(x)j (6.6)

However, the explanations that maximise g in this case will all be the same: they

will include every input feature with a non-zero relevance score and then a varying

number of zero-scoring features. Furthermore, it is apparent that this naive method

results in the loss of information as we end up disregarding the magnitude of the

score.

To prevent this, we can introduce a threshold value, where only scores over this

threshold are considered in the sum, and zero features are removed by penalising the

length of E as discussed above.

g(E,w) =
∑

j∈IE :rw(x)j>δ

rw(x)j (6.7)

Here, δ is a threshold parameter. Note that this definition of g means that only

one explanation exists that maximises g: the subset of non-zero features that are

above δ.

Whilst a covering explanation, as in Definition 6.4, can be computed from the

ensemble explanation of a BNN using this definition of function g, the covering ex-

planation probability (Definition 6.4) will usually be low, as we find that, empirically,

generating the same (single) explanation from function g from multiple network sam-

ples is unlikely. Additionally, by taking the features over a given score threshold, we

are losing information about the magnitudes of the scores of these remaining features
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which is disregarded once chosen.

To retain more information about individual feature relevance scores, whilst still

being able to extract covering explanations, we propose the following adjustment to

the definition of an explanation.

Definition 6.5 (Feature Score Explanation) Let g : P(F ) × Rnw → R+. Then

we say that a subset E∗ ⊆ F is a feature score explanation for features x and network

fw w.r.t. g iff

E∗ ∈ {E|E ⊆ F ∧ g(E,w) > γ}. (6.8)

Instead of taking only the maximising subsets as explanations, a feature score

explanation is any subset that pushes the cost function over a user-defined threshold.

This definition loosens the strict requirement that an explanation must maximise g

and instead allows for a range of explanations that are close to the optimal explanation

(depending on how close the threshold is to the maximum score) whilst retaining

important relevance information for the human decision maker.

We present the following pair of algorithms for calculating the set of feature score

explanations for an input and network pair, for any feature score method.

Algorithm 5: Feature score explanation set computation

Data: the input x, the relevancy score function r, the network f , threshold
δ, threshold γ

Result: a set of explanations S
1 E ← r(x, f)
2 for i← 0 to |E| do
3 if Ei < δ then
4 Ei ← 0

5 S ← genExps(E, γ)

Algorithm 5 is a wrapper function that first filters out any scores below a given

threshold δ, then passes the filtered explanation to the recursive function defined in

Algorithm 6.

This recursive function generates a set of explanations that satisfy Definition 6.5.

For each index in the input E (which, to begin with, is the whole feature score map
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Algorithm 6: Feature score explanation helper function
genExps(E,γ)

Data: the explanation E, threshold γ
Result: a set of explanations S

1 S ← ∅
2 for i← 0 to |E| do
3 sliced← E \ Ei
4 if sum(sliced) < γ then
5 S ← S ∪ E
6 else
7 T ← genExps(sliced, γ)
8 S ← S ∪ T

9 return S

generated from a given explanation method), that index is removed from the feature

score map and then the sum of the remaining entries is taken. If the sum is less than

the user-defined threshold γ, then all of the entries in E are required to retain a score

of above γ, and so E is added to the explanation set S. If the sum is not less than γ

then we recurse with E \ Ei and join the result with set S.

Similarity With UAI As discussed in the literature review in Section 3.1.4, [16]

attempts to explain Bayesian neural networks by using a method called UAI (union

and intersection). This method is defined in Equation 6.9, where Pα is an operator

that computes the feature-wise α percentiles.

UAIα(x) = Pα[P (R|x,D)] (6.9)

When α is high (> 0.5), a union explanation is recovered, as the resulting relevance

map accumulates features across many sampled explanations. When α is low, an

intersection explanation is generated, as only features that α% of the explanations

agree on are included.

UAI considers the contribution of each individual feature separately to generate

a Bayesian explanation. Our notion of a covering explanation considers entire ex-
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planations instead. This difference allows us to retain information between features,

instead of looking at them individually. In addition to this, UAI does not provide any

statistical guarantees, and does not use the uncertainty information available from

BNNs.

6.3.3 Bayes-Optimal Robust Explanations

Moving into the category of subset methods, this section describes how to extend

OREs to the Bayesian setting for enhanced explainability. First, we recall robust

explanations of Definition 4.1. A robust explanation is any subset of input features

E that must remain unperturbed whilst a bounded perturbation is applied to the set

F \ E, else a misclassification will occur.

We then introduced the notion of an optimal robust explanation (ORE) in Def-

inition 4.2, where the difference is that an explanation must now also satisfy opti-

mality with respect to a user-defined cost function (for example, the length of the

explanation). OREs are generated using a hitting-set based algorithm that generates

candidate explanations and checks their validity using entailment checks performed

by a black-box solver.

Following the conceptual design outlined in Section 6.2, we now define an ORE

Collection. While we give the definition for word features, we remark that it can be

generalised to other types of inputs.

Definition 6.6 (ORE Collection) For a deterministic neural network fw, cost func-

tion C : W → R≥0, input text t = (w1, ..., wl) with embedding x = E(t), word level

perturbation B, a set E∗ = {E∗1 , ..., E∗n} of subsets E∗i ⊆ F of the features of x is an

ORE collection, iff

E∗ ∈ E∗ ⇐⇒ E∗ ∈ arg min
E⊆F

∑
w∈E

C(w) s.t. Robfw,x(E). (6.10)

An ORE collection, similarly to an explanation collection, is the set of all subsets

that satisfy the properties of an ORE. Moving into the Bayesian setting, we can then
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also redefine an ensemble explanation (Definition 6.3) in terms of OREs.

Definition 6.7 (Bayes-Optimal Robust Explanation) Given a sample of N >

0 deterministic neural networks from the BNN’s weight distribution that predict class

s, ˆfws = {fws0 , ..., fwsN−1}, cost function C : W → R≥0, input text t = (w1, ..., wl) with

embedding x = E(t), word level perturbation B, a B-ORE (Bayesian optimal robust

explanation) is the multiset of ORE collections EB−ORE,ws = {E∗0, ...,E∗N−1} (as in

Definition 6.6), where E∗i is the ORE collection for network fwsi .

A Bayes-optimal robust explanation is the set of ORE collections, where each

ORE collection is from one BNN sample.

Finally, we define the concepts of a covering explanation and covering explanation

probability in terms of OREs.

Definition 6.8 (Bayes-Optimal Robust Covering Explanation) Given the pos-

terior distribution of the BNN P (w|D), a sample of N > 0 deterministic neural net-

works from the BNN’s weight distribution that predict class s, ˆfws = {fws0 , .., fwsN−1}, a

B-ORE EB−ORE,ws = {E∗0, ...,E∗N−1} (as in Definition 6.7), where E∗i is the ORE

collection (as in Definition 6.6) for network fwsi , then a B-ORCE (Bayes-optimal

robust covering explanation) is defined as:

EB-ORCE ∈ arg max
E∈F

∑
E∗∈EB−ORE,ws

1E∈E∗ (6.11)

The B-ORCE is the explanation that occurs in the most ORE collections of the

BNN samples.

Definition 6.9 (B-ORCE Probability) Given a sample of N > 0 determinis-

tic neural networks from the BNN’s weight distribution that predict class s, ˆfws =

{fws0 , .., fwsN−1}, a B-ORE EB−ORE,ws = {E∗0, ...,E∗N−1} (as in Definition 6.7), where

E∗i is the ORE collection (as in Definition 6.6) for network fwsi , and a B-ORCE

EB-ORCE, then the probability of the B-ORCE appearing in E∗ is:

PE∗(EB-ORCE) := Pwsi∼P (w|D)EB-ORCE ∈ E∗i.
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B-ORCE probability is the probability that the B-ORCE appears in the ORE

collection for a given BNN sample. As in Section 5.3.3, this probability comes with

statistical guarantees based on the number of samples.

6.4 Covering Results

This section demonstrates the notion of covering explanations for both feature score

methods, including LRP, IG and SHAP, and for the subset method B-OREs for image

and NLP tasks.

6.4.1 Bayesian Feature Score Methods

For the MNIST dataset experiments, we have trained a Bayesian fully connected (FC)

model, and a Bayesian convolutional (CNN) model for the GTSRB dataset. The

full experimental setup including architecture and hyper-parameters for the following

experiments can be found in Appendix A.4.

All experiments have been implemented in Python3, and libraries for each of the

three explanation methods are as follows: [34] for LRP, [52] for IG and [80] for SHAP.

The number of samples taken for each input network pair in all of the experiments is

100.

Results For Equation 6.7 Figures 6.1 and 6.2 display the covering explanations

generated using the simple version of function g, defined in Equation 6.7. Figure 6.1

shows three different input images chosen from the MNIST dataset, and the resulting

covering explanations and their probabilities from LRP, IG and SHAP. As discussed

above, the covering explanation probability is very low, and information about the

magnitudes of the remaining scores is discarded leading to information loss. Similar

findings can be observed in Figure 6.2, which displays an input chosen from the GT-

SRB dataset and the resulting covering explanations and probabilities from the three

explanation methods. Again, we see that the covering explanation probability is very

low in every case.
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Figure 6.1: Covering explanations and covering explanation probabilities (p) gener-
ated from the MNIST dataset using LRP, IG and SHAP explanation methods, and
using Equation 6.7 to define function g. Yellow pixels imply inclusion in the expla-
nation. Threshold value δ was set to 60% of the maximum relevance score.

Results For Feature Score Explanations Figures 6.3 and 6.4 display the covering

explanations generated using feature score explanations of Definition 6.5. Figure 6.3

shows the same three input images as the above experiment, chosen from the MNIST

dataset, and the resulting covering explanations and their probabilities from LRP, IG

and SHAP. The covering explanation probability is considerably higher in this case,

which implies that many Bayesian network samples agree on which features contribute

highly to the resulting prediction. Interestingly, there is quite a difference in the mag-

nitude of the covering explanation probability between different explanation methods.

The covering explanations generated using LRP with feature score explanations have

a higher average probability than those generated using IG or SHAP.

Similar findings can be observed in Figure 6.2, which displays the same input as
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Figure 6.2: Covering explanations and covering explanation probabilities (p) gen-
erated from the GTSRB dataset using LRP, IG and SHAP explanation methods,
and using Equation 6.7 to define function g. Yellow pixels imply inclusion in the
explanation. Threshold value δ was set to 15% of the maximum relevance score.

Figure 6.3: Covering explanations and covering explanation probabilities (p) gener-
ated from the MNIST dataset using LRP, IG and SHAP explanation methods, and
using feature score explanations (Definition 6.5). Yellow pixels imply inclusion in the
explanation.
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Figure 6.4: Covering explanations and covering explanation probabilities (p) gener-
ated from the GTSRB dataset using LRP, IG and SHAP explanation methods, and
using feature score explanations (Definition 6.5). Yellow pixels imply inclusion in the
explanation.

above, chosen from the GTSRB dataset, and the resulting covering explanations and

probabilities from the three explanation methods. Again, we see that the covering

explanation probability is much higher than before, and LRP is higher than both IG

and SHAP.

6.4.2 Bayes-Optimal Robust Explanations

Similarly to the experimental setup for our ORE analysis, we have trained both fully

connected (FC) and convolutional (CNN) models on the Stanford Sentiment Treebank

(SST) sentiment analysis dataset, except that these networks are Bayesian in nature.

Full details of the experimental setup can be found in Appendix A.4.

All experiments have been implemented in Python3 and use Neurify [125] to an-

swer robustness queries for determining possible OREs, as described in Section 4.9.

In the experiments below, similarly to the ORE analysis, we opted for the kNN-box

perturbation space as the k parameter is easier to interpret and tune than the ε

parameter for the ε-ball space. The B-ORCE cost function was defined as in Equa-

tion 6.12, where the set of unwanted words includes padding and lone punctuation.

Intuitively, this cost function encourages short explanations without uninterpretable

tokens. In all of these experiments, we take N = 100 as the number of Bayesian
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Figure 6.5: A selection of reviews from the SST dataset that include a name in their
Bayes-optimal robust covering explanation. The words included in the B-ORCE are
highlighted in blue, and the Bayesian network prediction and B-ORCE probability is
given alongside each.

network samples.

C(word) =

length(input text) + 1, if word ∈ unwanted words

1, otherwise

(6.12)

B-ORCE Results Table 6.1 shows a range of reviews from the SST dataset, along

with the Bayes-optimal robust covering explanation, the B-ORCE probability, the

Bayesian network prediction (all examples were classified correctly), and the predic-

tive variance (the variance of the predictions of the N sampled networks).

Over all 50 input texts, the average B-ORCE probability is 0.63. Interestingly, we

note that the B-ORCEs with higher probabilities tend to contain a greater proportion

of words with positive or negative connotations than those with lower probabilities,

at least in this selection of input texts. For example, the highest probability in the

table is p = 1.0 for the first entry, and the B-ORCE contains two words with highly

positive connotations, {‘fluid’,‘mesmerizing’}, in the context of movie reviews. In

contrast, the last entry in the table has the lowest probability at p = 0.28, and the

B-ORCE contains words including ‘those’ and ‘viewers’ which are not necessarily

associated either positively or negatively.

Figure 6.5 displays cases where a name appears in the B-ORCE. In the context

of movie reviews, the name of, for example, an actor or director, can be viewed as

a protected feature and should not affect the decision of the network. Especially in

the first example, we see that the name ‘Eyres’ constitutes the entire B-ORCE with
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Review EB-ORCE P (EB-ORCE) Pred Var
‘a fluid and mesmerizing
sequence of images’

{‘fluid’,
‘mesmerizing’} 1.0 Pos 0.0

‘gives ample opportunity for
largescale action and suspense’

{‘largescale’} 0.74 Pos 0.0

‘prosaic and dull’ {‘dull’} 0.66 Neg 0.0
‘you’re likely to have one
helluva time at the movies’

{‘helluva’, ‘movies’} 0.52 Pos 0.002

‘there’s a lot of good material
here’

{‘a’, ‘lot’ ‘good’} 0.5 Pos 0.01

‘impress even those viewers
who have little patience for
eurofilm pretension’

{‘impress’, ‘those’,
‘viewers’, ‘eurofilm’} 0.28 Pos 0.03

Table 6.1: A selection of reviews from the SST dataset with their Bayes-optimal
robust covering explanation, B-ORCE probability, Bayesian network prediction (all
reviews were correctly classified) and predictive variance (calculated as the variance
of the N network samples‘ predictions). Since predictions are either 0 (negative) or
1 (positive), the maximum possible predictive variance is 0.25.

p = 1, indicating that the name was an explanation for every sample of the BNN

and implies the decision. Since ‘Eyre’ is the name of filmmaker, this is unintended

and unwanted behaviour that has been exposed. In such cases, the model creator can

make use of data augmentation or similar techniques to avoid this type of model bias.

In addition to these experiments, we explored the relationship between predictive

variance, B-ORCE probability and B-ORCE length (as this is what the cost func-

tion tries to minimise). Note that there are only a few input texts with prediction

variance higher than 0, as the models were accurate enough so that finding such

examples was difficult. Figures 6.6, 6.7 and 6.8 are scatter plots comparing these

values. Figure 6.6, which plots the prediction variance versus B-ORCE probability,

shows that when there is no prediction variance, the B-ORCE probability is still com-

pletely variable. However, when the prediction variance takes values above 0, we see

a moderate to strong negative correlation (Pearson correlation coefficient = −0.35

(moderate), Spearman correlation coefficient = −0.60 (strong)) between prediction

variance and B-ORCE probability. This is somewhat expected, as a higher prediction

variance implies a more uncertain Bayesian network, which in turn leads to wider
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Figure 6.6: A scatter plot of prediction variance (the variance of the N sampled
networks predictions, in this case N = 100) versus the B-ORCE probability, for 50
different input texts.

weight distribution. BNN samples are expected to be further apart and that could

cause a greater difference in the ORE collections of each network, and therefore lower

the B-ORCE probability.

Figure 6.7, which plots the prediction variance versus the length of the B-ORCE,

shows that there were very few single word explanations (only 1) for prediction vari-

ances greater than 0. In fact, there is a weak to moderate positive correlation between

the two (Pearson correlation coefficient = 0.42 (moderate), Spearman correlation co-

efficient = 0.23 (weak)).

Finally, Figure 6.8 plots the B-ORCE probability versus the B-ORCE length.

There is a moderate to strong negative correlation between the two (Pearson correla-

tion coefficient = −0.55 (strong), Spearman correlation coefficient = −0.57 (moder-

ate)), which complements the correlations in the plots above, as a shorter B-ORCE

correlates with a lower prediction variance (from Figure 6.7), and lower prediction

variance allows for the maximum range of B-ORCE probabilities (from Figure 6.6).
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Figure 6.7: A scatter plot of prediction variance (the variance of the N sampled
networks predictions, in this case N = 100) versus the length of the resulting B-
ORCE, for 50 different input texts.

Figure 6.8: A scatter plot of the B-ORCE probability versus the length of the resulting
B-ORCE, for 50 different input texts.
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6.5 Analysing Bayes-Optimal Robust Explanations

In addition to generating a B-ORCE from a B-ORE, there is extra information con-

tained within the B-ORE that we can use to help us learn more about our models.

This section explores feature probability and what it can tell us about our model and

embedding space, whereas the next section goes further and derives a measure of

uncertainty from the feature probability, as well as showing its uses.

From the B-ORE, we can find the probability of a feature (in our experiments,

a word) being in each network samples‘ ORE collection, for each class. Since the

posterior distribution P (w|D) of the BNN induces a probability distribution over the

ORE collections, we can express the probability that a particular feature ti is included

in an ORE collection as below. Note that, although this definition is based on NLP

(words as features), features of any form can be used and the embedding function can

be set to the identity function, or omitted entirely (x can be set equal to the input

features directly) to produce the same effect.

Definition 6.10 (Linear Feature Attribution) Given the posterior distribution

of the BNN P (w|D), a sample of N > 0 deterministic neural networks from the

BNN’s weight distribution that predict class s, ˆfws = {fws0 , .., fwsN−1}, cost function C :

W → R≥0, input t = (w1, ..., wl) with embedding x = E(t), feature level perturbation

B, B-ORE EB-ORE,ws = {E∗0, ...,E∗N−1} (as in Definition 6.7), where E∗i is the

ORE collection (as in Definition 6.6) for network fwsi , and a feature ti ∈ t, then the

probability of feature ti appearing in an ORE collection E∗ is defined as:

PE∗,t(ti) := Pwsj∼P (w|D)ti ∈ E∗j

Now that we have access to this probability, we are able to explore how the value

changes over different inputs. Most notably, since a B-ORE can be generated for

every possible class, we can study the value over different classes for the same input.

Tables 6.2, 6.3 and 6.4 contain example input texts from the SST dataset, and the

resulting word probabilities for each class, according to Definition 6.10. To generate
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P(w) ‘feminist’ ‘action’ ‘fantasy’
c = Pos 0.84 0.90 0.90
c = Neg 0.92 0.96 0.94

Table 6.2: A movie review from the SST dataset and the resulting word probabil-
ity. The review was classified as negative and the ground truth was positive. The
prediction variance was 0.24.

P(w) ‘the’ ‘innate’ ‘theatrics’ ‘that’ ‘provide’ ‘its’ ‘thrills’ ‘and’ ‘extreme’ ‘emotions’
s = Pos 0.41 0.91 0.48 0.88 0.62 0.60 0.83 0.83 0.83 0.64
s = Neg 1.0 1.0 0.88 1.0 0.25 0.625 1.0 0.875 1.0 0.75

Table 6.3: A movie review from the SST dataset and the resulting word probabil-
ity. The review was classified as positive and the ground truth was negative. The
prediction variance was 0.14.

a sufficient number of BNN samples that predict each possible class, input texts with

a high prediction variance have been chosen. The same experimental setup as in

Section 6.4.2 is used as these results come from the same set of experiments.

Table 6.2 shows an example where all words have a high probability in both classes.

Since all probabilities are high, the most likely implication is that this input as a whole

is very sensitive to perturbations, and so all words must almost always appear in the

explanations, rather than implying anything else about the model behaviour.

Tables 6.3 and 6.4 show examples where only some words have a high probability

in both classes. The words that have a high probability in one class and a low

probability in the other show that the model knows with more certainty what class

these words contribute to. Words with similar probabilities in both classes (whether

low, medium or high) show that the network is unsure about the classification of these

words, and that they may not contribute either way (i.e., they are neutral words).

The words with high probability in both classes are a more difficult case to interpret.

Due to the nature of OREs, a word with a high probability in both classes indicates

P(w) ‘Todd’ ‘Solondz’ ‘takes’ ‘aim’ ‘on’ ‘political’ ‘correctness’ ‘and’ ‘suburban’ ‘families’
c = Pos 0.36 0.90 0.31 0.56 0.07 0.64 0.17 0.10 0.50 0.36
c = Neg 0.30 0.70 0.35 1.00 0.30 0.95 0.30 0.85 0.60 0.35

Table 6.4: A movie review from the SST dataset and the resulting word probabil-
ity. The review was classified as positive and the ground truth was negative. The
prediction variance was 0.13.
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that this word, in the embedding space, is very close to a decision boundary. By

examining the word probabilities over each class, it may give us more insight into the

quality of our embedding and indicate when more training might be necessary.

6.6 Uncertainty Quantification In B-OREs

This section explores how uncertainty information can be used alongside Bayesian

explanations to improve AI safety, illustrated on NLP tasks.

6.6.1 Feature Uncertainty

Using Definition 6.10, we have a probability that a given word ti ∈ t is in the ORE

collection E∗ for a BNN sample. We can obtain an a priori statistical guarantee on

the linear feature attribution using the Chernoff bounds to determine the necessary

sample size for a given absolute error bound and confidence level, similarly to Sec-

tion 5.3.3. The probability for a word ti, in essence, captures our uncertainty about

the word ti being part of an ORE implying the classification. It is clear that we are

most uncertain when PE∗,t(ti) = 0.5, thus indicating that, for half of our networks in

the Bayesian posterior, this word implies the classification and for the other half it

does not. Thus, intuitively, we can measure our uncertainty, which we label feature

uncertainty, in this quantity as the binary entropy of the probability.

Definition 6.11 (Feature Uncertainty) Given P (w|D), N , t, ˆfws, C, x, E, B

and EB-ORE,ws = {E∗0, ...,E∗N−1} as in Definition 6.10, feature uncertainty of input

word ti ∈ t is given as:

H(q) = −qlog2q − (1− q)log2(1− q)

where q = PE∗,t(ti).

Now that we have a measure of uncertainty for each input word, we can measure

the uncertainty of the entire input text using one of several possible aggregation
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strategies. First, we can use the Average Explanation Uncertainty (AEU):

AEU(t) :=
1

l

l∑
i=0

H(PE∗,t(ti)) (6.13)

We can also use the Maximum Explanation Uncertainty (MEU):

MEU(t) := max
i∈{0,...,l}

H(PE∗,t(ti)) (6.14)

These measures stand in contrast to the typical notion of predictive uncertainty

that are used in Bayesian deep learning, which rely only on the variance of the output

variable. However, we can validate the usefulness of these two measures by examin-

ing their correlation with the predictive uncertainty. Intuitively, we expect that both

the MEU and AEU will be high when predictive uncertainty is high and allows us

to have a robust attribution of our predictive uncertainties to particular input tokens.

Discussion of Usage To the best of our knowledge, this is a novel notion of uncer-

tainty attribution which can be used for debugging, active learning or ranking features

by importance to the prediction. Feature uncertainty can be used in a posteriori de-

bugging of Bayesian neural networks, for example, features with high uncertainty

can be examined (either input by input, or globally over the whole training set) and

one can determine whether more training data is needed, or whether a feature is

(correctly) not associated with any class. In active learning frameworks, feature un-

certainty could be used as a portion of an acquisition function to allow the model to

learn new words. In the next section, we explore the use of feature uncertainty in

explanation feature ranking, in order to provide the human decision maker with infor-

mation on the importance of features to the decision. All of these uses contribute to

safety assurance for AI systems in some way, and there are likely many more possible

uses of feature uncertainty that we have yet to discover.
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6.6.2 Feature Ranking

We now focus on the use of individual feature uncertainties (Definition 6.11) in con-

junction with Bayes-optimal robust covering explanations (Definition 6.8). A B-

ORCE gives us the explanation that most BNN samples agree on. By examining the

feature uncertainty of each feature (in our case, word) in the B-ORCE, we can learn

about the ordering of importance of the features that imply the prediction, among

other uses.

Features in the B-ORCE with lower feature uncertainty tell us that the BNN is

more certain that those features imply the prediction. For this reason, we can give the

features a ranking of importance from most important (lowest feature uncertainty) to

least important (highest feature uncertainty). Note that all features in the B-ORCE

combined are what implies the prediction, but within that set it may be useful to

know the ranking. For example, if a protected feature (e.g. the name of a director)

appears in the B-ORCE with a low feature uncertainty (and therefore high rank), we

can postulate that the BNN relies on this feature for prediction. However, if the same

feature appears in the B-ORCE with a high feature uncertainty, we are less sure about

the role of this feature in the BNN prediction, and, even though it is included in the

B-ORCE, we may deem that to be acceptable over a given uncertainty threshold.

6.6.3 Global Feature Uncertainty Analysis

We now turn to explore what information feature uncertainty can provide about the

BNN model as a whole. Consider looking at the feature uncertainty of all of the

words in explanations that imply one class (positive or negative, in the case of the

SST dataset). We hypothesise that the words in this set with the lowest feature

uncertainty are most strongly associated with the predictive class. By examining

these sets for each class, we get a global view of the words that contribute to each

prediction along with their ranking, allowing the human interpreter to understand

what is important to the model, and to spot potential problems.

In contrast to this, looking at the set of words with the highest feature uncertainty
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over all classes gives us an insight into which words the model does not associate with

either class. We expect that, for a well-trained BNN on the sentiment analysis task,

the majority of this set of words will be words not associated with a strong negative

or positive sentiment (for example, conjunctions and adverbs). Empirically, we found

this to be true, as demonstrated in the results section below.

6.7 Uncertainty Results

For the following experiments, we use the same experimental setup as in Section 6.4.2:

a Bayesian FC model trained on the SST dataset. See Appendix A.4 for more detail.

6.7.1 Feature Uncertainty Results

Figure 6.9 displays several input texts and the resulting feature uncertainty of each

word. We observe that, in almost all of our 50 input examples, the words with the

most semantic meaning have the lowest feature uncertainty. As it is a known fact

that OREs are sufficient for the prediction, this shows that, for B-OREs, there exists

a robust explanatory landscape composed of relevant words (i.e. polarised terms).

Figures 6.10 and 6.11 show scatter plots of the average and maximum values of

feature uncertainty versus predicitve uncertainty. In both cases, there is no significant

correlation (the Pearson and Spearman coefficients are both close to zero).

6.7.2 Word Ranking Results

Figure 6.12 shows the same selection of input texts as in Figure 6.9, but with the

B-ORCE highlighted in red. Our results show that the words in the B-ORCE consis-

tently have a lower feature uncertainty than the majority of other words in the input.

This solidifies the use of a B-ORCE to explain the prediction of a BNN, as we can see

that the BNN is, in general, most certain about the words in the B-ORCE. Table 6.5

shows the same input texts with the actual ranking of the words in the B-ORCE.

We observe that the highest ranking words have a significant semantic meaning, ex-
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Figure 6.9: A selection of reviews from the SST dataset and the resulting feature
uncertainty from the B-ORE.

Figure 6.10: A scatter plot of the average feature uncertainty against predictive
uncertainty over a sample of 50 reviews from the SST dataset.
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Figure 6.11: A scatter plot of the maximum feature uncertainty against predictive
uncertainty over a sample of 50 reviews from the SST dataset.

Figure 6.12: A selection of reviews from the SST dataset and the resulting feature
uncertainty from the B-ORE. The B-ORCE is highlighted in red.
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Review Ranked EB-ORCE

‘a fluid and mesmerizing
sequence of images’

{‘fluid’:1,
‘mesmerizing’:2}

‘entertaining enough and worth a
look’

{‘entertaining’:1,
‘enough’:2, ‘a’:3}

‘it’s a pleasure to enjoy their
eccentricities’

{‘eccentricities’:1}

‘represents an auspicious feature
debut for Chaiken’

{‘represents’:3, ‘an’:4,
‘auspicious’:2, ‘Chaiken’:1}

Table 6.5: A selection of reviews from the SST dataset and their B-ORCE, with a
ranking given to each word in the B-ORCE. 1 means most important (lowest feature
uncertainty).

cept in the last case. The last review is showing us that the name ‘Chaiken’ is most

important to the prediction, indicating a weakness in the BNN model and that data

augmentation or more training is needed.

6.7.3 Mutual Information Analysis

The analysis of the mutual information (MI) of a set of B-OREs can shed light on the

role played by word pairs in a model decision. Consider the first entry in Figure 6.9

and 6.12, where the B-ORCE is {fluid, mesmerizing}. When we analyse the mutual

information (MI) between each pair of words, as depicted in Figure 6.13 (left), we

observe that ‘fluid’ and ‘mesmerizing’ are both highly predictable when ‘of’ is in an

ORE: please note that both ‘fluid’ and ‘mesmerizing’ have high probability of being

in an ORE, opposed to ‘of’ whose odds are very low (right plot). On the other hand,

the MI between ‘fluid’ and ‘mesmerizing’ is low, thus informing us that both these

words appear with words different than ‘of’ in multiple OREs.

6.7.4 Global Feature Uncertainty Results

Figures 6.14 and 6.15 depict word clouds of all of the words appearing in positive

and negative reviews respectively. The size of the word is determined by the feature

uncertainty of that word (the average if the word appears in more than one review),

where a larger word indicates a lower feature uncertainty. In both the positive and
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Figure 6.13: Mutual information of each word pair as they appear in a B-OREs (left),
alongside the probability of each word to being part of an ORE when a deterministic
neural network is sampled from the posterior distribution (right).
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Figure 6.14: A word cloud depicting the words in reviews predicted as positive, where
the size of the word indicates the average feature uncertainty of that word. A larger
word indicates a lower feature uncertainty.

negative class, we observe that the largest words are, in general, words that are

strongly associated with a positive (or negative) sentiment. This allows the human

decision maker to view, at a glance, what words the BNN relies on to predict one

class or the other. We observe that, in both word clouds, infrequent words (‘chaiken’,

‘chafing’ to name one for each figure) are ORE building blocks (i.e., their uncertainty

is very low). As those words probably never appear in a training set, both the word

clouds tell us that our BNN is overly robust to rare/out-of-vocabulary words and

might thus require a re-calibration in that sense. We observe, based on this empirical

study only, that in Figure 6.14 the terms are well-known and commonly used as

opposed to those in Figure 6.15 that are infrequent. From these word clouds, we

determine that this specific model behavior can be approximated by a rule such as

‘if there is a positive term it is likely to be a positive review; if there is an infrequent

term it is likely to be negative.‘

On the other hand, Figure 6.16 depicts a word cloud of all the words appearing in

any class, where the size of the word is again determined by their feature uncertainty.

In this case, a larger word indicates higher feature uncertainty. This word cloud gives

the human decision maker a view of what words the BNN is most unsure about, that
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Figure 6.15: A word cloud depicting the words in reviews predicted as negative, where
the size of the word indicates the average feature uncertainty of that word. A larger
word indicates a lower feature uncertainty.

is, those words that the BNN does not strongly associate to either class.

Finally, Figure 6.17 groups words into their different categories and then plots

the average feature uncertainty of each word type. Words are given types using the

Natual Language Toolkit Python library [7]. Whilst most labels are straightforward,

we note that in WordNet (where the label data comes from), adjectives are grouped

into adjectives and adjective satellites where an adjective is the “center” of its group,

and adjective satellites are synonyms of that adjective. For example, an adjective

may be ‘dry’ and its satellite set might contain the words ‘arid’, ‘rainless’ etc. The

‘Other’ category covers all words not included in any other category.

In a well-trained BNN, we would expect the lowest feature uncertainty to occur

when the word is an adjective, as descriptive words are most likely to be associated

with a positive or negative sentiment. This is indeed the case, as demonstrated in

the figure.
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Figure 6.16: A word cloud depicting the words in all reviews, where the size of the
word indicates the average feature uncertainty of that word. A larger word indicates
a higher feature uncertainty.

Figure 6.17: The average feature uncertainty, over all classes and reviews, of a group
of words of a given type. Type ‘Other’ contains all words not grouped into another
type.
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6.8 Summary

In summary, we present a series of experiments and definitions that combine the un-

certainty information available from Bayesian neural networks with local explanation

methods. We show how to formulate Bayesian versions of feature score-based ex-

planation methods such as LRP, as well as a Bayesian version of our OREs, called

Bayes-optimal robust explanations (B-OREs). We define the notion of a covering

explanation, which condenses the information produced from a number of BNN pos-

terior samples into a single explanation, with a probability of the likelihood that that

explanation is an explanation of a random sample. In the case of Bayes-optimal ro-

bust covering explanations, we obtain a probability for how likely the explanation is

to imply the prediction. Further to this, we combine Bayesian covering explanations

with feature uncertainty, to give an ordering of importance to each feature that ap-

pears in the covering explanation. Finally, we show that feature uncertainty can be

used to give a global overview of the input features that the model most associates

with each class.
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Chapter 7

Conclusion and Future Work

Summary The questions posed and answered within this thesis can be summarised

by the more abstract question: how can we improve the safety of AI systems in real-

word safety-critical applications? In short, we answer this question by developing

robust explanation methods with provable guarantees, and we advocate the use of

Bayesian neural networks for the power of the uncertainty information that can be

extracted from them.

Explainability can play a key role in ensuring safety, and explainability for neural

networks is a fairly well studied field, yet very few existing techniques provide any

guarantees on the resulting explanations. The techniques that do provide guarantees,

e.g. that the explanation is logically sufficient to imply the prediction (robustness),

do not scale well to even small CNNs and the unbounded nature of the perturbations

used in verifying that the explanation is robust can often result in trivial explanations

equal to the entire input. Formal methods that produce explanations with unbounded

perturbations are very useful for certain applications, but not for many others. For

example, if we consider an image of a traffic sign that we want a robust explanation

for, then an all green image is a valid perturbation and would lead to every single pixel

of the image being labeled as necessary to justify the prediction, and therefore con-

stitute part of the explanation. Chapter 4 introduces the notion of an optimal robust

explanation (ORE) that is both sufficient to imply the prediction and is optimal with

respect to a cost function. We define multiple such cost functions, but the simplest is
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the length of the explanation. This leads to much more principled explanations that

can be used by the human model creator or decision maker to monitor and combat

model bias, to debug models and repair other non-formal explainers.

Traditional, deterministic neural networks suffer from a lack of information on

confidence in the model prediction. For example, if we have a neural network that

is trained to classify cats and dogs and we give it an image of an emu, it will tell

us it is either a cat or dog since it has no way of telling us that it is neither. In

contrast, Bayesian neural networks allow a measure of uncertainty to be paired with

the output, so in our example, a BNN could tell us that the emu was a dog, but

only with 5% certainty (where certainty is taken as the variance of N samples of

the BNNs posterior weight distribution). Evidently, uncertainty information is very

useful in ensuring safety, and, using that uncertainty information, we can decide

that the decision of the network is nowhere near certain enough for us to believe it.

Chapter 5 presents a statistical framework for evaluating the safety of BNN end-to-

end controllers, with demonstration in a self-driving context. Using a BNN within

this framework, we are able to provide bounds on the safety of the system with a

priori statistical guarantees, among other things.

Finally, we combine the above work in Chapter 6. This is an exploratory chapter,

with little prior literature to reference, that investigates how we can combine the

powerful uncertainty information available from BNNs with neural network explana-

tion methods and proposes a variety of metrics to measure robustness, to allow us to

glimpse even more insight into model behaviour and stronger robustness guarantees.

Contributions The main contributions of this thesis are summarised here again.

• We present a method to derive local explanations, primarily for NLP models,

with provable robustness and optimality guarantees. We call such explanation

Optimal Robust Explanations (OREs). This method shares similarities with

abduction-based explanations (ABEs) [58], but is better suited to any model

(́ın particular NLP models) where the unbounded nature of ABEs may result in

trivial explanations, of no use to the human interpreter. We demonstrate that
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our approach can provide useful explanations for non-trivial fully-connected and

convolutional neural networks on three widely used sentiment analysis bench-

marks, and we provide a framework for computing our OREs with a choice of

solution algorithms based on either hitting sets or minimum satisfying assign-

ments with the Marabou and Neurify solvers. Finally, we compare OREs with

a state-of-the-art explanation method, called Anchors, and we show that An-

chors often lack prediction robustness in our benchmarks. We demonstrate the

usefulness of our framework on tasks such as model debugging, bias evaluation

and repair of non-formal explainers like Anchors.

• We present a statistical framework for evaluating the safety of end-to-end BNN

controllers for applications in self-driving. This framework allows one to obtain

and quantify the quality of uncertainty estimates for the controller’s decisions,

and provides bounds on the safety of the entire system with respect to a given

criteria, with high probability and a priori statistical guarantees. We show

that this framework can be used to evaluate model robustness to changes in

weather, location and observation noise, and we empirically demonstrate that

our real-time statistical estimates can be used to avoid a high percentage of

collisions.

• Finally, we present a framework that combines the uncertainty information

available from Bayesian neural networks with local explanation methods. We

show how to formulate Bayesian versions of feature score-based explanation

methods such as LRP, as well as a Bayesian version of our OREs, called Bayes-

optimal robust explanations (B-OREs). We define the notion of a covering

explanation, which condenses the information produced from a number of BNN

posterior samples into a single explanation, with a probability of the likelihood

that the explanation is an explanation of a random sample. In the case of

Bayes-optimal robust covering explanations, we obtain a probability for how

likely the explanation is to imply the prediction. Further to this, we combine

Bayesian covering explanations with feature uncertainty, to give an ordering of
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importance to each feature that appears in the covering explanation. Finally,

we show that feature uncertainty can be used to give a global overview of the

input features that the model most associates with each class.

Appraisal Whilst we have made the strengths of our contributions to AI safety ap-

parent, it is worth reiterating them along with taking time to reflect on the limitations

of our methods.

In Chapter 4, our notion of OREs provide the human interpreter with useful,

optimal and robust explanations for neural network models. This novel method pro-

vides guarantees on the explanations it produces, which is key in improving safety

and advancing the field of AI explanations. A, perhaps temporary, drawback of our

method is its ability to scale. Whilst OREs can be computed easily for applica-

tions such as NLP, where the input is a low-dimensional feature vector, our use of

black-box solving oracles means that higher-dimensional feature vectors and larger

networks are too computationally complex to be feasible. Any improvement in these

third-party black-box oracles will lead to improvements in the performance of our

methods, however.

Chapter 5 provides new methods to quantify and harness uncertainty informa-

tion from Bayesian neural networks in safety-critical and real-time applications, with

bounds on safety of the entire system. Our notion of probabilistic safety allows for

greater safety in event-planning over a given time horizon, and our notion of real-time

decision confidence allows a system to monitor and react to possible danger (areas of

low confidence) that was previously unseen. A limitation of our work is the number

of samples needed to achieve a small error bound and high confidence. For example,

to achieve an error bound of 0.01 and confidence of 0.99, we must take 3516 samples.

Whilst this is feasible on most computers using batch computations, this may pose

a problem when considering smaller embedded systems found in some autonomous

vehicles or similar, as it may be too slow to operate in real time.

In Chapter 6, we explore how useful explanations can be derived from decision

functions with uncertainty information. Since there is so little literature in this area,

any insights here are important and our work shows promise in helping to ensure
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the safety of AI applications. However, our work is by no means fully comprehensive

and there are a lot of avenues left to explore. For example, one limitation of our

work is that we do not systematically evaluate a range of posterior inference methods

to determine which produces the highest quality uncertainty information for use in

Bayesian explanations. Our work also suffers from the same lack of scalability as

OREs due to the black-box oracle used.

Insights and Observations We now take some time to make note of a range of

interesting insights and observations that we have noticed over the course of this

thesis.

First, we discuss some general insights gained over the course of this project.

Laws and regulations from governments around the world have caught up with the

problems AI systems pose, and governance surrounding such systems is being put in

place. Despite this, the safety of AI systems certainly does not seem to be a priority

of the AI creators. The volume of research on these topics has significantly increased

over the past decade. However, so has the volume of research on improving the

accuracy, performance and architecture of neural networks without regard to safety

(including explainability and local robustness, among other things), and with a much

steeper gradient.

Bayesian uncertainty is an incredibly powerful asset to AI creators, but Bayesian

models are underused. The literature introducing Bayesian models is definitely in-

creasing, but more research must be done to convince the general AI community that

Bayesian neural networks hold promise for a multitude of AI applications.

Following on from this, we note some specific observations that may be of use to

researchers following in our footsteps. The highest quality of uncertainty information

that we have seen is from Bayesian neural networks trained with the Hamitonian

Monte Carlo (HMC) method of Bayesian inference. Unfortunately, this also seems

to be the most difficult inference method to train a model with, and the author has

spent countless hours optimising hyperparameters. Compared to networks trained

with variational inference or Monte Carlo dropout, it is very difficult to achieve the

163



same level of accuracy without spending a lot of time adjusting parts.

We conclude that explanation methods that consider negative space are more valu-

able than methods that do not. By negative space, we refer to parts of an input that

are not above the average background level, for example, the black space surround-

ing the digits in the MNIST dataset. This negative space is often very important in

classification: for example, we could consider a ‘5’ digit on a digital display as an

‘8’ without two sticks. By disregarding this information, we may overlook important

features for the classification.

Producing black-box safety guarantees appears to be an unsolved and incredi-

bly difficult problem. For this reason, we stress the need for an easy-to-use suite

of software tools that allow AI developers to incorporate safety and robustness into

their everyday work. Along similar lines, producing black-box explanation methods

with robustness guarantees seems equally difficult. We expect that focus on scaling

white-box explanation methods, and incorporation into common software tools, will

increase uptake and improve safety and explainability over many fields of AI.

Further Work There are many directions one could take based on the work in this

thesis. With regards to optimal robust explanations, a first step would be to explore

a more general class of perturbations beyond the embedding space. For example, we

could examine how OREs are formed with perturbations such as adding positively

or negatively charged words (that should not affect the outcome), or we could con-

sider perturbations in the input space directly. While the current work focuses on

fully-connected and convolutional neural network architectures only, we note that

our method would work with recurrent neural networks also. The difficulty here is

that recurrent neural networks add a layer of complexity which is computationally

challenging for our current framework, even though there are preliminary verifica-

tion tools for recurrent networks. However, since our method is independent of the

particular robustness oracle used, it can directly benefit from any advancement in

these kinds of techniques, alongside a more compact representation of neural network

models.
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Examining how our Bayesian safety framework, detailed in Chapter 5, performs

with real driving data, as opposed to simulation, could reveal some interesting insight.

The well known “reality gap”, which describes the difficulty of transferring simulated

experience into the real word, could pose unexpected problems, or even reveal previ-

ously unknown facts, and research into this would help to advance the safety of such

real-world systems. In addition to this, we would like to evaluate safety in more envi-

ronmental conditions and over longer journeys (even entire cities), which would allow

us to identify problematic areas and which conditions they occur in. Furthermore, we

could explore the use of our offline safety probabilities as a guide for active learning

to increase data coverage. If the safety probability in a given city area is particularly

low, more training data of that area could be used to improve the accuracy of the

controller.

Similarly to the exploration of different inference methods in Chapter 5, we would

like to explore the effect of different inference methods whilst training our Bayesian

neural networks on the feature uncertainties we extract from our Bayes-optimal ro-

bust covering explanations. We suspect that, since different inference methods appear

to provide a range of calibration levels of uncertainty, we will see a variation in uncer-

tainty estimates between methods. Determining the best inference method for each

specific application (primarily sentiment analysis since that is what we focus on) will

provide the human decision maker with higher quality information about the models

they are using. Scaling our B-ORCEs to networks with far more inputs and layers,

such as for image classification, is another important step for this work. Similarly to

the work in Chapter 4, our method will directly benefit from any advancements in

robustness oracles of network representations. Finally, we would like to explore the

use of our B-ORCEs and uncertainty estimates in the area of fairness. Since we are

able to detect bias accurately in the model, this is an obvious extension of our work.

In the future, it would be desirable to combine all of the frameworks and tools

developed within this thesis into a software package for Bayesian neural network safety

and interpretation, so that researchers around the world may benefit from our work.
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Appendix A

Experimental Setup

This Appendix details the datasets and experimental setup used throughout the the-

sis.

A.1 Datasets

This section introduces both industry standard and author-constructed datasets that

are used in this thesis.

MNIST The Modified National Institute of Standards and Technology (MNIST)

dataset is a large collection of images of handwritten digits that is commonly used

for training image processing systems. It can be found here [28], and some example

images can be seen in Figure A.1.

SST The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that

allows for a complete analysis of the compositional effects of sentiment in language.

It can be found here [113], and an example input can be seen in Figure A.2.

Twitter The Twitter dataset contains 1.6 million Tweets, each labelled with their

sentiment (positive or negative). It can be found here [43], and an example input can
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Figure A.1: Two example images from the MNIST dataset.

Figure A.2: Three examples from the SST, Twitter and IMDB datasets.

be seen in Figure A.2.

IMDB The IMDB dataset contains 25, 000 movie reviews, each labelled with their

score between 1 and 10, except that we map scores of 4 and below to 0 (negative

sentiment) and 5 and above to 1 (positive sentiment), just as the original authors

have done. It can be found here [82], and an example input can be seen in Figure A.2.

GTSRB The German Traffic Sign Recognition dataset is an image classification

dataset with photos of traffic signs distributed over 43 classes. It can be found here

[54], and some example images can be seen in Figure A.3.

Autonomous Driving Dataset The dataset used in Chapter 5 of this thesis was

handcrafted by the author. Using the Carla simulator [31], the autonomous vehicle
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Figure A.3: Two example images from the GTSRB dataset.

Figure A.4: Two example images from the autonomous driving dataset.

was driven around the map using a games controller, whilst images along with the

steering angle (the angle of the controllers analogue stick), location and speed were

recorded. This was done over a range of different environments (city, countryside)

and for a range of different light levels and weather events. Some example images can

be seen in Figure A.4.

A.2 Experimental Setup for Chapter 4

We have trained fully connected (FC) and convolutional neural network (CNN) mod-

els on sentiment analysis datasets that differ in the input length and difficulty of the

learning task. Experiments were parallelized on a server with two 24-core Intel Xenon

6252 processors and 256GB of RAM, but each instance is single-threaded and can be

executed on a low-end laptop. We considered 3 well-established benchmarks for sen-

timent analysis: SST [112], Twitter [43] and IMDB [82] datasets. From these, we

have chosen 40 representative input texts, balancing positive and negative examples.
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Table A.1.1: Training Details
TWITTER SST IMDB

Inputs (Train, Test) 1.55M, 50K 117.22K, 1.82K 25K, 25K

# Classes 2 2 2

Input Length (max, max. used) 88, 50 52, 50 2315, 100

Model Types FC, CNN FC, CNN FC, CNN

# Layers (min,max) 3,6 3,6 3,6

Test Accuracy (min, max) 0.77, 0.81 0.82, 0.89 0.69, 0.81

# Parameters (min,max) 3K, 18K 1.3K, 10K 5K, 17K

Table A.1.2: Experimental Details
TWITTER SST IMDB

Sample Size 40 40 40

Review Length (min-max) 10, 50 10, 50 25, 100

Table A.1: Datasets used for training/testing and extracting explanations. We report
various metrics concerning the networks and the training phase (including accuracy
on the test set), while in Table A.1.2 we report the number of texts for which we have
extracted explanations along with the number of words considered when calculating
OREs: samples were chosen to reflect the variety of the original datasets, i.e., a mix
of long/short inputs equally divided into positive and negative instances.

Embeddings are pre-trained on the same datasets used for classification [22].

We performed our experiments on networks with up to 6 layers and 20K param-

eters. FC networks are made up of a stack of fully connected layers, while CNNs

additionally employ convolutional and max pool layers: for both CNN and FC mod-

els, the decision is taken through a softmax layer. Dropout is added after each layer

to improve generalization during the training phase. With regard to the embed-

dings that the models equip, we found that the best trade-off between the accuracy

of the network and the formal guarantees that we need to provide is reached with

low-dimensional embeddings, thus we employed optimized vectors of dimension 5 for

each word in the embedding space. This is in line with the experimental evaluations

conducted in [96], where for low-order tasks such as sentiment analysis, compact

embedding vectors allow one to obtain good performance, as shown in Table A.1.

Table A.1 gives a full view of the models used.

Both the HS and MSA algorithms have been implemented in Python and use

Marabou [61] and Neurify [125] to answer robustness queries. Marabou is fast at

verifying ReLU FC networks, but it becomes memory intensive with CNNs. On the
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other hand, the symbolic interval analysis of Neurify is more efficient for CNNs. A

downside of Neurify is that it is less flexible in the constraint definition (inputs have to

be represented as squared bi-dimensional grids, thus posing problems for NLP inputs

which are usually specified as 3D tensors).

In the majority of the experiments, we opted for the kNN-box perturbation space,

as we found that the k parameter was easier to interpret and tune than the ε parameter

for the ε-ball space, and improved verification time.

A.3 Experimental Setup for Chapter 5

A.3.1 Data Acquisition and Processing

CARLA The experiments in this chapter use the CARLA simulator, a state-of-the-

art, open-source simulator for autonomous driving research [31]. CARLA has been

developed specifically to support the training of autonomous driving systems and

is completely open-source. The environment CARLA provides ranges from simple

country roads to full city simulations, including other vehicles, cyclists, pedestrians,

emergency services, fully dynamic weather, working traffic lights and more. Impor-

tantly, the 3D models created for the CARLA simulator mean that images taken

within the simulator are very similar to the real world. Finally, CARLA provides

some autonomous driving baselines within it, and allows the user to generate training

data using an “autopilot”, which knows the whole state of the environment. How-

ever, we stress that any simulator can be used within this framework, assuming it can

simulate car trajectories, and generate images that can be used by the controller, for

example the much more simple Udacity simulator [122].

Processing All training data, which consists of (image, steering angle) pairs, was

acquired within the CARLA simulator, either through manual driving or use of the

built-in autopilot. During experiments, we also make use of the car’s trajectory data,

which is provided in the form of a list of GPS coordinates from the simulator. Images
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are converted to grayscale and scaled to a size of 64 × 48 pixels, and steering angles

(recorded between -1 and 1) are binned into intervals of tenths. The data recorded

consists of three scenarios: a right turn on a roundabout and a straight segment of

a road with and without an obstacle (stationary vehicle). It is possible to vary the

weather within the simulator, however the weather condition in all of the training

data is “clear noon”.

A.3.2 Network Architecture

The architecture of the neural network models used in this chapter are based on Pilot-

Net [11], NVidia’s first end-to-end controller for self-driving. Traditionally, steering

angle prediction has been treated as a regression problem. However, it has been shown

that posing regression tasks as classification tasks often shows improvement over di-

rect regression training [103]. In addition to this, although theoretically continuous,

steering angle in the real-world is commonly a discrete variable due to mechanical

limitations. Therefore, we have modified the final layers of our neural network archi-

tectures to have neurons equal to the number of classes (variable per experiment),

and a softmax activation function.

We fix the convolutional layers and first fully connected layer, and use the fi-

nal layers for uncertainty extraction (similarly to [93]). For MCD, we use concrete

dropout [41] on the final three layers (and leave the fourth fully connected). For VI

and HMC, we use an additional four fully connected layers, where the input to the

first layer are the features extracted from the final fixed network layer. All other

activation functions are ReLU. A diagram demonstrating these designs can be seen

in Figure A.5.

In our experiments, for an observation o we have that π(o), the BNN decision,

is given by the most likely class. However, we stress that other choices for π(o)

are possible according to the particular loss function (see e.g., [8]) and the methods

presented in this paper are independent of the criteria for assigning π(o). For example,

π(o) could be the mean of n samples of the BNN in the case of regression with the

mean squared loss function (called model averaging [39]).
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Figure A.5: The architecture of the neural networks used in this chapter. Activation
functions are all ReLU except the last layer which uses softmax.
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A.3.3 Network Training

This section summarises how the networks for each inference technique were trained.

MCD The cross-entropy loss function is used, along with the ADAM optimizer

with a learning rate of 0.0001 and the dropout probabilities tuned with concrete

dropout, which converged to (0.1, 0.08, 0.08). The batch size is 16 and it was trained

for 25 epochs.

VI Features are first extracted from the final fixed layer of the network using

the weights from the MCD network for these initial layers. Then, we impose prior

distributions on the weights of the final four, fully-connected layers. These are normal

distributions with mean 0 and variable variance. Inference was then performed with

a step size of 0.0001, a minibatch size of 512 and 30000 iterations, using the Edward

python library [121], and the posterior is also in the form of a normal distribution.

HMC The prior distributions for the HMC networks are as above; however, the

posterior here is an empirical distribution based on sampling with the HMC algorithm.

We use 10 steps of numerical integration prior to judging the acceptance criteria of

each sample.

A.4 Experimental Setup for Chapter 6

A.4.1 Bayesian Feature Score Methods

For these experiments, we have trained a Bayesian FC model on the MNIST dataset

and a Bayesian CNN model on the GTSRB dataset. Experiments were performed on

a server with two 24-core Intel Xenon 6252 processors and 256GB of RAM, but as

each experiment only utilised one core and roughly 8GB of RAM, they could be run

on a desktop PC. The input images have been scaled to a size of 14× 14 pixels in the

case of MNIST, and 30× 30 pixels for GTSRB, though colour information has been

retained where available.

The architecture of the Bayesian FC model is as follows: a dense layer of size 256,

a dense layer of size 128 and finally a dense layer with size equal to the number of
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classes (10). The total number of parameters is 183, 268. All activation functions are

ReLU except the last which is softmax. The network, constructed and trained using

the DeepBayes python library [127], uses variational online Gauss Newton (VOGN)

[68] during inference, along with the sparse categorical crossentropy loss. The model

was trained for 25 epochs with a learning rate of 0.25, and achieved an overall accuracy

of 97.1% on the test dataset.

The architecture of the Bayesian CNN model is as follows: a convolutional layer

with 4 filters and kernel size 3× 3, a max pooling layer, a convolutional layer with 8

filters and kernel size 3×3, a max pooling layer, a flattening layer, a dense layer of size

128 and finally a dense layer with size equal to the number of classes (43). The total

number of parameters is 56, 259. All activation functions are ReLU except the last

which is softmax. The network, constructed and trained using the DeepBayes python

library, uses VOGN during inference, along with the sparse categorical crossentropy

loss. The model was trained for 25 epochs with a learning rate of 0.25, and achieved

an overall accuracy of 95.2% on the test dataset.

All experiments have been implemented in Python3, and libraries for each of the

three explanation methods are as follows: [34] for LRP, [52] for IG and [80] for SHAP.

The number of samples taken for each input network pair in all of the experiments is

100.

A.4.2 Bayes-Optimal Robust Explanations

Similarly to the experimental setup for our ORE analysis, we have trained both fully

connected (FC) and convolutional (CNN) models on the Stanford Sentiment Treebank

(SST) sentiment analysis dataset, except that these networks are Bayesian in nature.

Experiments were performed on a server with two 24-core Intel Xenon 6252 processors

and 256GB of RAM, but as each experiment only utilised one core and roughly 8GB

of RAM, they could be run on a desktop PC. From the SST dataset, we have chosen

50 representative input texts, balancing positive and negative examples. Embeddings

are pre-trained on the same datasets used for classification. As the majority of the

movie reviews within the SST dataset are very short, we limit our input to 10 words.
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In practice, we have found that increasing the number of words above 10 does not

significantly increase the accuracy of our networks.

We performed our experiments on both FC and CNN networks with up to 6

layers and 20K parameters, where FC networks are made up of a stack of fully

connected layers, while CNNs additionally employ convolutional and max pooling

layers. The final decision for both networks types is through a softmax layer, and

all other activations are ReLU . The specific experimental results below come from a

Bayesian FC network with 3 layers of sizes 16, 8 and 2. The network, constructed and

trained using the DeepBayes python library, uses VOGN during inference, along with

the sparse categorical crossentropy loss. The model was trained for 25 epochs with a

learning rate of 0.25, and achieved an overall accuracy of 81.5% on the test dataset.

We chose this model to demonstrate our method as both larger and CNN models

did not increase the accuracy by more than 1%; however, they significantly increased

experimental runtime, as the blackbox oracles that answer robustness queries are very

sensitive to network size.

A.5 Uncertainty Results

For these experiments, we use the same experimental setup as in Section A.4.2: a

Bayesian FC model trained on the SST dataset.
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Appendix B

Code Guide

This Appendix details how to access, install and use the code provided with this

thesis, including third party requirements. All code is written in Python3. The code

can be found here:

https://github.com/Rhiba/thesis-code

B.1 Installation

This section describes the installation process for parts of the code, including instal-

lation of third party programs and libraries.

B.1.1 Prerequisite Python3 Packages

The code in this thesis uses several Python packages that can be installed by invoking

the command: pip3 install <package name>. These packages are:

• tensorflow

• keras

• pickle

• numpy

• matplotlib
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• scipy

• socketio

• eventlet

• flask

• pillow

• python-sat

• tqdm

• pandas

B.1.2 Carla Simulator

To run the Carla simulator, it must first be downloaded from here https://github.

com/carla-simulator/carla/releases. Since Carla is built using the Unreal En-

gine, this must also be installed following the instruction on this page https://docs.

unrealengine.com/4.27/en-US/Basics/InstallingUnrealEngine/. Once the Un-

real Engine has been installed and the Carla simulator has been downloaded, one can

follow the instructions on the following page https://carla.readthedocs.io/en/

stable/getting_started/ to install Carla.

B.1.3 Marabou

In order to install Marabou, the repository must be cloned using the command: git

clone https://github.com/NeuralNetworkVerification/Marabou. One must then

follow the installation instructions on the same Github page to fully install the pack-

age.
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B.1.4 Neurify

First, Neurify requires that the package lpsolve is installed. This can be installed

using your systems package manager, for example, the Ubuntu command is apt

install lp-solve. Neurify should then be downloaded using the command git

clone https://github.com/Rhiba/Neurify, and the installation instructions on

the same Github page should then be followed. Note that any input into Neurify

should be normalised in the range 0 − 1. This version of Neurify is a fork of the

original library that has been slightly altered for our work.

B.1.5 Custom Neurify Shared Library

Since Neurify is written in C and the code in this thesis is all Python, we have

created our own shared library so that we are able to call Neurify commands from

within Python. In the Neurify directory, go into the general folder then follow these

instructions:

1. Edit the makefile to change paths to the relevant paths on your computer.

2. Run make.

3. Run cp libentails.so /home/username/your/lib/dir

4. Make sure your shared library directory is in your LD library path by running

export LD LIBRARY PATH=/home/username/your/lib/dir:$PATH

5. Run cp entails.h /home/username/your/include/dir

NB. You may need to compile lp solve on your own machine if your version from a

package manager doesn’t work.

B.1.6 Explainer Libraries

The library containing the Layerwise Relevance Propagation implementation can be

installed using this command: git clone

https://github.com/KaiFabi/LayerwiseRelevancePropagation.git.
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The library containing the Integrated Gradients implementation can be installed

using this command: git clone

https://github.com/hiranumn/IntegratedGradients.

The library containing the SHAP implementation can be installed using this com-

mand: git clone

https://github.com/slundberg/shap.

B.1.7 DeepBayes

DeepBayes is the library used to train Bayesian neural networks with various dif-

ferent inference methods. It can be installed by running the command: git clone

git@github.com:matthewwicker/deepbayes.git.

B.2 Usage

This section gives examples of code usage, separated by chapter.

B.2.1 Chapter 4 Code Usage

To launch an Optimal Robust Explanation (ORE) experiment, go to the

chap-4\OREs\abduction algorithms\experiments\{DATASET}\ folder, where {DATASET}

is either ‘SST’ ‘Twitter’ or ‘IMDB’, and run one of the python files (.py extension).

We report a few usage examples.

ORE for a Fully Connected Model on a Sample Review

Let’s suppose that you want to extract an ORE from a sample review and you are

using an FC model, trained on SST dataset, with 25 input words and using the k

Nearest Neighbours bounding box technique with k=10. You have to navigate to

Explanations\abduction algorithms\experiments\SST\ folder and run the fol-

lowing:
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python3 smallest explanation SST fc knn linf.py -k 10 -w 5 -n 25

-i ’This is a very bad movie’

The algorithm identifies the words is and bad as an ORE. Additionally, results

are logged and stored in a folder inside results\HS-clear (the complete path that

is reported in the logs of the execution).

If you want to obtain the same result but using Minimum Satisfying Assignment

algorithm the command is:

python3 smallest cost explanation SST fc knn linf.py -k 10 -w 5

-i ’This is a very bad movie’

Solving an hard instance with Adversarial Attacks

Let’s suppose that you want to extract an ORE from a Twitter text and you are

using a CNN model, trained on Twitter dataset, with 25 input words and using the k

Nearest Neighbours bounding box technique with k=8. You can improve the conver-

gence on hard instances with Adversarial Attacks by simply specifying the number of

attacks that you want to launch (parameter -a/–adv). You have to navigate to the

Explanations\abduction algorithms\experiments\Twitter\ folder and run the

following:

python3 smallest explanation Twitter cnn2d knn linf.py -k 8 -w 5

-n 25 -a 500 -i ’Spencer is not a good guy’

The algorithm identifies the words Spencer and not as an ORE (alongside a PAD

token that highlights a problem with the model robustness). Again, results are stored

in a folder inside results\HS-clear (the complete path that is reported in the logs

of the execution).

Detecting Decision Bias Using Cost Functions

Let’s suppose you want to check whether an explanation will always contain the

name of a character, actor or director: something which ideally should not be used

for classifying whether a review is positive or negative. To do this, you can run the

following command:

180



python3 smallest HScost explanation SST fc knn linf.py -k 27 -w 5

-a 0 -i "Austin Powers in Goldmember has the right stuff for

summer entertainment and has enough laughs to sustain interest to

the end" -u False -x ’austin,powers,goldmember’

If the excluded word still appears in the ORE (which it does in this example,

“powers” is present), you know that no explanation exists without it and therefore

that there is a decision bias here.

If you want to do the same but using MSA algorithm the command is:

python3 smallest cost explanation SST fc knn linf alternate cost.py

-k 27 -w 5 -i "Austin Powers in Goldmember has the right stuff for

summer entertainment and has enough laughs to sustain interest to

the end"

If you want to permanently exclude the word from the explanation use: python3

smallest cost explanation SST fc knn linf alternate cost exclude.py

-k 27 -w 5 -i "Austin Powers in Goldmember has the right stuff for

summer entertainment and has enough laughs to sustain interest to

the end"

Run multiple instances in parallel

You can run several ORE instances in parallel (e.g., on a server) by launching the

run-exp MODEL DATASET knn linf.sh script in each Experiments\DATASET folder,

where DATASET is either ‘IMDB’, ‘SST’ or ‘Twitter’ and MODEL is either ‘fc’ or

‘cnn’. This requires the screen bash command (available on any Linux distribution)

to manage the various instances.

B.2.2 Chapter 5 Code Usage

To launch an experiment from Chapter 5, go to the chap-5\ folder. We report a few

usage examples.
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Gathering Training Data from CARLA To gather training data from the CARLA

simulator, using its built in autopilot, you must first run the simulator using the com-

mand: ./CarlaUE4.sh &. Then, run python manual control.py. Now that both

the simulator and control file are running, press the P key to turn on the autopilot,

and then press the R key to start recording training data. To stop recording, press the

R key again. All of your training data (images, steering control, location coordinates)

can be found in the out folder that is created by this script. It is also possible to

record training data this way whilst manually controlling the car with the arrow keys:

just omit the autopilot instruction.

Driving the Car Using Your Own Model To drive the car in CARLA simulator

using your own model, first open the simulator with the command ./CarlaUE4.sh

&. Then, run the following command:

python drive.py --json path to model json.json \

--model path to model weights.h5

This command requires a keras model architecture saved in json format, and the

keras model weights saved in h5 format.

Real time Decision Confidence with VI in Sunny Weather (With Obstacle)

To run this experiment, first open the simulator with the command ./CarlaUE4.sh

&. Then, run the following command:

python3 SafetySimulation/VI Mean obs weather.py \

-f path to model --W 0 -l A

The results of this run (including warnings and their level, and uncertainty readings)

can be found in the out folder generated by the code.

Real time Decision Confidence with HMC in Rainy Weather (No Obstacle)

To run this experiment, first open the simulator with the command ./CarlaUE4.sh

&. Then, run the following command:
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python3 SafetySimulation/HMC Mean obs weather.py \

-f path to model --W 10

The results of this run (including warnings and their level, and uncertainty readings)

can be found in the out folder generated by the code.

Probabilistic Safety with MCD in Sunny Weather at Dusk To run this ex-

periment, first open the simulator with the command ./CarlaUE4.sh &. Then, run

the following command:

python3 SafetySimulation/Drop.py \

-f path to model -s B -w 2

The results of this run (including warnings and their level, and uncertainty readings)

can be found in the out folder generated by the code.

B.2.3 Chapter 6 Code Usage

To launch an experiment from Chapter 6, go to the folder

chap-6\experiments\{DATASET}\ where {DATASET} is either ‘SST’ ‘GTSRB’ or ‘mnist’,

and run one of the Jupyter notebook files (.ipynb extension). We report a few usage

examples.

Generating a Bayesian Covering Explanation for MNIST using LRP Sup-

pose you wish to generate a Bayesian covering explanation for an input image from

the MNIST dataset, using the Layerwise Relevance Propagation explanation method.

To do this, open the notebook file ...mnist\mnist LRP bayesian coverage.ipynb

and first change any relevant import paths to match those on your machine. Then,

run the first five cells in the file, and in the sixth, change the value of n to correspond

to the input you wish to generate a Bayesian covering explanation for. For the naive

version of the explanation, as defined in Equation 6.7, run cells seven and eight, and

for the improved version, run the rest of the cells in the notebook.
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Generating a Bayesian Covering Explanation for GTSRB using IG Suppose

you wish to generate a Bayesian covering explanation for an input image from the GT-

SRB dataset, using the Integrated Gradients explanation method. To do this, open

the notebook file ...GTSRB\GTSRB IG bayesian coverage.ipynb and first change

any relevant import paths to match those on your machine. Then, run the first seven

cells in the file, and in the eighth, change the value of n to correspond to the input

you wish to generate a Bayesian covering explanation for. For the naive version of

the explanation, as defined in Equation 6.7, run cells nine, ten and eleven, and for

the improved version, run the rest of the cells in the notebook.

Generating a B-ORCE for the SST Dataset Suppose you wish to generate

a B-ORCE for an input from the SST dataset. To do this, open the notebook

file ...SST\SST BORCE generation.ipynb and change any relevant import paths to

match those on your machine. Then, run all cells up to the one titled “Random

positive example runs”, and then edit the value of n in that cell to be the index of

the SST review you wish to generate a B-ORCE for. Next, run the calculation cell

(this is quite verbose so expect a lot of output), and finally the results analysis cell.

The output gives you all possible explanations and their covering probability, with

the top one (highest probability) being the covering explanation.

Ranking the Features of a B-ORCE Suppose you wish to generate a B-ORCE

for an input from the SST dataset, and you also wish to rank the features in the

B-ORCE by order of importance based on their feature uncertainty (as well as visu-

alising all of this). To do this, you must first generate the B-ORCE for your desired

input using the ...SST\SST BORCE generation.ipynb notebook file (as detailed in

the above example). This will save the B-ORCE to disk ready for use in the next

notebook. Then, open the notebook file

...SST\individual and global feature uncertainty exploration.ipynb

and change any relevant import paths to match those on your machine. In cell seven,

change the array ns to contain only the index of the input you have generated a
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B-ORCE for (this can also handle more than one input so long as a B-ORCE has

been generated for all of them, if you wish). Now run cells 1− 7. Now skip down to

cell 13 (beginning with the comment “# visualise covering explanation with

feature uncertainty”) and run it: this will produce your desired result.

Examining the Highly Uncertain Features of a Model Suppose you wish to

examine the features of a model, over a large number of B-ORCEs, that are highly

uncertain (perhaps to aid in model debugging). To do this, you must first have gen-

erated B-ORCEs for a large number of inputs using the same model (to do this, see

the example above). Then, open the notebook file

...SST\individual and global feature uncertainty exploration.ipynb

and change any relevant import paths to match those on your machine. In cell seven,

change the array ns to contain all of the indexes of the inputs that you have gener-

ated B-ORCEs for. Now run cells 1 − 7 and skip down to cell 15 (beginning with

the comment “# generate word cloud from high uncertainty words”) and run

it: this will produce your desired result.
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