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ABSTRACT

Deep reinforcement learning has been successfully applied to many control tasks, but the

application of such controllers in safety-critical scenarios has been limited due to safety concerns.

Rigorous testing of these controllers is challenging, particularly when they operate in uncertain

environments. In this thesis we develop novel verification techniques to give the user stronger

guarantees over the performance of the trained agents that they would be able to obtain by testing,

under different degrees and sources of uncertainty.

In particular, we tackle three different sources of uncertainty to the agent and offer different

algorithms to provide strong guarantees to the user. The first one is input noise: sensors in the real

world always provide imperfect data. The second source of uncertainty comes from the actuators:

once an agent decides to take a specific action, faulty actuators and or hardware problems could

still prevent the agent from acting upon the decisions given by the controller. The last source of

uncertainty is the policy: the set of decisions the controller takes when operating in the environment.

Agents may act probabilistically for a number of reasons, such as dealing with adversaries in a

competitive environment or addressing partial observability of the environment.

In this thesis, we develop formal models of controllers executing under uncertainty, and

propose new verification techniques based on abstract interpretation for their analysis. We cover

different horizon lengths, i.e., the number of steps into the future that we analyse, and present

methods for both finite-horizon and infinite-horizon verification. We perform both probabilistic and

non-probabilistic analysis of the models constructed, depending on the methodology adopted. We

implement and evaluate our methods on controllers trained for several benchmark control problems.
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Chapter One

Introduction

Machine learning is a field within Artificial Intelligence and Computer Science where algorithms

improve their performance at solving a specific task through the processing of more and more data,

effectively learning how to solve the task. One interesting field of application is Reinforcement

Learning (RL) [189] where the machine learns to solve a task autonomously, without guidance,

through trial and error, in a similar manner as infants do when growing up.

The shift of expertise required to solve the task, from the human to the machine, caused by

the application of reinforcement learning, presents a great opportunity. Having the same algorithm

being able to solve different problems without human intervention and even coming up with novel

and unexpected solutions [19], provides the possibility to quickly and almost effortlessly automate

an ever increasing number of tasks.

However, with autonomous learning a problem arises: within a complex and hard to under-

stand system created without human intervention how can we be sure that the behaviour learnt by

the machine will not lead to unintended consequences?

1



Introduction

1.1 Motivation

Deep reinforcement learning is the application of deep neural networks to solve reinforcement

learning tasks. This technique has been shown to solve many complex control tasks successfully [29,

180, 153, 115]. The criterion for training and evaluating RL agents is traditionally their performance,

that is, how quickly and efficiently they solve their task. However, for real-world applications of

these methods, especially in safety-critical scenarios such as autonomous driving, performance must

meet safety: not only is it required that positive outcomes eventually happen, but also that negative

ones do not [69, 134].

Formal verification is a rigorous approach to checking the correctness of computerised

systems. It is particularly appealing for systems that are based on neural networks, because the

training process often yields models that are large, complex and opaque. Furthermore, the input

space is typically too large to allow exhaustive testing, and there now exist a variety of approaches

to construct adversarial attacks, i.e., small and imperceptible perturbations to the inputs of the neural

network that cause it to produce erroneous outputs.

In recent years, there has been growing interest in verification techniques for neural networks

[108, 96, 74], with a particular focus on the domain of image classification. These aim to prove

the absence of particular classes of adversarial attack, typically those that are “close” to inputs for

which the correct output is known. Methods proposed include mapping the verification to an SMT

(satisfiability modulo theories) problem and the use of abstract interpretation.

There are also various approaches to tackle safety in reinforcement learning. For example,

safe reinforcement learning [73] factors in safety objectives into the learning process. Using

formal specifications of the objectives has also been proposed, such as maximising the probability of

satisfying a temporal logic objective [30, 68, 85], restricting learning to a set of verified policies [105]

or restricting the policy operation through safety shields [11, 21, 219, 119, 101]. More recently,

2 of 133



Introduction

formal verification of deep reinforcement learning systems has been considered [113], although not

in the context of probabilistic systems, by leveraging existing neural network verification methods.

Alongside the other methods, formal verification in the context of deep reinforcement

learning would enable us to provide guarantees to the user over metrics such as quality, safety and

generalisation capabilities of the agent during its future operation, helping to bridge the gap between

theoretical and practical applications.

1.2 Challenges

Safety verification of neural network controllers presents many challenges. The first key challenge

involves how to deal with continuous state spaces and reason about the safety of an infinite

number of states. One methodology, called abstract interpretation, works by abstracting away

some information non pertinent to the problem at hand in exchange for the ability to handle large

continuous sections of the state space. This overapproximation often introduces estimation errors

that may lead to situations where we cannot be sure whether the system is unsafe but we can be

certain when the system is safe. This phenomenon is called incompleteness of the algorithm. To

reduce the overapproximation errors it becomes essential to correctly tune the parameters to the

problem. Complex dynamics of the environment can present a challenge when using abstract

interpretation. While linear functions are easier to abstract, often both the environment and the

agent present non-linearities in their definition. Abstracting non-linear dynamics requires different

strategies to correctly manage the size of the overapproximations introduced.

A further challenge for verifying the safe operation of controllers synthesised using deep

reinforcement learning is the fact they are often developed to function in uncertain or unpredictable

environments. This necessitates the use of stochastic models to train, and to reason about the

controllers. One source of probabilistic behaviour is dynamically changing environments and/or
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unreliable or noisy sensing. Another source, is the occurrence of faults, e.g., in the hardware for

actuators in the controller, ensuring that not only the agent chooses the right action but also that

they account for a potential malfunctions by preferring a timely and conservative policy. Similarly,

probabilistic policies, often used in partially observable environments or against competitive adver-

saries, need a different approach from deterministic ones: the actions that the agent will take are not

clearly established. Given all the aforementioned sources of uncertainty, we need to work with a

different type of guarantees, probabilistic guarantees, that represent whether or not the chances of

bad behaviour falls below a defined threshold.

Our last challenge involves dealing with different time horizons: when trying to formally

verify the safety of an agent, we are often constrained by the number of timesteps into the future that

we are able to compute. The model of the system constructed to perform verification quickly grows

with the number of timesteps we look ahead until it becomes an unfeasible problem. However, when

looking for safety, we would ideally look for methods that scale to any time horizon but require

a different approach to provide guarantees. This is where we can leverage safe invariants, sets of

states which are safe that are guaranteed to create a loop with previously visited safe states [28, 67].

1.3 Outline

In this thesis we present three novel approaches to verify the safety of agents under different

uncertainty sources: sensors, actuators and policies. These sources of uncertainty, paired with the

number of possible actions and continuous state domain contribute to a rapid exponential growth of

the number of states involved. To address this, we make use of abstraction to simplify the problem

and make it more manageable to reason about. However, depending on the approach, we apply

different steps to verify the safety of the controller.

In the first of our methods, following the reinforcement learning loop, we need to compute
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successors for each abstract state: this requires restructuring the environment so that, similarly

to the previous step, we are able to calculate the successors from each individual abstract state.

We generate a Mixed Integer Linear Programming (MILP) model from the combination of the

policy abstraction and the dynamics of the environment which we optimise, allowing us to compute

abstract successors. Finally, we prove that the action sequence is part of a safe invariant and as a

consequence, that the agent is guaranteed to never encounter unsafe states.

In the subsequent method, we construct an abstract model that separates abstract states

according to their actions. Our method redefines the neural network so that it is possible to compute

action scores for large regions of the state space, shifting from handling single datapoints to abstract

regions. We construct a discrete-time Markov process (DTMP, defined in Chapter 5) from the

combination between the policy actions and the abstraction of dynamics of the system. The analysis

of the DTMP lets us measure probabilities associated with encountering unsafe states. From the

computation of the worst case probabilities we can determine whether the agent is probabilistically

safe.

In the final approach, we rely on extracting probability intervals from the controller when

applied to abstract states. We use the intervals to construct an interval Markov decision process

(IMDP) that models the operation of the controller in the environment. From the analysis of the

IMDP we can measure the worst-case probability of failure and decide if the agent is probabilistically

safe and which areas of the initial state are more prone to encounter unsafe states.

1.4 Thesis Organisation

Below is a brief description of each remaining chapter in the thesis:

• Chapter 2: We explain the basics of the concepts used in this thesis which are required to
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understand our contribution.

• Chapter 3: We survey the recent progress in the literature regarding the work related to and

building up to the topic of safety verification of deep reinforcement learning agents.

• Chapter 4: We present our first technical chapter where we tackle safety verification under

input uncertainty and within infinite horizon.

• Chapter 5: We introduce our algorithm for performing probabilistic safety verification under

actuator uncertainty within a finite time horizon.

• Chapter 6: We describe our approach when dealing with probabilistic safety verification of

probabilistic policies within a finite time horizon.

Although the techniques presented in Chapters 4, 5 and 6 could be combined together, each one

presents their own challenges and will be analysed independently due to computational complexity

constraints.

1.5 Related Publications

The published work contributed to this thesis is listed below:

The work in Chapter 4 has been published as Edoardo Bacci, Mirco Giacobbe and David

Parker, “Verifying Reinforcement Learning up to Infinity". In: International Joint Conferences on

Artificial Intelligence (IJCAI 2021).

The work in Chapter 5 has been published as Edoardo Bacci and David Parker, “Probabilis-

tic Guarantees for Safe Deep Reinforcement Learning". In: Formal Modeling and Analysis of Timed

Systems (FORMATS 2020).
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Chapter Two

Background

In this section we explain some of the foundamental concepts used in the rest of the thesis.

First, we describe deep reinforcement learning. We cover neural networks, some of their

variations and the way that they are trained, and also reinforcement learning. We then describe

in more depth what deep reinforcement learning (DRL) is, and some of the main algorithms for

training DRL agents. Then, we explain the probabilistic models that we use for formal modelling

and abstraction: discrete-time Markov processes, Markov decision processes and interval Markov

decision processes.

2.1 Deep Reinforcement Learning

In this section we focus on DRL and its 2 components: neural networks and reinforcement learning.

7



Background

2.1.1 Neural Networks Architecture and training.

Neural networks are an artificial intelligence technology used in machine learning algorithms. They

are composed of computational units called neurons which are organised in layers that together form

the network. Neural networks can have different architectures depending on the application and

the desired output. One of the most common types of architecture is the “feed-forward” network,

where each layer is stacked on top of another one, creating a chain that goes from input to the final

output, as opposed to “recurrent” networks where the output is also fed back as an additional input

to give the network a notion of “time sequence”.

Each neuron has a number of inputs which are aggregated through a weighted sum which is

then passed through a non-linear function called an activation function. The corresponding weights

for each input represent the variables which are assigned during the training process of the network.

In addition to the weights, another term, named “bias", is added to the weighted sum. Whilst we

could multiply each input with its corresponding weight individually, the weighted sum operation

can be sped up through a matrix multiplication operation. In this way, weights of the entire layer are

treated as a single matrix which is multiplied by the input vector and added to the bias vector before

being passed to the activation function. Each forward pass can be further parallelised by stacking

together multiple inputs in a single batch forming an input matrix. In this way multiple data can be

processed in a single pass at the same time with noticeable performance gains.

The activation function used in each neuron is a non-linear function that will modify the

weighted sum in the neuron. The non-linearity property of the activation function is strictly needed

so that the network is able to approximate any desired function based on the network architecture.

The type of function used forms another parameter to be chosen for the network. Recent work tends

to prefer the rectified linear unit function (RELU) represented as y = max(0, x). A property of

the RELU unit is that it can be regarded as a function with two activation stages, the x 6 0 part

which is constant and the x > 0 part which is linear. Many verification algorithms exploit this dual
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behaviour for proving safety properties about the network

We target neural networks with ReLU activation functions, m input neurons, l hidden layers

with respectively h1, . . . , hl neurons, and Σ output neurons. The variable vectors z0, . . . , zl+1 denote

the values of the neurons at each layer. The input layer z0 is assigned from the system observation

x. The output of every hidden layer is determined according to the equation

zi = ReLU(Wizi−1 + bi), for i = 1, . . . , l, (2.1)

and the output layer according to zl+1 = Wl+1zl + bl+1. Each matrix Wi denotes the weights

between any other (i− 1)-th and i-th layers, and each vector bi denotes the respective biases. The

function ReLU applies max{·, 0} element-wise to its hi-dimensional argument. The output action

is determined by the index of the output neuron whose value is the highest; in other words, the

neural network defines the agent

π(z0) = arg max
j∈|A|

〈ej, zl+1〉, (2.2)

where ej is the j-th standard unit vector of RΣ, 〈·, ·〉 denotes scalar product and |A| is the number of

available actions. Altogether, the neural network acts as a classifier from observations to actions.

The most common way of training the neural network is called stochastic gradient descent

(SGD). It consists of defining a cost function that describes how far the output of the network is

from the true answer and modifying the weights associated with the connections between neurons

to reduce the cost to 0. It is called stochastic because at each iteration a random sample is taken

from the training set (the collection of input-output pairs that the network is supposed to memorise).

During the training phase, the network is queried given a randomly sampled batch as input and the

error is calculated using the cost function to estimate the difference of the output from the correct

answer. The error, then, is back propagated through the network from the output layer towards the
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input and each connection is modified depending on how much it contributed to the output. The

direction in the multi-dimensional space of connection weights in which to move the network is

determined by the gradient of the cost function (the weights are altered in the direction which brings

the error closer to 0). The size of the step taken to change the weights is altered by a learning rate

α. By reducing the size of each step we ensure that inputs with errors in the training set do not skew

the global performance of the network. The problem with this approach is that by taking small steps

the network will take more iterations to converge to a local minimimum while a big step size might

not enable the network to converge at all, making the choice of the learning rate too critical for the

success of the algorithm. For this reason, other extensions of SGD have been proposed to try to

adjust the learning rate dynamically depending on the current situation. A widespread extension of

SGD is called Adam.

Adam [117] takes its name from “adaptive moment estimation" and works by calculating

the momentum of the gradient for each parameter. By introducing momentum, gradients that had a

history of decreasing iterations will be encouraged to progress further along their path even when

the gradients at newer iterations go against it, like a ball rolling down a slope that continues to rise

for a bit even when it encounters a hill along its path.

2.1.2 Reinforcement learning

Reinforcement learning is an area of machine learning that deals with learning what to do in order

to maximise a reward signal that describes how well the controller is performing. The learner is

not directly told what actions are right, as in supervised learning, but instead, it must discover

which actions yield the most reward by exploring the environment in which it acts. One of the

main challenges in this area is the problem of delayed rewards: actions may affect not only the

immediate future but they can also have an impact on long term return. These two characteristics:

exploration vs exploitation and delayed reward, are the two most important distinguishing features
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of reinforcement learning.

The agent is the entity guided by the controller, such as an autonomous car or a robot. The

agent learns by changing the parameters regulating the controller in such a way as to maximise

cumulative future rewards. In the current definition of the system, only the current situation is

known to the agent to take decisions. The set of all decisions in the state space is called a controller

policy. We will assume that the state space of the system is S = Rn, using some vector of n

real-valued state space variables, and the actions available to the controller policy are a finite set

A = {a1, . . . , aΣ}. In this thesis we mainly focus on discrete action space; work on continuous

action spaces will be treated in future work.

Definition 1 (Environment). An environment is a function E : S × A→ S that describes the state

E(s, a) of the system after one time step if controller action a is (successfully) taken in state s.

The environment represents the effect that each action executed by a controller has on the

system. We assume a deterministic model of the environment; although we also consider other

sources, probabilistic behaviour due to failures is introduced separately (see Chapter 5).

2.1.3 Deep Reinforcement Learning

The use of deep neural networks to guide the decision making process in reinforcement learning is

called deep reinforcement learning. Below we first define episodes, trajectories and returns, then,

we will explain some of the algorithms from RL and DRL used in future chapters.

Definition 2 (Episode). An episode is the repeated interaction of the agent with the environment

through actions dictated by the controller and the transition to successor states dictated by the

environment until a terminal state is reached. Some tasks do not have a predefined end and are

called continuing tasks.
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Definition 3 (Trajectory). A trajectory is the potentially infinite sequence of alternating states and

actions

s0a0s1a1s2...

where each successor state s1, s2, ... is determined by the policy π and the environment E.

Definition 4 (Return). The return is the sum of all the rewards experienced by the agent interacting

with the environment during an episode.

Gt = Rt +Rt+1 +Rt+2 + ...+RT

where T is the final timestep of the episode. In case of continuing tasks future rewards are weighted

with the use of the discount rate γ ∈ [0, 1]:

Gt =
∞∑
k=0

γkRt+k

In this case, although the return is a sum of an infinite number of terms, the result is finite.

Q-Learning

Temporal Difference algorithms (TD) are a family of algorithms that “bootstrap", which means they

perform estimates on the current state based on other estimates (the estimated Q-value at timestep

t+ 1) plus some known information. One of the early breakthroughs in reinforcement learning was

the development of an off-policy TD control algorithm known as Q-learning [204]. In Q-learning

each state-action pair gets assigned a “quality" value Q that defines how good it is to take action a

amongst all possible actions A in state s. St is defined as all possible states at timestep t while At
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are the actions available in these states.

Q(St, At)←− Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)]

In this case, the bootstrapping starts from random values for the Q-function and then incorporates

the new reward R received after taking some action a. The name off-policy means that the algorithm

is capable of updating the value of each state-action pair, hence learning, no matter the actions the

controller is following. On-policy algorithms, on the other hand, require the controller to follow its

policy rigorously in order to improve it. The Q-values ("quality” of the state-action pairs) are stored

in a table that contains every possible state configuration that gets queried every time we want to

know the values of a state. These values get updated iteratively by the algorithm until eventually,

they converge.

SARSA

The corresponding on-policy method to Q-learning is Sarsa [189]. Sarsa is another TD algorithm

that learns the state-action value of following policy π. The estimation of the state action pairs in

this case will no longer come from the reward at the current timestep plus the maximum achievable

gain amongst any possible action, but from the reward added to the gain from the action that we

will effectively take by following π. Following is the formula for the TD update step:

Q(St, At)←− Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

In order to estimate the TD error, which is the difference between the prediction Q at timestep t and

the one step expected return, used to update the Q-values, the algorithm will need the states and the

actions for the current and the next timesteps and the reward (St, At, Rt+1, St+1, At+1) forming the

acronym SARSA from which the algorithm takes its name. Again, the Q-values will be stored in a

13 of 133



Background

table that will determine the policy of the agent once executed.

Deep Q-Network (DQN)

The main drawback of Q-learning is that by using a table of Q-values we are limited by the memory

of our machine. Besides, most of the state action pairs are rarely used because they contain

combinations of the state space that are unlikely to be visited.

Deep Q Networks (DQN) try to address this problem by using a function approximator

such as a neural network instead of a table of values. In this way, in addition to using considerably

less memory, the neural network can be tuned to generalise to unseen states from the values of

neighbouring states without the need to explore every state-action pair.

Using DQN [142], a controller was able to outperform humans in a variety of Atari games

by learning the policy directly from pixels, without any external inputs.

Policy Gradient (PG)

The main idea behind the Policy Gradient [190] algorithm is to increase the probability of picking

an action that leads to high returns in the past, and decrease the probability of picking an action that

lead to low returns in the past. In the same way that DQN is an extension of Q-learning with the

use of neural networks, PG is an extension of the Sarsa method described above. When updating

the network weights, the size of the update will be directly proportional to both the probability

of chosing the actions in the trajectory and the rewards that were collected along the way. The

following is the update rule for the PG algorithm:

θk+1 = θk + α E
τ∼πθ

[
T∑
t=0

∇θlogπθ(at|st)Aπθ(st, at)

]
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where Aπθ(st, at) is the advantage function which is the difference between the expected returns

from the chosen action and the average expected return in the state.

Proximal Policy Optimisation (PPO)

A more recent improvement over PG comes from Proximal Policy Optimisation [178] which

aims to reuse past experience (the trajectories experienced by the agent) as much as possible but

also to limit the updates to the neural network weights to a small area surrounding their current

configuration. One of the problems of PG is the great volatility in performance caused by the

shift in action probabilities as the network changes. By restricting the nework updates and reusing

past experiences, the overall growth in perfomance of the agent becomes more stable and reduces

training time.

2.2 Markov Models

We will use Dist(X) to denote the set of discrete probability distributions over the set X , i.e.,

functions µ : X → [0, 1] where
∑

x∈X µ(x) = 1. The support of µ, denoted supp(µ), is defined

as supp(µ) = {x ∈ X |µ(x) > 0}. In some cases, we will use distributions where the set X is

uncountable but where the support is finite. We also write P(X) to denote the powerset of X .

2.2.1 Discrete-time Markov Process (DTMP)

We make particular use of three probabilistic models in this thesis: discrete-time Markov processes

(DTMPs) for model controllers, and Markov decision processes (MDPs) and interval Markov

decision processes (IMDPs) for abstractions of the underlying MDPs. We will use these to model

the interactions of the agent with the environment considering different probabilistic settings and
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abstraction levels depending on the focus of each chapter.

Definition 5 (Discrete-time Markov process). A (finite-branching) discrete-time Markov process is a

tuple (S, S0,P,AP , L), where: S is a (possibly uncountably infinite) set of states; S0 ⊆ S is a set of

initial states; P : S×S → [0, 1] is a transition probability matrix, where
∑

s′∈supp(P(s,·)) P(s, s′) = 1

for all s ∈ S; AP is a set of atomic propositions; and L : S → AP is a labelling function.

The process starts in some initial state s0 ∈ S0 and then evolves from state to state in discrete

time steps. When in state s, the probability of making a transition to state s′ is given by P(s, s′).

We assume that the process is finite-branching, i.e., the number of possible successors of each state

is finite, despite the continuous state space. This simplifies the representation and suffices for the

probabilistic behaviour that we model in the following chapters.

A path is an infinite sequence of states s0s1s2 . . . through the model, i.e., such that

P(si, si+1) > 0 for all i. We write Path(s) for the set of all paths starting in a state s. In

standard fashion [114], we can define a probability space Pr s over Path(s).

Pr=
s

∑∏
Atomic propositions from the set AP will be used to specify properties for verification; we write

s |= b for b ∈ AP if b ∈ L(s).

2.2.2 Markov Decision Process (MDP)

A commonly adopted control framework for discrete-time stochastic control problems is the Markov

Decision Process (MDP). In MDP the current situation of the world is encoded in “states". A

controller that wants to act in the chosen environment has access to the states and a set of available

“actions". Each action has some probability of ending in one of the possible outcomes of taking
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an action in a given state, becoming the next state. The assumption in this framework is that the

outcome will only depend on the current state and the action chosen, as opposed to having the

outcome to depend not only on the current state and action but also all the history of past states.

Definition 6 (Markov decision process). A Markov decision process is a tuple (S, S0,P,AP , L),

where: S is a finite set of states; S0 ⊆ S are initial states; P : S × N× S → [0, 1] is a transition

probability function, where
∑

s′∈S P(s, j, s′) ∈ {0, 1} for all s ∈ S, j ∈ N; AP is a set of atomic

propositions; and L : S → AP is a labelling function.

Unlike discrete-time Markov processes above, we assume a finite state space. A transition in

a state s of an MDP first requires a choice between (finitely-many) possible probabilistic outcomes

in that state. Unusually, we do not use action labels to distinguish these choices, but just integer

indices. Primarily, this is to avoid confusion with the use of actions taken by controllers, which

do not correspond directly to these choices. The probability of moving to successor state s′ when

taking choice j in state s is given by P(s, j, s′).

As above, a path is an execution through the model, i.e., an infinite sequence of states and

indices s0j0s1j1 . . . such that P(si, ji, si+1) > 0 for all i. A policy of the MDP selects the choice

to take in each state, based on the history of its execution so far. For a policy π, again, we have

a probability space Prπs over the set of paths starting in state s, Path(s), by fixing the actions

according to the decisions of the policy, as done in the literature [114]. If ψ is an event of interest

defined by a measurable set of paths (e.g., those reaching a set of target states), we are usually

interested in the minimum or maximum probability of the event over all policies:

Prmin
s (ψ) = inf

π
Prπs (ψ) and Prmax

s (ψ) = sup
π

Prπs (ψ) (2.3)

These value can be computed through standard techniques such as value iteration, policy iteration

or linear programming[168].
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2.2.3 Interval Markov Decision Processes (IMDPs)

When the probability of an event is difficult to measure, it can be abstracted by using interval

ranges which allow us to express the uncertainty over our measurements. Interval Markov decision

processes generalise MDPs by allowing transitions to be represented by intervals of probabilities.

Definition 7 (Interval Markov Decision Process). An interval Markov decision process is a tuple

(S, S0,P,AP , L), where: S is a finite set of states; S0 ⊆ S are initial states; P : S × N × S →

(I ∪ 0) is the interval transition probability function, where I is the set of probability intervals

I = {[a, b] | 0 6 a 6 b 6 1}, assigning either a probability interval or the exact probability of 0 to

any transition; AP is a set of atomic propositions; and L : S → AP is a labelling function.

In addition to a policy π that resolves actions, like for MDPs, we have a so-called environment

policy τ which selects probabilities for each transition that fall within the specified intervals. For a

policy π and environment policy τ , we have a probability space Prπ,τs over the set of paths starting

in state s. If ψ is an event of interest defined by a measurable set of paths, we can compute, for

example, lower and upper bounds on maximum probabilities, over the set of all allowable probability

values:

Prmax min
s (ψ) = sup

π
inf
τ
Prπ,τs (ψ) and Prmax,max

s (ψ) = sup
π

sup
τ

Prπ,τs (ψ)

This can be computed, for example, through robust value iteration [208].
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Chapter Three

Literature Review

In this section we review similar and related works in the literature. We start by describing

the progress in the context of formal verification of neural networks, mostly related to image

classification problems. After that, we discuss some of the more recent methods for checking

safety of deep reinforcement learning agents, similar to our approach. Subsequently, we analyse

alternative methods such as shielding and safe reinforcement learning that, despite not providing

formal guarantees, aim to achieve the same objective of obtaining a safe agent.

3.1 Verification of Neural Networks

In the next section we review the most recent verification algorithms applied to neural networks.

Verification of neural networks is a new research field that gained popularity after the discovery of

adversarial examples in 2013 [191, 27]. A summary table (Table 3.1) is provided at the end of the

section to give the reader a better view of the current state of the research field.

Some algorithms in this section will be described as exact and/or complete. An algorithm

described as “exact" is one that, once terminated, can provide a specific counterexample if the
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Algorithm Method Complete? Real net-
works?

Scales
with

DLV SMT solver no no network
RELUplex SMT solver yes no network
MIP1 MIP yes no network
MIP2 MIP yes no network
Planet MIP yes no network
Sherlock Gradient Descent no no network
Ai2 Abstract Interpretation no yes network
Fast-lin & Fast-lip Linear approximation no yes network
Branch and Bound Global Optimisation yes yes input
DeepGO Global Optimisation no yes input

Table 3.1: Comparison of different neural network verification algorithms. The method columns
refers to the main strategy at the core of the algorithm. The complete column describe if the
algorithm is always able to determine if the network is safe or not. The Real networks column
refers to the ability of the algorithm to handle networks which are large in size (thousands
of neurons). The last column outline which is the major factor that contributes to the time
complexity of the algorithm

property which is being verified is satisfiable (e.g. an instance of unsafe behaviour is possible).

An algorithm which is not exact, instead, is able to determine satisfiability but not to pinpoint a

counterexample. In this case an interval is normally returned in which the adversarial examples

exist.

On another note, a complete algorithm is an algorithm which guarantees by construction

that it will be able to determine if the problem is satisfiable or not. Incomplete algorithms, on the

other hand, may not be able to always determine the satisfiability of the property and return neither

SAT nor UNSAT as a result.

3.1.1 SMT solvers

Deep Learning Verification (DLV) [95] is an automated verification framework based on Satisfiability

Modulo Theories (SMT). The algorithm focuses on single images rather than providing a statistical

analysis as in most of the literature for neural networks [64][23][201]. Due to the nature of the
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problem of verifying images, the problem can be reduced in size by discretising the input to

pixel values rather than using floating point values. The authors introduce the idea of a set of

manipulations such as scratches, changes in lighting or rotations that make the network misclassify.

The algorithm works by taking a point (image) and delimiting a region around it at a specified layer

(a hidden layer can be selected) in which the user wants to verify that there is no change of class.

The algorithm then proceeds by projecting, layer by layer, the region delimited by chosen constraints

in the transformed hyper-plane represented in each layer and checking if there exists a manipulation

amongst the ones allowed that will bring the image outside its delimiting region. Checking every

possible manipulation would be infeasible, so there is a heuristic for feature extraction that helps to

reduce the area to search. This method enables proving that at a given layer there are no possible

manipulations that will cause the network to misclassify and will return an example if any adversarial

perturbation is found.

Although the algorithm can guarantee the absence of adversarial examples under the right

conditions, the degree of approximations due to discretisation and the number of assumptions

needed for the guarantees to hold make DLV more suitable for finding adversarial examples rather

than guaranteeing their absence.

RELUplex [108] is a state-of-the-art exact and complete verification tool for neural networks.

It is based on the Simplex LP Solver combined with the DPLL algorithm (a SMT theory solver)

for deterimining satisfiability which is then adapted for use on neural networks with RELU units

(RELUplex = RELU with Simplex). One of the main problems of handling verification of deep

neural networks is the nonlinearity of the activation function as it prevents the use of tools like linear

programming or satisfiability modulo theories. A workaround that builds on DPLL is to consider

the two possible activation phases of RELU independently with an operation called “split". This

approach, however, brings an exponential number of combinations which is intractable for deep

networks. However, the RELUplex algorithm works by first guessing the state of each activation

function when trying to find a counterexample to the verified property (e.g. an adversarial example)

21 of 133



Literature Review

and backtracking later if the configuration leads to a contradiction.

The worst case time for the algorithm is exponential, however, in practice. Thanks to

heuristics that allow discarding sections of the problem, it has reasonable solving time. A benefit of

RELUplex is that, if a variable needs to be backtracked often, that is, its guess of activation state is

frequently changing, then the algorithm performs the split of the function and continues solving for

both cases at once. In addition to local adversarial robustness (proving that for a particular image

there are no adversarial examples), RELUplex is also able to prove global adversarial robustness,

robustness of the network for every input, by duplicating the given system and demonstrating that

for any input value x and a given maximum perturbation δ the change in output will be less than ε.

This problem, however, is much harder to solve and could only be applied to small networks.

3.1.2 Mixed Integer Programming.

Tjeng, Xiao, and Tedrake [196] propose a verification algorithm for piecewise-linear feed-forward

neural networks that uses mixed-integer linear programming (MILP). Integer programming is an

optimisation technique in which variables are restricted to integers. We talk about integer linear

programming (ILP) when the objective function and the constraints of the problem are linear.

When not all decision variables are integers, it is called mixed integer programming (MIP). Integer

programming is an NP-complete problem, which means that techniques to reduce the size of the

problem are needed to make solving large problems tractable. To this extent, the authors propose a

new “presolve" algorithm. Presolve algorithms are designed to make a model smaller and easier

to solve. The idea exploits the fact that the predicted label of the classifier is determined by the

unit in the final layer with the maximum activation, so proving that a unit never has the maximum

activation over all bounded perturbations solves part of the problem reducing the size of the model.

Another part of the problem is the nonlinearity introduced by the RELU activation function.
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Since RELU is piecewise linear, it can be considered as a two-state linear function which means

“when x > 0 then y = x else y = 0”. To speed up computation, the algorithm computes an upper

(u) and lower (l) bound of the RELU output by keeping in consideration the input domain. If

the algorithm can prove that l > 0 or u 6 0 for some unit for the whole input domain during the

presolve phase, then there will be no need to keep track of both states of the RELU when solving the

MILP problem and the activation function can be substituted with a simple linear function. Tighter

bounds mean faster solving time but require more time to compute them, so there is a tradeoff

between maximum presolve complexity during which the model is being built and the solving

complexity during which the safety of the network is assessed. Knowledge of the system allows

the user to finely tune this trade-off or search for it in an iterative way. Results are compared to the

Reluplex [108] algorithm, reaching 2-3 orders of magnitude increase in speed.

Cheng, Nuhrenberg, and Ruess [48] propose another MIP-based verification algorithm that

can verify the stability of the neural network but without assessing just the point-wise robustness

of it (point-wise robustness is measured by evaluating the robustness of single sample images to

produce an estimate of the whole network). The algorithm is able to work with tanh and softmax

activation functions in addition to the common RELU which is supported by other algorithms.

Softmax cannot be directly encoded into a linear MIP constraint but, instead, it is sufficient to prove

that the true class is the one with the strongest signal by using the following equivalence:

x
(L)
i > αx

(L)
j ⇐⇒ x

(L−1)
i > ln(α) + x

(L−1)
j

where x(L)
i and x(L)

j refer to the input value of the last layer L of the neural network, with i, j ∈

1, ...., d(L), i 6= j and d(L) is the size of the layer L. It follows that the true class value x(L)
i1

is bigger

than any other class x(L)
i2

by a factor of α (where α is a parameter chosen by the user that represent

the minimum desired offset of the true class from any other class) if the output from the previous

node x(L−1)
i1

is greater than ln(α)+x
(L−1)
i2

which can be proven by the MIP solver. The tanh function

cannot be verified as easily as softmax, but it can be approximated with tight boundaries. The
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boundaries will propagate further down the network, so it is of vital importance that they are as

close as possible.

The resilience of the network is measured through perturbation bounds: in an m-classes

classifier and given a constant α > 1, the maximum perturbation Θm that does not cause misclas-

sification can be computed. This measure is expressed in the form of an L1 norm which consists

of the absolute sum of all the perturbations ε for each pixel. Results, despite the effectiveness of

the algorithm, are still not good enough. This approach can handle only small networks consisting

of few hundreds of neurons before timing out, massively restricting its applicability in real-world

scenarios.

Planet [62] is an exact algorithm for finding adversarial examples that uses a SAT solver

in combination with linear programming. Planet aims to find adversarial examples within some

given input domain which is defined as a set of constraints (e.g. the pixel values which are within

ε from the target image). The algorithm tries to infer the phase of the RELU function (whether

x < 0 or x > 0). In the case of the algorithm not being able to determine the phase of the activation

function, some linear over-approximation boundaries are used to constrain the output of each RELU

within the section. The constraints used are y > 0, y > x and y 6 u·(x−l)
u−l which allow for the

largest achievable output range of the RELU function considering the input boundaries of the layer

where u and l are the upper and lower bound inferred from the boundaries of the input domain by

considering the max and min values of each input variable.

At its core, Planet uses a customised SAT solver that employs the elastic filtering algorithm

[52] for finding the minimal infeasible linear constraint set which are areas of the input domain

which cannot contain an adversarial example. The reason for finding infeasible regions which are

minimal is that if the specifications are too granular, the number of constraints that the solver will

have to account for will constitute a bottleneck. Elastic filtering works by weakening constraints

through the use of slack variables, which are variables added to make the constraints easier to meet.
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Then, iteratively, the slack variable with the highest value is set to 0 making the corresponding

instance infeasible. The infeasible combination is then remembered in the next iteration, ruling out

parts of the domain, with the effect of speeding up the following searches for solutions.

Despite the improvements to search speed, Planet is only able to handle small networks of

few hundred nodes in an acceptable time.

3.1.3 Gradient Descent.

Sherlock [59] is a verification algorithm for range estimation, that is, given an input domain,

guaranteeing that the output will lie within a given range returned by the algorithm. This calculation

can be used to guarantee robustness of adversarial examples in the case in which the output range

for the true label is always greater than the range of any other labels. Sherlock works by iteratively

ruling out local minima which are found through local gradient descent. Once the local minima are

found, an MILP feasibility problem is solved to check if there exists a point which will return an

output smaller than the current local minima. If such an example is found, a new local search is

started to rule out the new local minima. If the MILP fails to find such an example it means that the

current point is the global minimum. The algorithm, although much faster than algorithms such as

RELUplex, still cannot handle medium to large networks with more than 250 nodes. In addition,

Sherlock solves a different problem to other verification algorithms which is the range estimation

problem. Although the range estimation problem can in some cases provide guarantees about the

safety of the network, there are situations in which the ranges of different classes will overlap and

nothing can be said about the output of the network.
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3.1.4 Abstract interpretation.

Abstract interpretation consists of ways of abstracting the problem (in this case the neural network)

such that we can still answer the important questions (whether the network is safe) while disregarding

information which is not useful. By abstracting the network, the problem is simplified and made

more manageable to solve. However, we relax the type of question it can be answered by allowing

the algorithm to provide an incomplete answer, making the algorithm incomplete. An intuition of

this phenomenon can be given, for example, in the case of approximating dogs as "animals with 4

legs”: we can immediately say if an animal is not a dog by counting the number of legs, but we

cannot tell for sure whether an animal with 4 legs is a dog without further analysis.

Abstract interpretation has seen a rise in popularity in the context of neural network ver-

ification. When exact verification methods become infeasible, abstraction allows us to scale to

bigger networks and verify more complex properties. Some algorithms abstract inputs to intervals

[171][202][13] and propagate the intervals across the layers until they get the output interval for

further computation.

AI2 [74] is a scalable but incomplete verification algorithm that works by leveraging the

concept of proving safety through abstract interpretation that uses use a more sophisticated form of

representation such as zonoedra and zonotopes.

In AI2, each layer of the neural network is substituted by an abstract transformer, which is a

layer that performs the same operations as the real layer but works in the abstract domain rather than

the input domain. After each layer is replaced, the input region that we want to verify is projected in

the abstract domain. To do so, the input domain is over-approximated through shapes expressible as

a set of logical constraints. The numerical abstract domain classes considered in this paper [74] are:

Box, Zonotope and Polyhedra. Box is the simplest one and works by simply defining an interval for

each dimension; Zonotope uses zonotopes which are center-symmetric convex closed polyhedrons
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defined by a set of linear boundaries; Polyhedra are convex closed polyhedra, where a polyhedron is

captured by a set of linear constraints. The main difference between the zonotope and the polyhedra

is that the zonotope exploits symmetry for reducing the number of constraints needed although at

the cost of limiting the type of shapes it can represent. These domains go from the simplest but

faster to compute to the more precise but computationally expensive, giving the user the choice

between precision and scalability.

The experiments show that AI2 manages to handle networks which are orders of magnitude

larger than those allowed by exact methods (eg. RELUplex) and with less time. The amount of

time increases less steeply as the size of the network increases. The number of properties that

can be verified can be finely tuned by choosing a more precise abstract domain at the expense of

computational time making this algorithm very adaptive depending on the specific task and needs.

On the other hand, chosing the right tradeoff requires expertise in order to make an informed choice.

3.1.5 Linear approximation

In [205] the authors devise two methods for computing lower bounds on the minimum adversarial

distortion (closest adversarial example) in a fraction of the time taken by exact methods like

Reluplex. The two algorithms are called Fast-lin (fast linear approximator) and Fast-lip (fast

Lipschitz approximator). The degree of speed up achieved, compared to other verification methods,

allows the verification of very large networks in a matter of seconds. The lower bound βL returned

by both algorithms certifies that @x′∈RnC(x′) 6= C(x) where x and x′ are datapoints close to each

other such that ‖x− x′‖ < βL which means there is no change of class C (and no adversarial

example) within the given boundary around x.

The two algorithms work in different ways: Fast-lin uses a linear approximation of the

RELU to calculate the lower boundary while Fast-lip bounds the Lipschitz constant of the network

27 of 133



Literature Review

to provide maximum rate of change and therefore a lower boundary. While it has been proven that

verifying the minimum adversarial distortion is NP-complete [108], Fast-lin & Fast-lip are in P.

This improvement in complexity class comes at the price of an increase of inaccuracy as the number

of neurons grows. This means that as the number of neurons grows in the network, the estimated

lower bound will be further away from the true minimum.

Fast-lin works by approximating the RELU to their linear components if it can prove that

the output always lies in one of the two activation stages (x > 0 or x 6 0) and providing an upper

and lower bound in the case of which the state of the RELU cannot be determined. The upper and

lower bound are such that
u

u− l
y 6 δ(y) 6

u

u− l
(y − l)

where u and l are the upper and lower bounds from the previous layer and δ(x) is the activation

function (RELU).

Figure 3.1: The upper (blue) and lower (red) bounds of the RELU function (orange) with input
x ∈ [−1, 1]

Fast-lip works by bounding the local Lipschitz constant which is the maximum variation

of the output of the network within the given input domain centered around a given image and

bounded by the chosen Lp norm. The Lipschitz constant can be intended as the maximum norm of

directional derivative, the maximum slope at a point x0. This value can be calculated by checking
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all the possible activation states of the network but the combinatorial explosion of each neuron

in the network makes the problem impossible to solve just by brute-force. However, Fast-Lip

approaches the problem by computing the worst-case pattern of each neuron, which is much simpler

to compute (in case we cannot prove the RELU is always going to be inactive within the input

domain, we consider it as if it were always active), and using it as Lipschitz constant. In addition,

the computation is further sped up by considering that, in general, the maximum norm of a vector

is always upper bounded by the norm of the maximum value of the components of the vector.

This means that Fast-Lip does not need to calculate the norm of the whole vector of gradients,

but can give an upper bound which consists of the maximum norm found within the vector. The

quick calculation of the loose Lipschitz constant allows to predict whether or not is possible, in the

worst case scenario, for a network to change decision within the given interval we intend to verify,

allowing the user to provide certification that the network is robust.

3.1.6 Global Optimisation

In Bunel et al. [37], the authors reduce the satisfiability problem of finding adversarial examples to a

global optimisation problem where the satisfiability of the property being verified is determined by

checking the sign of the minimum. As an example, if the output of the network consists of checking

that the probability of the k-th class C(x)k is greater than a value b, it will be sufficient to add a

fully connected layer at the end of the network with weights W = [1]d (a vector of all 1s) and bias

= −b to prove the property. In this way, we can leverage an optimisation algorithm to solve this

particular problem.

One of the algorithms used by the author is an adaptation of Branch and Bound. Branch and

bound works by keeping track of the best upper and lower bound for a particular domain (in this

case the area in proximity of a given image), iteratively splitting (“branching") the domain in two

parts and then recomputing upper and lower bounds (“bound") for each part. If the lower bound of a
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subdomain is higher than the minimum upper bound amongst all domains, then it is guaranteed that

the subdomain cannot contain the global minimum and can be discarded. The algorithm continues

until the difference between the global upper bound and the global lower bounds are within distance

ε, then the algorithm returns the chosen domain. In this case, it is not necessary to wait for the

algorithm to terminate: as soon as the global upper bound becomes 6 0 the property is satisfied (an

adversarial example has been found) and the algorithm can terminate, otherwise we can wait for

termination in order to return a counterexample.

The authors adopt techniques for improving the efficiency of Branch and Bound such as

smart branching or better bounding functions. In this way, the time to solve the problem almost

halves. An advantage of BnB compared to other exact verification algorithms is that it is less

susceptible to changes in the size of the network. This also means that while other algorithms can

only handle small network with few layers, Branch and bound can work with much larger networks,

getting close to real-world systems. Unfortunately, the downside is that when the size of the input

of the network changes, the algorithm becomes very inefficient because it has to branch in many

dimensions.

DeepGo [171] is an incomplete verification algorithm that uses techniques from Global

Optimisation and leverages Lipschitz continuity to provide an output range analysis of the neural

network. Since, generally, the last layer of a classifier consists of a softmax activation function, the

problem of output range analysis can easily be generalised to logit range analysis (logits are the

output of the network just before the softmax function). DeepGo differs from other verification

algorithms that, rather than leveraging constraints applied to each layer, it is based on a refinement

of the reachable ranges of output of the entire network. The algorithm starts by finding an upper

bound and lower bound of the output. To find them, DeepGO requires a Lipschitz constant K, given

as input, that will guarantee that the maximum rate of change around a point x0 is less than K. The

bigger the K the bigger the search space so the aim is to give the smallest admissible value known.
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To find the global minimum, the algorithm uses another function h(x, y) which serves as a

lower bound of the original neural network function such that

∀x, y ∈ [a, b]n, h(x, y) 6 w(x) & h(x, x) = w(x)

h(x, y) is a function that, given two points within the interval, returns a value which is lower than

the output and returns the value of the output if given the exact same two points. An example of

such a function is given by

h(x, y) = w(y)−K|x− y|

which satisfies the above requirement. Once the estimation of the global minimum is calculated, the

algorithm splits the input domain into two intervals and produces their respective lower bounds. The

highest of the lower bounds (infimum) is the new estimated global minimum while the lowest output

calculated on the points x and y is the upper bound. The algorithm then continues by working on

the new set of intervals. As the number of intervals approaches infinity, the lower bound of the

function gets closer and closer to the true value. This process of iterative refinement continues until

the global minimum and the upper bound are close within an acceptable margin of error after which,

the program terminates.

Having a better Lipschitz constant improves convergence so the authors implement a method

for recalculating K for each interval depending on the observed values. This step speeds up the

whole verification process at the negligible cost of keeping track of a different Lipschitz constant

for each interval. In terms of speed, DeepGO, being an incomplete algorithm, results in much faster

computation times than exact algorithms such as MIP or RELUplex. However, the authors show

that the algorithm is NP-complete in the number of dimensions of the input. This is due to the fact

that, by increasing the number of dimensions, the number of ways in which each dimension affects

the others causes an exponential number of possibilities.

However, the main difference of DeepGo compared to other incomplete algorithms such
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as Fast-lin & Fast-lip is that it scales with the number of changed dimensions rather than with the

number of neurons. This property proves useful for neural networks with even millions of neurons

but small number of inputs that might be infeasible for other algorithms.

3.1.7 Summary

We collect the above described methods in Table 3.1. Our focus is on verification of deep rein-

forcement learning, as opposed to just verification of neural network. For this reason we require

the ability to reason about both the neural network and the modelled environment together. The

necessity of repeating the same computation for multiple timesteps and the exponential state space

growth requires a focus on fast computation rather than accuracy. For chapter 5 we leverage the

Branch and Bound algorithm from Bunel et al. [37] and linearisations from Weng et al. [205] while

for chapter 4 and 6 we adapt a combination of Mixed-integer Linear programming and Abstract

Interpretation, similar to the work in Cheng, Nuhrenberg, and Ruess [48] and [74].

3.2 Assuring Safety in Reinforcement Learning

We now discuss other classes of techniques that aim to achieve safety of policies generated by

reinforcement learning

3.2.1 Verification of RL

In the literature there has been some prior work where algorithms have been built for verifying deep

reinforcement learning [113],where (non-probabilistic) safety and liveness properties are checked.

Other, non-neural network based, reinforcement learning has also been verified, e.g., by extracting
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and analysing decision trees [22].

In the context of probabilistic verification, neural networks have been used to find POMDP

policies with guarantees [44, 43],but with recurrent neural networks and for discrete, not continuous,

state models.

Also related are techniques to verify continuous space probabilistic models, e.g., [126, 187]

which build finite-state abstractions as Markov chains or interval Markov chains. Finally, there is a

large body of work on abstraction for probabilistic verification; ours is perhaps closest in spirit to

the game-based abstraction approach for MDPs from [107].

Zhao et al. [218] models continuous dynamical systems which use ordinary differential

equations (ODE) to represent the agent. Such controllers are smaller, which helps for scalability,

but not every system can be represented using an ODE. The paper aims to find an inductive invariant

in the space of differential equations rather than in the space of solutions by building a property

template and verifying if it is possible to violate it. The invariant will be approximated by a neural

network and the safety property will be verified against it.

3.2.2 Shielding

Shielding is another safety mechanism applied to reinforcement learning. It is based around the

construction of a shield, an override mechanism, that prevents the agent from acting upon bad

decisions. Although not strictly a verification technique, providing guarantees from the system with

this additional layer of safety becomes a trivial task because the agent acts safely by construction.

In Alshiekh et al. [11], the authors synthesize a shield by programmatically determining

which actions are forbidden in some situations. The states in the MDP are abstracted using a safety

automaton and if an action would lead to an unsafe abstract state, it gets automatically discarded
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preventing any unsafe behaviour. The limitations of this approach are that we need to construct the

safety automaton and map states to it which is not always possible: sometimes the outcomes are

decided many timesteps earlier and the long term consequences of actions could be unknown in

advance and need to be learnt by the machine.

Bastani [21] aims to tackle nonlinear dynamics in systems by using a model predictive

controller (MPC) that approximates the dynamics of the system at every state and prevents the

agent from reaching states that violate the safety property. In this way the agent is constrained to

the regions of the safe space from which the MPC knows how to recover, ensuring safety. The suc-

cess of this method hinges on the ability to construct the recovery policy and ensure its safety a priori.

The strategy adopted in Zhu et al. [219] largely differs from the previous ones: it synthesizes

a deterministic program which is an approximation of the learnt neural network behaviour. The

synthesized program is then refined with counterexamples that violate safety constraints and once

the program has no more unsafe counterexamples it is added on top of the neural network as a

shielding mechanism. The simplicity of the synthesized program allows the shielding to generalise

to continuous action space. However, the program synthesis is based on counterexamples and on the

reduction in complexity from the initial neural network, based on these two aspects, the performance

of the agent could be negatively affected or the synthesis process could require an extremely large

number of counterexamples.

Könighofer et al. [119] propose shielded learning, a precomputed shield that limits the

exploration of the state space during the training phase. The agent will then learn to optimise its

performance within the allowed actions hence guaranteeing correctness. After training, the shield

is kept as an extra layer of safety but, thanks to its implementation during the training phase, the
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algorithm ensures that the performance of the agent is minimally affected by the shield interferences.

Again, this methodology requires the construction of an automaton to construct the shield, which is

not always possible.

Jansen et al. [101] expands shielding to problems where there is some degree of uncertainty

in the constructed MDP. They introduce probabilistic shields that allow the agent to be safe with

high probability. The shield is applied during the learning phase, substantially decreasing the

amount of time spent training.

3.2.3 Safe Reinforcement Learning

These algorithms focus on training the agent to be safe out of the box, without any external interfer-

ence like with shielding. They also aim to provide ways to explore the state space without violating

the safety constraints opening up the option to train agents in the real world.

Hasanbeig, Abate, and Kroening [87] train a vanilla RL agent by affecting the reward of

the Q-function with an LTL automaton. Each state is abstracted using a discretisation technique

and labelled according to the LTL automaton. Hence, by maximising the reward function using

dynamic programming, the agent learns an optimal and safe policy.

Cheng et al. [51] aim to discover control barrier functions, safe areas of the state space

delimited by a function, by deploying the agent in a completely unknown environment and employs

a Gaussian Process (GP ) to model the dynamics of the system. Since the environment is unknown,

the agent adopts a very conservative policy during training that later gets relaxed as the performance
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of the agent improves. The paper promise asymptotic improvement towards safety but does not

guarantee that ultimately the agent will effectively be safe. The algorithm is better suited to continu-

ous action problems where the dynamics of the system present no discontinuities and can be better

approximated by the Gaussian process.

Srinivasan et al. [188] aim to train a safe agent by adding a safety critic to a Soft Actor Critic

learning algorithm. In this case the safety specifications are not provided, the algorithm would need

to learn how to be safe without the need for the user to define safety. Initially the agent learns the

safety critic how does it do this? by sampling the state space and classifying it as either safe or

unsafe based on the observation of the environment rewards and episode termination. Later the

actor policy is trained while the safety critic monitors that actions will not lead to unsafe states.

The work, unfortunately, relies on a number of assumptions that are not always applicable in every

problem such as there always being an action that allows the system to go back to safety and many

parameters that are problem specific. However, the paper constitutes a solid starting point for further

improvements.

Hasanbeig, Abate, and Kroening [86] present another algorithm that operates with no su-

pervision from the user that aims to safely explore the environment while training. The strategy

behind the paper is to stick to safe well-known regions called safe padding when training and as

the confidence of the agent about the dynamics of the environment increases, start to cautiously

expand this region. The reward of the agent is shaped using an LTL formula by using a state-action

mapping function. The algorithm works in the context of discretised state space with classical RL

algorithms; whilst the paper provide a strong contribution to the topic, its application are limited by

scalability constraints.
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Ma et al. [135] aims to improve existing RL methods with the addition of a feasible actor-

critic (FAC) in such a way that for a given set of initial states, the safety of the policy is guaranteed

when possible. A notable difference from previous papers is that rather than using gradient descent

during the training, the paper uses a Lagrangian-based approach that appear to be more efficient in

complex control tasks. The algorithm guarantees that the agent will optimise its policy towards a

safe behaviour asymptotically, but as with the other Safe-RL algorithms no hard guarantees can be

provided with this method.

Jin et al. [103] is an abstraction-based training approach that trains the agent directly on

the abstract states rather than the concrete ones. In this way, the policy network can determine the

action to take for large consistent sections of the state space. The algorithm works by effectively

discretising the concrete states and assigning them to interval-based abstract states. The verification

of the LTL property looks at the discretised MDP generated by the transitions in the abstract space

and returns whether the policy is safe. Being a discretisation based algorithm, the size of the abstrac-

tion granularity needs to be chosen in such a way that the abstract states do not overapproximate

the system too much but also not too precisely in such a way that the number of states increases

disproportionately.
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Chapter Four

Verifying Deep Reinforcement Learning

over Unbounded Time

4.1 Introduction

In this chapter, we present our first approach for verifying deep reinforcement learning systems.

Traditionally, the criterion against which RL agents have been trained and evaluated has been their

performance, that is, how quickly and efficiently they solve their task. However, for agents that

interact with critical environments, performance must meet safety: not only is it required that

positive outcomes eventually happen, but also that negative ones do not [69, 134]. Safety is subtle,

because a system is truly safe only if it avoids danger regardless of how long it is left running.

Determining whether an RL system is safe for unbounded time addresses both a formal verification

question, providing stronger guarantees of correctness than bounded verification, and a machine

learning question, indicating whether the learning algorithm has generalised a strategy beyond the

length of the episodes used to train it. Verifying RL requires reasoning about the dynamics of the

environments together with the learned agents which, in modern RL, are neural networks. For

the first time, we treat the automated (and sound) time-unbounded verification of neural networks
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interacting with dynamical systems.

Safety analysis for neural networks has been studied before for bounded settings. One

example is classification, whose well-known vulnerability to adversarial attacks has been analysed

using gradient descent, mixed-integer linear programming (MILP), and satisfiability modulo theories

(SMT) [143, 97, 61, 36, 111]. Search-based algorithms of this kind are inherently bounded, unlike

abstract interpretation methods. Abstract interpretation computes a representation of the set

of reachable states and checks whether it avoids a set of bad states. Methods for the abstract

interpretation of neural networks have borrowed from the analysis of numerical programs, and have

been applied to adversarial attacks [75, 184], output range analysis [212, 58], and time-bounded

verification of RL [199, 16]. Time-unbounded verification is more difficult because it requires that

the abstraction is both safe, i.e., disjoint from the bad states, and invariant, i.e., no other states are

reachable from it; none of the available approaches, as is, have been demonstrated to achieve both

requirements on RL problems.

We present the first technique for verifying whether a neural network controlling a dynamical

system maintains the system within a safe region for unbounded time. For this purpose, we

overapproximate the reach set using template polyhedra, i.e., polyhedra whose shape is determined

by a set of directions, the template [175]. Traditional interval and octagonal abstractions have rigid

shapes which often produce abstractions that are too coarse to be safe or too tight to be invariant.

By contrast—with an appropriate choice of directions—template polyhedra can be adapted to the

verification problem making the abstraction tight only where necessary and thus facilitating the

identification of safe invariants [28, 67].

We formulate the problem of computing template polyhedra as an optimization problem.

For this purpose, we introduce an MILP encoding for a sound abstraction of neural networks with

ReLU activation functions acting over discrete-time systems. We support linear, piecewise linear

and non-linear systems defined with polynomial and transcendental functions. For the latter, we
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combine MILP with interval arithmetic.

We propose a safety verification workflow where agents trained with any, possibly model-

free, RL technique are verified against a model of the environment. Every model is accompanied

with user-defined templates which, as we experimentally demonstrate, suffice to verify multiple

agents. Upon every successful verification result we thus certify that an agent is safe w.r.t. a model,

which determines our problem specific safety specification (discussed below in sections 4.4.1, 4.4.2

and 4.4.3). Ultimately, we provide formal guarantees that are equivalent to (or stronger than) those

of agents that are trained or enforced to be safe [10, 50, 87, 129],yet without imposing constraints

on the agent or the RL process.

We demonstrate that our method effectively verifies agents trained over three benchmark con-

trol problems [100, 199, 33]. We additionally show that an alternative time-unbounded verification

approach built upon range analysis fails in all cases.

4.2 Safety Analysis of Reinforcement Learning

4.2.1 Controller Execution Model

We consider controllers acting over continuous state spaces systems with a discrete action space.

We assume a set of n real-valued state space variables and denote the state space by S = Rn. There

is a finite set A = {a1, . . . , aΣ} of Σ actions that can be taken by the controller. For simplicity, we

assume that all actions are available in every state.

Often the agent can only experience a small part of the system called the observation. The

observation differs from the current state so that it contains less information with lower precision,

making the decison process harder.
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Definition 8 (Observation function). The observation function if a function O : S → X , with

S ∈ Rn and X ∈ Rm, and m ∈ Z, that given the current state in the system, returns the observation

available to the agent distorted by some observation noise.

A time-invariant controlled dynamical system with discrete actions and over discrete time

consists of an n-dimensional vector of real-valued state variables s and an m-dimensional vector of

real-valued observable variables x. The system dynamics are determined by a difference equation

st+1 = E(st, at) + ct, ct ∈ C, s0 ∈ S0, (4.1)

where st ∈ Rn, at ∈ A, and ct respectively denote state, input action, and control disturbance

at time t. The set C ⊂ Rn is the space of control disturbances, S0 ⊂ Rn is the space of initial

conditions, and E : Rn ×A→ Rn is the update function. An observation function O : Rn → Rm

and a space of observation disturbances D ⊂ Rm determine the observable values at time t from a

state:

xt = O(st) + dt, dt ∈ D. (4.2)

As defined in Definition 3, a trajectory of the system is an infinite sequence of states and actions in

alternation

s0a0s1a1s2 . . . (4.3)

every state s1, s2, . . . is determined by Eq. (4.1); every action a1, a2, . . . is determined by the

controller policy π : Rm → A from the observation at the current step, i.e.,

at = π(xt). (4.4)

For the purpose of training an agent using RL, we augment the system with the probability

distributions λX0 , λC , and λD for the set of initial observations X0, and the sets C and D,

respectively. We require that supp(λS0) = S0, supp(λC) = C, and supp(λD) = D, where
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supp(λ) = {x ∈ : λ(s) > 0} is the support of distribution λ over set S (where xt = O(st) + dt

as described in Equation 4.2). This induces a discrete-time partially observable Markov decision

process (POMDP) with finite actions and possibly uncountable state space and branching.

Definition 9 (Observation disturbance). Observation disturbance λD is a distortion from the correct

value in the observation received by the agent. We model the magnitude of the noise within some

distortion boundary D.

Definition 10 (Control disturbance). Control disturbance λC is a distortion applied to the controller

from the action chosen by the agent. We model the magnitude of the noise within some distortion

boundary C.

The decisions taken by a controller are represented by a policy.

Definition 11 (Controller policy). A controller policy is a function π : S → Dist(A), which, for

each action a ∈ A, returns the probability of selecting it.

With the above definition we can explain both deterministic policies and probabilistic

policies by changing the type of probability distribution. Probabilistic policies are going to be

sampled according to the probability distribution while deterministic ones just choose the action

with the highest score, hence they will have probability of 1 for that action and 0 everywhere else.

For simplicity, we also use the following style to access the probability of action a being

chosen

π(s, a) = π(s)(a) (4.5)

We restrict our attention to policies that are memoryless (whose output depends only on the value of

s and not on the previously visited states) in order to preserve the Markov assumption. In addition,

in this chapter we focus on deterministic controller policies to be able to find invariants in the model

when performing safety verification.
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ego lead ego lead

(a) (b)

Figure 4.1: Adaptive cruise control: a good and a bad state.

Finally, a reward function R : Rm → R maps observations to reward values. We discuss in

Sect. 4.4 how we design rewards functions for obtaining performant and safe agents using RL.

4.2.2 Neural Network Policies

Agents are given in the form of neural networks with a focus on RELU activation functions and

deterministic output. We train our agents over the POMDP induced by the distributions over initial

and disturbance sets. Then, we verify the safety of the dynamical system controlled by the obtained

network. We tackle time-unbounded safety verification; for this purpose, we introduce a technique

for constructing coarse yet safe abstractions of the reach sets of these neurally controlled dynamical

systems.

4.2.3 Safety Verification

We target the safety verification question for controlled dynamical systems. Let B ⊂ Rn be a set

of bad states. Verifying the safety of a system consists of deciding whether, for every trajectory

s0a1s1a2s2 . . . , we have that st 6∈ B for all t = 0, . . . ,∞. Dually, it consists of determinining

whether there exists a finite prefix s0a0s1 . . . ak−1sk such that sk ∈ B. In the former case we say

that the system is safe; in the latter we say that it is unsafe.

Example 1. Adaptive cruise control is a paradigmatic example for the safety of an RL system [57,

199]. In its simplest form, it consists of two vehicles, ego and lead, moving in a straight line. An
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agent should control ego so that it stays at some close and safe distance from lead. State variables

sv, s′v, and s′′v resp. determine position, speed, and acceleration of each vehicle v = ego, lead. The

observation function exposes the vehicles’ distance slead − sego and the speed of ego s′ego; both

observables are subject to a disturbance. The lead vehicle proceeds at a constant speed of 28 m s−1

and, at every step, the agent can either decelerate (action 1) or accelerate ego by 1 m s−2 (action

2). Update and observation functions are formally defined in Sect. 4.4.2. The agent is safe only if

the distance is positive along every trajectory (Fig. 4.1a); every other condition indicates that the

vehicles have crashed (Fig. 4.1b). The set of bad states is thus defined by the constraint slead 6 sego.

Trivially, an agent that always decelerates is safe; however, safety must coexist with performance,

which rewards the agent for keeping ego close to lead.

4.3 Template-based Polyhedral Abstractions for Neurally Con-

trolled Dynamical Systems

We employ abstract interpretation for constructing a sound overapproximation of the reach set of

the system. Specifically, we compute a sequence of abstract sets of states in Rn

Ŝt+1 = post(Ŝt) (4.6)

for increasing t > 0, where post—the post operator—ensures that Ŝt+1 overapproximates the

states that are reachable after one step from Ŝt. Time-unbounded safety verification succeeds if our

procedure finds a finite k > 1 such that the sequence of states up to k contains Ŝt.

invariant Ŝt ⊆ ∪{Ŝ0, . . . , Ŝk−1} and

safe ∪{Ŝ0, . . . , Ŝk} ∩B = ∅.
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δ1
δ2

δ3

Rectangle Octagon {δ1, δ2, δ3}-polyhedron
(a) (b) (c)

Figure 4.2: Template polyhedra (hatched areas) of a set (gray area).

The procedure computes Ŝt iteratively for increasing t and checks both conditions at each step. If

both are satisfied the procedure terminates concluding that the system is safe; if safety is violated

it terminates with an inconclusive answer. This procedure may, in the worst case, not terminate.

We present a post operator that computes Ŝt in the form of finite unions of template polyhedra; as

our experiments show (Sect. 4.4), we repeatedly compute the set of abstract successor states until

every successor is contained within the set of previously visited abstract states, which display some

practical examples of safe and invariant abstractions.

We call a finite set of directions ∆ ⊂ Rn a template. A ∆-polyhedron is a polyhedron whose

facets are normal to the directions in ∆. The ∆-polyhedron of S, where S is a convex set in Rn, is

the tightest ∆-polyhedron enclosing S:

∩ {{s : 〈δ, s〉 6 ρS(δ)} : δ ∈ ∆}, (4.7)

where ρS(δ) = sup{〈δ, s〉 : s ∈ S} is the support function of S. Special cases of template polyhedra

are rectangles (i.e., intervals) and octagons (Fig. 4.2a and b), which are determined by specific

templates. In addition, by using fewer, well-chosen directions, template polyhedra let us construct

sufficiently tight yet unbounded polyhedral abstractions (Fig. 4.2c).

We compute template polyhedra over a symbolic representation of the post. We split the

post computation into a partitioning Pt (a set of sets in Rn) that overapproximates the states that are
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reachable after one step from St, i.e.,

∪ Pt ⊇ {E(s, π(O(s) + d)) + c : c ∈ C, d ∈ D, s ∈ St}. (4.8)

As we show below, we build the partitioning from the piecewise structure of the system and

represent its elements symbolically. Then, for every symbolic representation we construct a

template polyhedron by optimising in the directions of ∆. Our post is the union of these template

polyhedra:

post(St) = ∪{∆-polyhedron of P ′ : P ′ ∈ Pt}, (4.9)

The post produces a union of convex polyhedral overapproximations.

Neurally controlled dynamical systems often have piecewise dynamics because of the large

number of problems that support a discrete number of actions (e.g. thermostat [71], braking

system [46], collision avoidance in aircrafts [108], videogames [142]). The discrete action space

naturally induces a case split in the update function. Also, some systems may have dynamics

that switch between two or more behaviours according to guard conditions over the state (see,

e.g., Sect. 4.4.1). Formally, each case split is a partial function from a set F ⊂ (Rn × A → Rn)

s.t. f = ∪F and f is total. Likewise, this case split and the encoding below also applies to the

observation function O; for simplicity, we only refer to f .

We compute post(St) using optimisation. We express an encoding for every combination

of action a ∈ A, case split f ′ ∈ F of the update function, and convex polyhedron S ′ from the

finite union of convex polyhedra St; each combination induces an element P ′ of Pt. For a direction
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δ ∈ ∆, we solve the following problem:

maximize 〈δ, p′〉

subject to π(x) = a,

p′ = f ′(s′, a) + c, s′ ∈ dom(f ′(·, a))

x = O(s′) + d,

c ∈ C, d ∈ D, s′ ∈ S ′,

(4.10)

over the variables c, s′, p′ ∈ Rn and x, d ∈ Rm. The solution provides the value of ρconvP ′(δ) which,

computed over all δ ∈ ∆, yields the ∆-polyhedron of P ′ (see Eq. (4.7)); in turn, the polyhedron

yields an element of the post (see Eq. (4.9)).

The optimisation problem consists of a linear objective function and constraints for, respec-

tively, the action chosen by the neural network, update and observation functions, and disturbance

and input sets. We assume that the disturbance sets C and D are convex polyhedra, and that the

initial set s0 is a union of convex polyhedra similarly to all other St for t > 1. For partial functions

f ′(·, a), we assume that the domains of definition are given as convex polyhedra. Consequently,

the constraints for C, D, S ′, and dom(f ′(·, a)) are expressed with systems of linear inequalities.

Our encoding for the constraint over the neural network π(s) = a and our overapproximation of

non-linear functions introduce integer variables, as we show below. The optimisation problem thus

results in an MILP.

The network selects action a when the value of the a-th output neuron is larger than the

value of all other output neurons (Eq. (2.2)). Since MILP cannot optimise directly over Eq. (2.2),

we reframe the problem such that the constraint for π(s) = a is

〈ej − ea, zl+1〉 6 0 for j = 1, . . . ,Σ, (4.11)

where zl+1 ∈ RΣ is a variable for the value of the output layer. For each hidden layer i, we add
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to the optimisation problem a real variable zi ∈ Rhi for the values of the neurons in the layer,

plus an integer variable z′i ∈ Zhi for the activation status of the ReLU function. We encode the

ReLU function using a big-M encoding [195], a technique for handling the different phases of the

activation function. For the hidden layers, we add constraints

0 6 zi −Wizi−1 − bi 6Mz′i for i = 1, . . . , l,

0 6 zi 6M −Mz′i ′′

0 6 z′i 6 1 ′′

(4.12)

For output and input layers, we add zl+1 = Wl+1zl and z0 = y. Constant M ∈ R is an upper bound

for the values a neuron can take, which we set to a sufficiently large value so as not to constrain the

system’s states (such value can either be based on reachable boundaries or found empirically).

Linear update (and observation) functions are encoded directly into the MILP using linear

equalities. For non-linear constraints defined with polynomials or transcendental functions, such as

with the cart-pole problem (in Sec. 4.4.3), we introduce an overapproximation based on interval

arithmetic. Constraint p′ = f ′(s′, a) + c is an n-dimensional system of equalities. We identify

the equations within the system that are non-linear and let p′N, f ′N, and cN be the corresponding

projection for resp. p′, and f ′, and c. Moreover, we let s′N be the largest subset of variables in s′ that

appear in these non-linear equations. The non-linear components thus form the reduced system

p′N = f ′N(s′N, a) + cN. (4.13)

We encode the remaining linear components exactly, using linear equalities, whereas we overap-

proximate Eq. (4.13). First, we construct a bounding box of S ′N; note that we ensure beforehand

that S ′N is bounded with an appropriate template choice (see Sect. 4.4.3). Then, we partition the

bounding box into a grid of intervals [ξ
1
, ξ̄1], . . . , [ξ

κ
, ξ̄κ] by splitting it in half. For every element

i = 1, . . . , κ, we compute using interval arithmetic an output interval [πi, π̄i] for the image of [ξ
i
, ξ̄i]
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though f ′N(·, a). For example, for the cart-pole problem (Section 4.4.3), we compute the output

boundaries of the dynamics of the environment given intervals for both the θ and θ′ variables, with

each interval being of size ξ̄i − ξi 6 ε where ε is a parameter chosen by the user. As a result, we

obtain a lookup table that associates input intervals to output intervals. We encode this table by

adding to the MILP the integer variables ζ1, . . . ζκ ∈ Z, each of which represents an active interval,

and the following constraints:

∑κ
i=1 ξi − ξi · ζi 6 s′N 6

∑κ
i=1 ξ̄i − ξ̄i · ζi∑κ

i=1 πi − πi · ζi 6 p′N − cN 6
∑κ

i=1 π̄i − π̄i · ζi∑κ
i=1 ζi = κ− 1

0 6 ζi 6 1 for i = 1, . . . , κ.

(4.14)

We tune the precision of the overapproximation by fixing a desired granularity for output intervals,

a maximal diameter, and iteratively split the input intervals until that is attained.

Example 2. We trained a neural network for adaptive cruise control (Ex. 1) by rewarding the agent

for keeping a safety distance of 10 m; the vehicles start from a range of distances between 20 and

40 m. We employed our method for analysing its safety using three different abstraction templates:

rectangles, octagons and a custom template designed for this system which considers the most

important linear combinations of variables and discards unnecessary information in order to help

finding a safe invariant (see Sect. 4.4.2). Rectangles produce an excessively coarse abstraction

which hit distance zero: the bad state (Fig. 4.3a). Unlike rectangles, octagons keep track of the

vehicles’ distance and thus avoid the bad state; however, their abstraction is too tight to identify an

invariant, inducing an infinite sequence of polyhedra along the vehicles’ position (Fig. 4.3b). Our

custom template keeps track of vehicles’ distance, while abstracting away absolute position; this

yields a safe and invariant abstraction of the reach set (Fig. 4.3c).
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Figure 4.3: Abstract reach sets of a neural network for adaptive cruise control using different
templates (Ex. 2). Plots are projected onto vehicles distance (y-axis) and position of lead (x-axis)
and constrained within a window, as shown; different colours correspond to different time steps.

4.4 Experimental Evaluation

We evaluate our method over multiple agents for 3 benchmark control problems: a bouncing ball,

automated cruise control, and cart-pole. We selected a range of loss functions and hyperparameters

and verified, using our method, which setups produce safe behaviour. We trained RL agents using

proximal policy optimisation (PPO) [179] with Adam optimiser. We used standard feed forward

architectures with 2 hidden layers of size 64 (32 for the bouncing ball), and ReLU activation

functions; we used a learning rate of 5e−4.

We built a prototype1 and verified the safety of these networks with rectangular and octagonal

abstractions and, when necessary, custom templates2 which we discuss in Sect. 4.4.2 and 4.4.3.

In addition, we also compared our method with an alternative approach built upon range analysis

(Sect. 4.4.4).

We ran our experiments on a 4-core 4.2GHz with 64GB RAM. Results are shown in Tab. 4.1

and discussed in Sect. 4.4.4.
1https://github.com/phate09/SafeRL_Infinity
2For readability, we present direction δ by displaying 〈δ, x〉.
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4.4.1 Bouncing Ball

Environment. The system consists of a ball, whose height from the ground is determined by a

variable s and whose vertical velocity is determined by a variable s′ [100]. Under normal conditions,

position is given by the equation st+1 = st + τ · s′t and velocity is given by s′t+1 = s′t − τ · g, where

g denotes gravitational acceleration and τ = 0.1 indicates our time step. Every time the ball hits the

ground, i.e., st 6 0, the ball bounces back after losing 10% of its energy, i.e., s′t+1 = −0.9 ·s′t− τ ·g

and st+1 = 0. At every timestep, the agent can either hit the ball downward with a piston by adding

−4 m s−1 to its velocity, or do nothing. Overall, this results in a piecewise linear system.

Training. The goal is to ensure that the ball keeps bouncing indefinitely, while using the piston

as little as possible. We reward the agent with value 1 for each time step that the ball’s absolute

velocity is above the minimal velocity of 1 m s−1. Additionally, we discourage the agent from

overactivating the piston by punishing it with reward -1 every time it is activated. We trained 11

agents using different initial seeds and with episodes of at most 1000 timesteps, after which we

forcefully terminate. We terminate training either when our agent reaches a mean reward of 900 or

after 5M training steps. The parameters have been chosen in order to provide a sensible time cap

to the training phase whilst also providing abundant time for the agent to converge to an optimal

solution.

Verification. As initial condition, we consider the set of initial ball heights s0 ∈ [7, 10] and initial

velocities s′0 ∈ [0, 0.1]. The agent becomes unsafe if the ball stops bouncing (s0 = 0 and s′0 = 0) .

We use traditional rectangular and octagonal abstractions, that is, for rectangles we use the directions

s,−s, s′,−s′ and for octagons add the extra directions s+ s′,−s+ s′, s− s′,−s− s′. Notably, all

agents have been successfully verified with both rectangles and octagons with no notable difference

in performance.
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4.4.2 Adaptive Cruise Control

Environment. The problem consists of two vehicles, lead and ego, whose state is determined

by variables sv, s′v and s′′v , respectively, for position, speed, and acceleration of v = ego, lead (see

Ex. 1). The lead car proceeds at constant speed (28 m s−1), and the agent controls the acceleration

(± 1 m s−2) of ego using either of two actions. Its dynamics are given by

sv,t+1 = sv,t + τ · s′v,t for v = ego, lead, (4.15)

s′ego,t+1 = sego,t + τ · s′′ego,t s′lead,t = 28, (4.16)

s′′ego,t+1 =


−1 if at = 0,

1 if at = 1.

(4.17)

The observation function exposes vehicle distance xdis and the velocity of ego xvel with an additional

observation disturbance of radius ε, determined by the following equations:

xdis,t = slead,t − sego,t + ddis,t, ddis,t ∈ [−ε,+ε] (4.18)

xvel,t = s′ego,t + dvel,t, dvel,t ∈ [−ε,+ε]. (4.19)

We consider a case with ε = 0 and another case with ε = 0.05, and use τ = 0.1. Altogether, when

an action is given this is a linear system with disturbances.

Training. We train our agents using two 2 different reward functions. A “simple” function only

rewards the agent for each timestep it survives without crashing, that is, R(xdis, xvel) = 1 if xdis > 0;

a “complex” function additionally punishes the agent from being away from a predefined distance

x?dis, specifically, R(xdis, xvel) = 1 − 0.02 · (xdis − x?dis)
2. We cap each episode at 1000 timesteps.
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From the definition of the simple cost function above, we can periodically pre-test the safety of

the agent by disabling the exploration and requiring an average score of 1000 before attempting

the verification step. For the complex cost function it is more difficult to estimate what a safe

score should be, so we empirically determined that before attempting to verify the neural network,

the agent needs to reach an average score of at least -20. As an additional stopping condition we

terminate the training after 20M training steps. We ran our algorithm over 22 agents trained with

different initialisation seeds and two modes of input perturbation (ε = 0 and ε = 0.05) for up to 300

seconds.

Verification. We consider the initial region enclosed within the constraints slead,0 ∈ [40, 50],

sego,0 ∈ [0, 10], s′ego,0 = 36. Using standard rectangular or octagonal abstractions that verification

procedure fails by either returning a spurious counterexamples or timing out. To effectively

verify this systems, we designed a template with the following directions: s′′ego, −s′′ego, s′lead, −s′lead,

(s′lead−s′ego),−(s′lead−s′ego), (slead−sego),−(slead−sego). This allows us to keep track of the distance

between the two vehicles and easily spot if the agent encounters an unsafe state, while enabling the

identification of an invariant. The agent is considered safe if it can maintain positive distance from

the leading car without touching it (slead − sego) > 0. Agents could be proven to be safe in most

but not all of the cases within our time constraints (300s), showing a higher degree of difficulty

compared to the previous problem. When testing the agents on the perturbed environment, only a

few of the agents that were proven safe in the previous experiment retained safety, demonstrating

that the problem the agent had to solve is much harder.

4.4.3 Cart-pole

Environment. The cart-pole problem is a very well known control problem in the RL literature;

for our experiments, we refer to the OpenAI Gym implementation of CartPole-v1 [33]. The state
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variables are angle θ and angular velocity θ′ of the pole, together with horizontal position x and

velocity x′ of the cart. The agent has two actions for pushing the cart to either the left or the

right which, together with θ and θ′, internally determine horizontal and angular accelerations x′′

and θ′′. The values of θ′′ and x′′ are determined according to non-linear equations defined with

transcendental functions and whose arguments are the action and variables θ and θ′. The update rule

for angle θ, position x, and velocities θ′ and x′ follow a linear Euler integration rule with timestep τ .

All variables x, x′, θ, and θ′ are observable.

Training. The objective for an agent is to keep the pole upright; we consider the system unsafe

whenever θ > 12◦, according to the OpenAI Gym termination condition. We train agents using

three cost functions. A “simple” version only rewards the agent for surviving; a “complex” version

discourages it from having high values of θ and θ′, i.e., R(x, x′, θ, θ′) = 1− 0.5 ∗ θ2− 0.5 ∗ (θ′)2−

0.1 ∗ (x′)2; a third one limits the complex cost function to only giving positive rewards. For every

cost function, we trained two agents using τ = 0.02 and τ = 0.001, thus obtaining 6 agents. We

capped each episode to 8000 timesteps. For all cost functions, we terminate training when the mean

reward of the last 50 episodes reaches 7950 (i.e., sufficiently close to the maximum of 8000) or

after 20M training steps. We use curriculum learning [26], a technique that trains the agent starting

from easier variation of the problem and then slowly increasing difficulty, to improve training:

when the mean episode return reaches 6500 the initial states get sampled from bigger intervals with

θ ∈ [−0.2, 0.2] and θ′ ∈ [−0.5, 0.5].

Verification. We use the starting region of OpenAI Gym, i.e., all variables are initialised from the

interval [−0.05, 0.05]. However, we remove the constraints imposed on x and let the cart-pole move

freely to any position. The safety specification determines that the agent is safe only if it remains

within the range −12◦ < θ < 12◦. Rectangles and octagons failed to prove safety on all instances.

Thus, we designed a custom template that forms an octagon over θ and θ′ only, determined by the
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following directions: θ, −θ, θ′, −θ′, θ + θ′, −θ + θ′, θ − θ′, −θ − θ′. The rationale behind this

choice is that the position variable x does not contribute to proving or disproving the safety of the

system and can be excluded from the template. In addition, by bounding the space of θ and θ′,

which are the variables affecting the angle of the pole in the non-linear equations of the system

we are able to keep track of the range of values that have a real impact on the balance (and then

safety) of the cart-pole. This lets us use interval arithmetic for encoding the non-linear equations in

our MILP (see Sect. 4.3). We verified our agents against both versions of the environment, with

τ = 0.02 and with τ = 0.001 to test the how it would affect safety. The agents that did run on

environments at τ = 0.001 during the evaluation found an invariant quicker and in less timesteps.

4.4.4 Results

Table 4.1 reports, for each environment and hyperparameter, the number of solved instances, the

average timestep of invariant detection, the number of template polyhedra in the abstract reach set

after pruning redundant ones and the runtime of the model construction.

The time required to find whether the agent is safe increases as the number of variables in the

problem increases (BB has 2, ACC has 6 and CP has 4) and on the type of abstraction. Templates

enable us to find invariants on problems that would not converge otherwise (ACC and CP). Once we

introduce a small observation perturbation on ACC such as in adversarial examples, only a small

fraction of the agents remain safe negatively impacting safety.

From our results, the cost function used does not strongly correlate with the safety of the

agent hence it is omitted in the table. Conversely, shorter timesteps contribute positively to reducing

the time required to verify an agent, promoting a higher chance to find a safe invariant in early

timesteps.

Additionally, we verified our agents using a naive time-unbounded approach (based on range
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Env. Abs. Safe Avg Avg Avg
k poly. runtime

BB Rect 11/11 237 477 40s
BB Oct 11/11 203 411 47s
ACC (ε = 0) Temp 20/22 467 610 171s
ACC (ε = .05) Temp 5/22 226 337 124s
CP (τ = .001) Temp 4/6 27 18 67s
CP (τ = .02) Temp 3/6 100 125 174s

Table 4.1: Verification results by environment, i.e, bouncing ball (BB), adaptive cruise control
(ACC) and cart-pole (CP), hyperparameters ε and τ (where they apply), abstraction, i.e., rectan-
gular, octagonal, or template-based, and number of agents determined to be safe within 300s.
For successful outcomes, we report average timestep of fixpoint detection k, number of final
template polyhedra, and runtime.

analysis) that constructs, from the network in isolation, ranges of observables for which an action is

enabled; then, it uses these ranges as guards for the dynamical system. This alternative approach

failed on all instances by producing inconclusive answers (unsafe abstractions) or reaching time-out.

Notably, existing verification methods for neural networks are incomparable as they only support

time-bounded problems such as robustness to adversarial attacks or finite-horizon safety analysis of

RL [199, 75].

4.5 Conclusion

We presented the first method for verifying the safety of RL agents up to infinite time. To this

end, our method constructs coarse, yet precise enough, abstractions using template polyhedra.

We demonstrated the efficacy of our method over multiple case studies. Our technique yields

stronger formal guarantees than previous time-bounded methods, and also indicates which RL

setups generalise well beyond the length of their training episodes. Our result poses the basis for

future research, both in machine learning and formal verification. Our method can be used to make

informed decisions about architectures and hyperparameters, and also to guide an RL procedure that

56 of 133



Verifying Deep Reinforcement Learning over Unbounded Time

trains for safety. Also, our method lends itself to extensions towards multi-agent systems, systems

over continuous time, continuous actions and automated abstraction refinement.
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Chapter Five

Probabilistic Guarantees for Safe Deep

Reinforcement Learning

5.1 Introduction

A further challenge for verifying the safe operation of controllers synthesised using deep rein-

forcement learning is the fact they are often developed to function in uncertain or unpredictable

environments. This necessitates the use of stochastic models to train, and to reason about, the

controllers. One source of probabilistic behaviour is dynamically changing environments and/or

unreliable or noisy sensing. Another source, and the one we focus on here, is the occurrence of

faults, e.g., in the hardware for actuators in the controller.

In this chapter, we propose novel techniques to establish probabilistic guarantees on the

safe behaviour of deep reinforcement learning systems which can be subject to faulty behaviour

at runtime. Our approach, which we call MOSAIC (MOdel SAfe Intelligent Control) uses a

combination of abstract interpretation and probabilistic verification to synthesise the guarantees.

Formally, we model the runtime execution of a deep reinforcement learning based controller
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as a continuous-space discrete-time Markov processes (DTMP). This is built from: (i) the neural

network specifying the controller; (ii) a controller fault model characterising the probability with

which faults occur when attempting to execute particular control actions; and (iii) a deterministic,

continuous-space model of the physical environment, which we assume to be known.

We concern ourselves with finite-horizon safety specifications and consider the probability

with which a failure state is reached within a specified number of time steps. More precisely, our

main aim is to identify “safe” regions of the possible initial configurations of the controller, for

which this failure probability is guaranteed to be below some specified threshold. This is in contrast

with the work in the previous chapter because, since we want to calculate the probability boundaries

of encountering an unsafe state, we can no longer calculate safety invariants and are now forced to

use a different approach that requires a time boundary on our analysis.

One key challenge to overcome, due to the continuous-space model, is that the number of

initial configurations is infinite due the set of initial states being represented as a section of the state

space. We construct a finite-state abstraction as a Markov decision process (MDP), comprising

abstract states (based on intervals) that represent regions of the state space of the concrete controller

model. We then use standard probabilistic model checking techniques on the MDP abstraction, and

show that this yields upper bounds on the step-bounded failure probabilities for different initial

regions of the controller model.

A second challenge is that constructing the abstraction requires extraction of the controller

policy from its neural network representation. We perform a symbolic analysis of the neural network,

for which we design a branch-and-bound algorithm, and an abstraction process that explores the

reachable abstract states of the environment. We also iteratively refine the abstraction to yield

more accurate bounds on the failure probabilities. We evaluate our approach by applying it to deep

reinforcement learning controllers for two benchmark control problems: a cartpole and a pendulum.
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5.2 Controller Execution Model

We now describe our approach to formally modelling and verifying the execution of a controller,

and the process of defining an abstraction of this model.

5.2.1 Controller Execution

To describe the execution of a controller, we require three things: (i) a controller policy π (from

definition 11); (ii) an environment model E (from definition 1); and (iii) a controller fault model,

that we are going to describe more in detail below.

We also extend E to define the change in system state when a sequence of zero or more

actions are executed, still within a single time step. This will be used below to describe the outcome

of controller execution faults. Re-using the same notation, for state s ∈ S and action sequence

w ∈ A∗, we write E(s, w) to denote the outcome of taking actions w in s. This can be defined

recursively: for the empty action sequence ε, we have E(s, ε) = s; and, for a sequence of k actions

a1 . . . ak, we have E(s, a1 . . . ak) = E(E(s, a1 . . . ak−1), ak).

Definition 12 (Controller fault model). A controller fault model is a function f : A→ Dist(A∗)

that gives, for each possible controller action, the sequences of actions that may actually result and

their probabilities.

As with the policy, for simplicity we can access the probability of a specific a and w

combination:

f(a, w) = f(a)(w) (5.1)

This lets us model a range of controller faults. A simple example is the case of an action a

failing to execute with some probability p: we have f(a, ε) = p, f(a, a) = 1−p and f(a)(w) = 0
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for all other action sequences w. Another example, is a “sticky” action [136] a which executes

twice with probability p, i.e., f(a, aa) = p, f(a, a) = 1−p and f(a, w) = 0 for any other w.

Now, given a controller policy π, an environment model E and a controller fault model f , we

can formally define the behaviour of the execution of the controller within the environment. We add

two further ingredients: a set S0 ⊆ S of possible initial states; and a set Sfail ⊆ S of failure states,

i.e., states of the system where we consider it to have failed. We refer to the tuple (π,E, f, S0, Sfail)

as a controller execution. Its controller execution model is a (continuous-space, finite-branching)

discrete-time Markov process defined below.

In this chapter, we will restrict our attention to deterministic controller policies (probabilistic

policies are considered later in Chapter 6). Here, we will slightly abuse notation and use π(s) to

denote the single action selected by π in a state s.

Definition 13 (Controller execution model). Given a controller execution (π,E, f, S0, Sfail), the cor-

responding controller execution model describing its runtime behaviour is the DTMP (S, S0,P,AP , L)

where AP = {fail}, for any s ∈ S, fail ∈ L(s) iff s ∈ Sfail and, for states s, s′ ∈ S:

P(s, s′) =
∑
{f(π(s))(w) | w ∈ A∗ s.t. E(s, w) = s′} .

For each state s, the action chosen by the controller policy is π(s) and the action sequences

that may result are given by the support of the controller fault model distribution f(π(s)). For each

action sequence w, the resulting state is E(s, w). In the above, to define P(s, s′) we have combined

the probability of all such sequences w that lead to s′ since there may be more than one that does so.

Recall the example controller fault models described above. For an action a that fails to be

executed with probability p, the above yields P(s, s) = p and P(s, E(s, a)) = 1−p. For a “sticky”

action a (with probability p of sticking), it yields P(s, E(E(s, a), a)) = p and P(s, E(s, a)) = 1−p.
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5.2.2 Controller Verification

Using the model defined above of a controller operating in a given environment, our aim is to verify

that it executes safely. More precisely, we are interested in the probability of reaching failure states

within a particular time horizon. Since in this chapter we are focusing on a different source of

probabilistic behaviour, unlike in the previous one we do not consider the observation function and

we replace it with an identity function every time we want to access the underlying state. We write

Pr s(♦
6kfail) for the probability of reaching a failure state within k time steps when starting in state

s, which can be defined as:

Pr s(♦
6kfail) = Pr s({s0s1s2 · · · ∈ Path(s) | si |= fail for some 0 6 i 6 k})

Since we work with discrete-time, finite-branching models, we can compute finite-horizon reacha-

bility probabilities recursively as follows:

Pr s(♦
6kfail) =


1 if s |= fail

0 if s 6|= fail ∧ k=0∑
s′∈supp(P(s,·)) P(s, s′) · Pr s′(♦6k−1fail) otherwise.

For our controller execution models, we are interested in two closely related verification problems.

First, for a specified probability threshold psafe , we would like to determine the subset Ssafe
0 ⊆ S0

of “safe” initial states from which the error probability is below the threshold:

Ssafe
0 = {s ∈ S0 | Pr s(♦6kfail) < psafe}

Alternatively, for some set of states S ′, typically the initial state set S0, or some subset of it, we

wish to know the maximum (worst-case) error probability:

p+
S′ = sup{Pr s(♦6kfail) | s ∈ S ′}
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This can be seen as a probabilistic guarantee over the executions that start in those states. In this

paper, we tackle approximate versions of these problems, namely under-approximating Ssafe
0 or

over-approximating p+
S′ .

5.2.3 Controller Execution Abstraction

A key challenge in tackling the controller verification problem outlined above is the fact that it is over

a continuous-state model. In fact, since the model is finite-branching and we target finite-horizon

safety properties, for a specific initial state, the k-step probability of a failure could be computed

by solving a finite-state Markov chain. However, we verify the controller for a set of initial states,

giving infinitely many possible probabilistic executions. This is caused by the infinite set of initial

states; in comparison, if we only had a finite number of initial states the problem would become

much easier and could be solved by enumerating every possible successor up to timestep k.

Our approach is to construct and solve an abstraction of the model of controller execution.

The abstraction is a finite-state MDP whose states are abstract states ŝ ⊆ S, each representing some

subset of the states of the original concrete model. We denote the set of all possible abstract states

as Ŝ ⊆ P(S). In our approach, we use intervals (i.e., the “Box” domain; see Section 5.3).

In order to construct the abstraction of the controller’s execution, we build on an abstraction

Ê of the environment E : S×A→ S. This abstraction is a function Ê : Ŝ×A→ Ŝ which soundly

over-approximates the (concrete) environment, i.e., it satisfies the following definition.

Definition 14 (Environment abstraction). For environment model E : S × A → S and set of

abstract states Ŝ ⊆ P(S), an environment abstraction is a function Ê : Ŝ ×A→ Ŝ such that: for

any abstract state ŝ ∈ Ŝ, concrete state s ∈ ŝ and action a ∈ A, we have E(s, a) ∈ Ê(ŝ, a).

Using interval arithmetic, we can construct Ê for a wide range of functions E. As for E, the

environment abstraction Ê extends naturally to action sequences, where Ê(ŝ, w) gives the result of
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taking a sequence w of actions in abstract state ŝ. It follows from Definition 14 that, for any abstract

state ŝ ∈ Ŝ, concrete state s ∈ ŝ and action sequence w ∈ A∗, we have E(s, w) ∈ Ê(ŝ, w).

Our abstraction is an MDP whose states are abstract states from the set Ŝ ⊆ P(S). This

represents an over-approximation of the possible behaviour of the controller, and computing the

maximum probabilities of reaching failure states in the MDP will give upper bounds on the actual

probabilities in the concrete model. The choices that are available in each abstract state ŝ of the

MDP are based on a partition of ŝ into subsets {ŝ1, . . . , ŝm}. Intuitively, each choice represents the

behaviour for states in the different subsets ŝj .

Definition 15 (Controller execution abstraction). For a controller execution (π,E, f, S0, Sfail), a set

Ŝ ⊆ P(S) of abstract states and a corresponding environment abstraction Ê, a controller execution

abstraction is defined as an MDP (Ŝ, Ŝ0, P̂,AP , L̂) satisfying the following:

• for all s ∈ S0, s ∈ ŝ for some ŝ ∈ Ŝ0;

• for each ŝ ∈ Ŝ, there is a partition {ŝ1, . . . , ŝm} of ŝ that is consistent with the controller

policy π (i.e., π(s) = π(s′) for any s, s′ ∈ ŝj for each j) and, for each j ∈ {1, . . . ,m} we

have:

P̂(ŝ, j, ŝ′) =
∑{

f(π(ŝj))(w) | w ∈ A∗ such that Ê(ŝj, w) = ŝ′
}

where π(ŝj) is the action that π chooses for all states s ∈ ŝj;

• AP = {fail} and fail ∈ L̂(ŝ) iff fail ∈ L(s) for some s ∈ ŝ.

The idea is that each ŝj within abstract state ŝ represents a set of concrete states that have

the same behaviour at this level of abstraction. This is modelled by the jth choice from ŝ, which we

construct by finding the controller action π(ŝj) taken in those states, the possible action sequences

w that may arise when taking π(ŝj) due to the controller fault model f , and the abstract states ŝ′

that result when applying w in ŝj according to the abstract model Ê of the environment.
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The above describes the general structure of the abstraction; in practice, it suffices to

construct a fragment of at most depth k from the initial states. Once constructed, computing

maximum probabilities for the MDP yields upper bounds on the probability of the controller

exhibiting a failure. In particular, we have the following result:

Theorem 1. Given a state s ∈ S of a controller model DTMP, and an abstract state ŝ ∈ Ŝ

of the corresponding controller abstraction MDP for which s ∈ ŝ, we have Pr s(♦
6kfail) 6

Prmax
ŝ (♦6kfail).

A proof of Theorem 1 is provided in the Appendix A.1.

This also provides a way to determine sound approximations for the two verification prob-

lems discussed in Section 5.2.2, namely finding the set Ssafe
0 of states considered “safe” for a

particular probability threshold psafe :

Ssafe
0 ⊇ {s ∈ ŝ | ŝ ∈ Ŝ0 and Prmax

ŝ (♦6kfail) < psafe}

and the worst-case probability p+
S′ for a set of states S ′:

p+
S′ 6 max{Prmax

ŝ (♦6kfail) | ŝ ∈ Ŝ such that ŝ ∩ S ′ 6= ∅}

5.3 Policy Extraction and Abstraction Generation

Building upon the ideas in the previous section, we now describe the key parts of the MOSAIC

algorithm to implement this. We explain the abstract domain used, how to extract a controller policy

over abstract states from a neural network representation, and then how to build this into a controller

abstraction. We also discuss data structures for efficient manipulation of abstract states.
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Abstract domain. The abstraction described in Section 5.2.3 assumes an arbitrary set of abstract

states Ŝ ⊆ P(S). In practice, our approach assumes S ⊆ Rn and uses the “Box” abstract domain,

where abstract states are conjunctions of intervals (or hyperrectangles), i.e., abstract states are of the

form [l1, u1]× · · · × [ln, un], where li, ui ∈ R are lower and upper bounds for 1 6 i 6 n.

Box intervals will satisfy definition 14 and will easily partition each state a into homogeneous

regions aj ⊆ a such that ]mj=1aj = a compared to other means of abstraction such as the one

discussed in [74]. The disjoint property stated in the definition ensures that no point is contained

in two different subregions: this is important because if a state was to be included in two different

subregions the probabilities of the constructed abstract MDP would not represent a mathematically

correct overapproximation of the real probabilities in the concrete one. In addition it helps keeping

the number of successors down by ensuring that no region is propagated more than once, limiting

the state space explosion phenomenon.

5.3.1 Neural Network Policy Extraction

Controller policies are functions π : S → A, represented as neural networks. To construct an

abstraction (see Definition 15), we need to divide abstract states into subregions which are consistent

with π, i.e., those where π(s) is the same for each state s in the subregion. Our overall approach is

as follows. For each action a, we first modify the neural network, adding an action layer to help

indicate the states (network inputs) where a is chosen. Then, we adapt a branch-and-bound style

optimisation algorithm to identify these states, which builds upon methods to approximate neural

network outputs by propagating intervals through it.

Branch and bound. Branch and bound (BaB) is an optimisation algorithm which aims to minimise

(or maximise) a given objective function. It works iteratively, starting from the full domain of

possible inputs. BaB estimates a maximum and minimum value for the domain using estimator
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functions, which are quick to compute and approximate the real objective function by providing

an upper bound (UB) and a lower bound (LB) between which the real function lies. The chosen

bounding functions must be admissible, meaning we can guarantee that the real function will always

lie within those boundaries.

At each iteration of BaB, the domain is split (or “branched") into multiple parts. In the

absence of any additional assumptions about the objective function, the domain is split halfway

across the largest dimension. For each part, the upper and lower bounds are calculated and regions

whose lower bounds are higher than the current global minimum upper bound (the minimum

amongst all regions’ upper bounds) are discarded because, thanks to the admissibility property of

the approximate functions, they cannot ever have a value lower than the global minimum upper

bound.

The algorithm proceeds by alternating the branching phase and the bounding phase until

the two boundaries converge or the difference between the bounds is less than an acceptable error

value. After that, the current region is returned as a solution to the optimisation problem, and the

algorithm terminates.

Finding consistent regions. In order to frame the problem of identifying areas of the domain that

choose an action a as an optimisation problem, we construct an additional layer that we call an

“action layer", and append it on top of the neural network architecture. This is built in such a way

that the output is strictly negative if the output is a, and strictly positive value if not. We adopt the

construction from [37], which uses a layer to encode a correctness property to be verified on the

output of the network.

The techniques of [37] also adapt branch-and-bound algorithms, using optimisation to check

if a correctness property is true. But our goal is different: identifying areas within abstract states

where action a is chosen, so we need a different approach. Rather than minimising the modified
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Figure 5.1: Illustrating branch-and-bound to identify actions. Each box represents an abstract
state and the bar on the right represents upper and lower bounds on the output of the network. 0)
The upper and lower bounds of the domain do not give a definite answer, the domain is split into
two subregions; 1) The boundaries are tighter than in the previous iteration but the subregion is
still undecided; 2) The upper bound is < 0, the property “action taken is a" is always true in this
subregion; 3) The lower bound is > 0, the property “action taken is a" is always false in this
subregion; 4) The interval between upper and lower bound still contains 0, the action taken in
this interval is still unknown so we continue to branch.

output of the neural network, we continue splitting domains until we find areas that consistently

either do or do not choose action a or we reach a given precision. We do not keep track of the global

upper or lower bound since we only need to consider the local ones to determine which actions are

taken in each subregion. In the modified branch-and-bound algorithm, after calculating upper and

lower bounds for an interval, we have 3 cases:

• UB > LB > 0 : the controller will never choose action a for the interval;

• 0 > UB > LB : the controller will always choose action a;

• UB > 0 > LB : the outcome of the network is still undecided, so we split the interval and

repeat for each sub-interval.

At the end of the computation, we will have a list of intervals which satisfy the property “the

controller always take action a" and intervals which always violate it. From these two lists we can

summarise the behaviour of the controller within the current region of the state space.
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Algorithm 1: Finding subregions of abstract state ŝ for action a
1 function find_action_subregions(net, a, ŝ):
2 queue = {ŝ}, sat = { }, unsat = { }
3 mod_net = add_action_layer (net, a)
4 while queue 6= ∅ do
5 curr_domain = queue.pop()
6 UB = compute_UB (mod_net, curr_domain)
7 LB = compute_LB (mod_net, curr_domain)
8 if UB < 0 then
9 sat.append(curr_domain)

10 else if LB > 0 then
11 unsat.append(curr_domain)
12 else
13 dom1, dom2 = split (curr_domain)
14 queue.append(dom1)
15 queue.append(dom2)
16 return sat,unsat

Algorithm 1 shows pseudocode for the overall procedure of splitting an abstract state ŝ

into a set of subregions where an action a is always taken, and a set where it is not. Figure 5.1

illustrates the algorithm executing for a 2-dimensional input domain. The blue subregions are the

ones currently being considered; the orange bar indicates the range between computed lower and

upper bounds for the output of the network, and the red dashed line denotes the zero line.

Approximating neural network output. The branch-and-bound algorithm requires computation

of upper and lower bounds on the neural network’s output for a specific domain (compute_UB

and compute_LB in Algorithm 1). To approximate the output of the neural network, we use the

Planet approach from [62]. The problem of approximating the output of the neural network lies in

determining the output of the non-linear layers, which in this case are composed of ReLU units.

ReLU units can be seen as having 2 phases: one where the output is a constant value if the input is

less than 0 and the other where the unit acts as the identity function. The algorithm tries to infer the

phase of the ReLU function (whether x < 0 or x > 0) by constraining the range of values from the

input of the previous layers. In the case of the algorithm not being able to determine the phase of the

activation function, some linear over-approximation boundaries are used to constrain the output of
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each ReLU within the section. The constraints used are y > 0, y > x and y 6 (u · (x− l))/(u− l),

as presented in Planet [62], to represent the range of output obtainable from the ReLU activation

function, where u and l are the upper and lower bounds inferred from the boundaries of the input

domain by considering the maximum and minimum values of each input variable.

5.3.2 Building the Abstraction

Section 5.2.3 describes our approach to defining an abstract model of controller execution, as an

MDP, and Definition 15 explains the structure required of this MDP such that it can be solved to

produce probabilistic guarantees, i.e., upper bounds on the probability of a failure occurring within

some time horizon k. Here, we provide more details on the construction of the abstraction.

Algorithm 2 shows pseudo code for the overall procedure. We start from the initial abstract

states Ŝ0, which are the initial states of the MDP, and then repeatedly explore the “frontier” states ,

whose transitions have yet to be constructed, stopping exploration when either depth k (the required

time horizon) or an abstract state containing a failure state is reached. For each abstract state ŝ

to be explored, we use the techniques from the previous section (Paragraph 5.3.1) to split ŝ into

subregions of states for which the controller policy selects the same action. Each action a is then

translated to a distribution over the sequence of action w by the controller fault model f with

the corresponding probability p associated. This information is then used to create the various

transitions and the corresponding successor abstract states. In algorithm 2 this is expressed as f(a)

returning a sequence of pairs of probabilities over sequences of actions denoted p : w.

Determining successor abstract states in the MDP uses the environment abstraction Ê (see

Definition 14). Since we use the “Box” abstract domain, this means using interval arithmetic,

i.e., computing the successors of the corner points enclosing the intervals while the remaining

points contained within them are guaranteed to be contained within the enclosing successors. The
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Algorithm 2: Build MDP

1 function build_mdp(net, Ŝ0):
2 Ŝfrontier = Ŝ0, t = 0
3 while t < k do
4 foreach ŝ ∈ Ŝfrontier do
5 foreach a ∈ A do
6 Ŝa, Ŝa = find_action_subregions (net, a, ŝ)
7 foreach ŝj ∈ Ŝa and pi:wi in f(a) do
8 ŝ′ = Ê(ŝj, wi)
9 store (ŝ, pi, ŝ

′) in MDP
10 add ŝ′ to Ŝfrontier unless ŝ′ ∩ fail 6= ∅
11 t = t+ 1

definitions of our concrete environments are therefore restricted to functions that are extensible to

interval arithmetic.

5.3.3 Refining the Abstraction

Although the MDP constructed as described above yields upper bounds on the finite-horizon

probability of failure, we can improve the results by refining the abstraction, i.e., further splitting

some of the abstract states. The refinement step aims to improve the precision of states which are

considered unsafe (assuming some specified probability threshold psafe), by reducing the upper

bound closer to the real probability of encountering a failure state.

Regions of initial abstract states that are considered unsafe are split into smaller subregions

and we then recreate the branches of the MDP abstraction from these new subregions in the same

way as described in Algorithm 2. This portion of the MDP is then resolved, to produce a more

accurate prediction of their upper bound probability of encountering a failure state, potentially

discovering new safe subregions in the initial abstract state. The refinement process is executed

until either there are no more unsafe regions in the initial state or the maximum size of the intervals

are less than a specified precision ε.
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5.3.4 Storing and Manipulating Abstract States

Very often abstract states have a topological relationship with other abstract states encountered

previously. One abstract state could completely encapsulate or overlap with another, but simply

comparing all the possible pairs of states would be infeasible. For this reason we need a data

structure capable of reducing the number of comparisons to just the directly neighbouring states. A

tree-like structure is the most appropriate and significant progress has been made on tree structures

capable of holding intervals. However, most of them do not scale well for n-dimensional intervals

with n > 3.

R-tree [82] is a data-structure that is able to deal with n-dimensional intervals, used to

handle GIS coordinates in the context of map loading where only a specific area needs to be loaded

at a time. This data structure allows us to perform “window queries” which involve searching

for n-dimensional intervals that intersect with the interval we are querying in O(logn(m)) time,

where m is the number of intervals stored. R-tree organises intervals and coordinates in nested

“subdirectories” so that only areas relevant to the queried area are considered when computing an

answer.

Here, we use an improved version of R-tree called R*-tree [24] which reduces the overlapping

between subdirectories at the cost of higher computational cost of O(n log(m)). This modification

reduces the number of iterations required during the queries effectively speeding up the calculation

of the results. When an abstract domain is queried for the actions the controller would choose, only

the areas which were not previously visited get computed.
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5.4 Experimental Evaluation

We have implemented our MOSAIC algorithm, described in Sections 5.2 and 5.3, and evaluated

it on deep reinforcement learning controllers trained with DQN[142] and Adam optimiser on two

different benchmark environments from OpenAI Gym [32], an inverted pendulum and a cartpole,

modified to include controller faults. For space reasons, we consider only “sticky” actions [136]

which provide a reasonable model of old malfunctioning actuators as opposed to random actions:

each action is erroneously executed twice with probability p = 0.2.

Implementation. Our implementation uses a combination of Python and Java. The neural network

architecture is handled through the Pytorch library [6], interval arithmetic with pyinterval [2]

and graph analysis with networkX [4]. Abstract domain operations are performed with Rtree [1],

building on the library libspatialindex [5]. Constructing and solving MDPs is done using

PRISM [125], through its Java API, built into a Python wrapper using py4j [3].

5.4.1 Benchmarks and Policy Learning

Inverted Pendulum. The inverted pendulum environment consists of a pole pivoting around a

point at one of its ends. The controller can apply a rotational force to the left or to the right with the

aim of balancing the pole in its upright position. The pole is underactuated which means that the

controller can only recover to its upright position when the pole is within a certain angle. For this

reason, if the pole goes beyond a threshold from which it cannot recover, the episode terminates and

the controller is given a large negative reward. Each state is composed of 2 variables: the angular

position and velocity of the pole.

Cartpole. The cartpole environment features a pole being balanced on top of a cart that can either

move left or right. The cartpole can only move within fixed bounds and the pole on top of it cannot
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Figure 5.2: Heatmaps of failure probability upper bounds for subregions of initial states for the
pendulum benchmark (x/y-axis: pole angle/angular velocity). Left: the initial abstraction; Right:
the abstraction after 50 refinement steps.

recover its upright state after its angle exceeds a given threshold. In this problem the size of each

state is 4 variables: the position of the cart on the x-axis, the speed of the cart, the angle of the pole

and the angular velocity of the pole.

Policy construction. We train our own controller policies for the benchmarks, in order to take into

account the controller failures added. For the policy neural networks, we use 3 fully connected

layers of size 64, followed by an output layer whose size equals the number of controller actions

in the benchmark. The training is performed by using the Deep Q-network algorithm [142] with

prioritised experience replay [177], which tries to predict the action value in each state and choosing

the most valuable one. For both environments, we train the controller for 6000 episodes, limiting

the maximum number of timesteps for each episode to 1000. We linearly decay the epsilon in the

first 20% of the total episodes up to a minimum of 0.01 which we keep constant for the rest of the

training. The remaining hyperparameters remain the same as suggested in [142] and [177].

74 of 133



Probabilistic Guarantees for Safe Deep Reinforcement Learning

5.4.2 Results

We have run the MOSAIC algorithm on the benchmark controller policies described above. We

build and solve the MDP abstraction to determine upper bounds on failure probabilities for different

parts of the state space. Figure 5.2 (left) shows a heatmap of the probabilities for various subregions

of the initial states of the inverted pendulum benchmark, within a time horizon of 7 steps. Any

time horizon longer than that timed out due to the exponential state space explosion which limits

the number of time steps that can be handled. The slope dividing the safe and unsafe regions is

created by the trained agent favouring the left action and preferring to remain with the pole slightly

tilted to the right (x-axis > 0). Figure 5.2 (right) shows the heatmap for a more precise abstraction,

obtained after 50 steps of refinement. We do not fix a specific probability threshold psafe here, but

the right-hand part (in blue) has upper bound zero, so is “safe” for any psafe > 0. The refined

abstraction discovers new areas which are safe due to improved (i.e., lower) upper bounds in many

regions.

Results for the cartpole example are harder to visualise since the state space has 4 dimensions.

Figure 5.4 shows a scatterplot of failure probability bounds within 7 time steps for the subregions of

the initial state space; the intervals have been projected to two dimensions using principal component

analysis, the size of the bubble representing the volume occupied by the interval. We also plot,

in Figure 5.3, a histogram showing how the probabilities are distributed across the volume of the

subregions of the initial states. The plots show that the majority of the initial states considered for

this environment have an upper probability of failure concentrated around 0 with few outliers that

reach a probability of failure of 0.33. For a given value psafe on the x-axis, our analysis yields a

probabilistic guarantee of safety for the sum of all volumes shown to the left of this point. The agent

has a good overall performance but might need further refinement depending on the desired safety

threshold.

Scalability and efficiency. Lastly, we briefly discuss the scalabilty and efficiency of our prototype
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Figure 5.3: Cartpole: Histogram plot of the
volume occupied by the initial state subre-
gions, grouped by their maximum failure prob-
ability.

Figure 5.4: Cartpole: probability bounds for
initial state subregions (the axes A and B are
2D projections from the 4D space; size de-
notes the volume occupied by the interval).
We see that large sections of the state space
have maximum probability close to 0.

implementation of MOSAIC. Our experiments were run on a 4-core 4.2 GHz PC with 64 GB RAM

running Ubuntu 18.04. We successfully built and solved abstractions up to time horizons of 7

time-steps on both benchmark environments. For the inverted pendulum problem, the size of the

MDP built ranged up to approximately 160,000 states after building the initial abstraction, reaching

approximately 225,000 states after 50 steps of refinement. For the cartpole problem, the number

of states after 7 time-steps ranged up to approximately 75,000 states. A plot of the increasing

number of states at different timesteps compared to enumerating every state up to 3 decimal digits

is provided in Figure 5.5. The time required was roughly 50 minutes and 30 minutes for the two

benchmarks, respectively.

5.5 Conclusions

We have presented a novel approach called MOSAIC for verifying deep reinforcement learning

systems operating in environments where probabilistic controller faults may occur. We formalised

the verification problem as a finite-horizon analysis of a continuous-space discrete-time Markov
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Figure 5.5: A comparison of the number of states required by the MDP using the abstraction
method vs enumerating every state with a given precision ε of 3 decimal digits at different
horizon values. The comparison covers only the first 6 timesteps because enumerating every
single state becomes prohibitively expensive to compute for longer time horizons (computation
time > 5 hours ).

process and showed how to use a combination of abstract interpretation and probabilistic model

checking to compute upper bounds on failure probabilities. We implemented our techniques and

successfully applied them to two benchmark control problems.
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Chapter Six

Verifying Probabilistic Policies with

Entropy Minimisation

6.1 Introduction

Probabilistic policies are a popular tool used in reinforcement learning. This approach to policies

brings a number of advantages such as managing uncertain information in the environment, dealing

with adversaries in a competitive environment which might learn a counter-strategy to the current

learnt policy, dealing with partial observability of the environment by breaking symmetries in

the observation space, or balancing the exploration-exploitation tradeoff during training (useful

for continuously learning agents) and monitoring for changes in the underlying environment

(e.g.noticing that a path that was previously deemed inefficient has now become the optimal path).

However, due to their stochastic nature, it is usually possible to have at least a non-zero

probability of encountering an unsafe situation and the agent eventually failing. For this reason, we

want instead to establish probabilistic guarantees on the safe operation of the controller at runtime

(as we have previously seen in Chapter 5).
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As in previous chapters, we make use of abstract interpretation to reason about the dynamics

of the model with groups of continuous states. In this work, though, we construct an Interval Markov

Decision Process (IMDP) that models the operation of the abstracted controller in the environment,

and abstract the associated action probabilities with intervals that represent the best and worst case

probabilities of each action. This is achieved by combining the abstraction of the neural network

output given an abstract state, the range of probabilities associated with each action (the intervals

used within each transition of the IMDP) and the deterministic model of the physical environment.

One key challenge to this approach is posed by the abstraction of the probabilities for each

action, which can result in extremely large over-approximating intervals. To address this, we

propose a novel sampling-based approach for refinement based on entropy minimisation. The

algorithm will iteratively identify areas where probability intervals are tighter and subdivide the

abstract state accordingly ensuring a minimum degree of quality of the abstraction, based on the

uncertainty of the over-approximation.

We evaluate our approach by applying it to deep reinforcement learning controllers trained

on three benchmark environments: bouncing ball, adaptive cruise control and inverted pendulum.

We also experiment by changing type of abstraction, minimum quality thresholds and abstract state

aggregation to see how each element contributes to the precision and computational efficiency of

the algorithm.

6.2 Controller Modelling and Abstraction

We begin by giving a formal definition of our model for the execution of a probabilistic controller,

and of the abstractions that we construct to analyse these models.
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6.2.1 Controller Model and Verification

As in Chapter 5, we model the execution of a probabilistic policy in a given environment as a

(continuous-space, finite-branching) discrete-time Markov process (DTMP). We again define this

for a controller execution, which now takes the form (π,E, S0, Sfail) comprising controller policy

π, an environment model E, set S0 ⊆ S of initial states and set Sfail ⊆ S of failure states. The

policy is now probabilistic, i.e., a function π : S → Dist(A). For simplicity, we assume that this

is the only source of probabilistic behaviour, and ignore the previously used fault model f . This

approach differs from the previous modelling of probabilistic behaviour because the probabilities of

each action being chosen, for example due to a fault, are not consistent throughout the system but

are unknown a priori and change dynamically for each state.

Definition 16 (Probabilistic controller execution model). Given a controller execution (π,E, S0, Sfail),

the corresponding probabilistic controller execution model describing its runtime behaviour is the

DTMP (S, S0,P,AP , L) where AP = {fail}, for any s ∈ S, fail ∈ L(s) iff s ∈ Sfail and, for

states s, s′ ∈ S:

P(s, s′) =
∑
{π(s, a) | a ∈ A s.t. E(s, a) = s′} .

This is a similar style to Definition 13, but removes the effect of the fault model f and takes

into account the probabilistic nature of the policy π.

On this model, we tackle the same verification problem as in the previous chapter, namely

computing (a bound on) the maximum probability of reaching failure states within some time

horizon k, Pr s(♦
6kfail) assuming that the system may start in any initial state s ∈ S0.
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6.2.2 Controller Abstraction

We use a finite-state abstraction to compute a probabilistic guarantee. Like in the previous chapter,

the states of this abstraction are abstract states from a set Ŝ ⊆ P(S), and the model represents

an over-approximation of the possible behaviour of the controller. However, to deal with the

probabilistic nature of the policy, and the fact that it may choose different probabilities for actions in

every state, we now use an interval MDP (IMDP) as our abstraction. The choices that are available

in each abstract state ŝ of the IMDP are based on the upper and lower bounds on probabilities of

choosing actions in states s ∈ ŝ.

To define the abstraction, we again use an environment abstraction Ê : Ŝ × A → Ŝ (see

Definition 14), which has the property that, for any abstract state ŝ ∈ Ŝ, concrete state s ∈ ŝ and

action a ∈ A, we have E(s, a) ∈ Ê(ŝ, a).

Additionally, we need a policy abstraction, which gives a lower and upper bound on the

probability with which each action is selected within an abstract state.

Definition 17 (Policy abstraction). For a policy π : S → Dist(A) and a set of abstract states

Ŝ ⊆ P(S), a policy abstraction is a pair (π̂L, π̂U) of functions of the form π̂L : Ŝ × A→ [0, 1] and

π̂U : Ŝ ×A→ [0, 1], satisfying the following: for any abstract state ŝ ∈ Ŝ, concrete state s ∈ ŝ and

action a ∈ A, we have π̂L(ŝ, a) 6 π(s, a) 6 π̂U(ŝ, a).

In other words, for every action a ∈ A the probability of a being selected in any concrete

state within the abstract state is bounded by the upper and lower probability bounds. For convenience,

we will also use π̂ to refer to the bounds for a state, i.e., π̂(ŝ, a) = [π̂L(ŝ, a), π̂U(ŝ, a)].

Combining these notions, we can defined the IMDP abstraction of a controller execution.

Definition 18 (Probabilistic controller execution abstraction). For a (probabilistic) controller execu-

tion (π,E, S0, Sfail), a set Ŝ ⊆ P(S) of abstract states and corresponding policy abstraction π̂ and
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environment abstraction Ê, the probabilistic controller execution abstraction is defined as an IMDP

(Ŝ, Ŝ0, P̂,AP , L̂) satisfying the following:

• for all s ∈ S0, s ∈ ŝ for some ŝ ∈ Ŝ0;

• for each ŝ ∈ Ŝ, there is a partition {ŝ1, . . . , ŝm} of ŝ such that, for each j ∈ {1, . . . ,m} we

have P̂(ŝ, j, ŝ′) = [P̂L(s, j, ŝ′), P̂U(ŝ, j, ŝ′)] where:

P̂L(ŝ, j, ŝ′) =
∑{

πL(ŝ, a) | a ∈ A s.t. Ê(ŝj, a) = ŝ′
}

P̂U(ŝ, j, ŝ′) =
∑{

πU(ŝ, a) | a ∈ A s.t. Ê(ŝj, a) = ŝ′
}

• AP = {fail} and fail ∈ L̂(ŝ) iff fail ∈ L(s) for some s ∈ ŝ.

As in the previous chapter, an analysis of the IMDP then yields upper bounds on the

probability of a controller exhibiting a failure within k steps (♦6kfail ). This is formalised as follows

(see Appendix A.2 for a proof).

Theorem 2. Given a state s ∈ S of a probabilistic controller model DTMP, and an abstract state

ŝ ∈ Ŝ of the corresponding controller abstraction IMDP for which s ∈ ŝ, we have:

Pr s(♦
6kfail) 6 Prmax max

ŝ (♦6kfail).

where Prmax max
ŝ (♦6kfail) represents the maximum upper bound of the probability of failure

over the non-deterministic choices of actions within k timesteps when starting from the abstract

state ŝ.
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6.3 Abstraction Construction

As in the previous chapter, we construct and then solve an abstract model represented by an IMDP

(as opposed to MDP) using abstract interpretation. One of the main differences is the challenge of

determining the abstract policy from its neural network encoding. In this chapter we explain the

steps required for the abstraction of the policy.

6.3.1 Bounded Template Polyhedra Abstraction

We abstract states by using template polyhedra, convex shapes constrained within a fixed set of

directions ∆ (previously defined in Equation 4.7).

Template polyhedra can be bounded or unbounded depending whether every variable in the

state space is bounded by the direction of the template. We are going to focus on bounded template

polyhedra (also called polytopes) which are required for the refinement function later in the chapter.

6.3.2 Layer Encoding

Let π be encoded by a neural network comprising n input neurons, l hidden layers, each containing

hi neurons (1 6 i 6 l), and k output neurons, and using ReLU activation functions.

For an abstract state ŝ, we compute the policy abstraction, i.e., lower and upper bounds

π̂L(ŝ, aj) and π̂U(ŝ, aj) for all actions aj (see Definition 17), via mixed-integer linear programming

(MILP), building on existing MILP encodings of neural networks [196, 48, 37]. The probability

bounds cannot be directly computed via MILP due to the nonlinearity of the softmax function so,

as a proxy, we maximise the corresponding entry (the jth logit) of the output layer (l+1). For the
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upper bound (the lower bound is computed analogously), we optimise:

maximize zjl+1

subject to z0 ∈ ŝ,

0 6 zi −Wizi−1 − bi 6Mz′i for i = 1, . . . , l,

0 6 zi 6M −Mz′i for i = 1, . . . , l,

0 6 z′i 6 1 for i = 1, . . . , l,

zl+1 = Wl+1zl,

(6.1)

over the variables z0 ∈ Rn, zl+1 ∈ Rk and zi ∈ Rhi , z′i ∈ Zhi for 1 6 i 6 l.

Since abstract state ŝ is a convex polyhedron, the initial constraint z0 ∈ ŝ on the vector

of values z0 fed to the input layer is represented by |∆| linear inequalities. ReLU functions are

modelled using a big-M encoding [196], where we add integer variable vectors z′i and M ∈ R is a

constant representing an upper bound for the possible values of neurons.

We solve 2k MILPs to obtain lower and upper bounds on the logits for all k actions. We

then calculate bounds on the probabilities of each action by combining these values as described

below. Since the exponential function in softmax is monotonic, it preserves the order of the intervals,

allowing us to compute the bounds on the probabilities achievable in ŝ. Let xlb,i and xub,i denote

the lower and upper bounds, respectively, obtained for each action ai via MILP (i.e., the optimised

values zil+1 in (6.1) above). Then, the upper bound for the probability of choosing action aj is yub,j:

yub,j = softmax(zub,j) where ziub,j =

 xub,i if i = j

1− xlb,i otherwise

and where zub,j is an intermediate vector of size k. Again, the computation for the lower bound is

performed analogously.
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6.3.3 Abstract State Containment Check

When calculating the successors of abstract states we sometimes find successors which are partially

or fully contained within previously visited states. In Chapter 4 we used containment for finding

invariants, as, in the case of deterministic policies, the choice of action within the abstract state

was known, and this allowed us to achieve unbounded time safety verification. However, with

probabilistic policies, for each state there is always a small chance of choosing each different action

so it is highly unlikely that we are able to find an invariant.

On the other hand, the branching factor caused by the number of actions in the probabilistic

policy scenario is constant and this can cause a premature explosion of the number of states the

algorithm has to keep track. To this extent, as a trade-off for introducing additional approximation

errors, we can considerably reduce the number of independent abstract states by aggregating together

states which are fully contained within previously visited abstract states (as shown in Fig. 6.1),

hence reducing the branching factor.

6.3.4 Maximum Probability Spread

By using MILP to model both the environment and the neural network policy we can extract the

range of probabilities for each action. Depending on the size of the abstract state we are analysing,

the range of probabilities can get extremely wide, sometimes as wide as π̂(ŝi, a) = [0, 1] for any

action a, which becomes rather uninformative about the actions chosen by the policy. This usually

happens when the region covered by the polyhedron contains areas with completely different

behaviours.

We define the maximum probability spread as the maximum difference between upper and
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Figure 6.1: While constructing the graph, when a successors 3 and 4 are computed from a state
2 we check for containment in previously visited state 1 (green). If there is a full containment
between the states (last row) we aggregate them together in the IMDP (right column).
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lower bound for the abstract policy probability among any action:

∆max
π̂ (ŝi) = max

a∈A
(π̂U(ŝi, a)− π̂L(ŝi, a))

We can tune the desired degree of precision by changing the maximum probability spread

φ allowed for each abstract state: when the ∆max
π̂ (ŝi) exceeds the threshold, we refine the abstract

state in smaller chunks that satisfy the maximum probability spread constraint. This step ensures a

minimum quality of our probability estimates at the expense of an increase in the number of states

processed.

6.4 Refinement

In order to refine our estimates we aim to split the abstract state into sub-regions in such a way that

the difference ∆max
π̂ (ŝi) is as small as possible resulting in smaller areas with more concentrated

probability ranges. The aim of the partitioning is to both group areas of the state space having

similar probability ranges whilst also keeping the number of splits performed to a minimum. We try

to find a good compromise between accuracy of the abstraction and number of splits because by

constantly splitting the polyhedron, we may end up creating too many successors increasing the

branching factor

Calculating the range of probabilities in an abstract space using MILP can be very time

consuming: for this reason we take a sample of the probabilities that will underestimate the true

range of probabilities when deciding whether we want to split an abstract state or not. If the sampled

range of probabilities is already wide enough to trigger the split we can continue directly with the

next step, otherwise we calculate the exact range of probabilities using MILP to ensure that there is

no need for further refinement.
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Whenever an abstract state has a ∆-probability greater than a chosen hyperparameter

threshold φ we apply our refinement method which consists in 3 steps: sampling datapoints,

choosing direction candidates, and splitting. By enforcing ∆max
π̂ (ŝi) < φ we ensure that the

probability range for a given path is always shrinking at a desired pace. This is because for a path

of k timesteps with maximum probability range < φ at each timestep the final probability range for

the path will be < φk. This step can be found in algorithm 4 between line 8 and 10. The function

calculate_probabilities is time consuming to compute so we use the range of sampled

probabilities π̃(ŝ) (obtaining by performing the foward pass forward of the network over the

sampled points) as a proxy when it exceeds the threshold φ. In case where π̃(ŝ) does not exceed the

threshold, we compute the true range of probabilities π̂(ŝ) from the abstract state when deciding

whether to split the abstract state. Below we present a description of each step in detail.

6.4.1 Sampling the neural network policy

In order to group together areas of the state space according to probabilities we sample the points

inside a given convex region by using the Hit & Run method [185]. After generating individual

points contained in an abstract space, we obtain from the neural network the true probability

distributions of picking an action associated with each point. The probability of each action is

computed in a one vs all fashion, where we consider the probability of action a against every other

action, and the action we pick for the sampling is chosen based on the widest probability range

among all actions.

For each action a, we then generate a point cloud representing the probability of taking that

action as opposed to any other action. Since we are focusing on a single action a at a time and

a small section of the state space, the range of probabilities is smaller than the entire probability

space 0 < π̂U(ŝi, a) < π̂L(ŝi, a) < 1 (this because every action has a non-zero probability of being

chosen) and might be concentrated within a small range. To improve the partitioning, we break the
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tight distribution of probabilities by normalising them to the range [0, 1] before continuing.

For this step we choose a fixed number of samples rather that a number based on the desired

density of the datapoints: the rationale behind it is that by keeping the number of samples fixed this

step takes a fixed amount of time with the density of the points increasing as the polytope being

analysed becomes smaller, producing a better estimate of the policy as the algorithm generates

child partitions. Figure 6.2 shows the process of sampling policy probabilities and the partitions

generated by the algorithm.

1.0

0.25

0.0

0.5

0.75

Figure 6.2: Sampled policy probabilities for one action for the adaptive cruise control in an
abstract state (left) and the template polyhedra partition generated through refinement (right). X
axis represents ∆-speed, Y axis represents ∆-distance.

6.4.2 Choosing Direction Candidates

When aiming to split the abstract state according to probability distribution we first have to decide

how it is going to be partitioned. Since we are using bounded template polyhedra, we already have

a fixed set of directions across which we can split each abstract state. By requiring a bounded

template we can pick any direction to bisect the abstract state.

However, not every direction contributes equally to the reduction of the probability spread:
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we will iterate through every direction and project each sampled point onto it forming a line with

the probabilities of picking action a associated to each point. We will split the projection in two

parts at the point that minimises a given cost function, representing the best way to partition the

sequence of points.

Let S̃ be the set of sampled points and Ỹs denote the true probability of choosing action a in

each point s ∈ S̃, as extracted from the probabilistic policy. For each direction δj , we project all

points in S̃ onto δj and sort them accordingly, i.e., we let S̃ = {s1, . . . , sm}, where m = |S̃| and

index i is sorted by 〈δj, si〉. In addition, we want a sorted representation of the probabilities, so we

define Ỹ δj
si which is a pointer to the true probability of choosing action a relative to the ith point

s ∈ S̃ sorted by 〈δj, si〉. We determine the optimal boundary for splitting in direction δj by finding

the optimal index k that splits S̃ into {s1, . . . , sk} and {sk+1, . . . , sm}. To do so, we first define the

function Y k
i classifying the ith point according to this split:

Y k
i =

 1 if i 6 k

0 if i > k

and then minimise, over k, the binary cross entropy loss function:

H(Y k, Ỹ δj) = − 1

m

∑m

i=1

(
Y k
i log(Ỹ δj

si
) + (1− Y k

i ) log(1− Ỹ δj
si

)
)

where Ỹ δj
si is the true probability of state si sorted according to the projection 〈δj, si〉; which

reflects how well the true probability for each point Ỹ δj
s matches the separation into the two groups.

Out of all the directions δj we then pick the one that minimises the entropy cost function.

One of the problems with this approach is that if the distribution of probabilities is skewed

to strongly favour some probabilities (e.g the probabilities are concentrated around a point with

few outliers), this method does not correctly pick a good decision boundary. To counter this issue
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we perform sample weighting by grouping the distribution of sampled probabilities in small bins,

counting the number of samples in each bin to calculate how much weight to give to each sample.

In algorithm 5 this operation is performed by the function binning on line 2 which returns an

importance weight for each sampled point. We do not use adaptive bin size based on the number

of elements in each bin because we are interested in weighting accurately each sample rather that

creating bins which will weight each group the same. In this way, overly common probabilities will

not outweight the least sampled ones providing a better decision boundary.

6.4.3 Abstract State Partitioning

Once thedividing value p = 〈δ, sk〉 at index k and the direction δ of the split are chosen, we

simply add the constraints 〈δ, ŝ〉 6 p and 〈δ, ŝ〉 > p respectively to generate the subregions. By

being constrained to the directions of the template, and because the decision boundary is highly

non-linear, sometimes no direction seems to provide a good candidate for the split and consequently

the slices are extremely thin (the optimisation algorithm chooses a midpoint close to the interval

boundaries). This causes the creation of an unnecessarily high number of successors which we

prevent by imposing a minimum size of the split relative to the dimension chosen. By doing so we

are guaranteed a minimum degree of progress and the complex shapes in the non-linear policy space

which are not easily classified (such as non-convex shapes) are broken down into more manageable

regions.

We include the pseudocode of the entire process broken down in Algorithms 3,4 and 5.
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Algorithm 3: Refine Abstract State

1 function state_partitioning(net, Ŝ0, template):
2 Ŝfrontier = Ŝ0

3 partitions = ∅
4 while Ŝfrontier 6= ∅ do
5 ŝ = pop(Ŝfrontier)
6 Ssample ∼ ŝ
7 π̃(ŝ) = forward(net, Ssample) // use sampled probabilities to

save time
8 if ∆π̃(ŝ) 6 φ then
9 π̂(ŝ) = calculate_probabilities(net, ŝ)

10 if ∆π̂(ŝ) 6 φ then
11 partitions = partitions + ŝ // no split
12 continue
13 ŝ1, ŝ2 = split(net, ŝ, template)

14 Ŝfrontier = Ŝfrontier + ŝ1, ŝ2

15 return partitions

Algorithm 4: Split Abstract State
1 function split(net, ŝ, template):
2 costmin =∞, pbest = ∅, δbest = ∅
3 foreach δ ∈ template do
4 projected = 〈Ssample, δ〉
5 π̃(ŝ) = forward(net, Ssample)
6 cost, p = optimise_cost(projected, π̃(ŝ))
7 if cost < costmin then
8 costmin = cost
9 pbest = p

10 δbest = δ
11 ŝ1, ŝ2 = split_milp(pbest, δbest, ŝ)

12 return ŝ1, ŝ2

6.5 Experimental Evaluation

In the following section we evaluate the performance of our approach for deep reinforcement

learning agents on 3 different environments encountered in the previous chapters: Bouncing

Ball, Stopping Car and Inverted Pendulum. All the agents have been trained using PPO with the

same hyperparameters used in chapter 4, and return probabilistic policies. We are interested in
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Algorithm 5: Optimise Cost
1 function optimise_cost(projected, π̃(projected)):
2 sample_weight = binning(projected, π̃(projected))
3 costmin =∞, pbest = ∅
4 yp = π̃(projected)
5 foreach p ∈ projected do
6 yt = [projected < p?1 : 0] // creates an array of 0 and 1
7 cost = − 1

n

∑n
i=0(yti log(ypi) + (1− yti) log(1− ypi)) · sample_weight

8 if cost < costmin then
9 costmin = cost

10 pbest = p

11 return costmin, pbest

calculating bounds on the worst-case probability within k steps, that is the maximum probabil-

ity Prmax
ŝ (♦6kfail), which areas of the state space are more prone to be unsafe and how some

hyperparameters influence the result.

Implementation. Our implementation uses a combination of Python and Java. The neural network

architecture is handled through the Pytorch library [6], the MILP modelling through Gurobi [81],

and graph analysis with networkX [4]. The optimisation of the cost function is done through

the Scikit-learn python library [162]. Constructing and solving IMDPs is done using a prototype

extension of PRISM [125], through its Java API, built into a Python wrapper using py4j [3].

6.5.1 Type of Template

As discussed in the previous chapters, the set of directions δ used during the construction of the

template affect how well the abstract states approximate the true probability values of sections of

the state space. Depending on the problem, the choice of intervals or octagons can contribute to a

high level of fragmentation when abstracting the state space, causing a premature explosion in the

number of states.

To prevent that, we sample a representative portion of the state space where the agent is
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expected to operate and modify the template by choosing appropriate slopes for the directions, to

better represents the decision boundaries. An example of this process is shown in Figure 6.3. By

doing so, we aim to reduce the number of individual abstract states in the IMDP and speed up the

model construction process.

(a) Interval: 450 items (b) Octagon: 334 items (c) Adjusted Octagon: 25 items

Figure 6.3: Heatmap of a state space section for a trained neural network policy representing the
average probability of choosing the acceleration action (red) in the stopping car environment. X
axis represents ∆-speed, Y axis represents ∆-distance. The type of template affects the number
of abstract states created. The slope of the template in (c) is based on the neural network decision
boundary in order to minimise the number of abstract states.
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(a) True gaussian distribution (b) Heatmap with intervals, φ = 0.3, n=121

(c) Heatmap with octagons, φ = 0.3, n=111 (d) Heatmap with octagons, φ = 0.1, n=573

Figure 6.4: Example of the abstraction process applied to a toy example (Gaussian distribution)
with abstracted results generated by sampling. By increasing the complexity of the template we
reduce the number of abstract states as we have more directions across which we can choose how
to split. By reducing the maximum probability range φ the number of abstract states increase
exponentially whilst each abstract state gives a better representation of the true distribution.
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Env. Abs. Max Contain Num Num Graph Prmax
ŝ (♦6kfail) Avg

k poly. visited size runtime

BB (φ = 0.1, S0 = L) Rect 20 3 1727 5534 7796 0.63 30 min
BB (φ = 0.1, S0 = S) Rect 20 3 337 28 411 0.0 1 min
BB (φ = 0.1, S0 = L) Oct 20 3 2489 3045 6273 0.0 33 min
BB (φ = 0.1, S0 = S) Oct 20 3 352 66 484 0.0 2 min
BB (φ = 0.1, S0 = L) Rect 20 7 18890 0 23337 0.006 91 min
BB (φ = 0.1, S0 = L) Oct 20 7 13437 0 16837 0.0 111 min

Table 6.1: Verification results for the bouncing ball (BB) environment. The results include the
number of independent polytopes generated, the number of instances in which polytopes that
are contained in previously visited abstract states and get aggregated together, the worst case
probability of encountering an unsafe state from the initial state, and the runtime required for the
IMDP construction. We experimented with different starting state (Small and Large), contain
check and type of abstraction.

6.5.2 Environments

Bouncing Ball

We run our method on the Bouncing Ball environment, described previously (Section 4.4.1). We

consider the starting set of states as the ball starting from a range of different heights with almost no

change to the initial velocity. The ball accelerates while falling and bounces on the ground. When

dropped from a height close to the ground and out of reach from the paddle the ball eventually stops

and violates the safety constraint of never stopping bouncing. The agent learnt not to use the paddle

when out of reach in order to preserve energy (signalled to the agent by a small negative cost).

The heatmap in Fig. 6.5 represents the maximum (worst-case) probability of encountering

an unsafe state which is very high for regions out of reach from the piston, dropped from low height

and no momentum. We run experiments with both a large and a small starting region: the large

starting region was the area obtained by the intersection p ∈ [9, 5] and v ∈ [1,−1] where p and v are

the position and velocity of the ball, while the small starting region was the intersection p ∈ [9, 5]

and v ∈ [0,−0.1].
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(a) Heatmap with Intervals, φ = 0.1
(b) Max probability of unsafety
within 20 time steps

Figure 6.5: Heatmap of the neural network policy and plot of bounded probabilistic safety for
the bouncing ball environment. The X and Y axes represent the speed and position of the ball.
The red area in (b) indicates regions that are out of reach of the piston and are bound to fail no
matter the action of the agent.

Adaptive Cruise Control

In the Adaptive Cruise Control problem, described in Section 4.4.2, we expand on the size of the

initial abstract state and customize the directions of the template to better approximate the decision

boundaries present in the controller (as shown in Fig. 6.3).
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Env. Abs. Max Contain Num Num Graph Prmax
ŝ (♦6kfail) Avg

k poly. visited size runtime

ACC (φ = 0.33) Rect 7 3 1522 4770 10702 0.084 85 min
ACC (φ = 0.33) Oct 7 3 1415 2299 6394 0.078 60 min
ACC (φ = 0.33) Temp 7 3 2440 2475 9234 0.47 70 min
ACC (φ = 0.5) Rect 7 3 593 1589 3776 0.62 29 min
ACC (φ = 0.5) Oct 7 3 801 881 3063 0.12 30 min
ACC (φ = 0.5) Temp 7 3 1102 1079 4045 0.53 34 min
ACC (φ = 0.33) Box 7 7 11334 0 24184 0.040 176 min
ACC (φ = 0.33) Oct 7 7 7609 0 16899 0.031 152 min
ACC (φ = 0.33) Temp 7 7 6710 0 14626 0.038 113 min
ACC (φ = 0.5) Box 7 7 3981 0 8395 0.17 64 min
ACC (φ = 0.5) Oct 7 7 2662 0 5895 0.12 52 min
ACC (φ = 0.5) Temp 7 7 2809 0 6178 0.16 48 min

Table 6.2: Verification results for the adaptive cruise control (ACC) environment, with different
types of abstraction, i.e., rectangular, octagonal, or customised template-based. The results
include the number of independent polytopes generated, the number of instances in which
polytopes that are contained in previously visited abstract states and get aggregated together,
the worst case probability of encountering an unsafe state from the initial state, and the runtime
required for the IMDP construction. We experiment with different components: the type of
abstraction, the maximum probability range φ and the checking for containment in previously
visited states.
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Env. Abs. Max Contain Num Num Graph Prmax
ŝ (♦6kfail) Avg

k poly. visited size runtime

IP (φ = 0.5) Rect 6 3 1494 3788 14726 0.057 71 min
IP (φ = 0.5) Rect 7 3 na na na na timeout
IP (φ = 0.5) Oct 6 3 na na na na timeout
IP (φ = 0.5) Box 6 7 5436 0 16695 0.057 69 min
IP (φ = 0.5) Box 7 7 na 0 na na timeout
IP (φ = 0.5) Oct 6 7 na 0 na na timeout

Table 6.3: Verification results by for the inverted pendulum (IP) environment, with different
types of abstraction i.e., rectangular, octagonal, or customised template-based. The results
include the number of independent polytopes generated, the number of instances in which
polytopes that are contained in previously visited abstract states and get aggregated together,
the worst case probability of encountering an unsafe state from the initial state, and the runtime
required for the IMDP construction. We limited the execution to 3h for each experiment.

Inverted Pendulum

The Inverted Pendulum problem is different from the previous problems because rather than using 2

actions as in the previous ones, the environment allows for 3 actions (noop, push left, push right).

In addition, the dynamics of the system are highly non-linear making the problem more complex.

For a 3 action environment, the choice of action matters when deciding which direction

to split as opposed to the previous 2 cases. When dealing with non-linearities, we adopted the

same approach as in the Cartpole environment in Chapter 4 which involved subdividing the area

contained in the abstract state in small intervals and mapping them to their corresponding successor

after applying the linearised dynamics. In Figure 6.6 we show a heatmap of the abstract policy

probability for each action to show how the choice of template affects the refinement of the abstract

states.
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(a) Interval (b) Octagon

Figure 6.6: Heatmap of a state space section for a trained neural network policy representing the
average probability of choosing the noop action (red), right (green) and the left action (blue) in
RGB in the inverted pendulum environment. The X axis represents angular speed and the Y
axis represents the angle of the pendulum in radians. Notice the grey area towards the centre
where all 3 actions have the same probability; The centre right area with yellow tints (red and
green), the centre left area with purple tints (red and blue). Towards the bottom of the heatmap
the colour fades to green as the agent try to push the pendulum to cause it to spin and balance
once it reaches the opposite side.
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6.5.3 Results

We have run our algorithm on the controller policies presented above. We build and solve the IMDP

abstraction and are able to calculate the upper and lower bounds of failure probabilities for different

subregions of the initial abstract state. The branching factor is heavily influenced by both the choice

of template and the precision of the probability range φ that we want to maintain (shown in Fig 6.4).

Our experiments were run on a 4-core 4.2 GHz PC with 64 GB RAM running Ubuntu 18.04.

We used a time horizon of 20 time-steps for the bouncing ball problem and 7 time-steps for both the

adaptive cruise control and the inverted pendulum.

The bouncing ball environment is the quickest experiment to construct and verify due to the

low number of variables and the simplicity of the dynamics. The policy identified 2 main areas for

refining the initial state: one where it could reach the ball and should hit it and one where the ball

was out of reach and the paddle should have not been activated to preserve energy. However, despite

keeping φ very small, we noticed the creation of big abstract states when using box abstractions that

ended up containing most of the other states visited by the agent. When those regions encountered

an unsafe state, the value of Prmax
ŝ (♦6kfail) increased substantially. Unfortunately those large

abstract states are not broken down by the refinement algorithm because the probability range

∆max
π̂ (ŝi) was still within threshold. Reducing the threshold would help address this problem but at

the expense of greater computational load due to the increasing number of abstract state splits.

On the adaptive cruise control problem, we run different variations. As expected, with

increasingly smaller φ, the runtime increases and the worst case probability decreases (the overesti-

mation error from the abstraction decreases making it closer to the true maximum probability). The

checking for containing previously visited states helps reduce the computation time at the expense

of some overapproximation. Modifying the template to better approximate the decision boundary in

a sample of the state space does not seem to contribute to any improvement in time or precision
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and instead causes a spike in the worst case probability when combined with the containment

check: our explanation is that, in this configuration, abstract states tend to cover big areas of the

state space uninterrupted (shown in Fig. 6.3), and hence it becomes easy to act as a sink state for

smaller surrounding abstract states. When one of these macro states encountered violates safety, the

maximum probability propagates back throughout the graph causing a large overapproximation of

the probability.

On the inverted pendulum, most of the experiments timed out due to the high number of

abstract states generated when splitting each successor and the overall speed of solving the MILP

operations. Although only remotely similar, we can see that the throughput of using Mixed Integer

Linear Programming is order of magnitudes lower compared to the network abstraction used in

Chapter 5. In this case the use of containment check did not affect the precision of our estimates

because the abstract states are sufficiently small and do not cause the overapproximations errors

seen in the previous experiments.

6.6 Conclusion

We presented a novel approach to verifying probabilistic neural network policies based on MILP

and abstract interpretation, extending on the work presented in the previous chapters. We propose

a new refinement method based on cross-entropy aimed at breaking areas with large probability

intervals into smaller regions with more concentrated ranges. We also experimented with multiple

hyperparameters to improve the computational speed and reduce the overapproximation errors in

the abstraction.
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Chapter Seven

Conclusions

7.1 Summary

In this thesis we focused on developing novel verification techniques to provide the user with strong

guarantees over the performance of neural network based controllers. In particular, we considered 3

different sources of uncertainty affecting deep reinforcement learning agents: sensory input noise,

faulty actuators and probabilistic policies.

For each of these sources of uncertainty we offer a different algorithm based on abstract

interpretation (and probabilistic model checking) to perform safety verification. We tackled:

• Deterministic policies in environments with noisy sensors and infinite horizon

• Deterministic policies with noisy actuators and bounded horizon

• Probabilistic policies with deterministic environments and bounded horizon

Each verification algorithm has been implemented and applied to a group of controllers trained on

benchmark problems taken from the literature, experimenting with multiple different configurations

and reporting results for each task.
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7.2 Future Work

The work in this thesis can be extended in a number of directions. Below we present possible

extensions associated to each approach.

Verifying Deep Reinforcement Learning over Unbounded Time

A possible extension to the presented work would include the application to continuous action spaces.

This task brings some challenges such as the wrapping effect [151] where the overapproximations

caused by the template build up at each timestep, which is magnified by the continuous action space.

Probabilistic Guarantees for Safe Deep Reinforcement Learning

Future work will include more sophisticated refinement and abstraction approaches, including the

use of lower bounds to better measure the precision of abstractions and to guide their improvement

using refinement. We also aim to improve scalability to larger time horizons and more complex

environments, for example by investigating more efficient abstract domains.

Verifying Probabilistic Policies with Entropy Minimisation

There are a number of future modifications that could improve the algorithm: (i) creating an

automated way to find the important template directions and customising based on the sampling of

the state space and minimising the number of abstract states, (ii) remove partial overlap between

abstract states, (iii) refining abstract states based on the maximum and minimum probability of

encountering an unsafe state.

Automating the discovery of important template dimension could further reduce the number
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of directions employed in each template speeding up the MILP calculations and improving the

overall time efficiency of the algorithm. Removing partial overlap is also a promising direction for

reducing the overall number of timesteps needed for finding invariants and loops within the graph;

by concentrating the computational efforts to subsections of the abstract states whose results are

yet to be discovered, the algorithm should be able to keep the number of states in the IMDP low

and this should allow us to extend the horizon to include states further in the future. Finally, by

adopting a similar approach to the refinement of our probability estimates (as in Chapter 5) when the

upper and lower bound of the probability of encountering an unsafe state dirverge, we can improve

the precision of the algorithm and pinpoint with greater accuracy which areas of the state space

have a high probability of failing. This requires adopting an additional strategy for breaking down

abstract states into smaller subregions that is not only based on the probabilities of the controller but

possibly driven by the trajectories obtained by sampling data within the abstract state. This would

prevent large abstract states from forming in regions neighbouring unsafe areas leading to large

overestimations in the probability of failing.

105 of 133



Appendix One

Appendix

A.1 Proof of Theorem 1

We give here a proof of Theorem 1, from Section 5.2.3, which states that:

Given a state s ∈ S of a controller model DTMP, and an abstract state ŝ ∈ Ŝ of the corresponding

controller abstraction MDP for which s ∈ ŝ, we have:

Pr s(♦
6kfail) 6 Prmax

ŝ (♦6kfail)

By the definition of Prmax
ŝ (·), it suffices show that there is some policy σ in the MDP such that:

Pr s(♦
6kfail) 6 Prσŝ (♦6kfail) (A.1)

Recall that, in the construction of the MDP (see Definition 15), an abstract state ŝ is associated with

a partition of subsets ŝj of ŝ, each of which is used to define the j-labelled choice in state ŝ. Let σ

be the policy that picks in each state s (regardless of history) the unique index js such that s ∈ ŝjs .
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The probabilities Prσŝ (♦6kfail) for this policy, starting in abstract state ŝ, are defined

similarly to those for discrete-time Markov processes (see Section 5.2.2):

Prσŝ (♦6kfail) =


1 if ŝ |= fail

0 if ŝ 6|= fail ∧ k=0∑
ŝ′∈supp(P̂(ŝ,js,·))

P̂(ŝ, js, ŝ
′)·Prσŝ′(♦6k−1fail) otherwise.

(A.2)

Since this is defined recursively, we prove (A.1) by induction over k.

First, for the case k = 0, from the computation of Pr s(♦
6kfail) (see Section 5.2.2), we have that

Pr s(♦
60fail) is equal to 1 if s |= fail and 0 otherwise. The same holds for Prσŝ (♦60fail), as stated

above. From Definition 15, s |= fail implies ŝ |= fail . Therefore, Pr s(♦
60fail) 6 Prσŝ (♦60fail).

Next, for the inductive step, we will assume, as the inductive hypothesis, that Pr s′(♦
6k−1fail) 6

Prσŝ′(♦
6k−1fail) for s′ ∈ S and ŝ′ ∈ Ŝ with s′ ∈ ŝ′. If ŝ |= fail then Prσŝ (♦6kfail) = 1 >

Pr s(♦
6kfail). Otherwise we have:

Prσŝ (♦6kfail)

=
∑

ŝ′∈supp(P̂(ŝ,js,·)) P̂(ŝ, js, ŝ
′) · Pr ŝ′(♦6k−1fail) by defn. of σ and Prσŝ (♦6kfail)

=
∑

w∈A∗ f(π(ŝj))(w) · Pr
Ê(ŝj ,w)

(♦6k−1fail) by defn. of P̂(ŝ, j, ŝ′)

=
∑

w∈A∗ f(π(s))(w) · Pr
Ê(ŝj ,w)

(♦6k−1fail) since s ∈ ŝj

>
∑

w∈A∗ f(π(s))(w) · PrE(s,w)(♦
6k−1fail) by induction and since, by

Defn. 14, E(s, w) ∈ Ê(ŝj, w)

=
∑

s′∈supp(P(s,·)) P(s, s′) · Pr s′(♦6k−1fail) by defn. of P(s, s′)

= Pr s(♦
6kfail) by defn. of Pr s(♦

6kfail)

which completes the proof.
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A.2 Proof of Theorem 2

We give here a proof of Theorem 2, from Section 6.2, which states that:

Given a state s ∈ S of a probabilistic controller model DTMP, and an abstract state ŝ ∈ Ŝ of the

corresponding controller abstraction IMDP for which s ∈ ŝ, we have:

Pr s(♦
6kfail) 6 Prmax max

ŝ (♦6kfail)

By the definition of Prmax max
ŝ (·), it suffices to show that there is some policy σ and some environ-

ment policy τ in the IMDP such that:

Pr s(♦
6kfail) 6 Prσ,τŝ (♦6kfail) (A.3)

Recall that, in the construction of the IMDP (see Definition 18), an abstract state ŝ is associated

with a partition of subsets ŝj of ŝ, each of which is used to define the j-labelled choice in state

ŝ. Let σ be the policy that picks in each state s (regardless of history) the unique index js such

that s ∈ ŝjs . Then, let τ be the environment policy that selects the upper bound of the interval for

every transition probability. We use function P̂τ to denote the chosen probabilities, i.e., we have

P̂τ (ŝ, js, ŝ
′) = P̂U(ŝ, j, ŝ′) for any ŝ, j, ŝ′.

The probabilities Prσ,τŝ (♦6kfail) for these policies, starting in abstract state ŝ, are defined

recursively in the same way as in (A.2) above. So, as there, we prove (A.3) by induction over k.

The case k = 0 proceeds identically to show that Pr s(♦
60fail) 6 Prσ,τŝ (♦60fail).

Next, for the inductive step, we will assume, as the inductive hypothesis, that Pr s′(♦
6k−1fail) 6

Prσ,τŝ′ (♦6k−1fail) for s′ ∈ S and ŝ′ ∈ Ŝ with s′ ∈ ŝ′. If ŝ |= fail then Prσ,τŝ (♦6kfail) = 1 >

108 of 133



Appendix

Pr s(♦
6kfail). Otherwise we have:

Prσ,τŝ (♦6kfail)

=
∑

ŝ′∈supp(P̂τ (ŝ,js,·)) P̂τ (ŝ, js, ŝ
′) · Pr ŝ′(♦6k−1fail) by defn. of σ and Prσ,τŝ (♦6kfail)

=
∑

ŝ′∈supp(P̂U (ŝ,js,·)) P̂U(ŝ, js, ŝ
′) · Pr ŝ′(♦6k−1fail) by defn. of τ

=
∑

a∈A πU(ŝ, a) · Pr
Ê(ŝj ,a)

(♦6k−1fail) by defn. of P̂U(ŝ, j, ŝ′)

>
∑

a∈A π(s, a) · Pr
Ê(ŝj ,a)

(♦6k−1fail) since s ∈ ŝ and by Defn.17

>
∑

a∈A π(s, a) · PrE(s,a)(♦
6k−1fail) by induction and since, by

Defn. 14, E(s, w) ∈ Ê(ŝj, w)

=
∑

s′∈supp(P(s,·)) P(s, s′) · Pr s′(♦6k−1fail) by defn. of P(s, s′)

= Pr s(♦
6kfail) by defn. of Pr s(♦

6kfail)

which completes the proof.
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